Abstract

Entanglement is a fundamental resource in quantum information processing. Several studies have explored the integration of sources of entangled states on a silicon chip, but the devices demonstrated so far require millimeter lengths and pump powers of the order of hundreds of milliwatts to produce an appreciable photon flux, hindering their scalability and dense integration. Microring resonators have been shown to be efficient sources of photon pairs, but entangled state emission has never been proven in these devices. Here we report the first demonstration, to the best of our knowledge, of a microring resonator capable of emitting time-energy entangled photons. We use a Franson experiment to show a violation of Bell’s inequality by more than seven standard deviations with an internal pair generation exceeding 107Hz. The source is integrated on a silicon chip, operates at milliwatt and submilliwatt pump power, emits in the telecom band, and outputs into a photonic waveguide. These are all essential features of an entangled state emitter for a quantum photonic network.

© 2015 Optical Society of America

Full Article  |  PDF Article
Related Articles
Long-distance distribution of time-bin entangled photon pairs over 100 km using frequency up-conversion detectors

T. Honjo, H. Takesue, H. Kamada, Y. Nishida, O. Tadanaga, M. Asobe, and K. Inoue
Opt. Express 15(21) 13957-13964 (2007)

Distribution of Time-Energy Entanglement over 100 km fiber using superconducting single-photon detectors

Qiang Zhang, Hiroki Takesue, Sae Woo Nam, Carsten Langrock, Xiuping Xie, Burm Baek, M. M. Fejer, and Yoshihisa Yamamoto
Opt. Express 16(8) 5776-5781 (2008)

Beamlike high-brightness source of polarization-entangled photon pairs

Xiao-Ling Niu, Yun-Feng Huang, Guo-Yong Xiang, Guang-Can Guo, and Z. Y. Ou
Opt. Lett. 33(9) 968-970 (2008)

References

  • View by:
  • |
  • |
  • |

  1. M. A. Nielsen, I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2000).
  2. A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. 67, 661–663 (1991).
    [Crossref]
  3. M. Curty, M. Lewenstein, N. Lütkenhaus, “Entanglement as a precondition for secure quantum key distribution,” Phys. Rev. Lett. 92, 217903 (2004).
    [Crossref]
  4. R. Jozsa, N. Linden, “On the role of entanglement in quantum-computational speed-up,” Proc. R. Soc. A 459, 2011–2032 (2003).
    [Crossref]
  5. C. H. Bennett, G. Brassard, “Quantum cryptography: public key distribution and coin tossing,” in Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing (IEEE, 1984), pp. 175–179.
  6. A. Crespi, R. Ramponi, R. Osellame, L. Sansoni, I. Bongioanni, F. Sciarrino, G. Vallone, P. Mataloni, “Integrated photonic quantum gates for polarization qubits,” Nat. Commun. 2, 566 (2011).
    [Crossref]
  7. B. J. Metcalf, N. Thomas-Peter, J. B. Spring, D. Kundys, M. A. Broome, P. C. Humphreys, X. Jin, M. Barbieri, W. S. Kolthammer, J. C. Gates, B. J. Smith, N. K. Langford, P. G. R. Smith, I. A. Walmsley, “Multiphoton quantum interference in a multiport integrated photonic device,” Nat. Commun. 4, 1356 (2013).
    [Crossref]
  8. P. J. Shadbolt, M. R. Verde, A. Peruzzo, A. Politi, A. Laing, M. Lobino, J. C. F. Matthews, M. G. Thompson, J. L. O’Brien, “Generating, manipulating and measuring entanglement and mixture with a reconfigurable photonic circuit,” Nat. Photonics 6, 45–49 (2011).
    [Crossref]
  9. J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8, 104–108 (2013).
    [Crossref]
  10. P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
    [Crossref]
  11. G. Fujii, N. Namekata, M. Motoya, S. Kurimura, S. Inoue, “Bright narrowband source of photon pairs at optical telecommunication wavelengths using a type-II periodically poled lithium niobate waveguide,” Opt. Express 15, 12769–12776 (2007).
    [Crossref]
  12. E. Pomarico, B. Sanguinetti, N. Gisin, R. Thew, H. Zbinden, G. Schreiber, A. Thomas, W. Sohler, “Waveguide-based OPO source of entangled photon pairs,” New J. Phys. 11, 113042 (2009).
    [Crossref]
  13. N. Matsuda, H. Le Jeannic, H. Fukuda, T. Tsuchizawa, W. J. Munro, K. Shimizu, K. Yamada, Y. Tokura, H. Takesue, “A monolithically integrated polarization entangled photon pair source on a silicon chip,” Sci. Rep. 2, 817 (2012).
  14. L. Olislager, J. Safioui, S. Clemmen, K. P. Huy, W. Bogaerts, R. Baets, P. Emplit, S. Massar, “Silicon-on-insulator integrated source of polarization-entangled photons,” Opt. Lett. 38, 1960–1962 (2013).
    [Crossref]
  15. K. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, S. Itabashi, “Generation of high-purity entangled photon pairs using silicon wire waveguide,” Opt. Express 16, 20368–20373 (2008).
    [Crossref]
  16. H. Takesue, N. Matsuda, E. Kuramochi, N. Masaya, “Entangled photons from on-chip slow light,” Sci. Rep. 4, 3913 (2014).
    [Crossref]
  17. W. Tittel, J. Brendel, H. Zbinden, N. Gisin, “Quantum cryptography using entangled photons in energy-time Bell states,” Phys. Rev. Lett. 84, 4737–4740 (2000).
    [Crossref]
  18. I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, M. Legré, N. Gisin, “Distribution of time-bin entangled qubits over 50  km of optical fiber,” Phys. Rev. Lett. 93, 180502 (2004).
    [Crossref]
  19. J. Mower, Z. Zhang, P. Desjardins, C. Lee, J. H. Shapiro, D. Englund, “High-dimensional quantum key distribution using dispersive optics,” Phys. Rev. A 87, 062322 (2013).
    [Crossref]
  20. M. Davanço, J. R. Ong, A. B. Shehata, A. Tosi, I. Agha, S. Assefa, F. Xia, W. M. J. Green, S. Mookherjea, K. Srinivasan, “Telecommunications-band heralded single photons from a silicon nanophotonic chip,” Appl. Phys. Lett. 100, 261104 (2012).
    [Crossref]
  21. S. Azzini, D. Grassani, M. Galli, D. Gerace, M. Patrini, M. Liscidini, P. Velha, D. Bajoni, “Stimulated and spontaneous four-wave mixing in silicon-on-insulator coupled photonic wire nano-cavities,” Appl. Phys. Lett. 103, 031117 (2013).
    [Crossref]
  22. V. R. Almeida, C. A. Barrios, R. R. Panepucci, M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).
    [Crossref]
  23. S. Clemmen, K. Phan Huy, W. Bogaerts, R. G. Baets, P. Emplit, S. Massar, “Continuous wave photon pair generation in silicon-on-insulator waveguides and ring resonators,” Opt. Express 17, 16558–16570 (2009).
    [Crossref]
  24. J. E. Sharping, K. F. Lee, M. A. Foster, A. C. Turner, B. S. Schmidt, M. Lipson, A. L. Gaeta, P. Kumar, “Generation of correlated photons in nanoscale silicon waveguides,” Opt. Express 14, 12388–12393 (2006).
    [Crossref]
  25. C. Xiong, C. Monat, A. S. Clark, C. Grillet, G. D. Marshall, M. J. Steel, J. Li, L. O’Faolain, T. F. Krauss, J. G. Rarity, B. J. Eggleton, “Slow-light enhanced correlated photon pair generation in a silicon photonic crystal waveguide,” Opt. Lett. 36, 3413–3415 (2011).
    [Crossref]
  26. S. Azzini, D. Grassani, M. J. Strain, M. Sorel, L. G. Helt, J. E. Sipe, M. Liscidini, M. Galli, D. Bajoni, “Ultra-low power generation of twin photons in a compact silicon ring resonator,” Opt. Express 20, 23100–23107 (2012).
    [Crossref]
  27. E. Engin, D. Bonneau, C. M. Natarajan, A. S. Clark, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, J. L. O’Brien, M. G. Thompson, “Photon pair generation in a silicon micro-ring resonator with reverse bias enhancement,” Opt. Express 21, 27826–27834 (2013).
    [Crossref]
  28. S. Azzini, D. Grassani, M. Galli, L. C. Andreani, M. Sorel, M. J. Strain, L. G. Helt, J. E. Sipe, M. Liscidini, D. Bajoni, “From classical four-wave mixing to parametric fluorescence in silicon micro-ring resonators,” Opt. Lett. 37, 3807–3809 (2012).
    [Crossref]
  29. I. Marcikic, H. de Riedmatten, W. Tittel, V. Scarani, H. Zbinden, N. Gisin, “Time-bin entangled qubits for quantum communication created by femtosecond pulses,” Phys. Rev. A 66, 062308 (2002).
    [Crossref]
  30. J. D. Franson, “Bell inequality for position and time,” Phys. Rev. Lett. 62, 2205–2208 (1989).
    [Crossref]
  31. J. D. Franson, “Two photon interferometry over large distances,” Phys. Rev. A 44, 4552–4555 (1991).
    [Crossref]
  32. D. Grassani, M. Galli, D. Bajoni, “Active stabilization of a Michelson interferometer at an arbitrary phase with subnanometer resolution,” Opt. Lett. 39, 2530–2533 (2014).
    [Crossref]
  33. P. G. Kwiat, A. M. Steinberg, R. Y. Chiao, “High-visibility interference in a Bell-inequality experiment for energy and time,” Phys. Rev. A 47, R2472–R2475 (1993).
    [Crossref]
  34. A. Orieux, A. Eckstein, A. Lemaître, P. Filloux, I. Favero, G. Leo, T. Coudreau, A. Keller, P. Milman, S. Ducci, “Direct Bell states generation on a III–V semiconductor chip at room temperature,” Phys. Rev. Lett. 110, 160502 (2013).
    [Crossref]
  35. N. C. Harris, D. Grassani, A. Simbula, M. Pant, M. Galli, T. Baehr-Jones, M. Hochberg, D. Englund, D. Bajoni, C. Galland, “An integrated source of spectrally filtered correlated photons for large scale quantum photonic systems,” arXiv:1409.8215v1, 2014.

