Abstract

Third-order optical nonlinearities play a vital role for the generation and characterization of ultrashort optical pulses. One particular characterization method is frequency-resolved optical gating, which can be based on a large variety of third-order nonlinear effects. Any of these variants presupposes an instantaneous temporal response, as it is expected off resonance. In this paper we show that resonant excitation of the third harmonic gives rise to surprisingly large decay times, which are on the order of the duration of the shortest oscillator pulses generated to date. To this end, we measured interferometric third-harmonic frequency-resolved optical gating traces in TiO2 and SiO2, corroborating polarization decay times up to 6.5 fs in TiO2. This effect is among the fastest effects observed in ultrafast spectroscopy. Numerical solutions of the time-dependent Schrödinger equation are in excellent agreement with experimental observations. Our work (experiments and simulations) corroborates that a noninstantaneous polarization decay may appear in the presence of a 3-photon resonance. In turn, pulse generation and characterization in the ultraviolet may be severely affected by this previously unreported effect.

© 2015 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. J. Kane, R. Trebino, “Characterization of arbitrary femtosecond pulses using frequency-resolved optical gating,” IEEE J. Quantum Electron. 29, 571–579 (1993).
    [Crossref]
  2. R. Trebino, Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses (Kluwer, 2002).
  3. T. Tsang, M. A. Krumbügel, K. W. DeLong, D. N. Fittinghoff, R. Trebino, “Frequency-resolved optical-gating measurements of ultrashort pulses using surface third-harmonic generation,” Opt. Lett. 21, 1381–1383 (1996).
    [Crossref]
  4. D. Meshulach, Y. Barad, Y. Silberberg, “Measurement of ultrashort optical pulses by third-harmonic generation,” J. Opt. Soc. Am. B 14, 2122–2125 (1997).
    [Crossref]
  5. A. Major, F. Yoshino, J. S. Aitchison, P. W. E. Smith, “Wide spectral range third-order autocorrelator based on ultrafast nonresonant nonlinear refraction,” Opt. Lett. 29, 1945–1947 (2004).
    [Crossref]
  6. E. P. Ippen, H. A. Haus, L. Y. Liu, “Additive pulse mode locking,” J. Opt. Soc. Am. B 6, 1736–1745 (1989).
    [Crossref]
  7. D. E. Spence, P. N. Kean, W. Sibbett, “60-fsec pulse generation from a self-mode-locked Ti:sapphire laser,” Opt. Lett. 16, 42–44 (1991).
    [Crossref]
  8. G. Steinmeyer, D. H. Sutter, L. Gallmann, N. Matuschek, U. Keller, “Frontiers in ultrashort pulse generation: pushing the limits in linear and nonlinear optics,” Science 286, 1507–1512 (1999).
    [Crossref]
  9. U. Morgner, F. X. Kärtner, S. H. Cho, Y. Chen, H. A. Haus, J. G. Fujimoto, E. P. Ippen, V. Scheuer, G. Angelow, T. Tschudi, “Sub-two-cycle pulses from a Kerr-lens mode-locked Ti:sapphire laser,” Opt. Lett. 24, 411–413 (1999).
    [Crossref]
  10. S. K. Das, C. Schwanke, A. Pfuch, W. Seeber, M. Bock, G. Steinmeyer, T. Elsaesser, R. Grunwald, “Highly efficient THG in TiO2 nanolayers for third-order pulse characterization,” Opt. Express 19, 16985–16995 (2011).
    [Crossref]
  11. T. Y. F. Tsang, “Optical third-harmonic generation at interfaces,” Phys. Rev. A 52, 4116–4125 (1995).
    [Crossref]
  12. Y. Barad, H. Eisenberg, M. Horowitz, Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett. 70, 922–924 (1997).
    [Crossref]
  13. G. Stibenz, G. Steinmeyer, “Interferometric frequency-resolved optical gating,” Opt. Express 13, 2617–2626 (2005).
    [Crossref]
  14. J. A. Nelder, R. Mead, “A simplex method for function minimization,” Computer J. 7, 308–313 (1965).
  15. W. Amir, T. A. Planchon, C. G. Durfee, J. A. Squier, P. Gabolde, R. Trebino, M. Müller, “Simultaneous visualization of spatial and chromatic aberrations by two-dimensional Fourier transform spectral interferometry,” Opt Lett. 31, 2927–2929 (2006).
  16. A. Anderson, K. S. Deryckx, X. G. Xu, G. Steinmeyer, M. B. Raschke, “Few-femtosecond plasmon dephasing of a single metallic nanostructure from optical response function reconstruction by interferometric frequency resolved optical gating,” Nano Lett. 10, 2519–2524 (2010).
  17. C. C. Evans, J. D. B. Bradley, E. A. Martí-Panameño, E. Mazur, “Mixed two- and three-photon absorption in bulk rutile (TiO2) around 800  nm,” Opt. Express 20, 3118–3128 (2012).
    [Crossref]
  18. T. Paasch-Colberg, A. Schiffrin, N. Karpowicz, S. Kruchinin, Ö. Sağlam, S. Keiber, O. Razskazovskaya, S. Mühlbrandt, A. Alnaser, M. Kübel, V. Apalkov, D. Gerster, J. Reichert, T. Wittmann, J. V. Barth, M. I. Stockman, R. Ernstorfer, V. S. Yakovlev, R. Kienberger, F. Krausz, “Solid-state light-phase detector,” Nature Photon. 8, 214–218 (2014).
  19. M. Korbman, S. Y. Kruchinin, V. S. Yakovlev, “Quantum beats in the polarization response of a dielectric to intense few-cycle laser pulses,” New J. Phys. 15, 013006 (2013).
    [Crossref]
  20. H. Tang, K. Prasad, R. Sanjinès, P. E. Schmid, F. Lévy, “Electrical and optical properties of TiO2 anatase thin films,” J. Appl. Phys. 75, 2042–2047 (1994).
    [Crossref]
  21. M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, E. W. Van Stryland, “Dispersion of bound electron nonlinear refraction in solids,” IEEE J. Quantum Electron. 27, 1296–1309 (1991).
    [Crossref]
  22. B. Borchers, C. Brée, S. Birkholz, A. Demircan, G. Steinmeyer, “Saturation of the all-optical Kerr effect in solids,” Opt. Lett. 37, 1541–1543 (2012).
    [Crossref]
  23. V. Juvé, M. Holtz, F. Zamponi, M. Woerner, T. Elsaesser, A. Borgschulte, “Field-driven dynamics of correlated electrons in LiH and NaBH4 revealed by femtosecond X-ray diffraction,” Phys. Rev. Lett. 111, 217401 (2013).
    [Crossref]
  24. C. Somma, K. Reimann, C. Flytzanis, T. Elsaesser, M. Woerner, “High-field terahertz bulk photovoltaic effect in lithium niobate,” Phys. Rev. Lett. 112, 146602 (2014).
    [Crossref]
  25. H. G. Muller, “An efficient propagation scheme for the time-dependent Schrödinger equation in the velocity gauge,” Laser Phys. 9, 138–148 (1999).
  26. S. Uemura, K. Torizuka, “Generation of 12-fs pulses from a diode-pumped Kerr-lens mode-locked Cr:LiSAF laser,” Opt. Lett. 24, 780–782 (1999).
    [Crossref]
  27. H. Zhao, A. Major, “Powerful 67  fs Kerr-lens mode-locked prismless Yb:KGW oscillator,” Opt. Express 21, 31846–31851 (2013).
    [Crossref]
  28. N. Tolstik, E. Sorokin, I. T. Sorokina, “Kerr-lens mode-locked Cr:ZnS laser,” Opt. Lett. 38, 299–301 (2013).
    [Crossref]
  29. A. B. Djurišić, Y. H. Leung, “Optical properties of ZnO nanostructures,” Small 2, 944–961 (2006).
    [Crossref]
  30. A. Chen, G. Yang, H. Long, F. Li, Y. Li, P. Lu, “Nonlinear optical properties of laser deposited CuO thin films,” Thin Solid Films 517, 4277–4280 (2009).
    [Crossref]
  31. M. Chini, K. Zhao, Z. Chang, “The generation, characterization and applications of broadband isolated attosecond pulses,” Nature Photon. 8, 178–186 (2014).

