Abstract

Eye models are valuable tools that can help delineate the role of anatomical parameters on visual performance and guide the design of advanced ophthalmic instrumentation. We propose an optically accurate wide-field schematic eye that reproduces the complete aberration profile of the human eye across a wide visual field. The optical performance of the schematic eye is based on experimentally measured wavefront aberrations taken with a four mm pupil for the central 80° of the horizontal meridian (101 eyes) and 50° of the vertical meridian (10 eyes). Across the entire field of view, our model shows excellent agreement with the measured data both comprehensively and for low-order and high-order aberrations. In comparison to previous eye models, our schematic eye excels at reproducing the aberrations of the retinal periphery. Also unlike previous models, tilt and decentering of the gradient refractive index crystalline lens, which arose naturally through the optimization process, permits our model to mimic the asymmetries of real human eyes while remaining both anatomically and optically correct. Finally, we outline a robust reverse building eye modeling technique that is capable of predicting trends beyond those defined explicitly in the optimization routine. Our proposed model may aid in the design of wide-field imaging instrumentation, including optical coherence tomography, scanning laser ophthalmoscopy, fluorescence imaging, and fundus photography, and it has the potential to provide further insights in the study and understanding of the peripheral optics of the human eye.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Wide-field schematic eye models with gradient-index lens

Alexander V. Goncharov and Chris Dainty
J. Opt. Soc. Am. A 24(8) 2157-2174 (2007)

Modeling the eye’s optical system by ocular wavefront tomography

Xin Wei and Larry Thibos
Opt. Express 16(25) 20490-20502 (2008)

Off-axis aberrations of a wide-angle schematic eye model

Isabel Escudero-Sanz and Rafael Navarro
J. Opt. Soc. Am. A 16(8) 1881-1891 (1999)