2014 (2)

2013 (7)

L. Olislager, J. Safioui, S. Clemmen, K. P. Huy, W. Bogaerts, R. Baets, P. Emplit, S. Massar, “Silicon-on-insulator integrated source of polarization-entangled photons,” Opt. Lett. 38, 1960–1962 (2013).
[Crossref]

E. Engin, D. Bonneau, C. M. Natarajan, A. S. Clark, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, J. L. O’Brien, M. G. Thompson, “Photon pair generation in a silicon micro-ring resonator with reverse bias enhancement,” Opt. Express 21, 27826–27834 (2013).
[Crossref]

A. Orieux, A. Eckstein, A. Lemaître, P. Filloux, I. Favero, G. Leo, T. Coudreau, A. Keller, P. Milman, S. Ducci, “Direct Bell states generation on a III–V semiconductor chip at room temperature,” Phys. Rev. Lett. 110, 160502 (2013).
[Crossref]

J. Mower, Z. Zhang, P. Desjardins, C. Lee, J. H. Shapiro, D. Englund, “High-dimensional quantum key distribution using dispersive optics,” Phys. Rev. A 87, 062322 (2013).
[Crossref]

S. Azzini, D. Grassani, M. Galli, D. Gerace, M. Patrini, M. Liscidini, P. Velha, D. Bajoni, “Stimulated and spontaneous four-wave mixing in silicon-on-insulator coupled photonic wire nano-cavities,” Appl. Phys. Lett. 103, 031117 (2013).
[Crossref]

B. J. Metcalf, N. Thomas-Peter, J. B. Spring, D. Kundys, M. A. Broome, P. C. Humphreys, X. Jin, M. Barbieri, W. S. Kolthammer, J. C. Gates, B. J. Smith, N. K. Langford, P. G. R. Smith, I. A. Walmsley, “Multiphoton quantum interference in a multiport integrated photonic device,” Nat. Commun. 4, 1356 (2013).
[Crossref]

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8, 104–108 (2013).
[Crossref]

2012 (4)

M. Davanço, J. R. Ong, A. B. Shehata, A. Tosi, I. Agha, S. Assefa, F. Xia, W. M. J. Green, S. Mookherjea, K. Srinivasan, “Telecommunications-band heralded single photons from a silicon nanophotonic chip,” Appl. Phys. Lett. 100, 261104 (2012).
[Crossref]

N. Matsuda, H. Le Jeannic, H. Fukuda, T. Tsuchizawa, W. J. Munro, K. Shimizu, K. Yamada, Y. Tokura, H. Takesue, “A monolithically integrated polarization entangled photon pair source on a silicon chip,” Sci. Rep. 2, 817 (2012).

S. Azzini, D. Grassani, M. Galli, L. C. Andreani, M. Sorel, M. J. Strain, L. G. Helt, J. E. Sipe, M. Liscidini, D. Bajoni, “From classical four-wave mixing to parametric fluorescence in silicon micro-ring resonators,” Opt. Lett. 37, 3807–3809 (2012).
[Crossref]

S. Azzini, D. Grassani, M. J. Strain, M. Sorel, L. G. Helt, J. E. Sipe, M. Liscidini, M. Galli, D. Bajoni, “Ultra-low power generation of twin photons in a compact silicon ring resonator,” Opt. Express 20, 23100–23107 (2012).
[Crossref]

2011 (3)

C. Xiong, C. Monat, A. S. Clark, C. Grillet, G. D. Marshall, M. J. Steel, J. Li, L. O’Faolain, T. F. Krauss, J. G. Rarity, B. J. Eggleton, “Slow-light enhanced correlated photon pair generation in a silicon photonic crystal waveguide,” Opt. Lett. 36, 3413–3415 (2011).
[Crossref]

P. J. Shadbolt, M. R. Verde, A. Peruzzo, A. Politi, A. Laing, M. Lobino, J. C. F. Matthews, M. G. Thompson, J. L. O’Brien, “Generating, manipulating and measuring entanglement and mixture with a reconfigurable photonic circuit,” Nat. Photonics 6, 45–49 (2011).
[Crossref]

A. Crespi, R. Ramponi, R. Osellame, L. Sansoni, I. Bongioanni, F. Sciarrino, G. Vallone, P. Mataloni, “Integrated photonic quantum gates for polarization qubits,” Nat. Commun. 2, 566 (2011).
[Crossref]

2009 (2)

E. Pomarico, B. Sanguinetti, N. Gisin, R. Thew, H. Zbinden, G. Schreiber, A. Thomas, W. Sohler, “Waveguide-based OPO source of entangled photon pairs,” New J. Phys. 11, 113042 (2009).
[Crossref]

S. Clemmen, K. Phan Huy, W. Bogaerts, R. G. Baets, P. Emplit, S. Massar, “Continuous wave photon pair generation in silicon-on-insulator waveguides and ring resonators,” Opt. Express 17, 16558–16570 (2009).
[Crossref]

2008 (1)

2007 (1)

2006 (1)

2004 (3)

I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, M. Legré, N. Gisin, “Distribution of time-bin entangled qubits over 50  km of optical fiber,” Phys. Rev. Lett. 93, 180502 (2004).
[Crossref]

V. R. Almeida, C. A. Barrios, R. R. Panepucci, M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).
[Crossref]

M. Curty, M. Lewenstein, N. Lütkenhaus, “Entanglement as a precondition for secure quantum key distribution,” Phys. Rev. Lett. 92, 217903 (2004).
[Crossref]

2003 (1)

R. Jozsa, N. Linden, “On the role of entanglement in quantum-computational speed-up,” Proc. R. Soc. A 459, 2011–2032 (2003).
[Crossref]

2002 (1)

I. Marcikic, H. de Riedmatten, W. Tittel, V. Scarani, H. Zbinden, N. Gisin, “Time-bin entangled qubits for quantum communication created by femtosecond pulses,” Phys. Rev. A 66, 062308 (2002).
[Crossref]

2000 (1)

W. Tittel, J. Brendel, H. Zbinden, N. Gisin, “Quantum cryptography using entangled photons in energy-time Bell states,” Phys. Rev. Lett. 84, 4737–4740 (2000).
[Crossref]

1995 (1)

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[Crossref]

1993 (1)

P. G. Kwiat, A. M. Steinberg, R. Y. Chiao, “High-visibility interference in a Bell-inequality experiment for energy and time,” Phys. Rev. A 47, R2472–R2475 (1993).
[Crossref]

1991 (2)

J. D. Franson, “Two photon interferometry over large distances,” Phys. Rev. A 44, 4552–4555 (1991).
[Crossref]

A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. 67, 661–663 (1991).
[Crossref]

1989 (1)

J. D. Franson, “Bell inequality for position and time,” Phys. Rev. Lett. 62, 2205–2208 (1989).
[Crossref]

Agha, I.

M. Davanço, J. R. Ong, A. B. Shehata, A. Tosi, I. Agha, S. Assefa, F. Xia, W. M. J. Green, S. Mookherjea, K. Srinivasan, “Telecommunications-band heralded single photons from a silicon nanophotonic chip,” Appl. Phys. Lett. 100, 261104 (2012).
[Crossref]

Almeida, V. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).
[Crossref]

Andreani, L. C.

Assefa, S.

M. Davanço, J. R. Ong, A. B. Shehata, A. Tosi, I. Agha, S. Assefa, F. Xia, W. M. J. Green, S. Mookherjea, K. Srinivasan, “Telecommunications-band heralded single photons from a silicon nanophotonic chip,” Appl. Phys. Lett. 100, 261104 (2012).
[Crossref]

Azzini, S.

Baehr-Jones, T.

N. C. Harris, D. Grassani, A. Simbula, M. Pant, M. Galli, T. Baehr-Jones, M. Hochberg, D. Englund, D. Bajoni, C. Galland, “An integrated source of spectrally filtered correlated photons for large scale quantum photonic systems,” arXiv:1409.8215v1, 2014.

Baets, R.

Baets, R. G.

Bajoni, D.