2014 (3)

T. Paasch-Colberg, A. Schiffrin, N. Karpowicz, S. Kruchinin, Ö. Sağlam, S. Keiber, O. Razskazovskaya, S. Mühlbrandt, A. Alnaser, M. Kübel, V. Apalkov, D. Gerster, J. Reichert, T. Wittmann, J. V. Barth, M. I. Stockman, R. Ernstorfer, V. S. Yakovlev, R. Kienberger, F. Krausz, “Solid-state light-phase detector,” Nature Photon. 8, 214–218 (2014).

C. Somma, K. Reimann, C. Flytzanis, T. Elsaesser, M. Woerner, “High-field terahertz bulk photovoltaic effect in lithium niobate,” Phys. Rev. Lett. 112, 146602 (2014).
[Crossref]

M. Chini, K. Zhao, Z. Chang, “The generation, characterization and applications of broadband isolated attosecond pulses,” Nature Photon. 8, 178–186 (2014).

2013 (4)

H. Zhao, A. Major, “Powerful 67  fs Kerr-lens mode-locked prismless Yb:KGW oscillator,” Opt. Express 21, 31846–31851 (2013).
[Crossref]

N. Tolstik, E. Sorokin, I. T. Sorokina, “Kerr-lens mode-locked Cr:ZnS laser,” Opt. Lett. 38, 299–301 (2013).
[Crossref]

V. Juvé, M. Holtz, F. Zamponi, M. Woerner, T. Elsaesser, A. Borgschulte, “Field-driven dynamics of correlated electrons in LiH and NaBH4 revealed by femtosecond X-ray diffraction,” Phys. Rev. Lett. 111, 217401 (2013).
[Crossref]

M. Korbman, S. Y. Kruchinin, V. S. Yakovlev, “Quantum beats in the polarization response of a dielectric to intense few-cycle laser pulses,” New J. Phys. 15, 013006 (2013).
[Crossref]

2012 (2)

2011 (1)

2010 (1)

A. Anderson, K. S. Deryckx, X. G. Xu, G. Steinmeyer, M. B. Raschke, “Few-femtosecond plasmon dephasing of a single metallic nanostructure from optical response function reconstruction by interferometric frequency resolved optical gating,” Nano Lett. 10, 2519–2524 (2010).

2009 (1)

A. Chen, G. Yang, H. Long, F. Li, Y. Li, P. Lu, “Nonlinear optical properties of laser deposited CuO thin films,” Thin Solid Films 517, 4277–4280 (2009).
[Crossref]

2006 (2)

A. B. Djurišić, Y. H. Leung, “Optical properties of ZnO nanostructures,” Small 2, 944–961 (2006).
[Crossref]

W. Amir, T. A. Planchon, C. G. Durfee, J. A. Squier, P. Gabolde, R. Trebino, M. Müller, “Simultaneous visualization of spatial and chromatic aberrations by two-dimensional Fourier transform spectral interferometry,” Opt Lett. 31, 2927–2929 (2006).

2005 (1)

2004 (1)

1999 (4)

G. Steinmeyer, D. H. Sutter, L. Gallmann, N. Matuschek, U. Keller, “Frontiers in ultrashort pulse generation: pushing the limits in linear and nonlinear optics,” Science 286, 1507–1512 (1999).
[Crossref]

U. Morgner, F. X. Kärtner, S. H. Cho, Y. Chen, H. A. Haus, J. G. Fujimoto, E. P. Ippen, V. Scheuer, G. Angelow, T. Tschudi, “Sub-two-cycle pulses from a Kerr-lens mode-locked Ti:sapphire laser,” Opt. Lett. 24, 411–413 (1999).
[Crossref]

H. G. Muller, “An efficient propagation scheme for the time-dependent Schrödinger equation in the velocity gauge,” Laser Phys. 9, 138–148 (1999).