References

  • View by:
  • |
  • |
  • |

  1. P. Artal, J. Tabernero, “The eye’s aplanatic answer,” Nat. Photonics 2, 586–589 (2008).
    [Crossref]
  2. P. Artal, “Optics of the eye and its impact in vision: a tutorial,” Adv. Opt. Photon. 6, 340–367 (2014).
  3. P. G. Gobbi, F. Carones, R. Brancato, “Optical eye model for photo-refractive surgery evaluation,” Proc. SPIE 3591, 10–21 (1999).
  4. E. O. Curatu, G. H. Pettit, J. A. Campin, “Customized schematic eye model for refraction correction design based on ocular wavefront and corneal topography measurements,” Proc. SPIE 4611, 165–175 (2002).
  5. J. Tabernero, P. Piers, A. Benito, M. Redondo, P. Artal, “Predicting the optical performance of eyes implanted with IOLs to correct spherical aberration,” Invest. Ophthalmol. Vis. Sci. 47, 4651–4658 (2006).
  6. S. Norrby, P. Piers, C. Campbell, M. D. van der Mooren, “Model eyes for evaluation of intraocular lenses,” Appl. Opt. 46, 6595–6605 (2007).
    [Crossref]
  7. D. A. Atchison, E. L. Markwell, S. Kasthurirangan, J. M. Pope, G. Smith, P. G. Swann, “Age-related changes in optical and biometric characteristics of emmetropic eyes,” J. Vis. 8(4):29, 1–20 (2008).
  8. D. A. Atchison, “Optical models for human myopic eyes,” Vis. Res. 46, 2236–2250 (2006).
    [Crossref]
  9. J. W. Blaker, “A comprehensive model of the aging, accommodating adult eye,” in Technical Digest on Ophthalmic and Visual Optics, (Optical Society of America, 1991), Vol. 2, pp. 28–31.
  10. K. Zadnik, R. E. Manny, J. A. Yu, G. L. Mitchell, S. A. Cotter, J. C. Quiralte, M. D. Shipp, N. E. Friedman, R. N. Kleinstein, T. W. Walker, L. A. Jones, M. L. Moeschberger, D. O. Mutti, C. L. Evaluti, “Ocular component data in schoolchildren as a function of age and gender,” Optom. Vis. Sci. 80, 226–236 (2003).
  11. D. A. Atchison, N. Pritchard, S. D. White, A. M. Griffiths, “Influence of age on peripheral refraction,” Vis. Res. 45, 715–720 (2005).
    [Crossref]
  12. J. S. McLellan, S. Marcos, S. A. Burns, “Age-related changes in monochromatic wave aberrations of the human eye,” Invest. Ophthalmol. Vis. Sci. 42, 1390–1395 (2001).
  13. K. Ninn-Pedersen, “Relationships between preoperative astigmatism and corneal optical power, axial length, intraocular pressure, gender, and patient age,” J. Refract. Surg. 12, 472–482 (1996).
  14. R. Navarro, J. Santamaria, J. Bescos, “Accommodation-dependent model of the human-eye with aspherics,” J. Opt. Soc. Am. A 2, 1273–1281 (1985).
    [Crossref]
  15. L. Lundstrom, A. Mira-Agudelo, P. Artal, “Peripheral optical errors and their change with accommodation differ between emmetropic and myopic eyes,” J. Vis. 9(6):17, 1–11 (2009).
  16. M. M. Kong, Z. S. Gao, X. H. Li, S. H. Ding, X. M. Qu, M. Q. Yu, “A generic eye model by reverse building based on Chinese population,” Opt. Express 17, 13283–13297 (2009).
    [Crossref]
  17. J. C. He, S. A. Burns, S. Marcos, “Monochromatic aberrations in the accommodated human eye,” Vis. Res. 40, 41–48 (2000).
    [Crossref]
  18. A. Popiolek-Masajada, H. Kasprzak, “Model of the optical system of the human eye during accommodation,” Ophthal. Phys. Opt. 22, 201–208 (2002).
  19. D. A. Atchison, N. Pritchard, K. L. Schmid, “Peripheral refraction along the horizontal and vertical visual fields in myopia,” Vis. Res. 46, 1450–1458 (2006).
    [Crossref]
  20. J. Hoogerheide, F. Rempt, W. G. H. Hoogenboom, “Acquired myopia in young pilots,” Ophthalmologica 163, 209–215 (1971).