D. Grassani, M. Galli, D. Bajoni, “Active stabilization of a Michelson interferometer at an arbitrary phase with subnanometer resolution,” Opt. Lett. 39, 2530–2533 (2014).
[Crossref]

S. Azzini, D. Grassani, M. Galli, D. Gerace, M. Patrini, M. Liscidini, P. Velha, D. Bajoni, “Stimulated and spontaneous four-wave mixing in silicon-on-insulator coupled photonic wire nano-cavities,” Appl. Phys. Lett. 103, 031117 (2013).
[Crossref]

S. Azzini, D. Grassani, M. J. Strain, M. Sorel, L. G. Helt, J. E. Sipe, M. Liscidini, M. Galli, D. Bajoni, “Ultra-low power generation of twin photons in a compact silicon ring resonator,” Opt. Express 20, 23100–23107 (2012).
[Crossref]

S. Azzini, D. Grassani, M. Galli, L. C. Andreani, M. Sorel, M. J. Strain, L. G. Helt, J. E. Sipe, M. Liscidini, D. Bajoni, “From classical four-wave mixing to parametric fluorescence in silicon micro-ring resonators,” Opt. Lett. 37, 3807–3809 (2012).
[Crossref]

N. C. Harris, D. Grassani, A. Simbula, M. Pant, M. Galli, T. Baehr-Jones, M. Hochberg, D. Englund, D. Bajoni, C. Galland, “An integrated source of spectrally filtered correlated photons for large scale quantum photonic systems,” arXiv:1409.8215v1, 2014.

Barbieri, M.

B. J. Metcalf, N. Thomas-Peter, J. B. Spring, D. Kundys, M. A. Broome, P. C. Humphreys, X. Jin, M. Barbieri, W. S. Kolthammer, J. C. Gates, B. J. Smith, N. K. Langford, P. G. R. Smith, I. A. Walmsley, “Multiphoton quantum interference in a multiport integrated photonic device,” Nat. Commun. 4, 1356 (2013).
[Crossref]

Barrios, C. A.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).
[Crossref]

Bennett, C. H.

C. H. Bennett, G. Brassard, “Quantum cryptography: public key distribution and coin tossing,” in Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing (IEEE, 1984), pp. 175–179.

Bogaerts, W.

Bongioanni, I.

A. Crespi, R. Ramponi, R. Osellame, L. Sansoni, I. Bongioanni, F. Sciarrino, G. Vallone, P. Mataloni, “Integrated photonic quantum gates for polarization qubits,” Nat. Commun. 2, 566 (2011).
[Crossref]

Bonneau, D.

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8, 104–108 (2013).
[Crossref]

E. Engin, D. Bonneau, C. M. Natarajan, A. S. Clark, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, J. L. O’Brien, M. G. Thompson, “Photon pair generation in a silicon micro-ring resonator with reverse bias enhancement,” Opt. Express 21, 27826–27834 (2013).
[Crossref]

Brassard, G.

C. H. Bennett, G. Brassard, “Quantum cryptography: public key distribution and coin tossing,” in Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing (IEEE, 1984), pp. 175–179.

Brendel, J.

W. Tittel, J. Brendel, H. Zbinden, N. Gisin, “Quantum cryptography using entangled photons in energy-time Bell states,” Phys. Rev. Lett. 84, 4737–4740 (2000).
[Crossref]

Broome, M. A.

B. J. Metcalf, N. Thomas-Peter, J. B. Spring, D. Kundys, M. A. Broome, P. C. Humphreys, X. Jin, M. Barbieri, W. S. Kolthammer, J. C. Gates, B. J. Smith, N. K. Langford, P. G. R. Smith, I. A. Walmsley, “Multiphoton quantum interference in a multiport integrated photonic device,” Nat. Commun. 4, 1356 (2013).
[Crossref]

Chiao, R. Y.

P. G. Kwiat, A. M. Steinberg, R. Y. Chiao, “High-visibility interference in a Bell-inequality experiment for energy and time,” Phys. Rev. A 47, R2472–R2475 (1993).
[Crossref]

Chuang, I. L.

M. A. Nielsen, I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2000).

Clark, A. S.

Clemmen, S.

Coudreau, T.

A. Orieux, A. Eckstein, A. Lemaître, P. Filloux, I. Favero, G. Leo, T. Coudreau, A. Keller, P. Milman, S. Ducci, “Direct Bell states generation on a III–V semiconductor chip at room temperature,” Phys. Rev. Lett. 110, 160502 (2013).
[Crossref]

Crespi, A.

A. Crespi, R. Ramponi, R. Osellame, L. Sansoni, I. Bongioanni, F. Sciarrino, G. Vallone, P. Mataloni, “Integrated photonic quantum gates for polarization qubits,” Nat. Commun. 2, 566 (2011).
[Crossref]

Curty, M.

M. Curty, M. Lewenstein, N. Lütkenhaus, “Entanglement as a precondition for secure quantum key distribution,” Phys. Rev. Lett. 92, 217903 (2004).
[Crossref]

Davanço, M.

M. Davanço, J. R. Ong, A. B. Shehata, A. Tosi, I. Agha, S. Assefa, F. Xia, W. M. J. Green, S. Mookherjea, K. Srinivasan, “Telecommunications-band heralded single photons from a silicon nanophotonic chip,” Appl. Phys. Lett. 100, 261104 (2012).
[Crossref]

de Riedmatten, H.

I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, M. Legré, N. Gisin, “Distribution of time-bin entangled qubits over 50  km of optical fiber,” Phys. Rev. Lett. 93, 180502 (2004).
[Crossref]

I. Marcikic, H. de Riedmatten, W. Tittel, V. Scarani, H. Zbinden, N. Gisin, “Time-bin entangled qubits for quantum communication created by femtosecond pulses,” Phys. Rev. A 66, 062308 (2002).
[Crossref]

Desjardins, P.

J. Mower, Z. Zhang, P. Desjardins, C. Lee, J. H. Shapiro, D. Englund, “High-dimensional quantum key distribution using dispersive optics,” Phys. Rev. A 87, 062322 (2013).
[Crossref]

Dorenbos, S. N.

Ducci, S.

A. Orieux, A. Eckstein, A. Lemaître, P. Filloux, I. Favero, G. Leo, T. Coudreau, A. Keller, P. Milman, S. Ducci, “Direct Bell states generation on a III–V semiconductor chip at room temperature,” Phys. Rev. Lett. 110, 160502 (2013).
[Crossref]

Eckstein, A.

A. Orieux, A. Eckstein, A. Lemaître, P. Filloux, I. Favero, G. Leo, T. Coudreau, A. Keller, P. Milman, S. Ducci, “Direct Bell states generation on a III–V semiconductor chip at room temperature,” Phys. Rev. Lett. 110, 160502 (2013).
[Crossref]

Eggleton, B. J.

Ekert, A. K.

A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. 67, 661–663 (1991).
[Crossref]

Emplit, P.

Engin, E.

Englund, D.

J. Mower, Z. Zhang, P. Desjardins, C. Lee, J. H. Shapiro, D. Englund, “High-dimensional quantum key distribution using dispersive optics,” Phys. Rev. A 87, 062322 (2013).
[Crossref]

N. C. Harris, D. Grassani, A. Simbula, M. Pant, M. Galli, T. Baehr-Jones, M. Hochberg, D. Englund, D. Bajoni, C. Galland, “An integrated source of spectrally filtered correlated photons for large scale quantum photonic systems,” arXiv:1409.8215v1, 2014.

Ezaki, M.

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8, 104–108 (2013).
[Crossref]

E. Engin, D. Bonneau, C. M. Natarajan, A. S. Clark, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, J. L. O’Brien, M. G. Thompson, “Photon pair generation in a silicon micro-ring resonator with reverse bias enhancement,” Opt. Express 21, 27826–27834 (2013).
[Crossref]

Favero, I.

A. Orieux, A. Eckstein, A. Lemaître, P. Filloux, I. Favero, G. Leo, T. Coudreau, A. Keller, P. Milman, S. Ducci, “Direct Bell states generation on a III–V semiconductor chip at room temperature,” Phys. Rev. Lett. 110, 160502 (2013).
[Crossref]

Filloux, P.

A. Orieux, A. Eckstein, A. Lemaître, P. Filloux, I. Favero, G. Leo, T. Coudreau, A. Keller, P. Milman, S. Ducci, “Direct Bell states generation on a III–V semiconductor chip at room temperature,” Phys. Rev. Lett. 110, 160502 (2013).
[Crossref]

Foster, M. A.

Franson, J. D.

J. D. Franson, “Two photon interferometry over large distances,” Phys. Rev. A 44, 4552–4555 (1991).
[Crossref]

J. D. Franson, “Bell inequality for position and time,” Phys. Rev. Lett. 62, 2205–2208 (1989).
[Crossref]

Fujii, G.

Fukuda, H.

N. Matsuda, H. Le Jeannic, H. Fukuda, T. Tsuchizawa, W. J. Munro, K. Shimizu, K. Yamada, Y. Tokura, H. Takesue, “A monolithically integrated polarization entangled photon pair source on a silicon chip,” Sci. Rep. 2, 817 (2012).

K. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, S. Itabashi, “Generation of high-purity entangled photon pairs using silicon wire waveguide,” Opt. Express 16, 20368–20373 (2008).
[Crossref]

Gaeta, A. L.

Galland, C.

N. C. Harris, D. Grassani, A. Simbula, M. Pant, M. Galli, T. Baehr-Jones, M. Hochberg, D. Englund, D. Bajoni, C. Galland, “An integrated source of spectrally filtered correlated photons for large scale quantum photonic systems,” arXiv:1409.8215v1, 2014.

Galli, M.

