Abstract

A number of imaging modalities rely on the exact knowledge of both the absorption and scattering properties of cells and organelles. We report a simple method for accurate and precise measurement of the optical absorption coefficient of biological samples, even in the presence of strong scattering. The technique is based on cavity ring-down spectroscopy, but the traditional mirrored cavity is replaced with a high-reflectivity integrating cavity. The Lambertian behavior of the cavity walls creates an isotropic field inside the cavity, thereby eliminating the effects of scattering in the sample. Thus, integrating cavity ring-down spectroscopy (ICRDS) provides a true, direct measurement of the absorption coefficient, as opposed to the net attenuation. We demonstrate the effectiveness of this technique by measuring the absorption coefficient of retinal pigmented epithelium cells. Furthermore, we demonstrate that ICRDS is insensitive to scattering effects using suspensions of copolymer microspheres and an absorbing dye solution. These results are compared with measurements made using a more traditional transmission-style setup. This technique will have an impact on the field of nanoscience, where optical characterization of nanoparticles is still done using a conventional spectrometer that is only capable of providing measurements of the extinction coefficient.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Diffuse reflecting material for integrating cavity spectroscopy, including ring-down spectroscopy

Michael T. Cone, Joseph A. Musser, Eleonora Figueroa, John D. Mason, and Edward S. Fry
Appl. Opt. 54(2) 334-346 (2015)

Extinction measurement with open-path cavity ring-down technique of variable cavity length

Hao Cui, Bincheng Li, Yanling Han, Jing Wang, Chunming Gao, and Yafei Wang
Opt. Express 24(12) 13343-13350 (2016)

Open-path cavity ring-down spectroscopy for trace gas measurements in ambient air

Laura E. McHale, Arsineh Hecobian, and Azer P. Yalin
Opt. Express 24(5) 5523-5535 (2016)

References

  • View by:
  • |
  • |
  • |

  1. S. Flock, M. Patterson, B. Wilson, D. Wyman, “Monte Carlo modeling of light propagation in highly scattering tissues. i. model predictions and comparison with diffusion theory,” IEEE Trans. Biomed. Eng. 36, 1162–1168 (1989).
    [Crossref]
  2. C. R. Munnerlyn, S. J. Koons, J. Marshall, “Photorefractive keratectomy: a technique for laser refractive surgery,” J. Cataract Refract. Surg. 14, 46–52 (1988).
    [Crossref]
  3. M. Loughnan, “Laser refractive surgery,” Aust. Family Physician 27, 154–158 (1998).
  4. K. Muellner, E. Bodner, G. E. Mannor, G. Wolf, T. Hofmann, W. Luxenberger, “Endolacrimal laser assisted lacrimal surgery,” British J. Ophthalmol. 84, 16–18 (2000).
    [Crossref]
  5. W.-F. Cheong, S. Prahl, A. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
    [Crossref]
  6. J. C. Murchio, M. B. Allen, “Measurement of absorption spectra of chlorophyll in algal cell suspensions,” Photochem. Photobiol. 1, 259–266 (1962).
    [Crossref]
  7. J. R. Mourant, R. R. Gibson, T. M. Johnson, S. Carpenter, K. W. Short, Y. R. Yamada, J. P. Freyer, “Methods for measuring the infrared spectra of biological cells,” Phys. Med. Biol. 48, 243–257 (2003).
    [Crossref]
  8. J. R. Mourant, J. P. Freyer, A. H. Hielscher, A. A. Eick, D. Shen, T. M. Johnson, “Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics,” Appl. Opt. 37, 3586–3593 (1998).
    [Crossref]
  9. P. Elterman, “Integrating cavity spectroscopy,” Appl. Opt. 9, 2140–2142 (1970).
    [Crossref]
  10. E. S. Fry, G. W. Kattawar, R. M. Pope, “Integrating cavity absorption meter,” Appl. Opt. 31, 2055–2065 (1992).
    [Crossref]
  11. R. M. Pope, E. S. Fry, “Absorption spectrum (380–700  nm) of pure water. ii. Integrating cavity measurements,” Appl. Opt. 36, 8710–8723 (1997).
    [Crossref]
  12. D. J. Gray, G. W. Kattawar, E. S. Fry, “Design and analysis of a flow-through integrating cavity absorption meter,” Appl. Opt. 45, 8990–8998 (2006).
    [Crossref]
  13. J. A. Musser, E. S. Fry, D. J. Gray, “Flow-through integrating cavity absorption meter: experimental results,” Appl. Opt. 48, 3596–3602 (2009).
    [Crossref]
  14. M. T. Cone, “A new diffuse reflecting material with applications including integrating cavity ring-down spectrscopy,” Ph.D. thesis (Texas A&M Universtiy, 2014).
  15. M. T. Cone, J. A. Musser, E. Figueroa, J. D. Mason, E. S. Fry, “Diffuse reflecting material for integrating cavity spectroscopy—including ring-rown spectroscopy,” Appl. Opt. 54, 334–346 (2015).
    [Crossref]
  16. J. N. Bixler, M. T. Cone, B. H. Hokr, J. D. Mason, E. Figueroa, E. S. Fry, V. V. Yakovlev, M. O. Scully, “Ultrasensitive detection of waste products in water using fluorescence emission cavity-enhanced spectroscopy,” Proc. Natl. Acad. Sci. USA 111, 7208–7211 (2014).
    [Crossref]
  17. A. O’Keefe, D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
    [Crossref]
  18. P. Zalicki, R. N. Zare, “Cavity ring-down spectroscopy for quantitative absorption measurements,” J. Chem. Phys. 102, 2708–2717 (1995).
    [Crossref]
  19. E. S. Fry, J. Musser, G. W. Kattawar, P.-W. Zhai, “Integrating cavities: temporal response,” Appl. Opt. 45, 9053–9065 (2006).
    [Crossref]
  20. A. G. Bodnar, M. Ouellette, M. Frolkis, S. E. Holt, C.-P. Chiu, G. B. Morin, C. B. Harley, J. W. Shay, S. Lichtsteiner, W. E. Wright, “Extension of life-span by introduction of telomerase into normal human cells,” Science 279, 349–352 (1998).
    [Crossref]
  21. M. L. Denton, M. S. Foltz, L. E. Estlack, D. J. Stolarski, G. D. Noojin, R. J. Thomas, D. Eikum, B. A. Rockwell, “Damage thresholds for exposure to NIR and blue lasers in an in vitro RPE cell system,” Investig. Ophthalmol. Vis. Sci. 47, 3065–3073 (2006).
    [Crossref]
  22. L. Diéguez, N. Darwish, M. Mir, E. Martínez, M. Moreno, J. Samitier, “Effect of the refractive index of buffer solutions in evanescent optical biosensors,” Sens. Lett. 7, 851–855 (2009).
  23. X. Quan, E. S. Fry, “Empirical equation for the index of refraction of seawater,” Appl. Opt. 34, 3477–3480 (1995).
    [Crossref]