    [Crossref]
  21. E. L. Smith, C. S. Kee, R. Ramamirtham, Y. Qiao-Grider, L. F. Hung, “Peripheral vision can influence eye growth and refractive development in infant monkeys,” Invest. Ophthalmol. Vis. Sci. 46, 3965–3972 (2005).
  22. F. LaRocca, A. H. Dhalla, M. P. Kelly, S. Farsiu, J. A. Izatt, “Optimization of confocal scanning laser ophthalmoscope design,” J. Biomed. Opt. 18, 076015 (2013).
    [Crossref]
  23. F. LaRocca, D. Nankivil, S. Farsiu, J. A. Izatt, “Handheld simultaneous scanning laser ophthalmoscopy and optical coherence tomography system,” Biomed. Opt. Express 4, 2307–2321 (2013).
    [Crossref]
  24. D. R. Williams, P. Artal, R. Navarro, M. J. McMahon, D. H. Brainard, “Off-axis optical quality and retinal sampling in the human eye,” Vis. Res. 36, 1103–1114 (1996).
    [Crossref]
  25. R. Navarro, E. Moreno, C. Dorronsoro, “Monochromatic aberrations and point-spread functions of the human eye across the visual field,” J. Opt. Soc. Am. A 15, 2522–2529 (1998).
    [Crossref]
  26. A. Guirao, P. Artal, “Off-axis monochromatic aberrations estimated from double pass measurements in the human eye,” Vis. Res. 39, 207–217 (1999).
    [Crossref]
  27. D. A. Atchison, D. H. Scott, “Monochromatic aberrations of human eyes in the horizontal visual field,” J. Opt. Soc. Am. A 19, 2180–2184 (2002).
    [Crossref]
  28. B. Jaeken, P. Artal, “Optical quality of emmetropic and myopic eyes in the periphery measured with high-angular resolution,” Investig. Ophthalmol. Vis. Sci. 53, 3405–3413 (2012).
  29. E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, J. G. Fujimoto, “In-vivo retinal imaging by optical coherence tomography,” Opt. Lett. 18, 1864–1866 (1993).
    [Crossref]
  30. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
    [Crossref]
  31. J. J. Hunter, B. Masella, A. Dubra, R. Sharma, L. Yin, W. H. Merigan, G. Palczewska, K. Palczewski, D. R. Williams, “Images of photoreceptors in living primate eyes using adaptive optics two-photon ophthalmoscopy,” Biomed. Opt. Express 2, 139–148 (2011).
    [Crossref]
  32. G. Palczewska, T. Maeda, Y. Imanishi, W. Y. Sun, Y. Chen, D. R. Williams, D. W. Piston, A. Maeda, K. Palczewski, “Noninvasive multiphoton fluorescence microscopy resolves retinol and retinal condensation products in mouse eyes,” Nat. Med. 16, 1444–1449 (2010).
    [Crossref]
  33. M. M. Wessel, G. D. Aaker, G. Parlitsis, M. Cho, D. J. D’Amico, S. Kiss, “Ultra-wide-field angiography improves the detection and classification of diabetic retinopathy,” Retina 32, 785–791 (2012).
    [Crossref]
  34. A. Manivannan, J. Plskova, A. Farrow, S. McKay, P. F. Sharp, J. V. Forrester, “Ultra-wide-field fluorescein angiography of the ocular fundus,” Am. J. Ophthalmol. 140, 525–527 (2005).
  35. S. Nakao, R. Arita, T. Nakama, H. Yoshikawa, S. Yoshida, H. Enaida, A. Hafezi-Moghadam, T. Matsui, T. Ishibashi, “Wide-field laser ophthalmoscopy for mice: a novel evaluation system for retinal/choroidal angiogenesis in mice,” Investig. Ophthalmol. Vis. Sci. 54, 5288–5293 (2013).
  36. P. Artal, J. Tabernero, “Optics of human eye: 400 years of exploration from Galileo’s time,” Appl. Opt. 49, D123–D130 (2010).
    [Crossref]
  37. A. Gullstrand, von Helmholtz Handbuch der Physiologischen Optik, 3rd ed., Appendix II and IV (Voss, 1909), Vol. 1, pp. 382–415.
  38. Y. Le Grand, Optique Physiologique I (Editions de la Revue d’Optique, 1953), Vol. 52.
