Abstract

Optofluidic dye lasers may play a significant role in future laser applications in numerous areas, combining wavelength flexibility with integration and ease of operation. Nevertheless, no all-fiber integrated dye lasers have been demonstrated so far. In this paper, we report on a series of optofluidic all-fiber Rhodamine optical sources operating at a repetition rate as high as 1 kHz. Dye bleaching is avoided by circulating the Rhodamine dye during optical excitation. The laser radiation is extracted via conventional fibers that are spliced to the dye-filled capillary active medium. A tuneable amplified spontaneous emission source, a multimode laser, and a few transverse-mode laser are demonstrated by adjusting the setup. Threshold pump energies as low as 1μJ and slope efficiencies of up to 9% were obtained, indicating the potential for real-world applications in areas such as spectroscopy and biomedicine.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High-repetition-rate, narrow-band dye lasers with water as a solvent for dyes

Alok K. Ray, Sucharita Sinha, Soumitra Kundu, Sasi Kumar, Sivagiriyal Karunakaran Sreenivasan Nair, Tamal Pal, and Kamalesh Dasgupta
Appl. Opt. 41(9) 1704-1713 (2002)

Compact all-fiber ring femtosecond laser with high fundamental repetition rate

Xiaoming Wei, Shanhui Xu, Huichang Huang, Mingying Peng, and Zhongmin Yang
Opt. Express 20(22) 24607-24613 (2012)

Efficient high repetition rate synchronous amplification of a passively mode-locked femtosecond dye laser

John Sweetser, Thomas J. Dunn, Stephen Palese, Ian A. Walmsley, Czeslaw Radzewicz, and R. J. Dwayne Miller
Appl. Opt. 32(24) 4471-4479 (1993)

References

  • View by:
  • |
  • |
  • |

  1. F. P. Schafer, W. Schmidt, J. Volze, “Organic dye solution laser,” Appl. Phys. Lett. 9, 306–309 (1966).
    [Crossref]
  2. P. P. Sorokin, J. R. Lankard, “Flashlamp excitation of organic dye lasers—A short communication,” IBM J. Res. Dev. 11, 148–149 (1967).
    [Crossref]
  3. P. P. Sorokin, J. R. Lankard, “Stimulated emission observed from an organic dye, chloro-aluminum phthalocyanine,” IBM J. Res. Dev. 10, 162–163 (1966).
  4. F. P. Schafer, Dye Lasers (Springer, 1990), Vol. 1.
  5. Z. Y. Li, D. Psaltis, “Optofluidic dye lasers,” Microfluid. Nanofluid. 4, 145–158 (2008).
  6. A. Banerjee, T. Frost, P. Bhattacharya, “Nitride-based quantum dot visible lasers,” J. Phys. D 46, 264004 (2013).
  7. T. Thorsen, S. J. Maerkl, S. R. Quake, “Microfluidic large-scale integration,” Science 298, 580–584 (2002).
    [Crossref]
  8. G. M. Whitesides, “The origins and the future of microfluidics,” Nature 442, 368–373 (2006).
    [Crossref]
  9. C. Monat, P. Domachuk, B. J. Eggleton, “Integrated optofluidics: a new river of light,” Nat. Photonics 1, 106–114 (2007).
  10. D. Psaltis, S. R. Quake, C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381–386 (2006).
    [Crossref]
  11. “Fluidic vision,” Nat. Photonics5, 567 (2011).
  12. X. Fan, I. M. White, “Optofluidic microsystems for chemical and biological analysis,” Nat. Photonics 5, 591–597 (2011).
  13. X. Yang, T. Yuan, P. Teng, D. Kong, C. Liu, E. Li, E. Zhao, C. Tong, L. Yuan, “An in-fiber integrated optofluidic device based on an optical fiber with an inner core,” Lab Chip 14, 2090–2095 (2014).
    [Crossref]
  14. K. Kieu, L. Schneebeli, R. A. Norwood, N. Peyghambarian, “Integrated liquid-core optical fibers for ultra-efficient nonlinear liquid photonics,” Opt. Express 20, 8148–8154 (2012).
    [Crossref]
  15. D. Churin, T. N. Nguyen, K. Kieu, R. A. Norwood, N. Peyghambarian, “Mid-IR supercontinuum generation in an integrated liquid-core optical fiber filled with CS2,” Opt. Mater. Express 3, 1358–1364 (2013).
    [Crossref]
  16. C. Wu, M.-L. V. Tse, Z. Liu, B.-O. Guan, C. Lu, H.-Y. Tam, “In-line microfluidic refractometer based on c-shaped fiber assisted photonic crystal fiber Sagnac interferometer,” Opt. Lett. 383283–3286 (2013).
  17. X. Fan, S.-H. Yun, “The potential of optofluidic biolasers,” Nat. Methods 11, 141–147 (2014).
  18. B. Helbo, A. Kristensen, A. Menon, “A micro-cavity fluidic dye laser,” J. Micromech. Microeng. 13, 307–311 (2003).
    [Crossref]
  19. Q. Kou, I. Yesilyurt, Y. Chen, “Collinear dual-color laser emission from a microfluidic dye laser,” Appl. Phys. Lett. 88, 091101 (2006).
    [Crossref]
  20. D. V. Vezenov, B. T. Mayers, R. S. Conroy, G. M. Whitesides, P. T. Snee, Y. Chan, D. G. Nocera, M. G. Bawendi, “A low-threshold, high-efficiency microfluidic waveguide laser,” J. Am. Chem. Soc. 127, 8952–8953 (2005).
    [Crossref]
  21. Z. Y. Li, Z. Y. Zhang, T. Emery, A. Scherer, D. Psaltis, “Single mode optofluidic distributed feedback dye laser,” Opt. Express 14, 696–701 (2006).
    [Crossref]
  22. S. Balslev, A. Kristensen, “Microfluidic single-mode laser using high-order Bragg grating and antiguiding segments,” Opt. Express 13, 344–351 (2005).
    [Crossref]
  23. S. X. Qian, J. B. Snow, H. M. Tzeng, R. K. Chang, “Lasing droplets–Highlighting the liquid-air interface by laser-emission,” Science 231, 486–488 (1986).
    [Crossref]
  24. B. J. Eggleton, C. Kerbage, P. S. Westbrook, R. S. Windeler, A. Hale, “Microstructured optical fiber devices,” Opt. Express 9, 698–713 (2001).
    [Crossref]
  25. D. K. C. Wu, B. T. Kuhlmey, B. J. Eggleton, “Ultrasensitive photonic crystal fiber refractive index sensor,” Opt. Lett. 34, 322–324 (2009).
    [Crossref]
  26. R. M. Gerosa, D. H. Spadoti, C. J. S. de Matos, L. de S. Menezes, M. A. R. Franco, “Efficient and short-range light coupling to index-matched liquid-filled hole in a solid-core photonic crystal fiber,” Opt. Express 19, 24687–24698 (2011).
    [Crossref]
  27. A. Bozolan, R. M. Gerosa, C. J. S. de Matos, M. A. Romero, “Temperature sensing using colloidal-core photonic crystal fiber,” IEEE Sens. J. 12, 195–200 (2012).
    [Crossref]
  28. A. Candiani, M. Konstantaki, W. Margulis, S. Pissadakis, “Optofluidic magnetometer developed in a microstructured optical fiber,” Opt. Lett. 37, 4467–4469 (2012).
    [Crossref]
  29. A. Sudirman, W. Margulis, “All-fiber optofluidic component to combine light and fluid,” IEEE Photon. Technol. Lett. 26, 1031–1033 (2014).
    [Crossref]
  30. S. Pricking, M. Vieweg, H. Giessen, “Influence of the retarded response on an ultrafast nonlinear optofluidic fiber coupler,” Opt. Express 19, 21673–21679 (2011).
    [Crossref]
  31. M. Vieweg, T. Gissibl, S. Pricking, B. T. Kuhlmey, D. C. Wu, B. J. Eggleton, H. Giessen, “Ultrafast nonlinear optofluidics in selectively liquid-filled photonic crystal fibers,” Opt. Express 18, 25232–25240 (2010).
    [Crossref]
  32. I. Martincek, D. Pudis, “All-optical optofluidic fiber intensity modulator,” in ELEKTRO 2012 (IEEE, 2012), pp. 514–517.
  33. A. M. Cubillas, S. Unterkofler, T. G. Euser, B. J. M. Etzold, A. C. Jones, P. J. Sadler, P. Wasserscheid, P. S. J. Russell, “Photonic crystal fibres for chemical sensing and photochemistry,” Chem. Soc. Rev. 42, 8629–8648 (2013).
    [Crossref]
  34. A. Sudirman, S. Etcheverry, M. Stjernström, F. Laurell, W. Margulis, “A fiber optic system for detection and collection of micrometer-size particles,” Opt. Express 22, 21480–21487 (2014).
    [Crossref]
  35. A. E. Vasdekis, G. E. Town, G. A. Turnbull, I. D. W. Samuel, “Fluidic fibre dye lasers,” Opt. Express 15, 3962–3967 (2007).
    [Crossref]
  36. H. Zhou, G. Feng, K. Yao, C. Yang, J. Yi, S. Zhou, “Fiber-based tunable microcavity fluidic dye laser,” Opt. Lett. 38, 3604–3607 (2013).
    [Crossref]
  37. C. J. S. de Matos, L. de S. Menezes, A. M. Brito-Silva, M. A. Martinez Gámez, A. S. L. Gomes, C. B. de Araújo, “Random fiber laser,” Phys. Rev. Lett. 99, 153903 (2007).
    [Crossref]
  38. C. V. Shank, E. P. Ippen, “Subpicosecond kilowatt pulses from a mode‐locked cw dye laser,” Appl. Phys. Lett. 24, 373–375 (1974).
    [Crossref]
  39. B. Wellegehausen, H. Welling, R. Beigang, “A narrowband jet stream dye laser,” Appl. Phys. 3, 387–391 (1974).
    [Crossref]
  40. J. Peter, C. P. G. Vallabhan, P. Radhakrishnan, V. P. N. Nampoori, M. Kailasnath, “ASE and photostability measurements in dye doped step index, graded index and hollow polymer optical fiber,” Opt. Laser Technol. 63, 34–38 (2014).
    [Crossref]
  41. W. Horn, S. Kroesen, C. Denz, “Two-photon fabrication of organic solid-state distributed feedback lasers in Rhodamine 6G doped SU-8,” Appl. Phys. B 117, 311–315 (2014).
    [Crossref]
  42. H. Lehmann, S. Brueckner, J. Kobelke, G. Schwotzer, K. Schuster, R. Willsch, “Toward photonic crystal fiber based distributed chemosensors,” Proc. SPIE 5855, 419–422 (2005).
  43. C. M. B. Cordeiro, C. J. S. de Matos, E. M. dos Santos, A. Bozolan, J. S. K. Ong, T. Facincani, G. Chesini, A. R. Vaz, C. H. Brito Cruz, “Towards practical liquid and gas sensing with photonic crystal fibres: side access to the fibre microstructure and single-mode liquid-core fibre,” Meas. Sci. Technol. 18, 3075–3081 (2007).
    [Crossref]
  44. R. A. Granger, Fluid Mechanics (Dover, 1995).
  45. M. C. Ramon, M. Ariu, R. Xia, D. D. C. Bradley, M. A. Reilly, C. Marinelli, C. N. Morgan, R. V. Penty, I. H. White, “A characterization of Rhodamine 640 for optical amplification: collinear pump and signal gain properties in solutions, thin-film polymer dispersions, and waveguides,” J. Appl. Phys. 97, 073517 (2005).
    [Crossref]

