Abstract

We demonstrate a method for efficient coupling of guided light from a single-mode optical fiber to nanophotonic devices. Our approach makes use of single-sided conical tapered optical fibers that are evanescently coupled over the last 10μm to a nanophotonic waveguide. By means of adiabatic mode transfer using a properly chosen taper, single-mode fiber-waveguide coupling efficiencies as high as 97(1)% are achieved. Efficient coupling is obtained for a wide range of device geometries, which are either singly clamped on a chip or attached to the fiber, demonstrating a promising approach for integrated nanophotonic circuits, and quantum optical and nanoscale sensing applications.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Efficient fiber-coupled single-photon source based on quantum dots in a photonic-crystal waveguide

Raphaël S. Daveau, Krishna C. Balram, Tommaso Pregnolato, Jin Liu, Eun H. Lee, Jin D. Song, Varun Verma, Richard Mirin, Sae Woo Nam, Leonardo Midolo, Søren Stobbe, Kartik Srinivasan, and Peter Lodahl
Optica 4(2) 178-184 (2017)

Numerical simulations of nanodiamond nitrogen-vacancy centers coupled with tapered optical fibers as hybrid quantum nanophotonic devices

Mohamed Almokhtar, Masazumi Fujiwara, Hideaki Takashima, and Shigeki Takeuchi
Opt. Express 22(17) 20045-20059 (2014)

Broadband polarization independent nanophotonic coupler for silicon waveguides with ultra-high efficiency

Pavel Cheben, Jens H. Schmid, Shurui Wang, Dan-Xia Xu, Martin Vachon, Siegfried Janz, Jean Lapointe, Yves Painchaud, and Marie-Josée Picard
Opt. Express 23(17) 22553-22563 (2015)

References

  • View by:
  • |
  • |
  • |

  1. J. D. J. Joannopoulos, S. G. Johnson, J. N. Winn, R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University, 2008).
  2. X. Chen, C. Li, H. K. Tsang, “Device engineering for silicon photonics,” NPG Asia Mater. 3, 34–40 (2011).
    [Crossref]
  3. D. A. B. Miller, “Are optical transistors the logical next step?” Nat. Photonics 4, 3–5 (2010).
    [Crossref]
  4. D. W. Pohl, W. Denk, M. Lanz, “Optical stethoscopy: image recording with resolution lambda/20,” Appl. Phys. Lett. 44, 651–653 (1984).
    [Crossref]
  5. A. Lewis, M. Isaacson, A. Harootunian, A. Muray, “Development of a 500 aspatial resolution light microscope: I. Light is efficiently transmitted through lambda/16 diameter apertures,” Ultramicroscopy 13, 227–231 (1984).
    [Crossref]
  6. W. Tan, Z. Shi, S. Smith, D. Birnbaum, R. Kopelman, “Submicrometer intracellular chemical optical fiber sensors,” Science 258, 778–781 (1992).
    [Crossref]
  7. R. Yan, J.-H. Park, Y. Choi, C.-J. Heo, S.-M. Yang, L. P. Lee, P. Yang, “Nanowire-based single-cell endoscopy,” Nat. Nanotechnol. 7, 191–196 (2012).
    [Crossref]
  8. H. J. Kimble, “The quantum internet,” Nature 453, 1023–1030 (2008).
    [Crossref]
  9. T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, J. L. O’Brien, “Quantum computers,” Nature 464, 45–53 (2010).
    [Crossref]
  10. R. van Meter, T. D. Ladd, A. G. Fowler, Y. Yamamoto, “Distributed quantum computation architecture using semiconductor nanophotonics,” Int. J. Quantum. Inform. 08, 295–323 (2010).
  11. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
    [Crossref]
  12. T. G. Tiecke, J. D. Thompson, N. P. de Leon, L. R. Liu, V. Vuletic, M. D. Lukin, “Nanophotonic quantum phase switch with a single atom,” Nature 508, 241–244 (2014).
    [Crossref]
  13. H.-J. Briegel, W. Dür, J. I. Cirac, P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81, 5932–5935 (1998).
    [Crossref]
  14. J. D. Cohen, S. M. Meenehan, O. Painter, “Optical coupling to nanoscale optomechanical cavities for near quantum-limited motion transduction,” Opt. Express 21, 11227–11236 (2013).
    [Crossref]
  15. S. Gröblacher, J. T. Hill, A. H. Safavi-Naeini, J. Chan, O. Painter, “Highly efficient coupling from an optical fiber to a nanoscale silicon optomechanical cavity,” Appl. Phys. Lett. 103, 181104 (2013).
    [Crossref]
  16. J. D. Thompson, T. G. Tiecke, N. P. de Leon, J. Feist, A. V. Akimov, M. Gullans, A. S. Zibrov, V. Vuletic, M. D. Lukin, “Coupling a single trapped atom to a nanoscale optical cavity,” Science 340, 1202–1205 (2013).
    [Crossref]
  17. A. Snyder, J. Love, Optical Waveguide Theory (Springer, 1983).
  18. J. D. Love, W. M. Henry, W. Stewart, R. J. Black, S. Lacroix, F. Gonthier, “Tapered single-mode fibres and devices. I. Adiabaticity criteria,” IEE Proceedings J, Optoelectronics (1985-1993) / IEE Proc-J: Optoelectronics 138, 343–354 (1991).
  19. J. E. Hoffman, S. Ravets, J. A. Grover, P. Solano, P. R. Kordell, J. D. Wong-Campos, L. A. Orozco, S. L. Rolston, “Ultrahigh transmission optical nanofibers,” arXiv:1405.3258 (2014).
  20. A. Stiebeiner, R. Garcia-Fernandez, A. Rauschenbeutel, “Design and optimization of broadband tapered optical fibers with a nanofiber waist,” Opt. Express 18, 22677–22685 (2010).
    [Crossref]
  21. S. G. Johnson, J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001).
    [Crossref]
  22. L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
    [Crossref]
  23. J. M. Ward, A. Maimaiti, V. H. Le, S. N. Chormaic, “Optical micro- and nanofiber pulling rig,” arXiv:1402.6396 (2014).
  24. G. Brambilla, “Optical fibre nanowires and microwires: a review,” J. Opt. 12, 0430012010.
    [Crossref]
  25. B. Wang, L.-M. Duan, “Engineering superpositions of coherent states in coherent optical pulses through cavity-assisted interaction,” Phys. Rev. A 72, 022320 (2005).
    [Crossref]
  26. G. Shambat, S.-R. Kothapalli, J. Provine, T. Sarmiento, J. Harris, S. S. Gambhir, J. Vucković, “Single-cell photonic nanocavity probes,” Nano Lett. 13, 4999–5005 (2013).