D. Grassani, M. Galli, D. Bajoni, “Active stabilization of a Michelson interferometer at an arbitrary phase with subnanometer resolution,” Opt. Lett. 39, 2530–2533 (2014).
[Crossref]

S. Azzini, D. Grassani, M. Galli, D. Gerace, M. Patrini, M. Liscidini, P. Velha, D. Bajoni, “Stimulated and spontaneous four-wave mixing in silicon-on-insulator coupled photonic wire nano-cavities,” Appl. Phys. Lett. 103, 031117 (2013).
[Crossref]

S. Azzini, D. Grassani, M. J. Strain, M. Sorel, L. G. Helt, J. E. Sipe, M. Liscidini, M. Galli, D. Bajoni, “Ultra-low power generation of twin photons in a compact silicon ring resonator,” Opt. Express 20, 23100–23107 (2012).
[Crossref]

S. Azzini, D. Grassani, M. Galli, L. C. Andreani, M. Sorel, M. J. Strain, L. G. Helt, J. E. Sipe, M. Liscidini, D. Bajoni, “From classical four-wave mixing to parametric fluorescence in silicon micro-ring resonators,” Opt. Lett. 37, 3807–3809 (2012).
[Crossref]

N. C. Harris, D. Grassani, A. Simbula, M. Pant, M. Galli, T. Baehr-Jones, M. Hochberg, D. Englund, D. Bajoni, C. Galland, “An integrated source of spectrally filtered correlated photons for large scale quantum photonic systems,” arXiv:1409.8215v1, 2014.

Gates, J. C.

B. J. Metcalf, N. Thomas-Peter, J. B. Spring, D. Kundys, M. A. Broome, P. C. Humphreys, X. Jin, M. Barbieri, W. S. Kolthammer, J. C. Gates, B. J. Smith, N. K. Langford, P. G. R. Smith, I. A. Walmsley, “Multiphoton quantum interference in a multiport integrated photonic device,” Nat. Commun. 4, 1356 (2013).
[Crossref]

Gerace, D.

S. Azzini, D. Grassani, M. Galli, D. Gerace, M. Patrini, M. Liscidini, P. Velha, D. Bajoni, “Stimulated and spontaneous four-wave mixing in silicon-on-insulator coupled photonic wire nano-cavities,” Appl. Phys. Lett. 103, 031117 (2013).
[Crossref]

Gisin, N.

E. Pomarico, B. Sanguinetti, N. Gisin, R. Thew, H. Zbinden, G. Schreiber, A. Thomas, W. Sohler, “Waveguide-based OPO source of entangled photon pairs,” New J. Phys. 11, 113042 (2009).
[Crossref]

I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, M. Legré, N. Gisin, “Distribution of time-bin entangled qubits over 50  km of optical fiber,” Phys. Rev. Lett. 93, 180502 (2004).
[Crossref]

I. Marcikic, H. de Riedmatten, W. Tittel, V. Scarani, H. Zbinden, N. Gisin, “Time-bin entangled qubits for quantum communication created by femtosecond pulses,” Phys. Rev. A 66, 062308 (2002).
[Crossref]

W. Tittel, J. Brendel, H. Zbinden, N. Gisin, “Quantum cryptography using entangled photons in energy-time Bell states,” Phys. Rev. Lett. 84, 4737–4740 (2000).
[Crossref]

Grassani, D.

D. Grassani, M. Galli, D. Bajoni, “Active stabilization of a Michelson interferometer at an arbitrary phase with subnanometer resolution,” Opt. Lett. 39, 2530–2533 (2014).
[Crossref]

S. Azzini, D. Grassani, M. Galli, D. Gerace, M. Patrini, M. Liscidini, P. Velha, D. Bajoni, “Stimulated and spontaneous four-wave mixing in silicon-on-insulator coupled photonic wire nano-cavities,” Appl. Phys. Lett. 103, 031117 (2013).
[Crossref]

S. Azzini, D. Grassani, M. Galli, L. C. Andreani, M. Sorel, M. J. Strain, L. G. Helt, J. E. Sipe, M. Liscidini, D. Bajoni, “From classical four-wave mixing to parametric fluorescence in silicon micro-ring resonators,” Opt. Lett. 37, 3807–3809 (2012).
[Crossref]

S. Azzini, D. Grassani, M. J. Strain, M. Sorel, L. G. Helt, J. E. Sipe, M. Liscidini, M. Galli, D. Bajoni, “Ultra-low power generation of twin photons in a compact silicon ring resonator,” Opt. Express 20, 23100–23107 (2012).
[Crossref]

N. C. Harris, D. Grassani, A. Simbula, M. Pant, M. Galli, T. Baehr-Jones, M. Hochberg, D. Englund, D. Bajoni, C. Galland, “An integrated source of spectrally filtered correlated photons for large scale quantum photonic systems,” arXiv:1409.8215v1, 2014.

Green, W. M. J.

M. Davanço, J. R. Ong, A. B. Shehata, A. Tosi, I. Agha, S. Assefa, F. Xia, W. M. J. Green, S. Mookherjea, K. Srinivasan, “Telecommunications-band heralded single photons from a silicon nanophotonic chip,” Appl. Phys. Lett. 100, 261104 (2012).
[Crossref]

Grillet, C.

Hadfield, R. H.

E. Engin, D. Bonneau, C. M. Natarajan, A. S. Clark, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, J. L. O’Brien, M. G. Thompson, “Photon pair generation in a silicon micro-ring resonator with reverse bias enhancement,” Opt. Express 21, 27826–27834 (2013).
[Crossref]

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8, 104–108 (2013).
[Crossref]

Harada, K.

Harris, N. C.

N. C. Harris, D. Grassani, A. Simbula, M. Pant, M. Galli, T. Baehr-Jones, M. Hochberg, D. Englund, D. Bajoni, C. Galland, “An integrated source of spectrally filtered correlated photons for large scale quantum photonic systems,” arXiv:1409.8215v1, 2014.

Helt, L. G.

Hochberg, M.

N. C. Harris, D. Grassani, A. Simbula, M. Pant, M. Galli, T. Baehr-Jones, M. Hochberg, D. Englund, D. Bajoni, C. Galland, “An integrated source of spectrally filtered correlated photons for large scale quantum photonic systems,” arXiv:1409.8215v1, 2014.

Humphreys, P. C.

B. J. Metcalf, N. Thomas-Peter, J. B. Spring, D. Kundys, M. A. Broome, P. C. Humphreys, X. Jin, M. Barbieri, W. S. Kolthammer, J. C. Gates, B. J. Smith, N. K. Langford, P. G. R. Smith, I. A. Walmsley, “Multiphoton quantum interference in a multiport integrated photonic device,” Nat. Commun. 4, 1356 (2013).
[Crossref]

Huy, K. P.

Iizuka, N.

E. Engin, D. Bonneau, C. M. Natarajan, A. S. Clark, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, J. L. O’Brien, M. G. Thompson, “Photon pair generation in a silicon micro-ring resonator with reverse bias enhancement,” Opt. Express 21, 27826–27834 (2013).
[Crossref]

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8, 104–108 (2013).
[Crossref]

Inoue, S.

Itabashi, S.

Jin, X.

B. J. Metcalf, N. Thomas-Peter, J. B. Spring, D. Kundys, M. A. Broome, P. C. Humphreys, X. Jin, M. Barbieri, W. S. Kolthammer, J. C. Gates, B. J. Smith, N. K. Langford, P. G. R. Smith, I. A. Walmsley, “Multiphoton quantum interference in a multiport integrated photonic device,” Nat. Commun. 4, 1356 (2013).
[Crossref]

Jozsa, R.

R. Jozsa, N. Linden, “On the role of entanglement in quantum-computational speed-up,” Proc. R. Soc. A 459, 2011–2032 (2003).
[Crossref]

Keller, A.

A. Orieux, A. Eckstein, A. Lemaître, P. Filloux, I. Favero, G. Leo, T. Coudreau, A. Keller, P. Milman, S. Ducci, “Direct Bell states generation on a III–V semiconductor chip at room temperature,” Phys. Rev. Lett. 110, 160502 (2013).
[Crossref]

Kolthammer, W. S.

B. J. Metcalf, N. Thomas-Peter, J. B. Spring, D. Kundys, M. A. Broome, P. C. Humphreys, X. Jin, M. Barbieri, W. S. Kolthammer, J. C. Gates, B. J. Smith, N. K. Langford, P. G. R. Smith, I. A. Walmsley, “Multiphoton quantum interference in a multiport integrated photonic device,” Nat. Commun. 4, 1356 (2013).
[Crossref]

Krauss, T. F.

Kumar, P.

Kundys, D.

B. J. Metcalf, N. Thomas-Peter, J. B. Spring, D. Kundys, M. A. Broome, P. C. Humphreys, X. Jin, M. Barbieri, W. S. Kolthammer, J. C. Gates, B. J. Smith, N. K. Langford, P. G. R. Smith, I. A. Walmsley, “Multiphoton quantum interference in a multiport integrated photonic device,” Nat. Commun. 4, 1356 (2013).
[Crossref]

Kuramochi, E.

H. Takesue, N. Matsuda, E. Kuramochi, N. Masaya, “Entangled photons from on-chip slow light,” Sci. Rep. 4, 3913 (2014).
[Crossref]

Kurimura, S.

Kwiat, P. G.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[Crossref]

P. G. Kwiat, A. M. Steinberg, R. Y. Chiao, “High-visibility interference in a Bell-inequality experiment for energy and time,” Phys. Rev. A 47, R2472–R2475 (1993).
[Crossref]

Laing, A.

P. J. Shadbolt, M. R. Verde, A. Peruzzo, A. Politi, A. Laing, M. Lobino, J. C. F. Matthews, M. G. Thompson, J. L. O’Brien, “Generating, manipulating and measuring entanglement and mixture with a reconfigurable photonic circuit,” Nat. Photonics 6, 45–49 (2011).
[Crossref]

Langford, N. K.