2014 (6)

X. Yang, T. Yuan, P. Teng, D. Kong, C. Liu, E. Li, E. Zhao, C. Tong, L. Yuan, “An in-fiber integrated optofluidic device based on an optical fiber with an inner core,” Lab Chip 14, 2090–2095 (2014).
[Crossref]

X. Fan, S.-H. Yun, “The potential of optofluidic biolasers,” Nat. Methods 11, 141–147 (2014).

A. Sudirman, W. Margulis, “All-fiber optofluidic component to combine light and fluid,” IEEE Photon. Technol. Lett. 26, 1031–1033 (2014).
[Crossref]

A. Sudirman, S. Etcheverry, M. Stjernström, F. Laurell, W. Margulis, “A fiber optic system for detection and collection of micrometer-size particles,” Opt. Express 22, 21480–21487 (2014).
[Crossref]

J. Peter, C. P. G. Vallabhan, P. Radhakrishnan, V. P. N. Nampoori, M. Kailasnath, “ASE and photostability measurements in dye doped step index, graded index and hollow polymer optical fiber,” Opt. Laser Technol. 63, 34–38 (2014).
[Crossref]

W. Horn, S. Kroesen, C. Denz, “Two-photon fabrication of organic solid-state distributed feedback lasers in Rhodamine 6G doped SU-8,” Appl. Phys. B 117, 311–315 (2014).
[Crossref]

2013 (5)

2012 (3)

2011 (3)

2010 (1)

2009 (1)

2008 (1)

Z. Y. Li, D. Psaltis, “Optofluidic dye lasers,” Microfluid. Nanofluid. 4, 145–158 (2008).

2007 (4)

C. Monat, P. Domachuk, B. J. Eggleton, “Integrated optofluidics: a new river of light,” Nat. Photonics 1, 106–114 (2007).

C. J. S. de Matos, L. de S. Menezes, A. M. Brito-Silva, M. A. Martinez Gámez, A. S. L. Gomes, C. B. de Araújo, “Random fiber laser,” Phys. Rev. Lett. 99, 153903 (2007).
[Crossref]

A. E. Vasdekis, G. E. Town, G. A. Turnbull, I. D. W. Samuel, “Fluidic fibre dye lasers,” Opt. Express 15, 3962–3967 (2007).
[Crossref]

C. M. B. Cordeiro, C. J. S. de Matos, E. M. dos Santos, A. Bozolan, J. S. K. Ong, T. Facincani, G. Chesini, A. R. Vaz, C. H. Brito Cruz, “Towards practical liquid and gas sensing with photonic crystal fibres: side access to the fibre microstructure and single-mode liquid-core fibre,” Meas. Sci. Technol. 18, 3075–3081 (2007).
[Crossref]

2006 (4)

Q. Kou, I. Yesilyurt, Y. Chen, “Collinear dual-color laser emission from a microfluidic dye laser,” Appl. Phys. Lett. 88, 091101 (2006).
[Crossref]

Z. Y. Li, Z. Y. Zhang, T. Emery, A. Scherer, D. Psaltis, “Single mode optofluidic distributed feedback dye laser,” Opt. Express 14, 696–701 (2006).
[Crossref]

D. Psaltis, S. R. Quake, C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381–386 (2006).
[Crossref]

G. M. Whitesides, “The origins and the future of microfluidics,” Nature 442, 368–373 (2006).
[Crossref]

2005 (4)

S. Balslev, A. Kristensen, “Microfluidic single-mode laser using high-order Bragg grating and antiguiding segments,” Opt. Express 13, 344–351 (2005).
[Crossref]

D. V. Vezenov, B. T. Mayers, R. S. Conroy, G. M. Whitesides, P. T. Snee, Y. Chan, D. G. Nocera, M. G. Bawendi, “A low-threshold, high-efficiency microfluidic waveguide laser,” J. Am. Chem. Soc. 127, 8952–8953 (2005).
[Crossref]

M. C. Ramon, M. Ariu, R. Xia, D. D. C. Bradley, M. A. Reilly, C. Marinelli, C. N. Morgan, R. V. Penty, I. H. White, “A characterization of Rhodamine 640 for optical amplification: collinear pump and signal gain properties in solutions, thin-film polymer dispersions, and waveguides,” J. Appl. Phys. 97, 073517 (2005).
[Crossref]

H. Lehmann, S. Brueckner, J. Kobelke, G. Schwotzer, K. Schuster, R. Willsch, “Toward photonic crystal fiber based distributed chemosensors,” Proc. SPIE 5855, 419–422 (2005).