S. Uemura, K. Torizuka, “Generation of 12-fs pulses from a diode-pumped Kerr-lens mode-locked Cr:LiSAF laser,” Opt. Lett. 24, 780–782 (1999).
[Crossref]

1997 (2)

D. Meshulach, Y. Barad, Y. Silberberg, “Measurement of ultrashort optical pulses by third-harmonic generation,” J. Opt. Soc. Am. B 14, 2122–2125 (1997).
[Crossref]

Y. Barad, H. Eisenberg, M. Horowitz, Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett. 70, 922–924 (1997).
[Crossref]

1996 (1)

1995 (1)

T. Y. F. Tsang, “Optical third-harmonic generation at interfaces,” Phys. Rev. A 52, 4116–4125 (1995).
[Crossref]

1994 (1)

H. Tang, K. Prasad, R. Sanjinès, P. E. Schmid, F. Lévy, “Electrical and optical properties of TiO2 anatase thin films,” J. Appl. Phys. 75, 2042–2047 (1994).
[Crossref]

1993 (1)

D. J. Kane, R. Trebino, “Characterization of arbitrary femtosecond pulses using frequency-resolved optical gating,” IEEE J. Quantum Electron. 29, 571–579 (1993).
[Crossref]

1991 (2)

D. E. Spence, P. N. Kean, W. Sibbett, “60-fsec pulse generation from a self-mode-locked Ti:sapphire laser,” Opt. Lett. 16, 42–44 (1991).
[Crossref]

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, E. W. Van Stryland, “Dispersion of bound electron nonlinear refraction in solids,” IEEE J. Quantum Electron. 27, 1296–1309 (1991).
[Crossref]

1989 (1)

1965 (1)

J. A. Nelder, R. Mead, “A simplex method for function minimization,” Computer J. 7, 308–313 (1965).

Aitchison, J. S.

Alnaser, A.

T. Paasch-Colberg, A. Schiffrin, N. Karpowicz, S. Kruchinin, Ö. Sağlam, S. Keiber, O. Razskazovskaya, S. Mühlbrandt, A. Alnaser, M. Kübel, V. Apalkov, D. Gerster, J. Reichert, T. Wittmann, J. V. Barth, M. I. Stockman, R. Ernstorfer, V. S. Yakovlev, R. Kienberger, F. Krausz, “Solid-state light-phase detector,” Nature Photon. 8, 214–218 (2014).

Amir, W.

W. Amir, T. A. Planchon, C. G. Durfee, J. A. Squier, P. Gabolde, R. Trebino, M. Müller, “Simultaneous visualization of spatial and chromatic aberrations by two-dimensional Fourier transform spectral interferometry,” Opt Lett. 31, 2927–2929 (2006).

Anderson, A.

A. Anderson, K. S. Deryckx, X. G. Xu, G. Steinmeyer, M. B. Raschke, “Few-femtosecond plasmon dephasing of a single metallic nanostructure from optical response function reconstruction by interferometric frequency resolved optical gating,” Nano Lett. 10, 2519–2524 (2010).

Angelow, G.

Apalkov, V.

T. Paasch-Colberg, A. Schiffrin, N. Karpowicz, S. Kruchinin, Ö. Sağlam, S. Keiber, O. Razskazovskaya, S. Mühlbrandt, A. Alnaser, M. Kübel, V. Apalkov, D. Gerster, J. Reichert, T. Wittmann, J. V. Barth, M. I. Stockman, R. Ernstorfer, V. S. Yakovlev, R. Kienberger, F. Krausz, “Solid-state light-phase detector,” Nature Photon. 8, 214–218 (2014).

Barad, Y.

D. Meshulach, Y. Barad, Y. Silberberg, “Measurement of ultrashort optical pulses by third-harmonic generation,” J. Opt. Soc. Am. B 14, 2122–2125 (1997).
[Crossref]

Y. Barad, H. Eisenberg, M. Horowitz, Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett. 70, 922–924 (1997).
[Crossref]

Barth, J. V.

T. Paasch-Colberg, A. Schiffrin, N. Karpowicz, S. Kruchinin, Ö. Sağlam, S. Keiber, O. Razskazovskaya, S. Mühlbrandt, A. Alnaser, M. Kübel, V. Apalkov, D. Gerster, J. Reichert, T. Wittmann, J. V. Barth, M. I. Stockman, R. Ernstorfer, V. S. Yakovlev, R. Kienberger, F. Krausz, “Solid-state light-phase detector,” Nature Photon. 8, 214–218 (2014).

Birkholz, S.

Bock, M.

Borchers, B.

Borgschulte, A.

V. Juvé, M. Holtz, F. Zamponi, M. Woerner, T. Elsaesser, A. Borgschulte, “Field-driven dynamics of correlated electrons in LiH and NaBH4 revealed by femtosecond X-ray diffraction,” Phys. Rev. Lett. 111, 217401 (2013).
[Crossref]

Bradley, J. D. B.

Brée, C.

Chang, Z.

M. Chini, K. Zhao, Z. Chang, “The generation, characterization and applications of broadband isolated attosecond pulses,” Nature Photon. 8, 178–186 (2014).

Chen, A.

A. Chen, G. Yang, H. Long, F. Li, Y. Li, P. Lu, “Nonlinear optical properties of laser deposited CuO thin films,” Thin Solid Films 517, 4277–4280 (2009).
[Crossref]

Chen, Y.

Chini, M.

M. Chini, K. Zhao, Z. Chang, “The generation, characterization and applications of broadband isolated attosecond pulses,” Nature Photon. 8, 178–186 (2014).

Cho, S. H.

Das, S. K.

DeLong, K. W.

Demircan, A.

Deryckx, K. S.

A. Anderson, K. S. Deryckx, X. G. Xu, G. Steinmeyer, M. B. Raschke, “Few-femtosecond plasmon dephasing of a single metallic nanostructure from optical response function reconstruction by interferometric frequency resolved optical gating,” Nano Lett. 10, 2519–2524 (2010).

Djurišic, A. B.

A. B. Djurišić, Y. H. Leung, “Optical properties of ZnO nanostructures,” Small 2, 944–961 (2006).
[Crossref]

Durfee, C. G.

W. Amir, T. A. Planchon, C. G. Durfee, J. A. Squier, P. Gabolde, R. Trebino, M. Müller, “Simultaneous visualization of spatial and chromatic aberrations by two-dimensional Fourier transform spectral interferometry,” Opt Lett. 31, 2927–2929 (2006).

Eisenberg, H.

Y. Barad, H. Eisenberg, M. Horowitz, Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett. 70, 922–924 (1997).
[Crossref]

Elsaesser, T.