2015 (1)

2014 (1)

J. N. Bixler, M. T. Cone, B. H. Hokr, J. D. Mason, E. Figueroa, E. S. Fry, V. V. Yakovlev, M. O. Scully, “Ultrasensitive detection of waste products in water using fluorescence emission cavity-enhanced spectroscopy,” Proc. Natl. Acad. Sci. USA 111, 7208–7211 (2014).
[Crossref]

2009 (2)

L. Diéguez, N. Darwish, M. Mir, E. Martínez, M. Moreno, J. Samitier, “Effect of the refractive index of buffer solutions in evanescent optical biosensors,” Sens. Lett. 7, 851–855 (2009).

J. A. Musser, E. S. Fry, D. J. Gray, “Flow-through integrating cavity absorption meter: experimental results,” Appl. Opt. 48, 3596–3602 (2009).
[Crossref]

2006 (3)

D. J. Gray, G. W. Kattawar, E. S. Fry, “Design and analysis of a flow-through integrating cavity absorption meter,” Appl. Opt. 45, 8990–8998 (2006).
[Crossref]

E. S. Fry, J. Musser, G. W. Kattawar, P.-W. Zhai, “Integrating cavities: temporal response,” Appl. Opt. 45, 9053–9065 (2006).
[Crossref]

M. L. Denton, M. S. Foltz, L. E. Estlack, D. J. Stolarski, G. D. Noojin, R. J. Thomas, D. Eikum, B. A. Rockwell, “Damage thresholds for exposure to NIR and blue lasers in an in vitro RPE cell system,” Investig. Ophthalmol. Vis. Sci. 47, 3065–3073 (2006).
[Crossref]

2003 (1)

J. R. Mourant, R. R. Gibson, T. M. Johnson, S. Carpenter, K. W. Short, Y. R. Yamada, J. P. Freyer, “Methods for measuring the infrared spectra of biological cells,” Phys. Med. Biol. 48, 243–257 (2003).
[Crossref]

2000 (1)

K. Muellner, E. Bodner, G. E. Mannor, G. Wolf, T. Hofmann, W. Luxenberger, “Endolacrimal laser assisted lacrimal surgery,” British J. Ophthalmol. 84, 16–18 (2000).
[Crossref]

1998 (3)