2003 (1)

B. Helbo, A. Kristensen, A. Menon, “A micro-cavity fluidic dye laser,” J. Micromech. Microeng. 13, 307–311 (2003).
[Crossref]

2002 (1)

T. Thorsen, S. J. Maerkl, S. R. Quake, “Microfluidic large-scale integration,” Science 298, 580–584 (2002).
[Crossref]

2001 (1)

1986 (1)

S. X. Qian, J. B. Snow, H. M. Tzeng, R. K. Chang, “Lasing droplets–Highlighting the liquid-air interface by laser-emission,” Science 231, 486–488 (1986).
[Crossref]

1974 (2)

C. V. Shank, E. P. Ippen, “Subpicosecond kilowatt pulses from a mode‐locked cw dye laser,” Appl. Phys. Lett. 24, 373–375 (1974).
[Crossref]

B. Wellegehausen, H. Welling, R. Beigang, “A narrowband jet stream dye laser,” Appl. Phys. 3, 387–391 (1974).
[Crossref]

1967 (1)

P. P. Sorokin, J. R. Lankard, “Flashlamp excitation of organic dye lasers—A short communication,” IBM J. Res. Dev. 11, 148–149 (1967).
[Crossref]

1966 (2)

P. P. Sorokin, J. R. Lankard, “Stimulated emission observed from an organic dye, chloro-aluminum phthalocyanine,” IBM J. Res. Dev. 10, 162–163 (1966).

F. P. Schafer, W. Schmidt, J. Volze, “Organic dye solution laser,” Appl. Phys. Lett. 9, 306–309 (1966).
[Crossref]

Ariu, M.

M. C. Ramon, M. Ariu, R. Xia, D. D. C. Bradley, M. A. Reilly, C. Marinelli, C. N. Morgan, R. V. Penty, I. H. White, “A characterization of Rhodamine 640 for optical amplification: collinear pump and signal gain properties in solutions, thin-film polymer dispersions, and waveguides,” J. Appl. Phys. 97, 073517 (2005).
[Crossref]

Balslev, S.

Banerjee, A.

A. Banerjee, T. Frost, P. Bhattacharya, “Nitride-based quantum dot visible lasers,” J. Phys. D 46, 264004 (2013).

Bawendi, M. G.

D. V. Vezenov, B. T. Mayers, R. S. Conroy, G. M. Whitesides, P. T. Snee, Y. Chan, D. G. Nocera, M. G. Bawendi, “A low-threshold, high-efficiency microfluidic waveguide laser,” J. Am. Chem. Soc. 127, 8952–8953 (2005).
[Crossref]

Beigang, R.

B. Wellegehausen, H. Welling, R. Beigang, “A narrowband jet stream dye laser,” Appl. Phys. 3, 387–391 (1974).
[Crossref]

Bhattacharya, P.

A. Banerjee, T. Frost, P. Bhattacharya, “Nitride-based quantum dot visible lasers,” J. Phys. D 46, 264004 (2013).

Bozolan, A.

A. Bozolan, R. M. Gerosa, C. J. S. de Matos, M. A. Romero, “Temperature sensing using colloidal-core photonic crystal fiber,” IEEE Sens. J. 12, 195–200 (2012).
[Crossref]

C. M. B. Cordeiro, C. J. S. de Matos, E. M. dos Santos, A. Bozolan, J. S. K. Ong, T. Facincani, G. Chesini, A. R. Vaz, C. H. Brito Cruz, “Towards practical liquid and gas sensing with photonic crystal fibres: side access to the fibre microstructure and single-mode liquid-core fibre,” Meas. Sci. Technol. 18, 3075–3081 (2007).
[Crossref]

Bradley, D. D. C.

M. C. Ramon, M. Ariu, R. Xia, D. D. C. Bradley, M. A. Reilly, C. Marinelli, C. N. Morgan, R. V. Penty, I. H. White, “A characterization of Rhodamine 640 for optical amplification: collinear pump and signal gain properties in solutions, thin-film polymer dispersions, and waveguides,” J. Appl. Phys. 97, 073517 (2005).
[Crossref]

Brito Cruz, C. H.

C. M. B. Cordeiro, C. J. S. de Matos, E. M. dos Santos, A. Bozolan, J. S. K. Ong, T. Facincani, G. Chesini, A. R. Vaz, C. H. Brito Cruz, “Towards practical liquid and gas sensing with photonic crystal fibres: side access to the fibre microstructure and single-mode liquid-core fibre,” Meas. Sci. Technol. 18, 3075–3081 (2007).
[Crossref]

Brito-Silva, A. M.

C. J. S. de Matos, L. de S. Menezes, A. M. Brito-Silva, M. A. Martinez Gámez, A. S. L. Gomes, C. B. de Araújo, “Random fiber laser,” Phys. Rev. Lett. 99, 153903 (2007).
[Crossref]

Brueckner, S.

H. Lehmann, S. Brueckner, J. Kobelke, G. Schwotzer, K. Schuster, R. Willsch, “Toward photonic crystal fiber based distributed chemosensors,” Proc. SPIE 5855, 419–422 (2005).

Candiani, A.

Chan, Y.

D. V. Vezenov, B. T. Mayers, R. S. Conroy, G. M. Whitesides, P. T. Snee, Y. Chan, D. G. Nocera, M. G. Bawendi, “A low-threshold, high-efficiency microfluidic waveguide laser,” J. Am. Chem. Soc. 127, 8952–8953 (2005).
[Crossref]

Chang, R. K.

S. X. Qian, J. B. Snow, H. M. Tzeng, R. K. Chang, “Lasing droplets–Highlighting the liquid-air interface by laser-emission,” Science 231, 486–488 (1986).
[Crossref]

Chen, Y.

Q. Kou, I. Yesilyurt, Y. Chen, “Collinear dual-color laser emission from a microfluidic dye laser,” Appl. Phys. Lett. 88, 091101 (2006).
[Crossref]

Chesini, G.

C. M. B. Cordeiro, C. J. S. de Matos, E. M. dos Santos, A. Bozolan, J. S. K. Ong, T. Facincani, G. Chesini, A. R. Vaz, C. H. Brito Cruz, “Towards practical liquid and gas sensing with photonic crystal fibres: side access to the fibre microstructure and single-mode liquid-core fibre,” Meas. Sci. Technol. 18, 3075–3081 (2007).
[Crossref]

Churin, D.

Conroy, R. S.

D. V. Vezenov, B. T. Mayers, R. S. Conroy, G. M. Whitesides, P. T. Snee, Y. Chan, D. G. Nocera, M. G. Bawendi, “A low-threshold, high-efficiency microfluidic waveguide laser,” J. Am. Chem. Soc. 127, 8952–8953 (2005).
[Crossref]

Cordeiro, C. M. B.

C. M. B. Cordeiro, C. J. S. de Matos, E. M. dos Santos, A. Bozolan, J. S. K. Ong, T. Facincani, G. Chesini, A. R. Vaz, C. H. Brito Cruz, “Towards practical liquid and gas sensing with photonic crystal fibres: side access to the fibre microstructure and single-mode liquid-core fibre,” Meas. Sci. Technol. 18, 3075–3081 (2007).
[Crossref]

Cubillas, A. M.