  39. H. Emsley, Visual Optics (Butterworth, 1962), Vol. 40–42, pp. 460–461.
  40. W. Lotmar, “Theoretical eye model with aspherics,” J. Opt. Soc. Am. 61, 1522–1529 (1971).
    [Crossref]
  41. A. C. Kooijman, “Light-distribution on the retina of a wide-angle theoretical eye,” J. Opt. Soc. Am. 73, 1544–1550 (1983).
    [Crossref]
  42. O. Pomerantzeff, M. Pankratov, G. J. Wang, P. Dufault, “Wide-angle optical-model of the eye,” Am. J. Optom. Physiol. Opt. 61, 166–176 (1984).
  43. J. W. Blaker, “Toward an adaptive model of the human-eye,” J. Opt. Soc. Am. 70, 220–223 (1980).
    [Crossref]
  44. L. N. Thibos, M. Ye, X. X. Zhang, A. Bradley, “The chromatic eye: a new reduced-eye model of ocular chromatic aberration in humans,” Appl. Opt. 31, 3594–3600 (1992).
    [Crossref]
  45. M. Ye, X. X. Zhang, L. Thibos, A. Bradley, “A new single-surface model eye that accurately predicts chromatic and spherical aberrations of the human eye,” Investig. Ophthalmol. Vis. Sci. 34, 774–777 (1993).
  46. H. L. Liou, N. A. Brennan, “Anatomically accurate, finite model eye for optical modeling,” J. Opt. Soc. Am. A 14, 1684–1695 (1997).
    [Crossref]
  47. I. Escudero-Sanz, R. Navarro, “Off-axis aberrations of a wide-angle schematic eye model,” J. Opt. Soc. Am. A 16, 1881–1891 (1999).
    [Crossref]
  48. R. Navarro, L. Gonzalez, J. L. Hernandez-Matamoros, “On the prediction of optical aberrations by personalized eye models,” Optom. Vis. Sci. 83, 371–381 (2006).
  49. P. Rosales, S. Marcos, “Customized computer models of eyes with intraocular lenses,” Opt. Express 15, 2204–2218 (2007).
    [Crossref]
  50. A. V. Goncharov, C. Dainty, “Wide-field schematic eye models with gradient-index lens,” J. Opt. Soc. Am. A 24, 2157–2174 (2007).
    [Crossref]
  51. L. N. Thibos, M. Ye, X. X. Zhang, A. Bradley, “Spherical aberration of the reduced schematic eye with elliptical refracting surface,” Optom. Vis. Sci. 74, 548–556 (1997).
  52. J. A. Diaz, C. Pizarro, J. Arasa, “Single dispersive gradient-index profile for the aging human lens,” J. Opt. Soc. Am. A 25, 250–261 (2008).
    [Crossref]
  53. G. Smith, P. Bedggood, R. Ashman, M. Daaboul, A. Metha, “Exploring ocular aberrations with a schematic human eye model,” Optom. Vis. Sci. 85, 330–340 (2008).
  54. C. E. Campbell, “Nested shell optical model of the lens of the human eye,” J. Opt. Soc. Am. A 27, 2432–2441 (2010).
    [Crossref]
  55. Y. L. Chen, L. Shi, J. W. L. Lewis, M. Wang, “Normal and diseased personal eye modeling using age-appropriate lens parameters,” Opt. Express 20, 12498–12507 (2012).
    [Crossref]
  56. J. Santamaria, P. Artal, J. Bescos, “Determination of the point-spread function of human eyes using a hybrid optical-digital method,” J. Opt. Soc. Am. A 4, 1109–1114 (1987).
    [Crossref]
  57. R. Navarro, M. A. Losada, “Aberrations and relative efficiency of light pencils in the living human eye,” Optom. Vis. Sci. 74, 540–547 (1997).
  58. W. Lotmar, T. Lotmar, “Peripheral astigmatism in human eye: experimental-data and theoretical model predictions,” J. Opt. Soc. Am. 64, 510–513 (1974).
    [Crossref]
  59. R. Navarro, P. Artal, D. R. Williams, “Modulation transfer of the human eye as a function of retinal eccentricity,” J. Opt. Soc. Am. A 10, 201–212 (1993).
    [Crossref]
  60. J. Gustafsson, E. Terenius, J. Buchheister, P. Unsbo, “Peripheral astigmatism in emmetropic eyes,” Ophthal. Physiol. Opt. 21, 393–400 (2001).