M. Loughnan, “Laser refractive surgery,” Aust. Family Physician 27, 154–158 (1998).

J. R. Mourant, J. P. Freyer, A. H. Hielscher, A. A. Eick, D. Shen, T. M. Johnson, “Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics,” Appl. Opt. 37, 3586–3593 (1998).
[Crossref]

A. G. Bodnar, M. Ouellette, M. Frolkis, S. E. Holt, C.-P. Chiu, G. B. Morin, C. B. Harley, J. W. Shay, S. Lichtsteiner, W. E. Wright, “Extension of life-span by introduction of telomerase into normal human cells,” Science 279, 349–352 (1998).
[Crossref]

1997 (1)

1995 (2)

P. Zalicki, R. N. Zare, “Cavity ring-down spectroscopy for quantitative absorption measurements,” J. Chem. Phys. 102, 2708–2717 (1995).
[Crossref]

X. Quan, E. S. Fry, “Empirical equation for the index of refraction of seawater,” Appl. Opt. 34, 3477–3480 (1995).
[Crossref]

1992 (1)

1990 (1)

W.-F. Cheong, S. Prahl, A. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[Crossref]

1989 (1)

S. Flock, M. Patterson, B. Wilson, D. Wyman, “Monte Carlo modeling of light propagation in highly scattering tissues. i. model predictions and comparison with diffusion theory,” IEEE Trans. Biomed. Eng. 36, 1162–1168 (1989).
[Crossref]

1988 (2)

C. R. Munnerlyn, S. J. Koons, J. Marshall, “Photorefractive keratectomy: a technique for laser refractive surgery,” J. Cataract Refract. Surg. 14, 46–52 (1988).
[Crossref]

A. O’Keefe, D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
[Crossref]

1970 (1)

1962 (1)

J. C. Murchio, M. B. Allen, “Measurement of absorption spectra of chlorophyll in algal cell suspensions,” Photochem. Photobiol. 1, 259–266 (1962).
[Crossref]

Allen, M. B.

J. C. Murchio, M. B. Allen, “Measurement of absorption spectra of chlorophyll in algal cell suspensions,” Photochem. Photobiol. 1, 259–266 (1962).
[Crossref]

Bixler, J. N.

J. N. Bixler, M. T. Cone, B. H. Hokr, J. D. Mason, E. Figueroa, E. S. Fry, V. V. Yakovlev, M. O. Scully, “Ultrasensitive detection of waste products in water using fluorescence emission cavity-enhanced spectroscopy,” Proc. Natl. Acad. Sci. USA 111, 7208–7211 (2014).
[Crossref]

Bodnar, A. G.

A. G. Bodnar, M. Ouellette, M. Frolkis, S. E. Holt, C.-P. Chiu, G. B. Morin, C. B. Harley, J. W. Shay, S. Lichtsteiner, W. E. Wright, “Extension of life-span by introduction of telomerase into normal human cells,” Science 279, 349–352 (1998).
[Crossref]

Bodner, E.

K. Muellner, E. Bodner, G. E. Mannor, G. Wolf, T. Hofmann, W. Luxenberger, “Endolacrimal laser assisted lacrimal surgery,” British J. Ophthalmol. 84, 16–18 (2000).
[Crossref]

Carpenter, S.

J. R. Mourant, R. R. Gibson, T. M. Johnson, S. Carpenter, K. W. Short, Y. R. Yamada, J. P. Freyer, “Methods for measuring the infrared spectra of biological cells,” Phys. Med. Biol. 48, 243–257 (2003).
[Crossref]

Cheong, W.-F.

W.-F. Cheong, S. Prahl, A. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[Crossref]

Chiu, C.-P.

A. G. Bodnar, M. Ouellette, M. Frolkis, S. E. Holt, C.-P. Chiu, G. B. Morin, C. B. Harley, J. W. Shay, S. Lichtsteiner, W. E. Wright, “Extension of life-span by introduction of telomerase into normal human cells,” Science 279, 349–352 (1998).
[Crossref]

Cone, M. T.

M. T. Cone, J. A. Musser, E. Figueroa, J. D. Mason, E. S. Fry, “Diffuse reflecting material for integrating cavity spectroscopy—including ring-rown spectroscopy,” Appl. Opt. 54, 334–346 (2015).
[Crossref]

J. N. Bixler, M. T. Cone, B. H. Hokr, J. D. Mason, E. Figueroa, E. S. Fry, V. V. Yakovlev, M. O. Scully, “Ultrasensitive detection of waste products in water using fluorescence emission cavity-enhanced spectroscopy,” Proc. Natl. Acad. Sci. USA 111, 7208–7211 (2014).
[Crossref]

M. T. Cone, “A new diffuse reflecting material with applications including integrating cavity ring-down spectrscopy,” Ph.D. thesis (Texas A&M Universtiy, 2014).