A. M. Cubillas, S. Unterkofler, T. G. Euser, B. J. M. Etzold, A. C. Jones, P. J. Sadler, P. Wasserscheid, P. S. J. Russell, “Photonic crystal fibres for chemical sensing and photochemistry,” Chem. Soc. Rev. 42, 8629–8648 (2013).
[Crossref]

de Araújo, C. B.

C. J. S. de Matos, L. de S. Menezes, A. M. Brito-Silva, M. A. Martinez Gámez, A. S. L. Gomes, C. B. de Araújo, “Random fiber laser,” Phys. Rev. Lett. 99, 153903 (2007).
[Crossref]

de Matos, C. J. S.

A. Bozolan, R. M. Gerosa, C. J. S. de Matos, M. A. Romero, “Temperature sensing using colloidal-core photonic crystal fiber,” IEEE Sens. J. 12, 195–200 (2012).
[Crossref]

R. M. Gerosa, D. H. Spadoti, C. J. S. de Matos, L. de S. Menezes, M. A. R. Franco, “Efficient and short-range light coupling to index-matched liquid-filled hole in a solid-core photonic crystal fiber,” Opt. Express 19, 24687–24698 (2011).
[Crossref]

C. J. S. de Matos, L. de S. Menezes, A. M. Brito-Silva, M. A. Martinez Gámez, A. S. L. Gomes, C. B. de Araújo, “Random fiber laser,” Phys. Rev. Lett. 99, 153903 (2007).
[Crossref]

C. M. B. Cordeiro, C. J. S. de Matos, E. M. dos Santos, A. Bozolan, J. S. K. Ong, T. Facincani, G. Chesini, A. R. Vaz, C. H. Brito Cruz, “Towards practical liquid and gas sensing with photonic crystal fibres: side access to the fibre microstructure and single-mode liquid-core fibre,” Meas. Sci. Technol. 18, 3075–3081 (2007).
[Crossref]

de S. Menezes, L.

Denz, C.

W. Horn, S. Kroesen, C. Denz, “Two-photon fabrication of organic solid-state distributed feedback lasers in Rhodamine 6G doped SU-8,” Appl. Phys. B 117, 311–315 (2014).
[Crossref]

Domachuk, P.

C. Monat, P. Domachuk, B. J. Eggleton, “Integrated optofluidics: a new river of light,” Nat. Photonics 1, 106–114 (2007).

dos Santos, E. M.

C. M. B. Cordeiro, C. J. S. de Matos, E. M. dos Santos, A. Bozolan, J. S. K. Ong, T. Facincani, G. Chesini, A. R. Vaz, C. H. Brito Cruz, “Towards practical liquid and gas sensing with photonic crystal fibres: side access to the fibre microstructure and single-mode liquid-core fibre,” Meas. Sci. Technol. 18, 3075–3081 (2007).
[Crossref]

Eggleton, B. J.

Emery, T.

Etcheverry, S.

Etzold, B. J. M.

A. M. Cubillas, S. Unterkofler, T. G. Euser, B. J. M. Etzold, A. C. Jones, P. J. Sadler, P. Wasserscheid, P. S. J. Russell, “Photonic crystal fibres for chemical sensing and photochemistry,” Chem. Soc. Rev. 42, 8629–8648 (2013).
[Crossref]

Euser, T. G.

A. M. Cubillas, S. Unterkofler, T. G. Euser, B. J. M. Etzold, A. C. Jones, P. J. Sadler, P. Wasserscheid, P. S. J. Russell, “Photonic crystal fibres for chemical sensing and photochemistry,” Chem. Soc. Rev. 42, 8629–8648 (2013).
[Crossref]

Facincani, T.

C. M. B. Cordeiro, C. J. S. de Matos, E. M. dos Santos, A. Bozolan, J. S. K. Ong, T. Facincani, G. Chesini, A. R. Vaz, C. H. Brito Cruz, “Towards practical liquid and gas sensing with photonic crystal fibres: side access to the fibre microstructure and single-mode liquid-core fibre,” Meas. Sci. Technol. 18, 3075–3081 (2007).
[Crossref]

Fan, X.

X. Fan, S.-H. Yun, “The potential of optofluidic biolasers,” Nat. Methods 11, 141–147 (2014).

X. Fan, I. M. White, “Optofluidic microsystems for chemical and biological analysis,” Nat. Photonics 5, 591–597 (2011).

Feng, G.

Franco, M. A. R.

Frost, T.

A. Banerjee, T. Frost, P. Bhattacharya, “Nitride-based quantum dot visible lasers,” J. Phys. D 46, 264004 (2013).

Gerosa, R. M.

Giessen, H.

Gissibl, T.

Gomes, A. S. L.

C. J. S. de Matos, L. de S. Menezes, A. M. Brito-Silva, M. A. Martinez Gámez, A. S. L. Gomes, C. B. de Araújo, “Random fiber laser,” Phys. Rev. Lett. 99, 153903 (2007).
[Crossref]

Granger, R. A.

R. A. Granger, Fluid Mechanics (Dover, 1995).

Guan, B.-O.

Hale, A.

Helbo, B.

B. Helbo, A. Kristensen, A. Menon, “A micro-cavity fluidic dye laser,” J. Micromech. Microeng. 13, 307–311 (2003).
[Crossref]

Horn, W.

W. Horn, S. Kroesen, C. Denz, “Two-photon fabrication of organic solid-state distributed feedback lasers in Rhodamine 6G doped SU-8,” Appl. Phys. B 117, 311–315 (2014).
[Crossref]

Ippen, E. P.

C. V. Shank, E. P. Ippen, “Subpicosecond kilowatt pulses from a mode‐locked cw dye laser,” Appl. Phys. Lett. 24, 373–375 (1974).
[Crossref]

Jones, A. C.

A. M. Cubillas, S. Unterkofler, T. G. Euser, B. J. M. Etzold, A. C. Jones, P. J. Sadler, P. Wasserscheid, P. S. J. Russell, “Photonic crystal fibres for chemical sensing and photochemistry,” Chem. Soc. Rev. 42, 8629–8648 (2013).
[Crossref]

Kailasnath, M.

J. Peter, C. P. G. Vallabhan, P. Radhakrishnan, V. P. N. Nampoori, M. Kailasnath, “ASE and photostability measurements in dye doped step index, graded index and hollow polymer optical fiber,” Opt. Laser Technol. 63, 34–38 (2014).
[Crossref]

Kerbage, C.

Kieu, K.

Kobelke, J.

H. Lehmann, S. Brueckner, J. Kobelke, G. Schwotzer, K. Schuster, R. Willsch, “Toward photonic crystal fiber based distributed chemosensors,” Proc. SPIE 5855, 419–422 (2005).

Kong, D.

X. Yang, T. Yuan, P. Teng, D. Kong, C. Liu, E. Li, E. Zhao, C. Tong, L. Yuan, “An in-fiber integrated optofluidic device based on an optical fiber with an inner core,” Lab Chip 14, 2090–2095 (2014).
[Crossref]

Konstantaki, M.

Kou, Q.

Q. Kou, I. Yesilyurt, Y. Chen, “Collinear dual-color laser emission from a microfluidic dye laser,” Appl. Phys. Lett. 88, 091101 (2006).
[Crossref]

Kristensen, A.

S. Balslev, A. Kristensen, “Microfluidic single-mode laser using high-order Bragg grating and antiguiding segments,” Opt. Express 13, 344–351 (2005).
[Crossref]

B. Helbo, A. Kristensen, A. Menon, “A micro-cavity fluidic dye laser,” J. Micromech. Microeng. 13, 307–311 (2003).
[Crossref]

Kroesen, S.