C. Somma, K. Reimann, C. Flytzanis, T. Elsaesser, M. Woerner, “High-field terahertz bulk photovoltaic effect in lithium niobate,” Phys. Rev. Lett. 112, 146602 (2014).
[Crossref]

V. Juvé, M. Holtz, F. Zamponi, M. Woerner, T. Elsaesser, A. Borgschulte, “Field-driven dynamics of correlated electrons in LiH and NaBH4 revealed by femtosecond X-ray diffraction,” Phys. Rev. Lett. 111, 217401 (2013).
[Crossref]

S. K. Das, C. Schwanke, A. Pfuch, W. Seeber, M. Bock, G. Steinmeyer, T. Elsaesser, R. Grunwald, “Highly efficient THG in TiO2 nanolayers for third-order pulse characterization,” Opt. Express 19, 16985–16995 (2011).
[Crossref]

Ernstorfer, R.

T. Paasch-Colberg, A. Schiffrin, N. Karpowicz, S. Kruchinin, Ö. Sağlam, S. Keiber, O. Razskazovskaya, S. Mühlbrandt, A. Alnaser, M. Kübel, V. Apalkov, D. Gerster, J. Reichert, T. Wittmann, J. V. Barth, M. I. Stockman, R. Ernstorfer, V. S. Yakovlev, R. Kienberger, F. Krausz, “Solid-state light-phase detector,” Nature Photon. 8, 214–218 (2014).

Evans, C. C.

Fittinghoff, D. N.

Flytzanis, C.

C. Somma, K. Reimann, C. Flytzanis, T. Elsaesser, M. Woerner, “High-field terahertz bulk photovoltaic effect in lithium niobate,” Phys. Rev. Lett. 112, 146602 (2014).
[Crossref]

Fujimoto, J. G.

Gabolde, P.

W. Amir, T. A. Planchon, C. G. Durfee, J. A. Squier, P. Gabolde, R. Trebino, M. Müller, “Simultaneous visualization of spatial and chromatic aberrations by two-dimensional Fourier transform spectral interferometry,” Opt Lett. 31, 2927–2929 (2006).

Gallmann, L.

G. Steinmeyer, D. H. Sutter, L. Gallmann, N. Matuschek, U. Keller, “Frontiers in ultrashort pulse generation: pushing the limits in linear and nonlinear optics,” Science 286, 1507–1512 (1999).
[Crossref]

Gerster, D.

T. Paasch-Colberg, A. Schiffrin, N. Karpowicz, S. Kruchinin, Ö. Sağlam, S. Keiber, O. Razskazovskaya, S. Mühlbrandt, A. Alnaser, M. Kübel, V. Apalkov, D. Gerster, J. Reichert, T. Wittmann, J. V. Barth, M. I. Stockman, R. Ernstorfer, V. S. Yakovlev, R. Kienberger, F. Krausz, “Solid-state light-phase detector,” Nature Photon. 8, 214–218 (2014).

Grunwald, R.

Hagan, D. J.

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, E. W. Van Stryland, “Dispersion of bound electron nonlinear refraction in solids,” IEEE J. Quantum Electron. 27, 1296–1309 (1991).
[Crossref]

Haus, H. A.

Holtz, M.

V. Juvé, M. Holtz, F. Zamponi, M. Woerner, T. Elsaesser, A. Borgschulte, “Field-driven dynamics of correlated electrons in LiH and NaBH4 revealed by femtosecond X-ray diffraction,” Phys. Rev. Lett. 111, 217401 (2013).
[Crossref]

Horowitz, M.

Y. Barad, H. Eisenberg, M. Horowitz, Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett. 70, 922–924 (1997).
[Crossref]

Hutchings, D. C.

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, E. W. Van Stryland, “Dispersion of bound electron nonlinear refraction in solids,” IEEE J. Quantum Electron. 27, 1296–1309 (1991).
[Crossref]

Ippen, E. P.

Juvé, V.

V. Juvé, M. Holtz, F. Zamponi, M. Woerner, T. Elsaesser, A. Borgschulte, “Field-driven dynamics of correlated electrons in LiH and NaBH4 revealed by femtosecond X-ray diffraction,” Phys. Rev. Lett. 111, 217401 (2013).
[Crossref]

Kane, D. J.

D. J. Kane, R. Trebino, “Characterization of arbitrary femtosecond pulses using frequency-resolved optical gating,” IEEE J. Quantum Electron. 29, 571–579 (1993).
[Crossref]

Karpowicz, N.

T. Paasch-Colberg, A. Schiffrin, N. Karpowicz, S. Kruchinin, Ö. Sağlam, S. Keiber, O. Razskazovskaya, S. Mühlbrandt, A. Alnaser, M. Kübel, V. Apalkov, D. Gerster, J. Reichert, T. Wittmann, J. V. Barth, M. I. Stockman, R. Ernstorfer, V. S. Yakovlev, R. Kienberger, F. Krausz, “Solid-state light-phase detector,” Nature Photon. 8, 214–218 (2014).

Kärtner, F. X.

Kean, P. N.

Keiber, S.

T. Paasch-Colberg, A. Schiffrin, N. Karpowicz, S. Kruchinin, Ö. Sağlam, S. Keiber, O. Razskazovskaya, S. Mühlbrandt, A. Alnaser, M. Kübel, V. Apalkov, D. Gerster, J. Reichert, T. Wittmann, J. V. Barth, M. I. Stockman, R. Ernstorfer, V. S. Yakovlev, R. Kienberger, F. Krausz, “Solid-state light-phase detector,” Nature Photon. 8, 214–218 (2014).

Keller, U.

G. Steinmeyer, D. H. Sutter, L. Gallmann, N. Matuschek, U. Keller, “Frontiers in ultrashort pulse generation: pushing the limits in linear and nonlinear optics,” Science 286, 1507–1512 (1999).
[Crossref]

Kienberger, R.

T. Paasch-Colberg, A. Schiffrin, N. Karpowicz, S. Kruchinin, Ö. Sağlam, S. Keiber, O. Razskazovskaya, S. Mühlbrandt, A. Alnaser, M. Kübel, V. Apalkov, D. Gerster, J. Reichert, T. Wittmann, J. V. Barth, M. I. Stockman, R. Ernstorfer, V. S. Yakovlev, R. Kienberger, F. Krausz, “Solid-state light-phase detector,” Nature Photon. 8, 214–218 (2014).

Korbman, M.

M. Korbman, S. Y. Kruchinin, V. S. Yakovlev, “Quantum beats in the polarization response of a dielectric to intense few-cycle laser pulses,” New J. Phys. 15, 013006 (2013).
[Crossref]

Krausz, F.