Darwish, N.

L. Diéguez, N. Darwish, M. Mir, E. Martínez, M. Moreno, J. Samitier, “Effect of the refractive index of buffer solutions in evanescent optical biosensors,” Sens. Lett. 7, 851–855 (2009).

Deacon, D. A. G.

A. O’Keefe, D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
[Crossref]

Denton, M. L.

M. L. Denton, M. S. Foltz, L. E. Estlack, D. J. Stolarski, G. D. Noojin, R. J. Thomas, D. Eikum, B. A. Rockwell, “Damage thresholds for exposure to NIR and blue lasers in an in vitro RPE cell system,” Investig. Ophthalmol. Vis. Sci. 47, 3065–3073 (2006).
[Crossref]

Diéguez, L.

L. Diéguez, N. Darwish, M. Mir, E. Martínez, M. Moreno, J. Samitier, “Effect of the refractive index of buffer solutions in evanescent optical biosensors,” Sens. Lett. 7, 851–855 (2009).

Eick, A. A.

Eikum, D.

M. L. Denton, M. S. Foltz, L. E. Estlack, D. J. Stolarski, G. D. Noojin, R. J. Thomas, D. Eikum, B. A. Rockwell, “Damage thresholds for exposure to NIR and blue lasers in an in vitro RPE cell system,” Investig. Ophthalmol. Vis. Sci. 47, 3065–3073 (2006).
[Crossref]

Elterman, P.

Estlack, L. E.

M. L. Denton, M. S. Foltz, L. E. Estlack, D. J. Stolarski, G. D. Noojin, R. J. Thomas, D. Eikum, B. A. Rockwell, “Damage thresholds for exposure to NIR and blue lasers in an in vitro RPE cell system,” Investig. Ophthalmol. Vis. Sci. 47, 3065–3073 (2006).
[Crossref]

Figueroa, E.

M. T. Cone, J. A. Musser, E. Figueroa, J. D. Mason, E. S. Fry, “Diffuse reflecting material for integrating cavity spectroscopy—including ring-rown spectroscopy,” Appl. Opt. 54, 334–346 (2015).
[Crossref]

J. N. Bixler, M. T. Cone, B. H. Hokr, J. D. Mason, E. Figueroa, E. S. Fry, V. V. Yakovlev, M. O. Scully, “Ultrasensitive detection of waste products in water using fluorescence emission cavity-enhanced spectroscopy,” Proc. Natl. Acad. Sci. USA 111, 7208–7211 (2014).
[Crossref]

Flock, S.

S. Flock, M. Patterson, B. Wilson, D. Wyman, “Monte Carlo modeling of light propagation in highly scattering tissues. i. model predictions and comparison with diffusion theory,” IEEE Trans. Biomed. Eng. 36, 1162–1168 (1989).
[Crossref]

Foltz, M. S.

M. L. Denton, M. S. Foltz, L. E. Estlack, D. J. Stolarski, G. D. Noojin, R. J. Thomas, D. Eikum, B. A. Rockwell, “Damage thresholds for exposure to NIR and blue lasers in an in vitro RPE cell system,” Investig. Ophthalmol. Vis. Sci. 47, 3065–3073 (2006).
[Crossref]

Freyer, J. P.

J. R. Mourant, R. R. Gibson, T. M. Johnson, S. Carpenter, K. W. Short, Y. R. Yamada, J. P. Freyer, “Methods for measuring the infrared spectra of biological cells,” Phys. Med. Biol. 48, 243–257 (2003).
[Crossref]

J. R. Mourant, J. P. Freyer, A. H. Hielscher, A. A. Eick, D. Shen, T. M. Johnson, “Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics,” Appl. Opt. 37, 3586–3593 (1998).
[Crossref]

Frolkis, M.

A. G. Bodnar, M. Ouellette, M. Frolkis, S. E. Holt, C.-P. Chiu, G. B. Morin, C. B. Harley, J. W. Shay, S. Lichtsteiner, W. E. Wright, “Extension of life-span by introduction of telomerase into normal human cells,” Science 279, 349–352 (1998).
[Crossref]

Fry, E. S.

Gibson, R. R.

J. R. Mourant, R. R. Gibson, T. M. Johnson, S. Carpenter, K. W. Short, Y. R. Yamada, J. P. Freyer, “Methods for measuring the infrared spectra of biological cells,” Phys. Med. Biol. 48, 243–257 (2003).
[Crossref]

Gray, D. J.

Harley, C. B.