B. J. Metcalf, N. Thomas-Peter, J. B. Spring, D. Kundys, M. A. Broome, P. C. Humphreys, X. Jin, M. Barbieri, W. S. Kolthammer, J. C. Gates, B. J. Smith, N. K. Langford, P. G. R. Smith, I. A. Walmsley, “Multiphoton quantum interference in a multiport integrated photonic device,” Nat. Commun. 4, 1356 (2013).
[Crossref]

Le Jeannic, H.

N. Matsuda, H. Le Jeannic, H. Fukuda, T. Tsuchizawa, W. J. Munro, K. Shimizu, K. Yamada, Y. Tokura, H. Takesue, “A monolithically integrated polarization entangled photon pair source on a silicon chip,” Sci. Rep. 2, 817 (2012).

Lee, C.

J. Mower, Z. Zhang, P. Desjardins, C. Lee, J. H. Shapiro, D. Englund, “High-dimensional quantum key distribution using dispersive optics,” Phys. Rev. A 87, 062322 (2013).
[Crossref]

Lee, K. F.

Legré, M.

I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, M. Legré, N. Gisin, “Distribution of time-bin entangled qubits over 50  km of optical fiber,” Phys. Rev. Lett. 93, 180502 (2004).
[Crossref]

Lemaître, A.

A. Orieux, A. Eckstein, A. Lemaître, P. Filloux, I. Favero, G. Leo, T. Coudreau, A. Keller, P. Milman, S. Ducci, “Direct Bell states generation on a III–V semiconductor chip at room temperature,” Phys. Rev. Lett. 110, 160502 (2013).
[Crossref]

Leo, G.

A. Orieux, A. Eckstein, A. Lemaître, P. Filloux, I. Favero, G. Leo, T. Coudreau, A. Keller, P. Milman, S. Ducci, “Direct Bell states generation on a III–V semiconductor chip at room temperature,” Phys. Rev. Lett. 110, 160502 (2013).
[Crossref]

Lewenstein, M.

M. Curty, M. Lewenstein, N. Lütkenhaus, “Entanglement as a precondition for secure quantum key distribution,” Phys. Rev. Lett. 92, 217903 (2004).
[Crossref]

Li, J.

Linden, N.

R. Jozsa, N. Linden, “On the role of entanglement in quantum-computational speed-up,” Proc. R. Soc. A 459, 2011–2032 (2003).
[Crossref]

Lipson, M.

Liscidini, M.

Lobino, M.

P. J. Shadbolt, M. R. Verde, A. Peruzzo, A. Politi, A. Laing, M. Lobino, J. C. F. Matthews, M. G. Thompson, J. L. O’Brien, “Generating, manipulating and measuring entanglement and mixture with a reconfigurable photonic circuit,” Nat. Photonics 6, 45–49 (2011).
[Crossref]

Lütkenhaus, N.

M. Curty, M. Lewenstein, N. Lütkenhaus, “Entanglement as a precondition for secure quantum key distribution,” Phys. Rev. Lett. 92, 217903 (2004).
[Crossref]

Marcikic, I.

I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, M. Legré, N. Gisin, “Distribution of time-bin entangled qubits over 50  km of optical fiber,” Phys. Rev. Lett. 93, 180502 (2004).
[Crossref]

I. Marcikic, H. de Riedmatten, W. Tittel, V. Scarani, H. Zbinden, N. Gisin, “Time-bin entangled qubits for quantum communication created by femtosecond pulses,” Phys. Rev. A 66, 062308 (2002).
[Crossref]

Marshall, G. D.

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8, 104–108 (2013).
[Crossref]

C. Xiong, C. Monat, A. S. Clark, C. Grillet, G. D. Marshall, M. J. Steel, J. Li, L. O’Faolain, T. F. Krauss, J. G. Rarity, B. J. Eggleton, “Slow-light enhanced correlated photon pair generation in a silicon photonic crystal waveguide,” Opt. Lett. 36, 3413–3415 (2011).
[Crossref]

Masaya, N.

H. Takesue, N. Matsuda, E. Kuramochi, N. Masaya, “Entangled photons from on-chip slow light,” Sci. Rep. 4, 3913 (2014).
[Crossref]

Massar, S.

Mataloni, P.

A. Crespi, R. Ramponi, R. Osellame, L. Sansoni, I. Bongioanni, F. Sciarrino, G. Vallone, P. Mataloni, “Integrated photonic quantum gates for polarization qubits,” Nat. Commun. 2, 566 (2011).
[Crossref]

Matsuda, N.

H. Takesue, N. Matsuda, E. Kuramochi, N. Masaya, “Entangled photons from on-chip slow light,” Sci. Rep. 4, 3913 (2014).
[Crossref]

N. Matsuda, H. Le Jeannic, H. Fukuda, T. Tsuchizawa, W. J. Munro, K. Shimizu, K. Yamada, Y. Tokura, H. Takesue, “A monolithically integrated polarization entangled photon pair source on a silicon chip,” Sci. Rep. 2, 817 (2012).

Matthews, J. C. F.

P. J. Shadbolt, M. R. Verde, A. Peruzzo, A. Politi, A. Laing, M. Lobino, J. C. F. Matthews, M. G. Thompson, J. L. O’Brien, “Generating, manipulating and measuring entanglement and mixture with a reconfigurable photonic circuit,” Nat. Photonics 6, 45–49 (2011).
[Crossref]

Mattle, K.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[Crossref]

Metcalf, B. J.

B. J. Metcalf, N. Thomas-Peter, J. B. Spring, D. Kundys, M. A. Broome, P. C. Humphreys, X. Jin, M. Barbieri, W. S. Kolthammer, J. C. Gates, B. J. Smith, N. K. Langford, P. G. R. Smith, I. A. Walmsley, “Multiphoton quantum interference in a multiport integrated photonic device,” Nat. Commun. 4, 1356 (2013).
[Crossref]

Milman, P.

A. Orieux, A. Eckstein, A. Lemaître, P. Filloux, I. Favero, G. Leo, T. Coudreau, A. Keller, P. Milman, S. Ducci, “Direct Bell states generation on a III–V semiconductor chip at room temperature,” Phys. Rev. Lett. 110, 160502 (2013).
[Crossref]

Monat, C.

Mookherjea, S.

M. Davanço, J. R. Ong, A. B. Shehata, A. Tosi, I. Agha, S. Assefa, F. Xia, W. M. J. Green, S. Mookherjea, K. Srinivasan, “Telecommunications-band heralded single photons from a silicon nanophotonic chip,” Appl. Phys. Lett. 100, 261104 (2012).
[Crossref]

Motoya, M.

Mower, J.

J. Mower, Z. Zhang, P. Desjardins, C. Lee, J. H. Shapiro, D. Englund, “High-dimensional quantum key distribution using dispersive optics,” Phys. Rev. A 87, 062322 (2013).
[Crossref]

Munro, W. J.

N. Matsuda, H. Le Jeannic, H. Fukuda, T. Tsuchizawa, W. J. Munro, K. Shimizu, K. Yamada, Y. Tokura, H. Takesue, “A monolithically integrated polarization entangled photon pair source on a silicon chip,” Sci. Rep. 2, 817 (2012).

Namekata, N.

Natarajan, C. M.

E. Engin, D. Bonneau, C. M. Natarajan, A. S. Clark, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, J. L. O’Brien, M. G. Thompson, “Photon pair generation in a silicon micro-ring resonator with reverse bias enhancement,” Opt. Express 21, 27826–27834 (2013).
[Crossref]

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8, 104–108 (2013).
[Crossref]

Nielsen, M. A.

M. A. Nielsen, I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2000).

O’Brien, J. L.

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8, 104–108 (2013).
[Crossref]

E. Engin, D. Bonneau, C. M. Natarajan, A. S. Clark, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, J. L. O’Brien, M. G. Thompson, “Photon pair generation in a silicon micro-ring resonator with reverse bias enhancement,” Opt. Express 21, 27826–27834 (2013).
[Crossref]

P. J. Shadbolt, M. R. Verde, A. Peruzzo, A. Politi, A. Laing, M. Lobino, J. C. F. Matthews, M. G. Thompson, J. L. O’Brien, “Generating, manipulating and measuring entanglement and mixture with a reconfigurable photonic circuit,” Nat. Photonics 6, 45–49 (2011).
[Crossref]

O’Faolain, L.

Ohira, K.

E. Engin, D. Bonneau, C. M. Natarajan, A. S. Clark, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, J. L. O’Brien, M. G. Thompson, “Photon pair generation in a silicon micro-ring resonator with reverse bias enhancement,” Opt. Express 21, 27826–27834 (2013).
[Crossref]

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8, 104–108 (2013).
[Crossref]

Olislager, L.

Ong, J. R.

M. Davanço, J. R. Ong, A. B. Shehata, A. Tosi, I. Agha, S. Assefa, F. Xia, W. M. J. Green, S. Mookherjea, K. Srinivasan, “Telecommunications-band heralded single photons from a silicon nanophotonic chip,” Appl. Phys. Lett. 100, 261104 (2012).
[Crossref]

Orieux, A.

A. Orieux, A. Eckstein, A. Lemaître, P. Filloux, I. Favero, G. Leo, T. Coudreau, A. Keller, P. Milman, S. Ducci, “Direct Bell states generation on a III–V semiconductor chip at room temperature,” Phys. Rev. Lett. 110, 160502 (2013).
[Crossref]

Osellame, R.