W. Horn, S. Kroesen, C. Denz, “Two-photon fabrication of organic solid-state distributed feedback lasers in Rhodamine 6G doped SU-8,” Appl. Phys. B 117, 311–315 (2014).
[Crossref]

Kuhlmey, B. T.

Lankard, J. R.

P. P. Sorokin, J. R. Lankard, “Flashlamp excitation of organic dye lasers—A short communication,” IBM J. Res. Dev. 11, 148–149 (1967).
[Crossref]

P. P. Sorokin, J. R. Lankard, “Stimulated emission observed from an organic dye, chloro-aluminum phthalocyanine,” IBM J. Res. Dev. 10, 162–163 (1966).

Laurell, F.

Lehmann, H.

H. Lehmann, S. Brueckner, J. Kobelke, G. Schwotzer, K. Schuster, R. Willsch, “Toward photonic crystal fiber based distributed chemosensors,” Proc. SPIE 5855, 419–422 (2005).

Li, E.

X. Yang, T. Yuan, P. Teng, D. Kong, C. Liu, E. Li, E. Zhao, C. Tong, L. Yuan, “An in-fiber integrated optofluidic device based on an optical fiber with an inner core,” Lab Chip 14, 2090–2095 (2014).
[Crossref]

Li, Z. Y.

Liu, C.

X. Yang, T. Yuan, P. Teng, D. Kong, C. Liu, E. Li, E. Zhao, C. Tong, L. Yuan, “An in-fiber integrated optofluidic device based on an optical fiber with an inner core,” Lab Chip 14, 2090–2095 (2014).
[Crossref]

Liu, Z.

Lu, C.

Maerkl, S. J.

T. Thorsen, S. J. Maerkl, S. R. Quake, “Microfluidic large-scale integration,” Science 298, 580–584 (2002).
[Crossref]

Margulis, W.

Marinelli, C.

M. C. Ramon, M. Ariu, R. Xia, D. D. C. Bradley, M. A. Reilly, C. Marinelli, C. N. Morgan, R. V. Penty, I. H. White, “A characterization of Rhodamine 640 for optical amplification: collinear pump and signal gain properties in solutions, thin-film polymer dispersions, and waveguides,” J. Appl. Phys. 97, 073517 (2005).
[Crossref]

Martincek, I.

I. Martincek, D. Pudis, “All-optical optofluidic fiber intensity modulator,” in ELEKTRO 2012 (IEEE, 2012), pp. 514–517.

Martinez Gámez, M. A.

C. J. S. de Matos, L. de S. Menezes, A. M. Brito-Silva, M. A. Martinez Gámez, A. S. L. Gomes, C. B. de Araújo, “Random fiber laser,” Phys. Rev. Lett. 99, 153903 (2007).
[Crossref]

Mayers, B. T.

D. V. Vezenov, B. T. Mayers, R. S. Conroy, G. M. Whitesides, P. T. Snee, Y. Chan, D. G. Nocera, M. G. Bawendi, “A low-threshold, high-efficiency microfluidic waveguide laser,” J. Am. Chem. Soc. 127, 8952–8953 (2005).
[Crossref]

Menon, A.

B. Helbo, A. Kristensen, A. Menon, “A micro-cavity fluidic dye laser,” J. Micromech. Microeng. 13, 307–311 (2003).
[Crossref]

Monat, C.

C. Monat, P. Domachuk, B. J. Eggleton, “Integrated optofluidics: a new river of light,” Nat. Photonics 1, 106–114 (2007).

Morgan, C. N.

M. C. Ramon, M. Ariu, R. Xia, D. D. C. Bradley, M. A. Reilly, C. Marinelli, C. N. Morgan, R. V. Penty, I. H. White, “A characterization of Rhodamine 640 for optical amplification: collinear pump and signal gain properties in solutions, thin-film polymer dispersions, and waveguides,” J. Appl. Phys. 97, 073517 (2005).
[Crossref]

Nampoori, V. P. N.

J. Peter, C. P. G. Vallabhan, P. Radhakrishnan, V. P. N. Nampoori, M. Kailasnath, “ASE and photostability measurements in dye doped step index, graded index and hollow polymer optical fiber,” Opt. Laser Technol. 63, 34–38 (2014).
[Crossref]

Nguyen, T. N.

Nocera, D. G.

D. V. Vezenov, B. T. Mayers, R. S. Conroy, G. M. Whitesides, P. T. Snee, Y. Chan, D. G. Nocera, M. G. Bawendi, “A low-threshold, high-efficiency microfluidic waveguide laser,” J. Am. Chem. Soc. 127, 8952–8953 (2005).
[Crossref]

Norwood, R. A.

Ong, J. S. K.

C. M. B. Cordeiro, C. J. S. de Matos, E. M. dos Santos, A. Bozolan, J. S. K. Ong, T. Facincani, G. Chesini, A. R. Vaz, C. H. Brito Cruz, “Towards practical liquid and gas sensing with photonic crystal fibres: side access to the fibre microstructure and single-mode liquid-core fibre,” Meas. Sci. Technol. 18, 3075–3081 (2007).
[Crossref]

Penty, R. V.

M. C. Ramon, M. Ariu, R. Xia, D. D. C. Bradley, M. A. Reilly, C. Marinelli, C. N. Morgan, R. V. Penty, I. H. White, “A characterization of Rhodamine 640 for optical amplification: collinear pump and signal gain properties in solutions, thin-film polymer dispersions, and waveguides,” J. Appl. Phys. 97, 073517 (2005).
[Crossref]

Peter, J.

J. Peter, C. P. G. Vallabhan, P. Radhakrishnan, V. P. N. Nampoori, M. Kailasnath, “ASE and photostability measurements in dye doped step index, graded index and hollow polymer optical fiber,” Opt. Laser Technol. 63, 34–38 (2014).
[Crossref]

Peyghambarian, N.

Pissadakis, S.

Pricking, S.

Psaltis, D.

Z. Y. Li, D. Psaltis, “Optofluidic dye lasers,” Microfluid. Nanofluid. 4, 145–158 (2008).

D. Psaltis, S. R. Quake, C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381–386 (2006).
[Crossref]

Z. Y. Li, Z. Y. Zhang, T. Emery, A. Scherer, D. Psaltis, “Single mode optofluidic distributed feedback dye laser,” Opt. Express 14, 696–701 (2006).
[Crossref]

Pudis, D.

I. Martincek, D. Pudis, “All-optical optofluidic fiber intensity modulator,” in ELEKTRO 2012 (IEEE, 2012), pp. 514–517.

Qian, S. X.

S. X. Qian, J. B. Snow, H. M. Tzeng, R. K. Chang, “Lasing droplets–Highlighting the liquid-air interface by laser-emission,” Science 231, 486–488 (1986).
[Crossref]

Quake, S. R.

D. Psaltis, S. R. Quake, C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381–386 (2006).
[Crossref]

T. Thorsen, S. J. Maerkl, S. R. Quake, “Microfluidic large-scale integration,” Science 298, 580–584 (2002).
[Crossref]

Radhakrishnan, P.

J. Peter, C. P. G. Vallabhan, P. Radhakrishnan, V. P. N. Nampoori, M. Kailasnath, “ASE and photostability measurements in dye doped step index, graded index and hollow polymer optical fiber,” Opt. Laser Technol. 63, 34–38 (2014).
[Crossref]

Ramon, M. C.

M. C. Ramon, M. Ariu, R. Xia, D. D. C. Bradley, M. A. Reilly, C. Marinelli, C. N. Morgan, R. V. Penty, I. H. White, “A characterization of Rhodamine 640 for optical amplification: collinear pump and signal gain properties in solutions, thin-film polymer dispersions, and waveguides,” J. Appl. Phys. 97, 073517 (2005).
[Crossref]

Reilly, M. A.