A. G. Bodnar, M. Ouellette, M. Frolkis, S. E. Holt, C.-P. Chiu, G. B. Morin, C. B. Harley, J. W. Shay, S. Lichtsteiner, W. E. Wright, “Extension of life-span by introduction of telomerase into normal human cells,” Science 279, 349–352 (1998).
[Crossref]

Hielscher, A. H.

Hofmann, T.

K. Muellner, E. Bodner, G. E. Mannor, G. Wolf, T. Hofmann, W. Luxenberger, “Endolacrimal laser assisted lacrimal surgery,” British J. Ophthalmol. 84, 16–18 (2000).
[Crossref]

Hokr, B. H.

J. N. Bixler, M. T. Cone, B. H. Hokr, J. D. Mason, E. Figueroa, E. S. Fry, V. V. Yakovlev, M. O. Scully, “Ultrasensitive detection of waste products in water using fluorescence emission cavity-enhanced spectroscopy,” Proc. Natl. Acad. Sci. USA 111, 7208–7211 (2014).
[Crossref]

Holt, S. E.

A. G. Bodnar, M. Ouellette, M. Frolkis, S. E. Holt, C.-P. Chiu, G. B. Morin, C. B. Harley, J. W. Shay, S. Lichtsteiner, W. E. Wright, “Extension of life-span by introduction of telomerase into normal human cells,” Science 279, 349–352 (1998).
[Crossref]

Johnson, T. M.

J. R. Mourant, R. R. Gibson, T. M. Johnson, S. Carpenter, K. W. Short, Y. R. Yamada, J. P. Freyer, “Methods for measuring the infrared spectra of biological cells,” Phys. Med. Biol. 48, 243–257 (2003).
[Crossref]

J. R. Mourant, J. P. Freyer, A. H. Hielscher, A. A. Eick, D. Shen, T. M. Johnson, “Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics,” Appl. Opt. 37, 3586–3593 (1998).
[Crossref]

Kattawar, G. W.

Koons, S. J.

C. R. Munnerlyn, S. J. Koons, J. Marshall, “Photorefractive keratectomy: a technique for laser refractive surgery,” J. Cataract Refract. Surg. 14, 46–52 (1988).
[Crossref]

Lichtsteiner, S.

A. G. Bodnar, M. Ouellette, M. Frolkis, S. E. Holt, C.-P. Chiu, G. B. Morin, C. B. Harley, J. W. Shay, S. Lichtsteiner, W. E. Wright, “Extension of life-span by introduction of telomerase into normal human cells,” Science 279, 349–352 (1998).
[Crossref]

Loughnan, M.

M. Loughnan, “Laser refractive surgery,” Aust. Family Physician 27, 154–158 (1998).

Luxenberger, W.

K. Muellner, E. Bodner, G. E. Mannor, G. Wolf, T. Hofmann, W. Luxenberger, “Endolacrimal laser assisted lacrimal surgery,” British J. Ophthalmol. 84, 16–18 (2000).
[Crossref]

Mannor, G. E.

K. Muellner, E. Bodner, G. E. Mannor, G. Wolf, T. Hofmann, W. Luxenberger, “Endolacrimal laser assisted lacrimal surgery,” British J. Ophthalmol. 84, 16–18 (2000).
[Crossref]

Marshall, J.

C. R. Munnerlyn, S. J. Koons, J. Marshall, “Photorefractive keratectomy: a technique for laser refractive surgery,” J. Cataract Refract. Surg. 14, 46–52 (1988).
[Crossref]

Martínez, E.

L. Diéguez, N. Darwish, M. Mir, E. Martínez, M. Moreno, J. Samitier, “Effect of the refractive index of buffer solutions in evanescent optical biosensors,” Sens. Lett. 7, 851–855 (2009).

Mason, J. D.

M. T. Cone, J. A. Musser, E. Figueroa, J. D. Mason, E. S. Fry, “Diffuse reflecting material for integrating cavity spectroscopy—including ring-rown spectroscopy,” Appl. Opt. 54, 334–346 (2015).
[Crossref]

J. N. Bixler, M. T. Cone, B. H. Hokr, J. D. Mason, E. Figueroa, E. S. Fry, V. V. Yakovlev, M. O. Scully, “Ultrasensitive detection of waste products in water using fluorescence emission cavity-enhanced spectroscopy,” Proc. Natl. Acad. Sci. USA 111, 7208–7211 (2014).
[Crossref]

Mir, M.

L. Diéguez, N. Darwish, M. Mir, E. Martínez, M. Moreno, J. Samitier, “Effect of the refractive index of buffer solutions in evanescent optical biosensors,” Sens. Lett. 7, 851–855 (2009).

Moreno, M.

L. Diéguez, N. Darwish, M. Mir, E. Martínez, M. Moreno, J. Samitier, “Effect of the refractive index of buffer solutions in evanescent optical biosensors,” Sens. Lett. 7, 851–855 (2009).