2014 (1)

T. G. Tiecke, J. D. Thompson, N. P. de Leon, L. R. Liu, V. Vuletic, M. D. Lukin, “Nanophotonic quantum phase switch with a single atom,” Nature 508, 241–244 (2014).
[Crossref]

2013 (4)

J. D. Cohen, S. M. Meenehan, O. Painter, “Optical coupling to nanoscale optomechanical cavities for near quantum-limited motion transduction,” Opt. Express 21, 11227–11236 (2013).
[Crossref]

S. Gröblacher, J. T. Hill, A. H. Safavi-Naeini, J. Chan, O. Painter, “Highly efficient coupling from an optical fiber to a nanoscale silicon optomechanical cavity,” Appl. Phys. Lett. 103, 181104 (2013).
[Crossref]

J. D. Thompson, T. G. Tiecke, N. P. de Leon, J. Feist, A. V. Akimov, M. Gullans, A. S. Zibrov, V. Vuletic, M. D. Lukin, “Coupling a single trapped atom to a nanoscale optical cavity,” Science 340, 1202–1205 (2013).
[Crossref]

G. Shambat, S.-R. Kothapalli, J. Provine, T. Sarmiento, J. Harris, S. S. Gambhir, J. Vucković, “Single-cell photonic nanocavity probes,” Nano Lett. 13, 4999–5005 (2013).

2012 (1)

R. Yan, J.-H. Park, Y. Choi, C.-J. Heo, S.-M. Yang, L. P. Lee, P. Yang, “Nanowire-based single-cell endoscopy,” Nat. Nanotechnol. 7, 191–196 (2012).
[Crossref]

2011 (1)

X. Chen, C. Li, H. K. Tsang, “Device engineering for silicon photonics,” NPG Asia Mater. 3, 34–40 (2011).
[Crossref]

2010 (5)

D. A. B. Miller, “Are optical transistors the logical next step?” Nat. Photonics 4, 3–5 (2010).
[Crossref]

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, J. L. O’Brien, “Quantum computers,” Nature 464, 45–53 (2010).
[Crossref]

R. van Meter, T. D. Ladd, A. G. Fowler, Y. Yamamoto, “Distributed quantum computation architecture using semiconductor nanophotonics,” Int. J. Quantum. Inform. 08, 295–323 (2010).

A. Stiebeiner, R. Garcia-Fernandez, A. Rauschenbeutel, “Design and optimization of broadband tapered optical fibers with a nanofiber waist,” Opt. Express 18, 22677–22685 (2010).
[Crossref]

G. Brambilla, “Optical fibre nanowires and microwires: a review,” J. Opt. 12, 0430012010.
[Crossref]

2008 (1)

H. J. Kimble, “The quantum internet,” Nature 453, 1023–1030 (2008).
[Crossref]

2005 (1)

B. Wang, L.-M. Duan, “Engineering superpositions of coherent states in coherent optical pulses through cavity-assisted interaction,” Phys. Rev. A 72, 022320 (2005).
[Crossref]

2004 (1)

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
[Crossref]

2003 (1)

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[Crossref]

2001 (1)

1998 (1)

H.-J. Briegel, W. Dür, J. I. Cirac, P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81, 5932–5935 (1998).
[Crossref]

1992 (1)

W. Tan, Z. Shi, S. Smith, D. Birnbaum, R. Kopelman, “Submicrometer intracellular chemical optical fiber sensors,” Science 258, 778–781 (1992).
[Crossref]

1991 (1)

J. D. Love, W. M. Henry, W. Stewart, R. J. Black, S. Lacroix, F. Gonthier, “Tapered single-mode fibres and devices. I. Adiabaticity criteria,” IEE Proceedings J, Optoelectronics (1985-1993) / IEE Proc-J: Optoelectronics 138, 343–354 (1991).