A. Crespi, R. Ramponi, R. Osellame, L. Sansoni, I. Bongioanni, F. Sciarrino, G. Vallone, P. Mataloni, “Integrated photonic quantum gates for polarization qubits,” Nat. Commun. 2, 566 (2011).
[Crossref]

Panepucci, R. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).
[Crossref]

Pant, M.

N. C. Harris, D. Grassani, A. Simbula, M. Pant, M. Galli, T. Baehr-Jones, M. Hochberg, D. Englund, D. Bajoni, C. Galland, “An integrated source of spectrally filtered correlated photons for large scale quantum photonic systems,” arXiv:1409.8215v1, 2014.

Patrini, M.

S. Azzini, D. Grassani, M. Galli, D. Gerace, M. Patrini, M. Liscidini, P. Velha, D. Bajoni, “Stimulated and spontaneous four-wave mixing in silicon-on-insulator coupled photonic wire nano-cavities,” Appl. Phys. Lett. 103, 031117 (2013).
[Crossref]

Peruzzo, A.

P. J. Shadbolt, M. R. Verde, A. Peruzzo, A. Politi, A. Laing, M. Lobino, J. C. F. Matthews, M. G. Thompson, J. L. O’Brien, “Generating, manipulating and measuring entanglement and mixture with a reconfigurable photonic circuit,” Nat. Photonics 6, 45–49 (2011).
[Crossref]

Phan Huy, K.

Politi, A.

P. J. Shadbolt, M. R. Verde, A. Peruzzo, A. Politi, A. Laing, M. Lobino, J. C. F. Matthews, M. G. Thompson, J. L. O’Brien, “Generating, manipulating and measuring entanglement and mixture with a reconfigurable photonic circuit,” Nat. Photonics 6, 45–49 (2011).
[Crossref]

Pomarico, E.

E. Pomarico, B. Sanguinetti, N. Gisin, R. Thew, H. Zbinden, G. Schreiber, A. Thomas, W. Sohler, “Waveguide-based OPO source of entangled photon pairs,” New J. Phys. 11, 113042 (2009).
[Crossref]

Ramponi, R.

A. Crespi, R. Ramponi, R. Osellame, L. Sansoni, I. Bongioanni, F. Sciarrino, G. Vallone, P. Mataloni, “Integrated photonic quantum gates for polarization qubits,” Nat. Commun. 2, 566 (2011).
[Crossref]

Rarity, J. G.

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8, 104–108 (2013).
[Crossref]

C. Xiong, C. Monat, A. S. Clark, C. Grillet, G. D. Marshall, M. J. Steel, J. Li, L. O’Faolain, T. F. Krauss, J. G. Rarity, B. J. Eggleton, “Slow-light enhanced correlated photon pair generation in a silicon photonic crystal waveguide,” Opt. Lett. 36, 3413–3415 (2011).
[Crossref]

Safioui, J.

Sanguinetti, B.

E. Pomarico, B. Sanguinetti, N. Gisin, R. Thew, H. Zbinden, G. Schreiber, A. Thomas, W. Sohler, “Waveguide-based OPO source of entangled photon pairs,” New J. Phys. 11, 113042 (2009).
[Crossref]

Sansoni, L.

A. Crespi, R. Ramponi, R. Osellame, L. Sansoni, I. Bongioanni, F. Sciarrino, G. Vallone, P. Mataloni, “Integrated photonic quantum gates for polarization qubits,” Nat. Commun. 2, 566 (2011).
[Crossref]

Scarani, V.

I. Marcikic, H. de Riedmatten, W. Tittel, V. Scarani, H. Zbinden, N. Gisin, “Time-bin entangled qubits for quantum communication created by femtosecond pulses,” Phys. Rev. A 66, 062308 (2002).
[Crossref]

Schmidt, B. S.

Schreiber, G.

E. Pomarico, B. Sanguinetti, N. Gisin, R. Thew, H. Zbinden, G. Schreiber, A. Thomas, W. Sohler, “Waveguide-based OPO source of entangled photon pairs,” New J. Phys. 11, 113042 (2009).
[Crossref]

Sciarrino, F.

A. Crespi, R. Ramponi, R. Osellame, L. Sansoni, I. Bongioanni, F. Sciarrino, G. Vallone, P. Mataloni, “Integrated photonic quantum gates for polarization qubits,” Nat. Commun. 2, 566 (2011).
[Crossref]

Shadbolt, P. J.

P. J. Shadbolt, M. R. Verde, A. Peruzzo, A. Politi, A. Laing, M. Lobino, J. C. F. Matthews, M. G. Thompson, J. L. O’Brien, “Generating, manipulating and measuring entanglement and mixture with a reconfigurable photonic circuit,” Nat. Photonics 6, 45–49 (2011).
[Crossref]

Shapiro, J. H.

J. Mower, Z. Zhang, P. Desjardins, C. Lee, J. H. Shapiro, D. Englund, “High-dimensional quantum key distribution using dispersive optics,” Phys. Rev. A 87, 062322 (2013).
[Crossref]

Sharping, J. E.

Shehata, A. B.

M. Davanço, J. R. Ong, A. B. Shehata, A. Tosi, I. Agha, S. Assefa, F. Xia, W. M. J. Green, S. Mookherjea, K. Srinivasan, “Telecommunications-band heralded single photons from a silicon nanophotonic chip,” Appl. Phys. Lett. 100, 261104 (2012).
[Crossref]

Shimizu, K.

N. Matsuda, H. Le Jeannic, H. Fukuda, T. Tsuchizawa, W. J. Munro, K. Shimizu, K. Yamada, Y. Tokura, H. Takesue, “A monolithically integrated polarization entangled photon pair source on a silicon chip,” Sci. Rep. 2, 817 (2012).

Silverstone, J. W.

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8, 104–108 (2013).
[Crossref]

Simbula, A.

N. C. Harris, D. Grassani, A. Simbula, M. Pant, M. Galli, T. Baehr-Jones, M. Hochberg, D. Englund, D. Bajoni, C. Galland, “An integrated source of spectrally filtered correlated photons for large scale quantum photonic systems,” arXiv:1409.8215v1, 2014.

Sipe, J. E.

Smith, B. J.

B. J. Metcalf, N. Thomas-Peter, J. B. Spring, D. Kundys, M. A. Broome, P. C. Humphreys, X. Jin, M. Barbieri, W. S. Kolthammer, J. C. Gates, B. J. Smith, N. K. Langford, P. G. R. Smith, I. A. Walmsley, “Multiphoton quantum interference in a multiport integrated photonic device,” Nat. Commun. 4, 1356 (2013).
[Crossref]

Smith, P. G. R.

B. J. Metcalf, N. Thomas-Peter, J. B. Spring, D. Kundys, M. A. Broome, P. C. Humphreys, X. Jin, M. Barbieri, W. S. Kolthammer, J. C. Gates, B. J. Smith, N. K. Langford, P. G. R. Smith, I. A. Walmsley, “Multiphoton quantum interference in a multiport integrated photonic device,” Nat. Commun. 4, 1356 (2013).
[Crossref]

Sohler, W.

E. Pomarico, B. Sanguinetti, N. Gisin, R. Thew, H. Zbinden, G. Schreiber, A. Thomas, W. Sohler, “Waveguide-based OPO source of entangled photon pairs,” New J. Phys. 11, 113042 (2009).
[Crossref]

Sorel, M.

Spring, J. B.

B. J. Metcalf, N. Thomas-Peter, J. B. Spring, D. Kundys, M. A. Broome, P. C. Humphreys, X. Jin, M. Barbieri, W. S. Kolthammer, J. C. Gates, B. J. Smith, N. K. Langford, P. G. R. Smith, I. A. Walmsley, “Multiphoton quantum interference in a multiport integrated photonic device,” Nat. Commun. 4, 1356 (2013).
[Crossref]

Srinivasan, K.

M. Davanço, J. R. Ong, A. B. Shehata, A. Tosi, I. Agha, S. Assefa, F. Xia, W. M. J. Green, S. Mookherjea, K. Srinivasan, “Telecommunications-band heralded single photons from a silicon nanophotonic chip,” Appl. Phys. Lett. 100, 261104 (2012).
[Crossref]

Steel, M. J.

Steinberg, A. M.

P. G. Kwiat, A. M. Steinberg, R. Y. Chiao, “High-visibility interference in a Bell-inequality experiment for energy and time,” Phys. Rev. A 47, R2472–R2475 (1993).
[Crossref]

Strain, M. J.

Suzuki, N.

E. Engin, D. Bonneau, C. M. Natarajan, A. S. Clark, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, J. L. O’Brien, M. G. Thompson, “Photon pair generation in a silicon micro-ring resonator with reverse bias enhancement,” Opt. Express 21, 27826–27834 (2013).
[Crossref]

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8, 104–108 (2013).
[Crossref]

Takesue, H.

H. Takesue, N. Matsuda, E. Kuramochi, N. Masaya, “Entangled photons from on-chip slow light,” Sci. Rep. 4, 3913 (2014).
[Crossref]

N. Matsuda, H. Le Jeannic, H. Fukuda, T. Tsuchizawa, W. J. Munro, K. Shimizu, K. Yamada, Y. Tokura, H. Takesue, “A monolithically integrated polarization entangled photon pair source on a silicon chip,” Sci. Rep. 2, 817 (2012).

K. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, S. Itabashi, “Generation of high-purity entangled photon pairs using silicon wire waveguide,” Opt. Express 16, 20368–20373 (2008).
[Crossref]

Tanner, M. G.