M. C. Ramon, M. Ariu, R. Xia, D. D. C. Bradley, M. A. Reilly, C. Marinelli, C. N. Morgan, R. V. Penty, I. H. White, “A characterization of Rhodamine 640 for optical amplification: collinear pump and signal gain properties in solutions, thin-film polymer dispersions, and waveguides,” J. Appl. Phys. 97, 073517 (2005).
[Crossref]

Romero, M. A.

A. Bozolan, R. M. Gerosa, C. J. S. de Matos, M. A. Romero, “Temperature sensing using colloidal-core photonic crystal fiber,” IEEE Sens. J. 12, 195–200 (2012).
[Crossref]

Russell, P. S. J.

A. M. Cubillas, S. Unterkofler, T. G. Euser, B. J. M. Etzold, A. C. Jones, P. J. Sadler, P. Wasserscheid, P. S. J. Russell, “Photonic crystal fibres for chemical sensing and photochemistry,” Chem. Soc. Rev. 42, 8629–8648 (2013).
[Crossref]

Sadler, P. J.

A. M. Cubillas, S. Unterkofler, T. G. Euser, B. J. M. Etzold, A. C. Jones, P. J. Sadler, P. Wasserscheid, P. S. J. Russell, “Photonic crystal fibres for chemical sensing and photochemistry,” Chem. Soc. Rev. 42, 8629–8648 (2013).
[Crossref]

Samuel, I. D. W.

Schafer, F. P.

F. P. Schafer, W. Schmidt, J. Volze, “Organic dye solution laser,” Appl. Phys. Lett. 9, 306–309 (1966).
[Crossref]

F. P. Schafer, Dye Lasers (Springer, 1990), Vol. 1.

Scherer, A.

Schmidt, W.

F. P. Schafer, W. Schmidt, J. Volze, “Organic dye solution laser,” Appl. Phys. Lett. 9, 306–309 (1966).
[Crossref]

Schneebeli, L.

Schuster, K.

H. Lehmann, S. Brueckner, J. Kobelke, G. Schwotzer, K. Schuster, R. Willsch, “Toward photonic crystal fiber based distributed chemosensors,” Proc. SPIE 5855, 419–422 (2005).

Schwotzer, G.

H. Lehmann, S. Brueckner, J. Kobelke, G. Schwotzer, K. Schuster, R. Willsch, “Toward photonic crystal fiber based distributed chemosensors,” Proc. SPIE 5855, 419–422 (2005).

Shank, C. V.

C. V. Shank, E. P. Ippen, “Subpicosecond kilowatt pulses from a mode‐locked cw dye laser,” Appl. Phys. Lett. 24, 373–375 (1974).
[Crossref]

Snee, P. T.

D. V. Vezenov, B. T. Mayers, R. S. Conroy, G. M. Whitesides, P. T. Snee, Y. Chan, D. G. Nocera, M. G. Bawendi, “A low-threshold, high-efficiency microfluidic waveguide laser,” J. Am. Chem. Soc. 127, 8952–8953 (2005).
[Crossref]

Snow, J. B.

S. X. Qian, J. B. Snow, H. M. Tzeng, R. K. Chang, “Lasing droplets–Highlighting the liquid-air interface by laser-emission,” Science 231, 486–488 (1986).
[Crossref]

Sorokin, P. P.

P. P. Sorokin, J. R. Lankard, “Flashlamp excitation of organic dye lasers—A short communication,” IBM J. Res. Dev. 11, 148–149 (1967).
[Crossref]

P. P. Sorokin, J. R. Lankard, “Stimulated emission observed from an organic dye, chloro-aluminum phthalocyanine,” IBM J. Res. Dev. 10, 162–163 (1966).

Spadoti, D. H.

Stjernström, M.

Sudirman, A.

A. Sudirman, S. Etcheverry, M. Stjernström, F. Laurell, W. Margulis, “A fiber optic system for detection and collection of micrometer-size particles,” Opt. Express 22, 21480–21487 (2014).
[Crossref]

A. Sudirman, W. Margulis, “All-fiber optofluidic component to combine light and fluid,” IEEE Photon. Technol. Lett. 26, 1031–1033 (2014).
[Crossref]

Tam, H.-Y.

Teng, P.

X. Yang, T. Yuan, P. Teng, D. Kong, C. Liu, E. Li, E. Zhao, C. Tong, L. Yuan, “An in-fiber integrated optofluidic device based on an optical fiber with an inner core,” Lab Chip 14, 2090–2095 (2014).
[Crossref]

Thorsen, T.

T. Thorsen, S. J. Maerkl, S. R. Quake, “Microfluidic large-scale integration,” Science 298, 580–584 (2002).
[Crossref]

Tong, C.

X. Yang, T. Yuan, P. Teng, D. Kong, C. Liu, E. Li, E. Zhao, C. Tong, L. Yuan, “An in-fiber integrated optofluidic device based on an optical fiber with an inner core,” Lab Chip 14, 2090–2095 (2014).
[Crossref]

Town, G. E.

Tse, M.-L. V.

Turnbull, G. A.

Tzeng, H. M.

S. X. Qian, J. B. Snow, H. M. Tzeng, R. K. Chang, “Lasing droplets–Highlighting the liquid-air interface by laser-emission,” Science 231, 486–488 (1986).
[Crossref]

Unterkofler, S.

A. M. Cubillas, S. Unterkofler, T. G. Euser, B. J. M. Etzold, A. C. Jones, P. J. Sadler, P. Wasserscheid, P. S. J. Russell, “Photonic crystal fibres for chemical sensing and photochemistry,” Chem. Soc. Rev. 42, 8629–8648 (2013).
[Crossref]

Vallabhan, C. P. G.

J. Peter, C. P. G. Vallabhan, P. Radhakrishnan, V. P. N. Nampoori, M. Kailasnath, “ASE and photostability measurements in dye doped step index, graded index and hollow polymer optical fiber,” Opt. Laser Technol. 63, 34–38 (2014).
[Crossref]

Vasdekis, A. E.

Vaz, A. R.

C. M. B. Cordeiro, C. J. S. de Matos, E. M. dos Santos, A. Bozolan, J. S. K. Ong, T. Facincani, G. Chesini, A. R. Vaz, C. H. Brito Cruz, “Towards practical liquid and gas sensing with photonic crystal fibres: side access to the fibre microstructure and single-mode liquid-core fibre,” Meas. Sci. Technol. 18, 3075–3081 (2007).
[Crossref]

Vezenov, D. V.

D. V. Vezenov, B. T. Mayers, R. S. Conroy, G. M. Whitesides, P. T. Snee, Y. Chan, D. G. Nocera, M. G. Bawendi, “A low-threshold, high-efficiency microfluidic waveguide laser,” J. Am. Chem. Soc. 127, 8952–8953 (2005).
[Crossref]

Vieweg, M.

Volze, J.

F. P. Schafer, W. Schmidt, J. Volze, “Organic dye solution laser,” Appl. Phys. Lett. 9, 306–309 (1966).
[Crossref]

Wasserscheid, P.

A. M. Cubillas, S. Unterkofler, T. G. Euser, B. J. M. Etzold, A. C. Jones, P. J. Sadler, P. Wasserscheid, P. S. J. Russell, “Photonic crystal fibres for chemical sensing and photochemistry,” Chem. Soc. Rev. 42, 8629–8648 (2013).
[Crossref]

Wellegehausen, B.

B. Wellegehausen, H. Welling, R. Beigang, “A narrowband jet stream dye laser,” Appl. Phys. 3, 387–391 (1974).
[Crossref]

Welling, H.