1984 (2)

D. W. Pohl, W. Denk, M. Lanz, “Optical stethoscopy: image recording with resolution lambda/20,” Appl. Phys. Lett. 44, 651–653 (1984).
[Crossref]

A. Lewis, M. Isaacson, A. Harootunian, A. Muray, “Development of a 500 aspatial resolution light microscope: I. Light is efficiently transmitted through lambda/16 diameter apertures,” Ultramicroscopy 13, 227–231 (1984).
[Crossref]

Akimov, A. V.

J. D. Thompson, T. G. Tiecke, N. P. de Leon, J. Feist, A. V. Akimov, M. Gullans, A. S. Zibrov, V. Vuletic, M. D. Lukin, “Coupling a single trapped atom to a nanoscale optical cavity,” Science 340, 1202–1205 (2013).
[Crossref]

Ashcom, J. B.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[Crossref]

Birnbaum, D.

W. Tan, Z. Shi, S. Smith, D. Birnbaum, R. Kopelman, “Submicrometer intracellular chemical optical fiber sensors,” Science 258, 778–781 (1992).
[Crossref]

Black, R. J.

J. D. Love, W. M. Henry, W. Stewart, R. J. Black, S. Lacroix, F. Gonthier, “Tapered single-mode fibres and devices. I. Adiabaticity criteria,” IEE Proceedings J, Optoelectronics (1985-1993) / IEE Proc-J: Optoelectronics 138, 343–354 (1991).

Brambilla, G.

G. Brambilla, “Optical fibre nanowires and microwires: a review,” J. Opt. 12, 0430012010.
[Crossref]

Briegel, H.-J.

H.-J. Briegel, W. Dür, J. I. Cirac, P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81, 5932–5935 (1998).
[Crossref]

Chan, J.

S. Gröblacher, J. T. Hill, A. H. Safavi-Naeini, J. Chan, O. Painter, “Highly efficient coupling from an optical fiber to a nanoscale silicon optomechanical cavity,” Appl. Phys. Lett. 103, 181104 (2013).
[Crossref]

Chen, X.

X. Chen, C. Li, H. K. Tsang, “Device engineering for silicon photonics,” NPG Asia Mater. 3, 34–40 (2011).
[Crossref]

Choi, Y.

R. Yan, J.-H. Park, Y. Choi, C.-J. Heo, S.-M. Yang, L. P. Lee, P. Yang, “Nanowire-based single-cell endoscopy,” Nat. Nanotechnol. 7, 191–196 (2012).
[Crossref]

Chormaic, S. N.

J. M. Ward, A. Maimaiti, V. H. Le, S. N. Chormaic, “Optical micro- and nanofiber pulling rig,” arXiv:1402.6396 (2014).

Cirac, J. I.

H.-J. Briegel, W. Dür, J. I. Cirac, P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81, 5932–5935 (1998).
[Crossref]

Cohen, J. D.

de Leon, N. P.

T. G. Tiecke, J. D. Thompson, N. P. de Leon, L. R. Liu, V. Vuletic, M. D. Lukin, “Nanophotonic quantum phase switch with a single atom,” Nature 508, 241–244 (2014).
[Crossref]

J. D. Thompson, T. G. Tiecke, N. P. de Leon, J. Feist, A. V. Akimov, M. Gullans, A. S. Zibrov, V. Vuletic, M. D. Lukin, “Coupling a single trapped atom to a nanoscale optical cavity,” Science 340, 1202–1205 (2013).
[Crossref]

Denk, W.

D. W. Pohl, W. Denk, M. Lanz, “Optical stethoscopy: image recording with resolution lambda/20,” Appl. Phys. Lett. 44, 651–653 (1984).
[Crossref]

Deppe, D. G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
[Crossref]

Duan, L.-M.

B. Wang, L.-M. Duan, “Engineering superpositions of coherent states in coherent optical pulses through cavity-assisted interaction,” Phys. Rev. A 72, 022320 (2005).
[Crossref]

Dür, W.

H.-J. Briegel, W. Dür, J. I. Cirac, P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81, 5932–5935 (1998).
[Crossref]

Ell, C.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
[Crossref]

Feist, J.

J. D. Thompson, T. G. Tiecke, N. P. de Leon, J. Feist, A. V. Akimov, M. Gullans, A. S. Zibrov, V. Vuletic, M. D. Lukin, “Coupling a single trapped atom to a nanoscale optical cavity,” Science 340, 1202–1205 (2013).
[Crossref]

Fowler, A. G.

R. van Meter, T. D. Ladd, A. G. Fowler, Y. Yamamoto, “Distributed quantum computation architecture using semiconductor nanophotonics,” Int. J. Quantum. Inform. 08, 295–323 (2010).

Gambhir, S. S.

G. Shambat, S.-R. Kothapalli, J. Provine, T. Sarmiento, J. Harris, S. S. Gambhir, J. Vucković, “Single-cell photonic nanocavity probes,” Nano Lett. 13, 4999–5005 (2013).

Garcia-Fernandez, R.

Gattass, R. R.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[Crossref]

Gibbs, H. M.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
[Crossref]

Gonthier, F.

J. D. Love, W. M. Henry, W. Stewart, R. J. Black, S. Lacroix, F. Gonthier, “Tapered single-mode fibres and devices. I. Adiabaticity criteria,” IEE Proceedings J, Optoelectronics (1985-1993) / IEE Proc-J: Optoelectronics 138, 343–354 (1991).

Gröblacher, S.