T. Paasch-Colberg, A. Schiffrin, N. Karpowicz, S. Kruchinin, Ö. Sağlam, S. Keiber, O. Razskazovskaya, S. Mühlbrandt, A. Alnaser, M. Kübel, V. Apalkov, D. Gerster, J. Reichert, T. Wittmann, J. V. Barth, M. I. Stockman, R. Ernstorfer, V. S. Yakovlev, R. Kienberger, F. Krausz, “Solid-state light-phase detector,” Nature Photon. 8, 214–218 (2014).

Kruchinin, S.

T. Paasch-Colberg, A. Schiffrin, N. Karpowicz, S. Kruchinin, Ö. Sağlam, S. Keiber, O. Razskazovskaya, S. Mühlbrandt, A. Alnaser, M. Kübel, V. Apalkov, D. Gerster, J. Reichert, T. Wittmann, J. V. Barth, M. I. Stockman, R. Ernstorfer, V. S. Yakovlev, R. Kienberger, F. Krausz, “Solid-state light-phase detector,” Nature Photon. 8, 214–218 (2014).

Kruchinin, S. Y.

M. Korbman, S. Y. Kruchinin, V. S. Yakovlev, “Quantum beats in the polarization response of a dielectric to intense few-cycle laser pulses,” New J. Phys. 15, 013006 (2013).
[Crossref]

Krumbügel, M. A.

Kübel, M.

T. Paasch-Colberg, A. Schiffrin, N. Karpowicz, S. Kruchinin, Ö. Sağlam, S. Keiber, O. Razskazovskaya, S. Mühlbrandt, A. Alnaser, M. Kübel, V. Apalkov, D. Gerster, J. Reichert, T. Wittmann, J. V. Barth, M. I. Stockman, R. Ernstorfer, V. S. Yakovlev, R. Kienberger, F. Krausz, “Solid-state light-phase detector,” Nature Photon. 8, 214–218 (2014).

Leung, Y. H.

A. B. Djurišić, Y. H. Leung, “Optical properties of ZnO nanostructures,” Small 2, 944–961 (2006).
[Crossref]

Lévy, F.

H. Tang, K. Prasad, R. Sanjinès, P. E. Schmid, F. Lévy, “Electrical and optical properties of TiO2 anatase thin films,” J. Appl. Phys. 75, 2042–2047 (1994).
[Crossref]

Li, F.

A. Chen, G. Yang, H. Long, F. Li, Y. Li, P. Lu, “Nonlinear optical properties of laser deposited CuO thin films,” Thin Solid Films 517, 4277–4280 (2009).
[Crossref]

Li, Y.

A. Chen, G. Yang, H. Long, F. Li, Y. Li, P. Lu, “Nonlinear optical properties of laser deposited CuO thin films,” Thin Solid Films 517, 4277–4280 (2009).
[Crossref]

Liu, L. Y.

Long, H.

A. Chen, G. Yang, H. Long, F. Li, Y. Li, P. Lu, “Nonlinear optical properties of laser deposited CuO thin films,” Thin Solid Films 517, 4277–4280 (2009).
[Crossref]

Lu, P.

A. Chen, G. Yang, H. Long, F. Li, Y. Li, P. Lu, “Nonlinear optical properties of laser deposited CuO thin films,” Thin Solid Films 517, 4277–4280 (2009).
[Crossref]

Major, A.

Martí-Panameño, E. A.

Matuschek, N.

G. Steinmeyer, D. H. Sutter, L. Gallmann, N. Matuschek, U. Keller, “Frontiers in ultrashort pulse generation: pushing the limits in linear and nonlinear optics,” Science 286, 1507–1512 (1999).
[Crossref]

Mazur, E.

Mead, R.

J. A. Nelder, R. Mead, “A simplex method for function minimization,” Computer J. 7, 308–313 (1965).

Meshulach, D.

Morgner, U.

Mühlbrandt, S.

T. Paasch-Colberg, A. Schiffrin, N. Karpowicz, S. Kruchinin, Ö. Sağlam, S. Keiber, O. Razskazovskaya, S. Mühlbrandt, A. Alnaser, M. Kübel, V. Apalkov, D. Gerster, J. Reichert, T. Wittmann, J. V. Barth, M. I. Stockman, R. Ernstorfer, V. S. Yakovlev, R. Kienberger, F. Krausz, “Solid-state light-phase detector,” Nature Photon. 8, 214–218 (2014).

Muller, H. G.

H. G. Muller, “An efficient propagation scheme for the time-dependent Schrödinger equation in the velocity gauge,” Laser Phys. 9, 138–148 (1999).

Müller, M.

W. Amir, T. A. Planchon, C. G. Durfee, J. A. Squier, P. Gabolde, R. Trebino, M. Müller, “Simultaneous visualization of spatial and chromatic aberrations by two-dimensional Fourier transform spectral interferometry,” Opt Lett. 31, 2927–2929 (2006).

Nelder, J. A.

J. A. Nelder, R. Mead, “A simplex method for function minimization,” Computer J. 7, 308–313 (1965).

Paasch-Colberg, T.

T. Paasch-Colberg, A. Schiffrin, N. Karpowicz, S. Kruchinin, Ö. Sağlam, S. Keiber, O. Razskazovskaya, S. Mühlbrandt, A. Alnaser, M. Kübel, V. Apalkov, D. Gerster, J. Reichert, T. Wittmann, J. V. Barth, M. I. Stockman, R. Ernstorfer, V. S. Yakovlev, R. Kienberger, F. Krausz, “Solid-state light-phase detector,” Nature Photon. 8, 214–218 (2014).

Pfuch, A.

Planchon, T. A.

W. Amir, T. A. Planchon, C. G. Durfee, J. A. Squier, P. Gabolde, R. Trebino, M. Müller, “Simultaneous visualization of spatial and chromatic aberrations by two-dimensional Fourier transform spectral interferometry,” Opt Lett. 31, 2927–2929 (2006).

Prasad, K.

H. Tang, K. Prasad, R. Sanjinès, P. E. Schmid, F. Lévy, “Electrical and optical properties of TiO2 anatase thin films,” J. Appl. Phys. 75, 2042–2047 (1994).
[Crossref]

Raschke, M. B.

A. Anderson, K. S. Deryckx, X. G. Xu, G. Steinmeyer, M. B. Raschke, “Few-femtosecond plasmon dephasing of a single metallic nanostructure from optical response function reconstruction by interferometric frequency resolved optical gating,” Nano Lett. 10, 2519–2524 (2010).

Razskazovskaya, O.