  61. D. A. Atchison, D. H. Scott, W. N. Charman, “Hartmann–Shack technique and refraction across the horizontal visual field,” J. Opt. Soc. Am. A 20, 965–973 (2003).
    [Crossref]
  62. L. Lundstrom, P. Unsbo, J. Gustafsson, “Off-axis wave front measurements for optical correction in eccentric viewing,” J. Biomed. Opt. 10, 034002 (2005).
    [Crossref]
  63. Y. Benny, S. Manzanera, P. M. Prieto, E. N. Ribak, P. Artal, “Wide-angle chromatic aberration corrector for the human eye,” J. Opt. Soc. Am. A 24, 1538–1544 (2007).
    [Crossref]
  64. C. Fedtke, K. Ehrmann, B. A. Holden, “A review of peripheral refraction techniques,” Optom. Vis. Sci. 86, 429–446 (2009).
  65. X. Wei, L. Thibos, “Design and validation of a scanning Shack Hartmann aberrometer for measurements of the eye over a wide field of view,” Opt. Express 18, 1134–1143 (2010).
    [Crossref]
  66. J. Z. Liang, B. Grimm, S. Goelz, J. F. Bille, “Objective measurement of wave aberrations of the human eye with the use of a Hartmann-Shack wave-front sensor,” J. Opt. Soc. Am. A 11, 1949–1957 (1994).
    [Crossref]
  67. P. M. Prieto, F. Vargas-Martin, S. Goelz, P. Artal, “Analysis of the performance of the Hartmann-Shack sensor in the human eye,” J. Opt. Soc. Am. A 17, 1388–1398 (2000).
    [Crossref]
  68. J. Z. Liang, D. R. Williams, “Aberrations and retinal image quality of the normal human eye,” J. Opt. Soc. Am. A 14, 2873–2883 (1997).
    [Crossref]
  69. B. Jaeken, L. Lundstrom, P. Artal, “Fast scanning peripheral wave-front sensor for the human eye,” Opt. Express 19, 7903–7913 (2011).
    [Crossref]
  70. R. C. Bakaraju, K. Ehrmann, E. Papas, A. Ho, “Finite schematic eye models and their accuracy to in-vivo data,” Vis. Res. 48, 1681–1694 (2008).
    [Crossref]
  71. X. Wei, L. Thibos, “Modeling the eye’s optical system by ocular wavefront tomography,” Opt. Express 16, 20490–20502 (2008).
    [Crossref]
  72. L. Lundstrom, J. Gustafsson, P. Unsbo, “Population distribution of wavefront aberrations in the peripheral human eye,” J. Opt. Soc. Am. A 26, 2192–2198 (2009).
    [Crossref]
  73. D. A. Atchison, G. Smith, “Chromatic dispersions of the ocular media of human eyes,” J. Opt. Soc. Am. A 22, 29–37 (2005).
    [Crossref]
  74. B. Jaeken, L. Lundstrom, P. Artal, “Peripheral aberrations in the human eye for different wavelengths: off-axis chromatic aberration,” J. Opt. Soc. Am. A 28, 1871–1879 (2011).
    [Crossref]
  75. J. J. Rozema, D. A. Atchison, M. J. Tassignon, “Statistical eye model for normal eyes,” Investig. Ophthalmol. Vis. Sci. 52, 4525–4533 (2011).
  76. J. A. Sakamoto, H. H. Barrett, A. V. Goncharov, “Inverse optical design of the human eye using likelihood methods and wavefront sensing,” Opt. Express 16, 304–314 (2008).
    [Crossref]
  77. A. V. Goncharov, M. Nowakowski, M. T. Sheehan, C. Dainty, “Reconstruction of the optical system of the human eye with reverse ray-tracing,” Opt. Express 16, 1692–1703 (2008).
    [Crossref]
  78. N. Asano-Kato, I. Toda, C. Sakai, Y. Hori-Komai, Y. Takano, M. Dogru, K. Tsubota, “Pupil decentration and iris tilting detected by Orbscan: anatomic variations among healthy subjects and influence on outcomes of laser refractive surgeries,” J. Cataract Refract. Surg. 31, 1938–1942 (2005).
  79. D. A. Atchison, C. E. Jones, K. L. Schmid, N. Pritchard, J. M. Pope, W. E. Strugnell, R. A. Riley, “Eye shape in emmetropia and myopia,” Investig. Ophthalmol. Vis. Sci. 45, 3380–3386 (2004).