S. Gröblacher, J. T. Hill, A. H. Safavi-Naeini, J. Chan, O. Painter, “Highly efficient coupling from an optical fiber to a nanoscale silicon optomechanical cavity,” Appl. Phys. Lett. 103, 181104 (2013).
[Crossref]

Grover, J. A.

J. E. Hoffman, S. Ravets, J. A. Grover, P. Solano, P. R. Kordell, J. D. Wong-Campos, L. A. Orozco, S. L. Rolston, “Ultrahigh transmission optical nanofibers,” arXiv:1405.3258 (2014).

Gullans, M.

J. D. Thompson, T. G. Tiecke, N. P. de Leon, J. Feist, A. V. Akimov, M. Gullans, A. S. Zibrov, V. Vuletic, M. D. Lukin, “Coupling a single trapped atom to a nanoscale optical cavity,” Science 340, 1202–1205 (2013).
[Crossref]

Harootunian, A.

A. Lewis, M. Isaacson, A. Harootunian, A. Muray, “Development of a 500 aspatial resolution light microscope: I. Light is efficiently transmitted through lambda/16 diameter apertures,” Ultramicroscopy 13, 227–231 (1984).
[Crossref]

Harris, J.

G. Shambat, S.-R. Kothapalli, J. Provine, T. Sarmiento, J. Harris, S. S. Gambhir, J. Vucković, “Single-cell photonic nanocavity probes,” Nano Lett. 13, 4999–5005 (2013).

He, S.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[Crossref]

Hendrickson, J.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
[Crossref]

Henry, W. M.

J. D. Love, W. M. Henry, W. Stewart, R. J. Black, S. Lacroix, F. Gonthier, “Tapered single-mode fibres and devices. I. Adiabaticity criteria,” IEE Proceedings J, Optoelectronics (1985-1993) / IEE Proc-J: Optoelectronics 138, 343–354 (1991).

Heo, C.-J.

R. Yan, J.-H. Park, Y. Choi, C.-J. Heo, S.-M. Yang, L. P. Lee, P. Yang, “Nanowire-based single-cell endoscopy,” Nat. Nanotechnol. 7, 191–196 (2012).
[Crossref]

Hill, J. T.

S. Gröblacher, J. T. Hill, A. H. Safavi-Naeini, J. Chan, O. Painter, “Highly efficient coupling from an optical fiber to a nanoscale silicon optomechanical cavity,” Appl. Phys. Lett. 103, 181104 (2013).
[Crossref]

Hoffman, J. E.

J. E. Hoffman, S. Ravets, J. A. Grover, P. Solano, P. R. Kordell, J. D. Wong-Campos, L. A. Orozco, S. L. Rolston, “Ultrahigh transmission optical nanofibers,” arXiv:1405.3258 (2014).

Isaacson, M.

A. Lewis, M. Isaacson, A. Harootunian, A. Muray, “Development of a 500 aspatial resolution light microscope: I. Light is efficiently transmitted through lambda/16 diameter apertures,” Ultramicroscopy 13, 227–231 (1984).
[Crossref]

Jelezko, F.

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, J. L. O’Brien, “Quantum computers,” Nature 464, 45–53 (2010).
[Crossref]

Joannopoulos, J. D.

Joannopoulos, J. D. J.

J. D. J. Joannopoulos, S. G. Johnson, J. N. Winn, R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University, 2008).

Johnson, S. G.

S. G. Johnson, J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001).
[Crossref]

J. D. J. Joannopoulos, S. G. Johnson, J. N. Winn, R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University, 2008).

Khitrova, G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
[Crossref]

Kimble, H. J.

H. J. Kimble, “The quantum internet,” Nature 453, 1023–1030 (2008).
[Crossref]

Kopelman, R.

W. Tan, Z. Shi, S. Smith, D. Birnbaum, R. Kopelman, “Submicrometer intracellular chemical optical fiber sensors,” Science 258, 778–781 (1992).
[Crossref]

Kordell, P. R.

J. E. Hoffman, S. Ravets, J. A. Grover, P. Solano, P. R. Kordell, J. D. Wong-Campos, L. A. Orozco, S. L. Rolston, “Ultrahigh transmission optical nanofibers,” arXiv:1405.3258 (2014).

Kothapalli, S.-R.

G. Shambat, S.-R. Kothapalli, J. Provine, T. Sarmiento, J. Harris, S. S. Gambhir, J. Vucković, “Single-cell photonic nanocavity probes,” Nano Lett. 13, 4999–5005 (2013).

Lacroix, S.

J. D. Love, W. M. Henry, W. Stewart, R. J. Black, S. Lacroix, F. Gonthier, “Tapered single-mode fibres and devices. I. Adiabaticity criteria,” IEE Proceedings J, Optoelectronics (1985-1993) / IEE Proc-J: Optoelectronics 138, 343–354 (1991).

Ladd, T. D.

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, J. L. O’Brien, “Quantum computers,” Nature 464, 45–53 (2010).
[Crossref]

R. van Meter, T. D. Ladd, A. G. Fowler, Y. Yamamoto, “Distributed quantum computation architecture using semiconductor nanophotonics,” Int. J. Quantum. Inform. 08, 295–323 (2010).

Laflamme, R.

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, J. L. O’Brien, “Quantum computers,” Nature 464, 45–53 (2010).
[Crossref]

Lanz, M.