T. Paasch-Colberg, A. Schiffrin, N. Karpowicz, S. Kruchinin, Ö. Sağlam, S. Keiber, O. Razskazovskaya, S. Mühlbrandt, A. Alnaser, M. Kübel, V. Apalkov, D. Gerster, J. Reichert, T. Wittmann, J. V. Barth, M. I. Stockman, R. Ernstorfer, V. S. Yakovlev, R. Kienberger, F. Krausz, “Solid-state light-phase detector,” Nature Photon. 8, 214–218 (2014).

Reichert, J.

T. Paasch-Colberg, A. Schiffrin, N. Karpowicz, S. Kruchinin, Ö. Sağlam, S. Keiber, O. Razskazovskaya, S. Mühlbrandt, A. Alnaser, M. Kübel, V. Apalkov, D. Gerster, J. Reichert, T. Wittmann, J. V. Barth, M. I. Stockman, R. Ernstorfer, V. S. Yakovlev, R. Kienberger, F. Krausz, “Solid-state light-phase detector,” Nature Photon. 8, 214–218 (2014).

Reimann, K.

C. Somma, K. Reimann, C. Flytzanis, T. Elsaesser, M. Woerner, “High-field terahertz bulk photovoltaic effect in lithium niobate,” Phys. Rev. Lett. 112, 146602 (2014).
[Crossref]

Saglam, Ö.

T. Paasch-Colberg, A. Schiffrin, N. Karpowicz, S. Kruchinin, Ö. Sağlam, S. Keiber, O. Razskazovskaya, S. Mühlbrandt, A. Alnaser, M. Kübel, V. Apalkov, D. Gerster, J. Reichert, T. Wittmann, J. V. Barth, M. I. Stockman, R. Ernstorfer, V. S. Yakovlev, R. Kienberger, F. Krausz, “Solid-state light-phase detector,” Nature Photon. 8, 214–218 (2014).

Sanjinès, R.

H. Tang, K. Prasad, R. Sanjinès, P. E. Schmid, F. Lévy, “Electrical and optical properties of TiO2 anatase thin films,” J. Appl. Phys. 75, 2042–2047 (1994).
[Crossref]

Scheuer, V.

Schiffrin, A.

T. Paasch-Colberg, A. Schiffrin, N. Karpowicz, S. Kruchinin, Ö. Sağlam, S. Keiber, O. Razskazovskaya, S. Mühlbrandt, A. Alnaser, M. Kübel, V. Apalkov, D. Gerster, J. Reichert, T. Wittmann, J. V. Barth, M. I. Stockman, R. Ernstorfer, V. S. Yakovlev, R. Kienberger, F. Krausz, “Solid-state light-phase detector,” Nature Photon. 8, 214–218 (2014).

Schmid, P. E.

H. Tang, K. Prasad, R. Sanjinès, P. E. Schmid, F. Lévy, “Electrical and optical properties of TiO2 anatase thin films,” J. Appl. Phys. 75, 2042–2047 (1994).
[Crossref]

Schwanke, C.

Seeber, W.

Sheik-Bahae, M.

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, E. W. Van Stryland, “Dispersion of bound electron nonlinear refraction in solids,” IEEE J. Quantum Electron. 27, 1296–1309 (1991).
[Crossref]

Sibbett, W.

Silberberg, Y.

D. Meshulach, Y. Barad, Y. Silberberg, “Measurement of ultrashort optical pulses by third-harmonic generation,” J. Opt. Soc. Am. B 14, 2122–2125 (1997).
[Crossref]

Y. Barad, H. Eisenberg, M. Horowitz, Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett. 70, 922–924 (1997).
[Crossref]

Smith, P. W. E.

Somma, C.

C. Somma, K. Reimann, C. Flytzanis, T. Elsaesser, M. Woerner, “High-field terahertz bulk photovoltaic effect in lithium niobate,” Phys. Rev. Lett. 112, 146602 (2014).
[Crossref]

Sorokin, E.

Sorokina, I. T.

Spence, D. E.

Squier, J. A.

W. Amir, T. A. Planchon, C. G. Durfee, J. A. Squier, P. Gabolde, R. Trebino, M. Müller, “Simultaneous visualization of spatial and chromatic aberrations by two-dimensional Fourier transform spectral interferometry,” Opt Lett. 31, 2927–2929 (2006).

Steinmeyer, G.

B. Borchers, C. Brée, S. Birkholz, A. Demircan, G. Steinmeyer, “Saturation of the all-optical Kerr effect in solids,” Opt. Lett. 37, 1541–1543 (2012).
[Crossref]

S. K. Das, C. Schwanke, A. Pfuch, W. Seeber, M. Bock, G. Steinmeyer, T. Elsaesser, R. Grunwald, “Highly efficient THG in TiO2 nanolayers for third-order pulse characterization,” Opt. Express 19, 16985–16995 (2011).
[Crossref]

A. Anderson, K. S. Deryckx, X. G. Xu, G. Steinmeyer, M. B. Raschke, “Few-femtosecond plasmon dephasing of a single metallic nanostructure from optical response function reconstruction by interferometric frequency resolved optical gating,” Nano Lett. 10, 2519–2524 (2010).

G. Stibenz, G. Steinmeyer, “Interferometric frequency-resolved optical gating,” Opt. Express 13, 2617–2626 (2005).
[Crossref]

G. Steinmeyer, D. H. Sutter, L. Gallmann, N. Matuschek, U. Keller, “Frontiers in ultrashort pulse generation: pushing the limits in linear and nonlinear optics,” Science 286, 1507–1512 (1999).
[Crossref]

Stibenz, G.

Stockman, M. I.

T. Paasch-Colberg, A. Schiffrin, N. Karpowicz, S. Kruchinin, Ö. Sağlam, S. Keiber, O. Razskazovskaya, S. Mühlbrandt, A. Alnaser, M. Kübel, V. Apalkov, D. Gerster, J. Reichert, T. Wittmann, J. V. Barth, M. I. Stockman, R. Ernstorfer, V. S. Yakovlev, R. Kienberger, F. Krausz, “Solid-state light-phase detector,” Nature Photon. 8, 214–218 (2014).

Sutter, D. H.

G. Steinmeyer, D. H. Sutter, L. Gallmann, N. Matuschek, U. Keller, “Frontiers in ultrashort pulse generation: pushing the limits in linear and nonlinear optics,” Science 286, 1507–1512 (1999).
[Crossref]

Tang, H.