Morin, G. B.

A. G. Bodnar, M. Ouellette, M. Frolkis, S. E. Holt, C.-P. Chiu, G. B. Morin, C. B. Harley, J. W. Shay, S. Lichtsteiner, W. E. Wright, “Extension of life-span by introduction of telomerase into normal human cells,” Science 279, 349–352 (1998).
[Crossref]

Mourant, J. R.

J. R. Mourant, R. R. Gibson, T. M. Johnson, S. Carpenter, K. W. Short, Y. R. Yamada, J. P. Freyer, “Methods for measuring the infrared spectra of biological cells,” Phys. Med. Biol. 48, 243–257 (2003).
[Crossref]

J. R. Mourant, J. P. Freyer, A. H. Hielscher, A. A. Eick, D. Shen, T. M. Johnson, “Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics,” Appl. Opt. 37, 3586–3593 (1998).
[Crossref]

Muellner, K.

K. Muellner, E. Bodner, G. E. Mannor, G. Wolf, T. Hofmann, W. Luxenberger, “Endolacrimal laser assisted lacrimal surgery,” British J. Ophthalmol. 84, 16–18 (2000).
[Crossref]

Munnerlyn, C. R.

C. R. Munnerlyn, S. J. Koons, J. Marshall, “Photorefractive keratectomy: a technique for laser refractive surgery,” J. Cataract Refract. Surg. 14, 46–52 (1988).
[Crossref]

Murchio, J. C.

J. C. Murchio, M. B. Allen, “Measurement of absorption spectra of chlorophyll in algal cell suspensions,” Photochem. Photobiol. 1, 259–266 (1962).
[Crossref]

Musser, J.

Musser, J. A.

Noojin, G. D.

M. L. Denton, M. S. Foltz, L. E. Estlack, D. J. Stolarski, G. D. Noojin, R. J. Thomas, D. Eikum, B. A. Rockwell, “Damage thresholds for exposure to NIR and blue lasers in an in vitro RPE cell system,” Investig. Ophthalmol. Vis. Sci. 47, 3065–3073 (2006).
[Crossref]

O’Keefe, A.

A. O’Keefe, D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
[Crossref]

Ouellette, M.

A. G. Bodnar, M. Ouellette, M. Frolkis, S. E. Holt, C.-P. Chiu, G. B. Morin, C. B. Harley, J. W. Shay, S. Lichtsteiner, W. E. Wright, “Extension of life-span by introduction of telomerase into normal human cells,” Science 279, 349–352 (1998).
[Crossref]

Patterson, M.

S. Flock, M. Patterson, B. Wilson, D. Wyman, “Monte Carlo modeling of light propagation in highly scattering tissues. i. model predictions and comparison with diffusion theory,” IEEE Trans. Biomed. Eng. 36, 1162–1168 (1989).
[Crossref]

Pope, R. M.

Prahl, S.

W.-F. Cheong, S. Prahl, A. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[Crossref]

Quan, X.

Rockwell, B. A.

M. L. Denton, M. S. Foltz, L. E. Estlack, D. J. Stolarski, G. D. Noojin, R. J. Thomas, D. Eikum, B. A. Rockwell, “Damage thresholds for exposure to NIR and blue lasers in an in vitro RPE cell system,” Investig. Ophthalmol. Vis. Sci. 47, 3065–3073 (2006).
[Crossref]

Samitier, J.

L. Diéguez, N. Darwish, M. Mir, E. Martínez, M. Moreno, J. Samitier, “Effect of the refractive index of buffer solutions in evanescent optical biosensors,” Sens. Lett. 7, 851–855 (2009).

Scully, M. O.

J. N. Bixler, M. T. Cone, B. H. Hokr, J. D. Mason, E. Figueroa, E. S. Fry, V. V. Yakovlev, M. O. Scully, “Ultrasensitive detection of waste products in water using fluorescence emission cavity-enhanced spectroscopy,” Proc. Natl. Acad. Sci. USA 111, 7208–7211 (2014).
[Crossref]

Shay, J. W.

A. G. Bodnar, M. Ouellette, M. Frolkis, S. E. Holt, C.-P. Chiu, G. B. Morin, C. B. Harley, J. W. Shay, S. Lichtsteiner, W. E. Wright, “Extension of life-span by introduction of telomerase into normal human cells,” Science 279, 349–352 (1998).
[Crossref]

Shen, D.

Short, K. W.

J. R. Mourant, R. R. Gibson, T. M. Johnson, S. Carpenter, K. W. Short, Y. R. Yamada, J. P. Freyer, “Methods for measuring the infrared spectra of biological cells,” Phys. Med. Biol. 48, 243–257 (2003).
[Crossref]

Stolarski, D. J.