D. W. Pohl, W. Denk, M. Lanz, “Optical stethoscopy: image recording with resolution lambda/20,” Appl. Phys. Lett. 44, 651–653 (1984).
[Crossref]

Le, V. H.

J. M. Ward, A. Maimaiti, V. H. Le, S. N. Chormaic, “Optical micro- and nanofiber pulling rig,” arXiv:1402.6396 (2014).

Lee, L. P.

R. Yan, J.-H. Park, Y. Choi, C.-J. Heo, S.-M. Yang, L. P. Lee, P. Yang, “Nanowire-based single-cell endoscopy,” Nat. Nanotechnol. 7, 191–196 (2012).
[Crossref]

Lewis, A.

A. Lewis, M. Isaacson, A. Harootunian, A. Muray, “Development of a 500 aspatial resolution light microscope: I. Light is efficiently transmitted through lambda/16 diameter apertures,” Ultramicroscopy 13, 227–231 (1984).
[Crossref]

Li, C.

X. Chen, C. Li, H. K. Tsang, “Device engineering for silicon photonics,” NPG Asia Mater. 3, 34–40 (2011).
[Crossref]

Liu, L. R.

T. G. Tiecke, J. D. Thompson, N. P. de Leon, L. R. Liu, V. Vuletic, M. D. Lukin, “Nanophotonic quantum phase switch with a single atom,” Nature 508, 241–244 (2014).
[Crossref]

Lou, J.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[Crossref]

Love, J.

A. Snyder, J. Love, Optical Waveguide Theory (Springer, 1983).

Love, J. D.

J. D. Love, W. M. Henry, W. Stewart, R. J. Black, S. Lacroix, F. Gonthier, “Tapered single-mode fibres and devices. I. Adiabaticity criteria,” IEE Proceedings J, Optoelectronics (1985-1993) / IEE Proc-J: Optoelectronics 138, 343–354 (1991).

Lukin, M. D.

T. G. Tiecke, J. D. Thompson, N. P. de Leon, L. R. Liu, V. Vuletic, M. D. Lukin, “Nanophotonic quantum phase switch with a single atom,” Nature 508, 241–244 (2014).
[Crossref]

J. D. Thompson, T. G. Tiecke, N. P. de Leon, J. Feist, A. V. Akimov, M. Gullans, A. S. Zibrov, V. Vuletic, M. D. Lukin, “Coupling a single trapped atom to a nanoscale optical cavity,” Science 340, 1202–1205 (2013).
[Crossref]

Maimaiti, A.

J. M. Ward, A. Maimaiti, V. H. Le, S. N. Chormaic, “Optical micro- and nanofiber pulling rig,” arXiv:1402.6396 (2014).

Maxwell, I.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[Crossref]

Mazur, E.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[Crossref]

Meade, R. D.

J. D. J. Joannopoulos, S. G. Johnson, J. N. Winn, R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University, 2008).

Meenehan, S. M.

Miller, D. A. B.

D. A. B. Miller, “Are optical transistors the logical next step?” Nat. Photonics 4, 3–5 (2010).
[Crossref]

Monroe, C.

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, J. L. O’Brien, “Quantum computers,” Nature 464, 45–53 (2010).
[Crossref]

Muray, A.

A. Lewis, M. Isaacson, A. Harootunian, A. Muray, “Development of a 500 aspatial resolution light microscope: I. Light is efficiently transmitted through lambda/16 diameter apertures,” Ultramicroscopy 13, 227–231 (1984).
[Crossref]

Nakamura, Y.

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, J. L. O’Brien, “Quantum computers,” Nature 464, 45–53 (2010).
[Crossref]

O’Brien, J. L.

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, J. L. O’Brien, “Quantum computers,” Nature 464, 45–53 (2010).
[Crossref]

Orozco, L. A.

J. E. Hoffman, S. Ravets, J. A. Grover, P. Solano, P. R. Kordell, J. D. Wong-Campos, L. A. Orozco, S. L. Rolston, “Ultrahigh transmission optical nanofibers,” arXiv:1405.3258 (2014).

Painter, O.

J. D. Cohen, S. M. Meenehan, O. Painter, “Optical coupling to nanoscale optomechanical cavities for near quantum-limited motion transduction,” Opt. Express 21, 11227–11236 (2013).
[Crossref]

S. Gröblacher, J. T. Hill, A. H. Safavi-Naeini, J. Chan, O. Painter, “Highly efficient coupling from an optical fiber to a nanoscale silicon optomechanical cavity,” Appl. Phys. Lett. 103, 181104 (2013).
[Crossref]

Park, J.-H.

R. Yan, J.-H. Park, Y. Choi, C.-J. Heo, S.-M. Yang, L. P. Lee, P. Yang, “Nanowire-based single-cell endoscopy,” Nat. Nanotechnol. 7, 191–196 (2012).
[Crossref]

Pohl, D. W.

D. W. Pohl, W. Denk, M. Lanz, “Optical stethoscopy: image recording with resolution lambda/20,” Appl. Phys. Lett. 44, 651–653 (1984).
[Crossref]

Provine, J.

G. Shambat, S.-R. Kothapalli, J. Provine, T. Sarmiento, J. Harris, S. S. Gambhir, J. Vucković, “Single-cell photonic nanocavity probes,” Nano Lett. 13, 4999–5005 (2013).

Rauschenbeutel, A.