B. Wellegehausen, H. Welling, R. Beigang, “A narrowband jet stream dye laser,” Appl. Phys. 3, 387–391 (1974).
[Crossref]

Westbrook, P. S.

White, I. H.

M. C. Ramon, M. Ariu, R. Xia, D. D. C. Bradley, M. A. Reilly, C. Marinelli, C. N. Morgan, R. V. Penty, I. H. White, “A characterization of Rhodamine 640 for optical amplification: collinear pump and signal gain properties in solutions, thin-film polymer dispersions, and waveguides,” J. Appl. Phys. 97, 073517 (2005).
[Crossref]

White, I. M.

X. Fan, I. M. White, “Optofluidic microsystems for chemical and biological analysis,” Nat. Photonics 5, 591–597 (2011).

Whitesides, G. M.

G. M. Whitesides, “The origins and the future of microfluidics,” Nature 442, 368–373 (2006).
[Crossref]

D. V. Vezenov, B. T. Mayers, R. S. Conroy, G. M. Whitesides, P. T. Snee, Y. Chan, D. G. Nocera, M. G. Bawendi, “A low-threshold, high-efficiency microfluidic waveguide laser,” J. Am. Chem. Soc. 127, 8952–8953 (2005).
[Crossref]

Willsch, R.

H. Lehmann, S. Brueckner, J. Kobelke, G. Schwotzer, K. Schuster, R. Willsch, “Toward photonic crystal fiber based distributed chemosensors,” Proc. SPIE 5855, 419–422 (2005).

Windeler, R. S.

Wu, C.

Wu, D. C.

Wu, D. K. C.

Xia, R.

M. C. Ramon, M. Ariu, R. Xia, D. D. C. Bradley, M. A. Reilly, C. Marinelli, C. N. Morgan, R. V. Penty, I. H. White, “A characterization of Rhodamine 640 for optical amplification: collinear pump and signal gain properties in solutions, thin-film polymer dispersions, and waveguides,” J. Appl. Phys. 97, 073517 (2005).
[Crossref]

Yang, C.

H. Zhou, G. Feng, K. Yao, C. Yang, J. Yi, S. Zhou, “Fiber-based tunable microcavity fluidic dye laser,” Opt. Lett. 38, 3604–3607 (2013).
[Crossref]

D. Psaltis, S. R. Quake, C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381–386 (2006).
[Crossref]

Yang, X.

X. Yang, T. Yuan, P. Teng, D. Kong, C. Liu, E. Li, E. Zhao, C. Tong, L. Yuan, “An in-fiber integrated optofluidic device based on an optical fiber with an inner core,” Lab Chip 14, 2090–2095 (2014).
[Crossref]

Yao, K.

Yesilyurt, I.

Q. Kou, I. Yesilyurt, Y. Chen, “Collinear dual-color laser emission from a microfluidic dye laser,” Appl. Phys. Lett. 88, 091101 (2006).
[Crossref]

Yi, J.

Yuan, L.

X. Yang, T. Yuan, P. Teng, D. Kong, C. Liu, E. Li, E. Zhao, C. Tong, L. Yuan, “An in-fiber integrated optofluidic device based on an optical fiber with an inner core,” Lab Chip 14, 2090–2095 (2014).
[Crossref]

Yuan, T.

X. Yang, T. Yuan, P. Teng, D. Kong, C. Liu, E. Li, E. Zhao, C. Tong, L. Yuan, “An in-fiber integrated optofluidic device based on an optical fiber with an inner core,” Lab Chip 14, 2090–2095 (2014).
[Crossref]

Yun, S.-H.

X. Fan, S.-H. Yun, “The potential of optofluidic biolasers,” Nat. Methods 11, 141–147 (2014).

Zhang, Z. Y.

Zhao, E.

X. Yang, T. Yuan, P. Teng, D. Kong, C. Liu, E. Li, E. Zhao, C. Tong, L. Yuan, “An in-fiber integrated optofluidic device based on an optical fiber with an inner core,” Lab Chip 14, 2090–2095 (2014).
[Crossref]

Zhou, H.

Zhou, S.

Appl. Phys. (1)

B. Wellegehausen, H. Welling, R. Beigang, “A narrowband jet stream dye laser,” Appl. Phys. 3, 387–391 (1974).
[Crossref]

Appl. Phys. B (1)

W. Horn, S. Kroesen, C. Denz, “Two-photon fabrication of organic solid-state distributed feedback lasers in Rhodamine 6G doped SU-8,” Appl. Phys. B 117, 311–315 (2014).
[Crossref]

Appl. Phys. Lett. (3)

C. V. Shank, E. P. Ippen, “Subpicosecond kilowatt pulses from a mode‐locked cw dye laser,” Appl. Phys. Lett. 24, 373–375 (1974).
[Crossref]

F. P. Schafer, W. Schmidt, J. Volze, “Organic dye solution laser,” Appl. Phys. Lett. 9, 306–309 (1966).
[Crossref]

Q. Kou, I. Yesilyurt, Y. Chen, “Collinear dual-color laser emission from a microfluidic dye laser,” Appl. Phys. Lett. 88, 091101 (2006).
[Crossref]

Chem. Soc. Rev. (1)

A. M. Cubillas, S. Unterkofler, T. G. Euser, B. J. M. Etzold, A. C. Jones, P. J. Sadler, P. Wasserscheid, P. S. J. Russell, “Photonic crystal fibres for chemical sensing and photochemistry,” Chem. Soc. Rev. 42, 8629–8648 (2013).
[Crossref]

IBM J. Res. Dev. (2)

P. P. Sorokin, J. R. Lankard, “Flashlamp excitation of organic dye lasers—A short communication,” IBM J. Res. Dev. 11, 148–149 (1967).
[Crossref]

P. P. Sorokin, J. R. Lankard, “Stimulated emission observed from an organic dye, chloro-aluminum phthalocyanine,” IBM J. Res. Dev. 10, 162–163 (1966).

IEEE Photon. Technol. Lett. (1)

A. Sudirman, W. Margulis, “All-fiber optofluidic component to combine light and fluid,” IEEE Photon. Technol. Lett. 26, 1031–1033 (2014).
[Crossref]

IEEE Sens. J. (1)

A. Bozolan, R. M. Gerosa, C. J. S. de Matos, M. A. Romero, “Temperature sensing using colloidal-core photonic crystal fiber,” IEEE Sens. J. 12, 195–200 (2012).
[Crossref]

J. Am. Chem. Soc. (1)

D. V. Vezenov, B. T. Mayers, R. S. Conroy, G. M. Whitesides, P. T. Snee, Y. Chan, D. G. Nocera, M. G. Bawendi, “A low-threshold, high-efficiency microfluidic waveguide laser,” J. Am. Chem. Soc. 127, 8952–8953 (2005).
[Crossref]

J. Appl. Phys. (1)

M. C. Ramon, M. Ariu, R. Xia, D. D. C. Bradley, M. A. Reilly, C. Marinelli, C. N. Morgan, R. V. Penty, I. H. White, “A characterization of Rhodamine 640 for optical amplification: collinear pump and signal gain properties in solutions, thin-film polymer dispersions, and waveguides,” J. Appl. Phys. 97, 073517 (2005).
[Crossref]

J. Micromech. Microeng. (1)

B. Helbo, A. Kristensen, A. Menon, “A micro-cavity fluidic dye laser,” J. Micromech. Microeng. 13, 307–311 (2003).
[Crossref]

J. Phys. D (1)

A. Banerjee, T. Frost, P. Bhattacharya, “Nitride-based quantum dot visible lasers,” J. Phys. D 46, 264004 (2013).

Lab Chip (1)