M. L. Denton, M. S. Foltz, L. E. Estlack, D. J. Stolarski, G. D. Noojin, R. J. Thomas, D. Eikum, B. A. Rockwell, “Damage thresholds for exposure to NIR and blue lasers in an in vitro RPE cell system,” Investig. Ophthalmol. Vis. Sci. 47, 3065–3073 (2006).
[Crossref]

Thomas, R. J.

M. L. Denton, M. S. Foltz, L. E. Estlack, D. J. Stolarski, G. D. Noojin, R. J. Thomas, D. Eikum, B. A. Rockwell, “Damage thresholds for exposure to NIR and blue lasers in an in vitro RPE cell system,” Investig. Ophthalmol. Vis. Sci. 47, 3065–3073 (2006).
[Crossref]

Welch, A.

W.-F. Cheong, S. Prahl, A. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[Crossref]

Wilson, B.

S. Flock, M. Patterson, B. Wilson, D. Wyman, “Monte Carlo modeling of light propagation in highly scattering tissues. i. model predictions and comparison with diffusion theory,” IEEE Trans. Biomed. Eng. 36, 1162–1168 (1989).
[Crossref]

Wolf, G.

K. Muellner, E. Bodner, G. E. Mannor, G. Wolf, T. Hofmann, W. Luxenberger, “Endolacrimal laser assisted lacrimal surgery,” British J. Ophthalmol. 84, 16–18 (2000).
[Crossref]

Wright, W. E.

A. G. Bodnar, M. Ouellette, M. Frolkis, S. E. Holt, C.-P. Chiu, G. B. Morin, C. B. Harley, J. W. Shay, S. Lichtsteiner, W. E. Wright, “Extension of life-span by introduction of telomerase into normal human cells,” Science 279, 349–352 (1998).
[Crossref]

Wyman, D.

S. Flock, M. Patterson, B. Wilson, D. Wyman, “Monte Carlo modeling of light propagation in highly scattering tissues. i. model predictions and comparison with diffusion theory,” IEEE Trans. Biomed. Eng. 36, 1162–1168 (1989).
[Crossref]

Yakovlev, V. V.

J. N. Bixler, M. T. Cone, B. H. Hokr, J. D. Mason, E. Figueroa, E. S. Fry, V. V. Yakovlev, M. O. Scully, “Ultrasensitive detection of waste products in water using fluorescence emission cavity-enhanced spectroscopy,” Proc. Natl. Acad. Sci. USA 111, 7208–7211 (2014).
[Crossref]

Yamada, Y. R.

J. R. Mourant, R. R. Gibson, T. M. Johnson, S. Carpenter, K. W. Short, Y. R. Yamada, J. P. Freyer, “Methods for measuring the infrared spectra of biological cells,” Phys. Med. Biol. 48, 243–257 (2003).
[Crossref]

Zalicki, P.

P. Zalicki, R. N. Zare, “Cavity ring-down spectroscopy for quantitative absorption measurements,” J. Chem. Phys. 102, 2708–2717 (1995).
[Crossref]

Zare, R. N.

P. Zalicki, R. N. Zare, “Cavity ring-down spectroscopy for quantitative absorption measurements,” J. Chem. Phys. 102, 2708–2717 (1995).
[Crossref]

Zhai, P.-W.

Appl. Opt. (9)

Aust. Family Physician (1)

M. Loughnan, “Laser refractive surgery,” Aust. Family Physician 27, 154–158 (1998).

British J. Ophthalmol. (1)

K. Muellner, E. Bodner, G. E. Mannor, G. Wolf, T. Hofmann, W. Luxenberger, “Endolacrimal laser assisted lacrimal surgery,” British J. Ophthalmol. 84, 16–18 (2000).
[Crossref]

IEEE J. Quantum Electron. (1)

W.-F. Cheong, S. Prahl, A. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[Crossref]

IEEE Trans. Biomed. Eng. (1)

S. Flock, M. Patterson, B. Wilson, D. Wyman, “Monte Carlo modeling of light propagation in highly scattering tissues. i. model predictions and comparison with diffusion theory,” IEEE Trans. Biomed. Eng. 36, 1162–1168 (1989).
[Crossref]

Investig. Ophthalmol. Vis. Sci. (1)

M. L. Denton, M. S. Foltz, L. E. Estlack, D. J. Stolarski, G. D. Noojin, R. J. Thomas, D. Eikum, B. A. Rockwell, “Damage thresholds for exposure to NIR and blue lasers in an in vitro RPE cell system,” Investig. Ophthalmol. Vis. Sci. 47, 3065–3073 (2006).
[Crossref]