Ravets, S.

J. E. Hoffman, S. Ravets, J. A. Grover, P. Solano, P. R. Kordell, J. D. Wong-Campos, L. A. Orozco, S. L. Rolston, “Ultrahigh transmission optical nanofibers,” arXiv:1405.3258 (2014).

Rolston, S. L.

J. E. Hoffman, S. Ravets, J. A. Grover, P. Solano, P. R. Kordell, J. D. Wong-Campos, L. A. Orozco, S. L. Rolston, “Ultrahigh transmission optical nanofibers,” arXiv:1405.3258 (2014).

Rupper, G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
[Crossref]

Safavi-Naeini, A. H.

S. Gröblacher, J. T. Hill, A. H. Safavi-Naeini, J. Chan, O. Painter, “Highly efficient coupling from an optical fiber to a nanoscale silicon optomechanical cavity,” Appl. Phys. Lett. 103, 181104 (2013).
[Crossref]

Sarmiento, T.

G. Shambat, S.-R. Kothapalli, J. Provine, T. Sarmiento, J. Harris, S. S. Gambhir, J. Vucković, “Single-cell photonic nanocavity probes,” Nano Lett. 13, 4999–5005 (2013).

Scherer, A.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
[Crossref]

Shambat, G.

G. Shambat, S.-R. Kothapalli, J. Provine, T. Sarmiento, J. Harris, S. S. Gambhir, J. Vucković, “Single-cell photonic nanocavity probes,” Nano Lett. 13, 4999–5005 (2013).

Shchekin, O. B.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
[Crossref]

Shen, M.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[Crossref]

Shi, Z.

W. Tan, Z. Shi, S. Smith, D. Birnbaum, R. Kopelman, “Submicrometer intracellular chemical optical fiber sensors,” Science 258, 778–781 (1992).
[Crossref]

Smith, S.

W. Tan, Z. Shi, S. Smith, D. Birnbaum, R. Kopelman, “Submicrometer intracellular chemical optical fiber sensors,” Science 258, 778–781 (1992).
[Crossref]

Snyder, A.

A. Snyder, J. Love, Optical Waveguide Theory (Springer, 1983).

Solano, P.

J. E. Hoffman, S. Ravets, J. A. Grover, P. Solano, P. R. Kordell, J. D. Wong-Campos, L. A. Orozco, S. L. Rolston, “Ultrahigh transmission optical nanofibers,” arXiv:1405.3258 (2014).

Stewart, W.

J. D. Love, W. M. Henry, W. Stewart, R. J. Black, S. Lacroix, F. Gonthier, “Tapered single-mode fibres and devices. I. Adiabaticity criteria,” IEE Proceedings J, Optoelectronics (1985-1993) / IEE Proc-J: Optoelectronics 138, 343–354 (1991).

Stiebeiner, A.

Tan, W.

W. Tan, Z. Shi, S. Smith, D. Birnbaum, R. Kopelman, “Submicrometer intracellular chemical optical fiber sensors,” Science 258, 778–781 (1992).
[Crossref]

Thompson, J. D.

T. G. Tiecke, J. D. Thompson, N. P. de Leon, L. R. Liu, V. Vuletic, M. D. Lukin, “Nanophotonic quantum phase switch with a single atom,” Nature 508, 241–244 (2014).
[Crossref]

J. D. Thompson, T. G. Tiecke, N. P. de Leon, J. Feist, A. V. Akimov, M. Gullans, A. S. Zibrov, V. Vuletic, M. D. Lukin, “Coupling a single trapped atom to a nanoscale optical cavity,” Science 340, 1202–1205 (2013).
[Crossref]

Tiecke, T. G.

T. G. Tiecke, J. D. Thompson, N. P. de Leon, L. R. Liu, V. Vuletic, M. D. Lukin, “Nanophotonic quantum phase switch with a single atom,” Nature 508, 241–244 (2014).
[Crossref]

J. D. Thompson, T. G. Tiecke, N. P. de Leon, J. Feist, A. V. Akimov, M. Gullans, A. S. Zibrov, V. Vuletic, M. D. Lukin, “Coupling a single trapped atom to a nanoscale optical cavity,” Science 340, 1202–1205 (2013).
[Crossref]

Tong, L.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[Crossref]

Tsang, H. K.

X. Chen, C. Li, H. K. Tsang, “Device engineering for silicon photonics,” NPG Asia Mater. 3, 34–40 (2011).
[Crossref]

van Meter, R.

R. van Meter, T. D. Ladd, A. G. Fowler, Y. Yamamoto, “Distributed quantum computation architecture using semiconductor nanophotonics,” Int. J. Quantum. Inform. 08, 295–323 (2010).

Vuckovic, J.

G. Shambat, S.-R. Kothapalli, J. Provine, T. Sarmiento, J. Harris, S. S. Gambhir, J. Vucković, “Single-cell photonic nanocavity probes,” Nano Lett. 13, 4999–5005 (2013).

Vuletic, V.

T. G. Tiecke, J. D. Thompson, N. P. de Leon, L. R. Liu, V. Vuletic, M. D. Lukin, “Nanophotonic quantum phase switch with a single atom,” Nature 508, 241–244 (2014).
[Crossref]

J. D. Thompson, T. G. Tiecke, N. P. de Leon, J. Feist, A. V. Akimov, M. Gullans, A. S. Zibrov, V. Vuletic, M. D. Lukin, “Coupling a single trapped atom to a nanoscale optical cavity,” Science 340, 1202–1205 (2013).
[Crossref]

Wang, B.