E. Engin, D. Bonneau, C. M. Natarajan, A. S. Clark, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, J. L. O’Brien, M. G. Thompson, “Photon pair generation in a silicon micro-ring resonator with reverse bias enhancement,” Opt. Express 21, 27826–27834 (2013).
[Crossref]

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8, 104–108 (2013).
[Crossref]

Thew, R.

E. Pomarico, B. Sanguinetti, N. Gisin, R. Thew, H. Zbinden, G. Schreiber, A. Thomas, W. Sohler, “Waveguide-based OPO source of entangled photon pairs,” New J. Phys. 11, 113042 (2009).
[Crossref]

Thomas, A.

E. Pomarico, B. Sanguinetti, N. Gisin, R. Thew, H. Zbinden, G. Schreiber, A. Thomas, W. Sohler, “Waveguide-based OPO source of entangled photon pairs,” New J. Phys. 11, 113042 (2009).
[Crossref]

Thomas-Peter, N.

B. J. Metcalf, N. Thomas-Peter, J. B. Spring, D. Kundys, M. A. Broome, P. C. Humphreys, X. Jin, M. Barbieri, W. S. Kolthammer, J. C. Gates, B. J. Smith, N. K. Langford, P. G. R. Smith, I. A. Walmsley, “Multiphoton quantum interference in a multiport integrated photonic device,” Nat. Commun. 4, 1356 (2013).
[Crossref]

Thompson, M. G.

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8, 104–108 (2013).
[Crossref]

E. Engin, D. Bonneau, C. M. Natarajan, A. S. Clark, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, J. L. O’Brien, M. G. Thompson, “Photon pair generation in a silicon micro-ring resonator with reverse bias enhancement,” Opt. Express 21, 27826–27834 (2013).
[Crossref]

P. J. Shadbolt, M. R. Verde, A. Peruzzo, A. Politi, A. Laing, M. Lobino, J. C. F. Matthews, M. G. Thompson, J. L. O’Brien, “Generating, manipulating and measuring entanglement and mixture with a reconfigurable photonic circuit,” Nat. Photonics 6, 45–49 (2011).
[Crossref]

Tittel, W.

I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, M. Legré, N. Gisin, “Distribution of time-bin entangled qubits over 50  km of optical fiber,” Phys. Rev. Lett. 93, 180502 (2004).
[Crossref]

I. Marcikic, H. de Riedmatten, W. Tittel, V. Scarani, H. Zbinden, N. Gisin, “Time-bin entangled qubits for quantum communication created by femtosecond pulses,” Phys. Rev. A 66, 062308 (2002).
[Crossref]

W. Tittel, J. Brendel, H. Zbinden, N. Gisin, “Quantum cryptography using entangled photons in energy-time Bell states,” Phys. Rev. Lett. 84, 4737–4740 (2000).
[Crossref]

Tokura, Y.

N. Matsuda, H. Le Jeannic, H. Fukuda, T. Tsuchizawa, W. J. Munro, K. Shimizu, K. Yamada, Y. Tokura, H. Takesue, “A monolithically integrated polarization entangled photon pair source on a silicon chip,” Sci. Rep. 2, 817 (2012).

K. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, S. Itabashi, “Generation of high-purity entangled photon pairs using silicon wire waveguide,” Opt. Express 16, 20368–20373 (2008).
[Crossref]

Tosi, A.

M. Davanço, J. R. Ong, A. B. Shehata, A. Tosi, I. Agha, S. Assefa, F. Xia, W. M. J. Green, S. Mookherjea, K. Srinivasan, “Telecommunications-band heralded single photons from a silicon nanophotonic chip,” Appl. Phys. Lett. 100, 261104 (2012).
[Crossref]

Tsuchizawa, T.

N. Matsuda, H. Le Jeannic, H. Fukuda, T. Tsuchizawa, W. J. Munro, K. Shimizu, K. Yamada, Y. Tokura, H. Takesue, “A monolithically integrated polarization entangled photon pair source on a silicon chip,” Sci. Rep. 2, 817 (2012).

K. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, S. Itabashi, “Generation of high-purity entangled photon pairs using silicon wire waveguide,” Opt. Express 16, 20368–20373 (2008).
[Crossref]

Turner, A. C.

Vallone, G.

A. Crespi, R. Ramponi, R. Osellame, L. Sansoni, I. Bongioanni, F. Sciarrino, G. Vallone, P. Mataloni, “Integrated photonic quantum gates for polarization qubits,” Nat. Commun. 2, 566 (2011).
[Crossref]

Velha, P.

S. Azzini, D. Grassani, M. Galli, D. Gerace, M. Patrini, M. Liscidini, P. Velha, D. Bajoni, “Stimulated and spontaneous four-wave mixing in silicon-on-insulator coupled photonic wire nano-cavities,” Appl. Phys. Lett. 103, 031117 (2013).
[Crossref]

Verde, M. R.

P. J. Shadbolt, M. R. Verde, A. Peruzzo, A. Politi, A. Laing, M. Lobino, J. C. F. Matthews, M. G. Thompson, J. L. O’Brien, “Generating, manipulating and measuring entanglement and mixture with a reconfigurable photonic circuit,” Nat. Photonics 6, 45–49 (2011).
[Crossref]

Walmsley, I. A.

B. J. Metcalf, N. Thomas-Peter, J. B. Spring, D. Kundys, M. A. Broome, P. C. Humphreys, X. Jin, M. Barbieri, W. S. Kolthammer, J. C. Gates, B. J. Smith, N. K. Langford, P. G. R. Smith, I. A. Walmsley, “Multiphoton quantum interference in a multiport integrated photonic device,” Nat. Commun. 4, 1356 (2013).
[Crossref]

Watanabe, T.

Weinfurter, H.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[Crossref]

Xia, F.

M. Davanço, J. R. Ong, A. B. Shehata, A. Tosi, I. Agha, S. Assefa, F. Xia, W. M. J. Green, S. Mookherjea, K. Srinivasan, “Telecommunications-band heralded single photons from a silicon nanophotonic chip,” Appl. Phys. Lett. 100, 261104 (2012).
[Crossref]

Xiong, C.

Yamada, K.

N. Matsuda, H. Le Jeannic, H. Fukuda, T. Tsuchizawa, W. J. Munro, K. Shimizu, K. Yamada, Y. Tokura, H. Takesue, “A monolithically integrated polarization entangled photon pair source on a silicon chip,” Sci. Rep. 2, 817 (2012).

K. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, S. Itabashi, “Generation of high-purity entangled photon pairs using silicon wire waveguide,” Opt. Express 16, 20368–20373 (2008).
[Crossref]

Yoshida, H.

E. Engin, D. Bonneau, C. M. Natarajan, A. S. Clark, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, J. L. O’Brien, M. G. Thompson, “Photon pair generation in a silicon micro-ring resonator with reverse bias enhancement,” Opt. Express 21, 27826–27834 (2013).
[Crossref]

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8, 104–108 (2013).
[Crossref]

Zbinden, H.

E. Pomarico, B. Sanguinetti, N. Gisin, R. Thew, H. Zbinden, G. Schreiber, A. Thomas, W. Sohler, “Waveguide-based OPO source of entangled photon pairs,” New J. Phys. 11, 113042 (2009).
[Crossref]

I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, M. Legré, N. Gisin, “Distribution of time-bin entangled qubits over 50  km of optical fiber,” Phys. Rev. Lett. 93, 180502 (2004).
[Crossref]

I. Marcikic, H. de Riedmatten, W. Tittel, V. Scarani, H. Zbinden, N. Gisin, “Time-bin entangled qubits for quantum communication created by femtosecond pulses,” Phys. Rev. A 66, 062308 (2002).
[Crossref]

W. Tittel, J. Brendel, H. Zbinden, N. Gisin, “Quantum cryptography using entangled photons in energy-time Bell states,” Phys. Rev. Lett. 84, 4737–4740 (2000).
[Crossref]

Zeilinger, A.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[Crossref]

Zhang, Z.

J. Mower, Z. Zhang, P. Desjardins, C. Lee, J. H. Shapiro, D. Englund, “High-dimensional quantum key distribution using dispersive optics,” Phys. Rev. A 87, 062322 (2013).
[Crossref]

Zwiller, V.