H. Tang, K. Prasad, R. Sanjinès, P. E. Schmid, F. Lévy, “Electrical and optical properties of TiO2 anatase thin films,” J. Appl. Phys. 75, 2042–2047 (1994).
[Crossref]

Tolstik, N.

Torizuka, K.

Trebino, R.

W. Amir, T. A. Planchon, C. G. Durfee, J. A. Squier, P. Gabolde, R. Trebino, M. Müller, “Simultaneous visualization of spatial and chromatic aberrations by two-dimensional Fourier transform spectral interferometry,” Opt Lett. 31, 2927–2929 (2006).

T. Tsang, M. A. Krumbügel, K. W. DeLong, D. N. Fittinghoff, R. Trebino, “Frequency-resolved optical-gating measurements of ultrashort pulses using surface third-harmonic generation,” Opt. Lett. 21, 1381–1383 (1996).
[Crossref]

D. J. Kane, R. Trebino, “Characterization of arbitrary femtosecond pulses using frequency-resolved optical gating,” IEEE J. Quantum Electron. 29, 571–579 (1993).
[Crossref]

R. Trebino, Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses (Kluwer, 2002).

Tsang, T.

Tsang, T. Y. F.

T. Y. F. Tsang, “Optical third-harmonic generation at interfaces,” Phys. Rev. A 52, 4116–4125 (1995).
[Crossref]

Tschudi, T.

Uemura, S.

Van Stryland, E. W.

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, E. W. Van Stryland, “Dispersion of bound electron nonlinear refraction in solids,” IEEE J. Quantum Electron. 27, 1296–1309 (1991).
[Crossref]

Wittmann, T.

T. Paasch-Colberg, A. Schiffrin, N. Karpowicz, S. Kruchinin, Ö. Sağlam, S. Keiber, O. Razskazovskaya, S. Mühlbrandt, A. Alnaser, M. Kübel, V. Apalkov, D. Gerster, J. Reichert, T. Wittmann, J. V. Barth, M. I. Stockman, R. Ernstorfer, V. S. Yakovlev, R. Kienberger, F. Krausz, “Solid-state light-phase detector,” Nature Photon. 8, 214–218 (2014).

Woerner, M.

C. Somma, K. Reimann, C. Flytzanis, T. Elsaesser, M. Woerner, “High-field terahertz bulk photovoltaic effect in lithium niobate,” Phys. Rev. Lett. 112, 146602 (2014).
[Crossref]

V. Juvé, M. Holtz, F. Zamponi, M. Woerner, T. Elsaesser, A. Borgschulte, “Field-driven dynamics of correlated electrons in LiH and NaBH4 revealed by femtosecond X-ray diffraction,” Phys. Rev. Lett. 111, 217401 (2013).
[Crossref]

Xu, X. G.

A. Anderson, K. S. Deryckx, X. G. Xu, G. Steinmeyer, M. B. Raschke, “Few-femtosecond plasmon dephasing of a single metallic nanostructure from optical response function reconstruction by interferometric frequency resolved optical gating,” Nano Lett. 10, 2519–2524 (2010).

Yakovlev, V. S.

T. Paasch-Colberg, A. Schiffrin, N. Karpowicz, S. Kruchinin, Ö. Sağlam, S. Keiber, O. Razskazovskaya, S. Mühlbrandt, A. Alnaser, M. Kübel, V. Apalkov, D. Gerster, J. Reichert, T. Wittmann, J. V. Barth, M. I. Stockman, R. Ernstorfer, V. S. Yakovlev, R. Kienberger, F. Krausz, “Solid-state light-phase detector,” Nature Photon. 8, 214–218 (2014).

M. Korbman, S. Y. Kruchinin, V. S. Yakovlev, “Quantum beats in the polarization response of a dielectric to intense few-cycle laser pulses,” New J. Phys. 15, 013006 (2013).
[Crossref]

Yang, G.

A. Chen, G. Yang, H. Long, F. Li, Y. Li, P. Lu, “Nonlinear optical properties of laser deposited CuO thin films,” Thin Solid Films 517, 4277–4280 (2009).
[Crossref]

Yoshino, F.

Zamponi, F.

V. Juvé, M. Holtz, F. Zamponi, M. Woerner, T. Elsaesser, A. Borgschulte, “Field-driven dynamics of correlated electrons in LiH and NaBH4 revealed by femtosecond X-ray diffraction,” Phys. Rev. Lett. 111, 217401 (2013).
[Crossref]

Zhao, H.

Zhao, K.

M. Chini, K. Zhao, Z. Chang, “The generation, characterization and applications of broadband isolated attosecond pulses,” Nature Photon. 8, 178–186 (2014).

Appl. Phys. Lett. (1)

Y. Barad, H. Eisenberg, M. Horowitz, Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett. 70, 922–924 (1997).
[Crossref]

Computer J. (1)

J. A. Nelder, R. Mead, “A simplex method for function minimization,” Computer J. 7, 308–313 (1965).

IEEE J. Quantum Electron. (2)

D. J. Kane, R. Trebino, “Characterization of arbitrary femtosecond pulses using frequency-resolved optical gating,” IEEE J. Quantum Electron. 29, 571–579 (1993).
[Crossref]

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, E. W. Van Stryland, “Dispersion of bound electron nonlinear refraction in solids,” IEEE J. Quantum Electron. 27, 1296–1309 (1991).
[Crossref]

J. Appl. Phys. (1)

H. Tang, K. Prasad, R. Sanjinès, P. E. Schmid, F. Lévy, “Electrical and optical properties of TiO2 anatase thin films,” J. Appl. Phys. 75, 2042–2047 (1994).
[Crossref]

J. Opt. Soc. Am. B (2)

Laser Phys. (1)

H. G. Muller, “An efficient propagation scheme for the time-dependent Schrödinger equation in the velocity gauge,” Laser Phys. 9, 138–148 (1999).

Nano Lett. (1)

A. Anderson, K. S. Deryckx, X. G. Xu, G. Steinmeyer, M. B. Raschke, “Few-femtosecond plasmon dephasing of a single metallic nanostructure from optical response function reconstruction by interferometric frequency resolved optical gating,” Nano Lett. 10, 2519–2524 (2010).