B. Wang, L.-M. Duan, “Engineering superpositions of coherent states in coherent optical pulses through cavity-assisted interaction,” Phys. Rev. A 72, 022320 (2005).
[Crossref]

Ward, J. M.

J. M. Ward, A. Maimaiti, V. H. Le, S. N. Chormaic, “Optical micro- and nanofiber pulling rig,” arXiv:1402.6396 (2014).

Winn, J. N.

J. D. J. Joannopoulos, S. G. Johnson, J. N. Winn, R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University, 2008).

Wong-Campos, J. D.

J. E. Hoffman, S. Ravets, J. A. Grover, P. Solano, P. R. Kordell, J. D. Wong-Campos, L. A. Orozco, S. L. Rolston, “Ultrahigh transmission optical nanofibers,” arXiv:1405.3258 (2014).

Yamamoto, Y.

R. van Meter, T. D. Ladd, A. G. Fowler, Y. Yamamoto, “Distributed quantum computation architecture using semiconductor nanophotonics,” Int. J. Quantum. Inform. 08, 295–323 (2010).

Yan, R.

R. Yan, J.-H. Park, Y. Choi, C.-J. Heo, S.-M. Yang, L. P. Lee, P. Yang, “Nanowire-based single-cell endoscopy,” Nat. Nanotechnol. 7, 191–196 (2012).
[Crossref]

Yang, P.

R. Yan, J.-H. Park, Y. Choi, C.-J. Heo, S.-M. Yang, L. P. Lee, P. Yang, “Nanowire-based single-cell endoscopy,” Nat. Nanotechnol. 7, 191–196 (2012).
[Crossref]

Yang, S.-M.

R. Yan, J.-H. Park, Y. Choi, C.-J. Heo, S.-M. Yang, L. P. Lee, P. Yang, “Nanowire-based single-cell endoscopy,” Nat. Nanotechnol. 7, 191–196 (2012).
[Crossref]

Yoshie, T.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
[Crossref]

Zibrov, A. S.

J. D. Thompson, T. G. Tiecke, N. P. de Leon, J. Feist, A. V. Akimov, M. Gullans, A. S. Zibrov, V. Vuletic, M. D. Lukin, “Coupling a single trapped atom to a nanoscale optical cavity,” Science 340, 1202–1205 (2013).
[Crossref]

Zoller, P.

H.-J. Briegel, W. Dür, J. I. Cirac, P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81, 5932–5935 (1998).
[Crossref]

Appl. Phys. Lett. (2)

D. W. Pohl, W. Denk, M. Lanz, “Optical stethoscopy: image recording with resolution lambda/20,” Appl. Phys. Lett. 44, 651–653 (1984).
[Crossref]

S. Gröblacher, J. T. Hill, A. H. Safavi-Naeini, J. Chan, O. Painter, “Highly efficient coupling from an optical fiber to a nanoscale silicon optomechanical cavity,” Appl. Phys. Lett. 103, 181104 (2013).
[Crossref]

IEE Proceedings J, Optoelectronics (1985-1993) / IEE Proc-J: Optoelectronics (1)

J. D. Love, W. M. Henry, W. Stewart, R. J. Black, S. Lacroix, F. Gonthier, “Tapered single-mode fibres and devices. I. Adiabaticity criteria,” IEE Proceedings J, Optoelectronics (1985-1993) / IEE Proc-J: Optoelectronics 138, 343–354 (1991).

Int. J. Quantum. Inform. (1)

R. van Meter, T. D. Ladd, A. G. Fowler, Y. Yamamoto, “Distributed quantum computation architecture using semiconductor nanophotonics,” Int. J. Quantum. Inform. 08, 295–323 (2010).

J. Opt. (1)

G. Brambilla, “Optical fibre nanowires and microwires: a review,” J. Opt. 12, 0430012010.
[Crossref]

Nano Lett. (1)

G. Shambat, S.-R. Kothapalli, J. Provine, T. Sarmiento, J. Harris, S. S. Gambhir, J. Vucković, “Single-cell photonic nanocavity probes,” Nano Lett. 13, 4999–5005 (2013).

Nat. Nanotechnol. (1)

R. Yan, J.-H. Park, Y. Choi, C.-J. Heo, S.-M. Yang, L. P. Lee, P. Yang, “Nanowire-based single-cell endoscopy,” Nat. Nanotechnol. 7, 191–196 (2012).
[Crossref]

Nat. Photonics (1)

D. A. B. Miller, “Are optical transistors the logical next step?” Nat. Photonics 4, 3–5 (2010).
[Crossref]

Nature (5)

H. J. Kimble, “The quantum internet,” Nature 453, 1023–1030 (2008).
[Crossref]

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, J. L. O’Brien, “Quantum computers,” Nature 464, 45–53 (2010).
[Crossref]

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
[Crossref]

T. G. Tiecke, J. D. Thompson, N. P. de Leon, L. R. Liu, V. Vuletic, M. D. Lukin, “Nanophotonic quantum phase switch with a single atom,” Nature 508, 241–244 (2014).
[Crossref]

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[Crossref]

NPG Asia Mater. (1)