J. Cataract Refract. Surg. (1)

C. R. Munnerlyn, S. J. Koons, J. Marshall, “Photorefractive keratectomy: a technique for laser refractive surgery,” J. Cataract Refract. Surg. 14, 46–52 (1988).
[Crossref]

J. Chem. Phys. (1)

P. Zalicki, R. N. Zare, “Cavity ring-down spectroscopy for quantitative absorption measurements,” J. Chem. Phys. 102, 2708–2717 (1995).
[Crossref]

Photochem. Photobiol. (1)

J. C. Murchio, M. B. Allen, “Measurement of absorption spectra of chlorophyll in algal cell suspensions,” Photochem. Photobiol. 1, 259–266 (1962).
[Crossref]

Phys. Med. Biol. (1)

J. R. Mourant, R. R. Gibson, T. M. Johnson, S. Carpenter, K. W. Short, Y. R. Yamada, J. P. Freyer, “Methods for measuring the infrared spectra of biological cells,” Phys. Med. Biol. 48, 243–257 (2003).
[Crossref]

Proc. Natl. Acad. Sci. USA (1)

J. N. Bixler, M. T. Cone, B. H. Hokr, J. D. Mason, E. Figueroa, E. S. Fry, V. V. Yakovlev, M. O. Scully, “Ultrasensitive detection of waste products in water using fluorescence emission cavity-enhanced spectroscopy,” Proc. Natl. Acad. Sci. USA 111, 7208–7211 (2014).
[Crossref]

Rev. Sci. Instrum. (1)

A. O’Keefe, D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
[Crossref]

Science (1)

A. G. Bodnar, M. Ouellette, M. Frolkis, S. E. Holt, C.-P. Chiu, G. B. Morin, C. B. Harley, J. W. Shay, S. Lichtsteiner, W. E. Wright, “Extension of life-span by introduction of telomerase into normal human cells,” Science 279, 349–352 (1998).
[Crossref]

Sens. Lett. (1)

L. Diéguez, N. Darwish, M. Mir, E. Martínez, M. Moreno, J. Samitier, “Effect of the refractive index of buffer solutions in evanescent optical biosensors,” Sens. Lett. 7, 851–855 (2009).

Other (1)

M. T. Cone, “A new diffuse reflecting material with applications including integrating cavity ring-down spectrscopy,” Ph.D. thesis (Texas A&M Universtiy, 2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Cross-section of an ICRDS cavity.
Fig. 2.
Fig. 2. Typical ring-down decay curve at 532 nm for an empty fumed silica cavity. The fit to the ring-down curve gives a decay constant of τ = 120.5 ns , yielding a cavity reflectivity of 0.9992 [14,15].
Fig. 3.
Fig. 3. Diagrams showing (a) the experimental setup for ICRDS absorption measurements and (b) a cross-section of the integrating cavity with the quartz crucible sample container.
Fig. 4.
Fig. 4. ICRDS measurements of the absorption coefficient from 420 to 630 nm for a sample containing 60 million RPE cells suspended in PBS solution (the total volume of the cell/PBS solution was 3 mL). The contribution to the absorption coefficient due to the buffer solution has been subtracted out. Due to low output signal, the data point at 515 nm has been excluded.
Fig. 5.
Fig. 5. Comparison of ICRDS and spectrophotometer measurements for the absorption coefficient of RPE cells. The left vertical scale corresponds to the ICRDS data, while the right vertical scale corresponds to the spectrophotometer data.
Fig. 6.
Fig. 6. Spectrophotometer measurements of (a) the attenuation coefficient for suspensions of pure water and 8 μm copolymer microsphere scatterers and (b) the attenuation coefficient for dye solutions with and without scatterers.

Tables (2)

Tables Icon

Table 1. Ring-Down Decay Constants for Suspensions of 8 μm Scatterers with Increasing Concentration, and for Suspensions of an Absorbing Dye Solution and Scatterers

Tables Icon

Table 2. Ring-Down Decay Constants for Suspensions of an Absorbing Dye Solution and 1 μm Scatterers with Increasing Concentration

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

τ = 1 ln ρ ( d ¯ c + δ t ) .
τ s = 1 ln ρ + a s d ¯ ( d ¯ c + δ t ) ,
τ RPE = 1 ln ρ + ( a PBS + a RPE ) d ¯ s ( d ¯ c + d ¯ s c s + δ t ) ,
τ D = 1 ln ρ + ( a p w + a D ) d ¯ s ( d ¯ c + d ¯ s c p w + δ t ) ,
a RPE = τ RPE 1 τ PBS 1 τ D 1 1 τ D 2 1 ( a D 1 a D 2 ) .

Metrics