X. Yang, T. Yuan, P. Teng, D. Kong, C. Liu, E. Li, E. Zhao, C. Tong, L. Yuan, “An in-fiber integrated optofluidic device based on an optical fiber with an inner core,” Lab Chip 14, 2090–2095 (2014).
[Crossref]

Meas. Sci. Technol. (1)

C. M. B. Cordeiro, C. J. S. de Matos, E. M. dos Santos, A. Bozolan, J. S. K. Ong, T. Facincani, G. Chesini, A. R. Vaz, C. H. Brito Cruz, “Towards practical liquid and gas sensing with photonic crystal fibres: side access to the fibre microstructure and single-mode liquid-core fibre,” Meas. Sci. Technol. 18, 3075–3081 (2007).
[Crossref]

Microfluid. Nanofluid. (1)

Z. Y. Li, D. Psaltis, “Optofluidic dye lasers,” Microfluid. Nanofluid. 4, 145–158 (2008).

Nat. Methods (1)

X. Fan, S.-H. Yun, “The potential of optofluidic biolasers,” Nat. Methods 11, 141–147 (2014).

Nat. Photonics (2)

X. Fan, I. M. White, “Optofluidic microsystems for chemical and biological analysis,” Nat. Photonics 5, 591–597 (2011).

C. Monat, P. Domachuk, B. J. Eggleton, “Integrated optofluidics: a new river of light,” Nat. Photonics 1, 106–114 (2007).

Nature (2)

D. Psaltis, S. R. Quake, C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381–386 (2006).
[Crossref]

G. M. Whitesides, “The origins and the future of microfluidics,” Nature 442, 368–373 (2006).
[Crossref]

Opt. Express (9)

K. Kieu, L. Schneebeli, R. A. Norwood, N. Peyghambarian, “Integrated liquid-core optical fibers for ultra-efficient nonlinear liquid photonics,” Opt. Express 20, 8148–8154 (2012).
[Crossref]

Z. Y. Li, Z. Y. Zhang, T. Emery, A. Scherer, D. Psaltis, “Single mode optofluidic distributed feedback dye laser,” Opt. Express 14, 696–701 (2006).
[Crossref]

S. Balslev, A. Kristensen, “Microfluidic single-mode laser using high-order Bragg grating and antiguiding segments,” Opt. Express 13, 344–351 (2005).
[Crossref]

B. J. Eggleton, C. Kerbage, P. S. Westbrook, R. S. Windeler, A. Hale, “Microstructured optical fiber devices,” Opt. Express 9, 698–713 (2001).
[Crossref]

S. Pricking, M. Vieweg, H. Giessen, “Influence of the retarded response on an ultrafast nonlinear optofluidic fiber coupler,” Opt. Express 19, 21673–21679 (2011).
[Crossref]

M. Vieweg, T. Gissibl, S. Pricking, B. T. Kuhlmey, D. C. Wu, B. J. Eggleton, H. Giessen, “Ultrafast nonlinear optofluidics in selectively liquid-filled photonic crystal fibers,” Opt. Express 18, 25232–25240 (2010).
[Crossref]

A. Sudirman, S. Etcheverry, M. Stjernström, F. Laurell, W. Margulis, “A fiber optic system for detection and collection of micrometer-size particles,” Opt. Express 22, 21480–21487 (2014).
[Crossref]

A. E. Vasdekis, G. E. Town, G. A. Turnbull, I. D. W. Samuel, “Fluidic fibre dye lasers,” Opt. Express 15, 3962–3967 (2007).
[Crossref]

R. M. Gerosa, D. H. Spadoti, C. J. S. de Matos, L. de S. Menezes, M. A. R. Franco, “Efficient and short-range light coupling to index-matched liquid-filled hole in a solid-core photonic crystal fiber,” Opt. Express 19, 24687–24698 (2011).
[Crossref]

Opt. Laser Technol. (1)

J. Peter, C. P. G. Vallabhan, P. Radhakrishnan, V. P. N. Nampoori, M. Kailasnath, “ASE and photostability measurements in dye doped step index, graded index and hollow polymer optical fiber,” Opt. Laser Technol. 63, 34–38 (2014).
[Crossref]

Opt. Lett. (4)

Opt. Mater. Express (1)

Phys. Rev. Lett. (1)

C. J. S. de Matos, L. de S. Menezes, A. M. Brito-Silva, M. A. Martinez Gámez, A. S. L. Gomes, C. B. de Araújo, “Random fiber laser,” Phys. Rev. Lett. 99, 153903 (2007).
[Crossref]

Proc. SPIE (1)

H. Lehmann, S. Brueckner, J. Kobelke, G. Schwotzer, K. Schuster, R. Willsch, “Toward photonic crystal fiber based distributed chemosensors,” Proc. SPIE 5855, 419–422 (2005).

Science (2)

S. X. Qian, J. B. Snow, H. M. Tzeng, R. K. Chang, “Lasing droplets–Highlighting the liquid-air interface by laser-emission,” Science 231, 486–488 (1986).
[Crossref]

T. Thorsen, S. J. Maerkl, S. R. Quake, “Microfluidic large-scale integration,” Science 298, 580–584 (2002).
[Crossref]

Other (4)

F. P. Schafer, Dye Lasers (Springer, 1990), Vol. 1.

“Fluidic vision,” Nat. Photonics5, 567 (2011).

I. Martincek, D. Pudis, “All-optical optofluidic fiber intensity modulator,” in ELEKTRO 2012 (IEEE, 2012), pp. 514–517.

R. A. Granger, Fluid Mechanics (Dover, 1995).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Device structure schemes; (a) angle cleaved capillary spliced to conventional fibers, allowing for liquid flow; (b) scheme of a whole device, including the pressure cells formed by glass tubes and their connection to liquid reservoirs via metal tubes; (c) multimode laser cavity, including air gaps that provide feedback via Fresnel reflection; (d) few-mode laser cavity with similar air gaps but with a small-core fiber (SMF-28) in one side to provide modal filtering. Anti-fiber is the 128 μm inner diameter capillary used for creating the air gaps.
Fig. 2.
Fig. 2. Numerical fluid flow speed maps in the 80 μm inner-diameter capillary; (a) longitudinal cut of the entire fluidic system; peak value of 8.5 m / s is determined; (b) cross sectional cut near the output of the glass tube and metal tube; speed of around 0.3 m/s is seen at the metal tube.
Fig. 3.
Fig. 3. ASE spectra and emission dynamics; (a) emission spectra for various pump energies (0.5–6.5 μJ); (b) time-averaged emission power using the 80 μm (blue) and the 56 μm (green) inner-diameter capillaries and emission FWHM linewidth for the 80 μm capillary (red), all as functions of the pump pulse energy. Dotted lines indicate threshold points (1.50 and 1.00 μJ for the 80 and 56 μm capillaries, respectively).
Fig. 4.
Fig. 4. (a) ASE time response for various pump powers normalized by the pump threshold power; (b) measured emission peak wavelength as a function of Rh640 molar concentration.
Fig. 5.
Fig. 5. Multimode laser spectra and threshold dynamics; (a) emission spectra as a function of pump energy. Inset, narrowest obtained spectrum, shown in linear scale; (b) emission power and FWHM linewidth versus pump energy. Dotted line represents the threshold point (0.59 μJ); (c) zoom-in of the initial region of the threshold and linewidth curves shown in (b).
Fig. 6.
Fig. 6. Few-mode laser spectrum and threshold dynamics; (a) emission spectrum at a pump energy of 2.3 μJ (0.6 nm FWHM linewidth); (b) emission power versus pump energy. Dotted line represents the threshold point (1.61 μJ).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Q = Δ P π r 4 8 μL ,
I th = γ h υ p d σ em ( λ L ) τ sp L c ,
γ = ln ( R 2 ) 2 + γ i ,

Metrics