X. Chen, C. Li, H. K. Tsang, “Device engineering for silicon photonics,” NPG Asia Mater. 3, 34–40 (2011).
[Crossref]

Opt. Express (3)

Phys. Rev. A (1)

B. Wang, L.-M. Duan, “Engineering superpositions of coherent states in coherent optical pulses through cavity-assisted interaction,” Phys. Rev. A 72, 022320 (2005).
[Crossref]

Phys. Rev. Lett. (1)

H.-J. Briegel, W. Dür, J. I. Cirac, P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81, 5932–5935 (1998).
[Crossref]

Science (2)

J. D. Thompson, T. G. Tiecke, N. P. de Leon, J. Feist, A. V. Akimov, M. Gullans, A. S. Zibrov, V. Vuletic, M. D. Lukin, “Coupling a single trapped atom to a nanoscale optical cavity,” Science 340, 1202–1205 (2013).
[Crossref]

W. Tan, Z. Shi, S. Smith, D. Birnbaum, R. Kopelman, “Submicrometer intracellular chemical optical fiber sensors,” Science 258, 778–781 (1992).
[Crossref]

Ultramicroscopy (1)

A. Lewis, M. Isaacson, A. Harootunian, A. Muray, “Development of a 500 aspatial resolution light microscope: I. Light is efficiently transmitted through lambda/16 diameter apertures,” Ultramicroscopy 13, 227–231 (1984).
[Crossref]

Other (4)

J. D. J. Joannopoulos, S. G. Johnson, J. N. Winn, R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University, 2008).

A. Snyder, J. Love, Optical Waveguide Theory (Springer, 1983).

J. E. Hoffman, S. Ravets, J. A. Grover, P. Solano, P. R. Kordell, J. D. Wong-Campos, L. A. Orozco, S. L. Rolston, “Ultrahigh transmission optical nanofibers,” arXiv:1405.3258 (2014).

J. M. Ward, A. Maimaiti, V. H. Le, S. N. Chormaic, “Optical micro- and nanofiber pulling rig,” arXiv:1402.6396 (2014).

Supplementary Material (1)

» Supplement 1: PDF (3684 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Adiabatic transfer between fiber and waveguide modes. (a) Schematic of fiber-waveguide coupling. The fiber (right) has a conical shape and is attached to a tapered Si 3 N 4 rectangular waveguide (left), and we consider modes polarized along x ^ . (b) Effective index n eff of the fiber and waveguide modes for an opening angle of the fiber (waveguide) of 5° (4°). The blue dotted (dashed) lines are the separate fiber (waveguide) modes, and the blue solid line corresponds to the fundamental supermode of the combined structure. The red line shows the power in the fundamental supermode obtained from an FDTD simulation of the coupler (see text). (c) Cross sections of | E | 2 obtained from the FDTD simulation at various points along the coupler. (d) Fraction of the power in the fundamental supermode of the combined structure as a function of the waveguide width d x , obtained from a mode decomposition (solid line). The transmission through a tapered coupler (see inset) obtained with an FDTD simulation (circles) agrees well with the estimated transmission obtained from the mode decomposition. The two data points for d x 200 nm (open circles) are calculated using a shallower fiber angle (2°) to ensure z t > z b . The dotted line shows the same geometry except that the fiber and waveguide are in contact on the x z plane instead of the y z plane. The fiber-waveguide cross sections used for this simulation are shown in the inset, ρ = 450 nm .

Fig. 2.
Fig. 2.

Characterization of adiabatic tapers. (a) Fiber angle as a function of the local fiber diameter along the taper axis z . The dashed line and shaded area indicate the adiabaticity criterion z t > z b as discussed in the text. Fiber tapers that have a profile below the dotted line are expected to be adiabatic. For a diameter smaller than 1.1 μm the HE12 mode is cut off. The taper profiles for four tapers [blue (A), red (B), purple (C), and green (D)] are shown. (b) Far-field mode profiles. Tapers A, B, and C show Gaussian profiles, while taper D has clear contributions from higher-order modes. For tapers C and D cuts through the center of the profiles are shown together with a Gaussian fit. (c) Transmission versus pulling time of a taper similar to A–C; the dashed line indicates 99% transmission. The sudden drop in transmission at 87 s arises from the fast pull by the electromagnetic coil. (d) Taper profile of taper C (blue) and of a biconical taper (dashed) using the same pulling parameters but without pulsing the electromagnet to create the tip.

Fig. 3.
Fig. 3.

Coupling to photonic crystal waveguide cavities. (a) Setup to measure fiber-waveguide coupling efficiency. A tunable probe laser is coupled weakly to the fiber connecting to the device using a 99:1 fiber beamsplitter. The polarization at the waveguide is adjusted by means of a fiber polarization controller, and the light is in and out coupled of the fiber network using fiber collimators (FCs). (b) SEM image of an array of singly clamped photonic crystal waveguide cavities used for on-chip measurements. (c) SEM image of a photonic crystal cavity attached to the fiber tip; inset shows a zoom of the fiber-waveguide coupler. (d) Schematic of the various waveguide geometries. (e) Coupling efficiencies for a range of waveguides; the devices are either a tapered waveguide with an opening angle α or rectangular waveguides with a varying width d x and 5 μm long before adiabatically expanding to the photonic crystal cavity. All waveguides are 175 nm thick and attached to the chip as in panel b.

Metrics