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8, 104–108 (2013).
[Crossref]

E. Engin, D. Bonneau, C. M. Natarajan, A. S. Clark, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, J. L. O’Brien, M. G. Thompson, “Photon pair generation in a silicon micro-ring resonator with reverse bias enhancement,” Opt. Express 21, 27826–27834 (2013).
[Crossref]

Appl. Phys. Lett. (2)

M. Davanço, J. R. Ong, A. B. Shehata, A. Tosi, I. Agha, S. Assefa, F. Xia, W. M. J. Green, S. Mookherjea, K. Srinivasan, “Telecommunications-band heralded single photons from a silicon nanophotonic chip,” Appl. Phys. Lett. 100, 261104 (2012).
[Crossref]

S. Azzini, D. Grassani, M. Galli, D. Gerace, M. Patrini, M. Liscidini, P. Velha, D. Bajoni, “Stimulated and spontaneous four-wave mixing in silicon-on-insulator coupled photonic wire nano-cavities,” Appl. Phys. Lett. 103, 031117 (2013).
[Crossref]

Nat. Commun. (2)

A. Crespi, R. Ramponi, R. Osellame, L. Sansoni, I. Bongioanni, F. Sciarrino, G. Vallone, P. Mataloni, “Integrated photonic quantum gates for polarization qubits,” Nat. Commun. 2, 566 (2011).
[Crossref]

B. J. Metcalf, N. Thomas-Peter, J. B. Spring, D. Kundys, M. A. Broome, P. C. Humphreys, X. Jin, M. Barbieri, W. S. Kolthammer, J. C. Gates, B. J. Smith, N. K. Langford, P. G. R. Smith, I. A. Walmsley, “Multiphoton quantum interference in a multiport integrated photonic device,” Nat. Commun. 4, 1356 (2013).
[Crossref]

Nat. Photonics (2)

P. J. Shadbolt, M. R. Verde, A. Peruzzo, A. Politi, A. Laing, M. Lobino, J. C. F. Matthews, M. G. Thompson, J. L. O’Brien, “Generating, manipulating and measuring entanglement and mixture with a reconfigurable photonic circuit,” Nat. Photonics 6, 45–49 (2011).
[Crossref]

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8, 104–108 (2013).
[Crossref]

Nature (1)

V. R. Almeida, C. A. Barrios, R. R. Panepucci, M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).
[Crossref]

New J. Phys. (1)

E. Pomarico, B. Sanguinetti, N. Gisin, R. Thew, H. Zbinden, G. Schreiber, A. Thomas, W. Sohler, “Waveguide-based OPO source of entangled photon pairs,” New J. Phys. 11, 113042 (2009).
[Crossref]

Opt. Express (6)

J. E. Sharping, K. F. Lee, M. A. Foster, A. C. Turner, B. S. Schmidt, M. Lipson, A. L. Gaeta, P. Kumar, “Generation of correlated photons in nanoscale silicon waveguides,” Opt. Express 14, 12388–12393 (2006).
[Crossref]

G. Fujii, N. Namekata, M. Motoya, S. Kurimura, S. Inoue, “Bright narrowband source of photon pairs at optical telecommunication wavelengths using a type-II periodically poled lithium niobate waveguide,” Opt. Express 15, 12769–12776 (2007).
[Crossref]

K. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, S. Itabashi, “Generation of high-purity entangled photon pairs using silicon wire waveguide,” Opt. Express 16, 20368–20373 (2008).
[Crossref]

S. Clemmen, K. Phan Huy, W. Bogaerts, R. G. Baets, P. Emplit, S. Massar, “Continuous wave photon pair generation in silicon-on-insulator waveguides and ring resonators,” Opt. Express 17, 16558–16570 (2009).
[Crossref]

S. Azzini, D. Grassani, M. J. Strain, M. Sorel, L. G. Helt, J. E. Sipe, M. Liscidini, M. Galli, D. Bajoni, “Ultra-low power generation of twin photons in a compact silicon ring resonator,” Opt. Express 20, 23100–23107 (2012).
[Crossref]

E. Engin, D. Bonneau, C. M. Natarajan, A. S. Clark, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, J. L. O’Brien, M. G. Thompson, “Photon pair generation in a silicon micro-ring resonator with reverse bias enhancement,” Opt. Express 21, 27826–27834 (2013).
[Crossref]

Opt. Lett. (4)

Phys. Rev. A (4)

J. D. Franson, “Two photon interferometry over large distances,” Phys. Rev. A 44, 4552–4555 (1991).
[Crossref]

P. G. Kwiat, A. M. Steinberg, R. Y. Chiao, “High-visibility interference in a Bell-inequality experiment for energy and time,” Phys. Rev. A 47, R2472–R2475 (1993).
[Crossref]

I. Marcikic, H. de Riedmatten, W. Tittel, V. Scarani, H. Zbinden, N. Gisin, “Time-bin entangled qubits for quantum communication created by femtosecond pulses,” Phys. Rev. A 66, 062308 (2002).
[Crossref]

J. Mower, Z. Zhang, P. Desjardins, C. Lee, J. H. Shapiro, D. Englund, “High-dimensional quantum key distribution using dispersive optics,” Phys. Rev. A 87, 062322 (2013).
[Crossref]

Phys. Rev. Lett. (7)

W. Tittel, J. Brendel, H. Zbinden, N. Gisin, “Quantum cryptography using entangled photons in energy-time Bell states,” Phys. Rev. Lett. 84, 4737–4740 (2000).
[Crossref]

I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, M. Legré, N. Gisin, “Distribution of time-bin entangled qubits over 50  km of optical fiber,” Phys. Rev. Lett. 93, 180502 (2004).
[Crossref]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[Crossref]

A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. 67, 661–663 (1991).
[Crossref]

M. Curty, M. Lewenstein, N. Lütkenhaus, “Entanglement as a precondition for secure quantum key distribution,” Phys. Rev. Lett. 92, 217903 (2004).
[Crossref]

J. D. Franson, “Bell inequality for position and time,” Phys. Rev. Lett. 62, 2205–2208 (1989).
[Crossref]

A. Orieux, A. Eckstein, A. Lemaître, P. Filloux, I. Favero, G. Leo, T. Coudreau, A. Keller, P. Milman, S. Ducci, “Direct Bell states generation on a III–V semiconductor chip at room temperature,” Phys. Rev. Lett. 110, 160502 (2013).
[Crossref]

Proc. R. Soc. A (1)

R. Jozsa, N. Linden, “On the role of entanglement in quantum-computational speed-up,” Proc. R. Soc. A 459, 2011–2032 (2003).
[Crossref]

Sci. Rep. (2)

H. Takesue, N. Matsuda, E. Kuramochi, N. Masaya, “Entangled photons from on-chip slow light,” Sci. Rep. 4, 3913 (2014).
[Crossref]

N. Matsuda, H. Le Jeannic, H. Fukuda, T. Tsuchizawa, W. J. Munro, K. Shimizu, K. Yamada, Y. Tokura, H. Takesue, “A monolithically integrated polarization entangled photon pair source on a silicon chip,” Sci. Rep. 2, 817 (2012).

Other (3)

M. A. Nielsen, I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2000).

C. H. Bennett, G. Brassard, “Quantum cryptography: public key distribution and coin tossing,” in Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing (IEEE, 1984), pp. 175–179.

N. C. Harris, D. Grassani, A. Simbula, M. Pant, M. Galli, T. Baehr-Jones, M. Hochberg, D. Englund, D. Bajoni, C. Galland, “An integrated source of spectrally filtered correlated photons for large scale quantum photonic systems,” arXiv:1409.8215v1, 2014.

Supplementary Material (1)

» Supplement 1: PDF (894 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Sample structure and characterization. (a) Sketch of the sample together with the input/output light coupling mechanism. The R = 10 μm ring resonator is evanescently coupled to a silicon nanowire waveguide via a deep-etched 150 nm gap point coupler. An optical microscope image of the ring is shown in the inset. The waveguide ends at both sides with spot-size converters: 300 μm long silicon inverse tapers ending in a 20 nm tip width covered by 1.5 μm × 2.0 μm polymer waveguides. Light injection from a collimated pump laser is achieved by the use of an aspheric lens with numerical aperture NA = 0.5 . The output from the sample is collected with a PM lensed fiber with a working distance of 3 μm. (b) Transmission spectrum of the resonator. The pump resonance is highlighted in green, and the signal and idler resonances employed in the experiment are indicated in blue and red, respectively.

Fig. 2.
Fig. 2.

SFWM and coincidences. (a) Spectra of the SFWM experiment for five different coupled pump powers; signal and idler intensities are divided by the corresponding pump power to underline the superlinear growth of the intensity. The slight difference in intensity between the two peaks is due to slightly different coupling to the input/output bus of the signal and idler modes. For coupled pump powers above 1 mW, the pump wavelength was retuned to compensate the red shift of the resonance due to the thermo-optic effect [22]. The horizontal scale is expanded around the signal and idler resonances, while the complete absence of detected photons at the pump resonance confirms the excellent rejection of the transmitted pump intensity in the setup. (b) Scaling of the internal generation rates of signal (blue squares) and idler (red circles) photons in SFWM, varying the coupled pump power. The black dashed line is a guide to the eye proportional to the square of the pump power. The left axis indicates the photon flux measured at the sample output. (c) Measured coincidence histogram for a coupled pump power P p = 1 mW . The time resolution is 75 ps, and it is driven by the response time of the detectors.

Fig. 3.
Fig. 3.

Correlations at the output of a double interferomenter. (a) Sketch of the signal and idler Michelson interferometers. The arm length difference of the two interferometers is the same to well within the coherence length of the generated photons (Supplement 1). The movable mirrors on the short arms are connected to a piezo actuator and are used to control the relative phase between the short and long arms. At the outputs of the interferometers are two superconducting single-photon detectors (SSPDs). (b) Instance of coincidence histogram measured at the output of the interferometers, taken for a coupled pump power of 1.5 mW. The integration time is 120 s. The error bars indicate the error on the counts. The inset shows the absolute intensity at the output of each interferometer while varying the respective phase: the complete absence of interference confirms that the arm length difference is much larger than the coherence time on the generated photons.

Fig. 4.
Fig. 4.

Entanglement between signal and idler photons. (a)–(d) Histograms of the coincidence rate for four different phase settings. (e) Two-photon interference of the double interferometer configuration: the coincidence count rate of the central peak is plotted as a function of the phase φ s + φ i . The integration time is 120 s for each point, and the pump power is 1.5 mW. The dotted black curve is a best fit of the experimental data.

Tables (2)

Tables Icon

Table 1. Violation of Bell Inequalitiesa

Tables Icon

Table 2. Comparison between Room Temperature, Integrated Entangled Photon Sourcesa

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

C ( φ ) = 2 C 0 ( 1 + cos ( φ + ϑ ) ) ,

Metrics