Nature Photon. (2)

T. Paasch-Colberg, A. Schiffrin, N. Karpowicz, S. Kruchinin, Ö. Sağlam, S. Keiber, O. Razskazovskaya, S. Mühlbrandt, A. Alnaser, M. Kübel, V. Apalkov, D. Gerster, J. Reichert, T. Wittmann, J. V. Barth, M. I. Stockman, R. Ernstorfer, V. S. Yakovlev, R. Kienberger, F. Krausz, “Solid-state light-phase detector,” Nature Photon. 8, 214–218 (2014).

M. Chini, K. Zhao, Z. Chang, “The generation, characterization and applications of broadband isolated attosecond pulses,” Nature Photon. 8, 178–186 (2014).

New J. Phys. (1)

M. Korbman, S. Y. Kruchinin, V. S. Yakovlev, “Quantum beats in the polarization response of a dielectric to intense few-cycle laser pulses,” New J. Phys. 15, 013006 (2013).
[Crossref]

Opt Lett. (1)

W. Amir, T. A. Planchon, C. G. Durfee, J. A. Squier, P. Gabolde, R. Trebino, M. Müller, “Simultaneous visualization of spatial and chromatic aberrations by two-dimensional Fourier transform spectral interferometry,” Opt Lett. 31, 2927–2929 (2006).

Opt. Express (4)

Opt. Lett. (7)

Phys. Rev. A (1)

T. Y. F. Tsang, “Optical third-harmonic generation at interfaces,” Phys. Rev. A 52, 4116–4125 (1995).
[Crossref]

Phys. Rev. Lett. (2)

V. Juvé, M. Holtz, F. Zamponi, M. Woerner, T. Elsaesser, A. Borgschulte, “Field-driven dynamics of correlated electrons in LiH and NaBH4 revealed by femtosecond X-ray diffraction,” Phys. Rev. Lett. 111, 217401 (2013).
[Crossref]

C. Somma, K. Reimann, C. Flytzanis, T. Elsaesser, M. Woerner, “High-field terahertz bulk photovoltaic effect in lithium niobate,” Phys. Rev. Lett. 112, 146602 (2014).
[Crossref]

Science (1)

G. Steinmeyer, D. H. Sutter, L. Gallmann, N. Matuschek, U. Keller, “Frontiers in ultrashort pulse generation: pushing the limits in linear and nonlinear optics,” Science 286, 1507–1512 (1999).
[Crossref]

Small (1)

A. B. Djurišić, Y. H. Leung, “Optical properties of ZnO nanostructures,” Small 2, 944–961 (2006).
[Crossref]

Thin Solid Films (1)

A. Chen, G. Yang, H. Long, F. Li, Y. Li, P. Lu, “Nonlinear optical properties of laser deposited CuO thin films,” Thin Solid Films 517, 4277–4280 (2009).
[Crossref]

Other (1)

R. Trebino, Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses (Kluwer, 2002).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Experimental setup. Few-cycle Ti:sapphire pulse is split into two replicas, one of which experiences an adjustable delay in a Michelson interferometer. After collinear recombination of the replicas, the pulses are focused onto a sample (SiO2, TiO2) for the generation of the third harmonic. After suppressing fundamental light with a shortpass filter, the TH light is spectrally dispersed in a spectrometer. Light is detected with an intensified CCD camera. Resulting interferometric FROG traces exhibit interference patterns at the fundamental wavelength and its harmonics; see inset.

Fig. 2.
Fig. 2.

Experimental results; (a)–(d) as measured with SiO2; (e–h) as measured with TiO2; (a and e) originally measured interferometric TH FROG traces. Experimental conditions are identical except for the nonlinear material; (b and f) resulting base bands obtained by Fourier filtering. Fringe frequencies higher than 0.5λ01 are suppressed (λ0=780nm); (c and g) fundamental modulation side band at fringe frequency λ01. Frequencies below 0.5λ01 and above 1.5λ01 have been suppressed. Squared moduli of the rapidly oscillating fields are shown, i.e., intensities; (d and h) retrieved intensities (blue lines) and phases (dashed green lines). Error bars have been computed from the standard deviation of several independent retrievals.

Fig. 3.
Fig. 3.

Deconvolution analysis; (a) solid red curve, measured intensity profile using TiO2; dashed blue curve, same using SiO2; dashed–dotted black curve, single-sided exponential convolution kernel R(t), cf. Eq. (2). 1/e polarization decay time is 6.5 fs; (b) solid red curve, same as in (a); dashed black curve, convolved silica trace ISiO2*R yielding the best agreement with ITiO2 in the range from 10 to 10 fs.

Fig. 4.
Fig. 4.

Solutions of the TDSE for TiO2; (a) nonlinear phase response of the polarization at the fundamental frequency ω0 for intensities from 0.1 to 1TW/cm2 (step size 0.1TW/cm2); (b) same for the modulus of the polarization at 3ω0; (c) extracted polarization decay times τpol from (a) and (b) using the deconvolution approach.

Fig. 5.
Fig. 5.

Solutions of the TDSE; (a) computed polarization response for SiO2. Intensity 1TW/cm2; (b) same for TiO2; (c) temporally gated spectrograms of the polarization for TiO2. Resonant behavior is clearly identified by a lasting response at a given frequency; (d) spectrally resolved interband (green curve) and intraband (blue curve) current densities [23,24]. Intraband currents mostly originate from the first and second conduction bands. Positions of fundamental and all odd harmonics are indicated by dashed red lines. Interband contributions to the observed nonlinearities clearly overrule intraband effects; (e) deconvolution analysis. Simulated intensity profile |ETHG(t)|2 for use of SiO2 (blue) is compared to TiO2 (red). Convolving the titania profile with a single-sided exponential with relaxation time constant τpol=8fs yields a good approximation to the TiO2 profile for t=10 to +10fs. (f) systematic scan of excitation wavelength with subsequent deconvolution analysis. Resulting τpol shows a strong reaction to an overlap of the third harmonic of the excitation wavelength with various conduction bands. Third harmonic of the excitation wavelength is in resonance with the second conduction band of TiO2. Pink band indicates the central excitation wavelength.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ITHIFROG(ω,τ)|+(E(t)+E(tτ))3exp(iωt)dt|2,
ε(t)=|ITiO2(t)0ISiO2(tt)R(t)dt|2,
itψk(t)=(H0+emeA(t))ψk(t),
U(r)=n=c1(tanh2(c2(r+na))1)+c3(tanh4(c2(r+na))1).

Metrics