  80. D. A. Atchison, N. Pritchard, K. L. Schmid, D. H. Scott, C. E. Jones, J. M. Pope, “Shape of the retinal surface in emmetropia and myopia,” Invest. Ophthalmol. Vis. Sci. 46, 2698–2707 (2005).
  81. Y. Chang, H. M. Wu, Y. F. Lin, “The axial misalignment between ocular lens and cornea observed by MRI (I): at fixed accommodative state,” Vis. Res. 47, 71–84 (2007).
    [Crossref]
  82. F. Schaeffel, “Binocular lens tilt and decentration measurements in healthy subjects with phakic eyes,” Investig. Ophthalmol. Vis. Sci. 49, 2216–2222 (2008).
  83. P. Rosales, S. Marcos, “Phakometry and lens tilt and decentration using a custom-developed Purkinje imaging apparatus: validation and measurements,” J. Opt. Soc. Am. A 23, 509–520 (2006).
    [Crossref]
  84. J. Tabernero, A. Benito, V. Nourrit, P. Artal, “Instrument for measuring the misalignments of ocular surfaces,” Opt. Express 14, 10945–10956 (2006).
    [Crossref]
  85. C. E. Jones, D. A. Atchison, R. Meder, J. M. Pope, “Refractive index distribution and optical properties of the isolated human lens measured using magnetic resonance imaging (MRI),” Vis. Res. 45, 2352–2366 (2005).
    [Crossref]
  86. L. N. Thibos, X. Hong, A. Bradley, X. Cheng, “Statistical variation of aberration structure and image quality in a normal population of healthy eyes,” J. Opt. Soc. Am. A 19, 2329–2348 (2002).
    [Crossref]
  87. J. Porter, A. Guirao, I. G. Cox, D. R. Williams, “Monochromatic aberrations of the human eye in a large population,” J. Opt. Soc. Am. A 18, 1793–1803 (2001).
    [Crossref]
  88. A. Roorda, F. Romero-Borja, W. J. Donnelly, H. Queener, T. J. Hebert, M. C. W. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express 10, 405–412 (2002).
    [Crossref]
  89. R. P. McNabb, A. N. Kuo, J. A. Izatt, “Quantitative single and multi-surface clinical corneal topography utilizing optical coherence tomography,” Opt. Lett. 38, 1212–1214 (2013).
    [Crossref]
  90. F. LaRocca, S. J. Chiu, R. P. McNabb, A. N. Kuo, J. A. Izatt, S. Farsiu, “Robust automatic segmentation of corneal layer boundaries in SDOCT images using graph theory and dynamic programming,” Biomed. Opt. Express 2, 1524–1538 (2011).
    [Crossref]
  91. S. Ortiz, D. Siedlecki, P. Perez-Merino, N. Chia, A. de Castro, M. Szkulmowski, M. Wojtkowski, S. Marcos, “Corneal topography from spectral optical coherence tomography (sOCT),” Biomed. Opt. Express 2, 3232–3247 (2011).
    [Crossref]
  92. S. Ortiz, D. Siedlecki, L. Remon, S. Marcos, “Optical coherence tomography for quantitative surface topography,” Appl. Opt. 48, 6708–6715 (2009).
    [Crossref]
  93. S. Ortiz, P. Perez-Merino, E. Gambra, A. de Castro, S. Marcos, “In vivo human crystalline lens topography,” Biomed. Opt. Express 3, 2471–2488 (2012).
    [Crossref]
  94. A. H. Dhalla, D. Nankivil, T. Bustamante, A. Kuo, J. A. Izatt, “Simultaneous swept source optical coherence tomography of the anterior segment and retina using coherence revival,” Opt. Lett. 37, 1883–1885 (2012).
    [Crossref]

2014 (1)

2013 (4)

F. LaRocca, A. H. Dhalla, M. P. Kelly, S. Farsiu, J. A. Izatt, “Optimization of confocal scanning laser ophthalmoscope design,” J. Biomed. Opt. 18, 076015 (2013).
[Crossref]

F. LaRocca, D. Nankivil, S. Farsiu, J. A. Izatt, “Handheld simultaneous scanning laser ophthalmoscopy and optical coherence tomography system,” Biomed. Opt. Express 4, 2307–2321 (2013).
[Crossref]

S. Nakao, R. Arita, T. Nakama, H. Yoshikawa, S. Yoshida, H. Enaida, A. Hafezi-Moghadam, T. Matsui, T. Ishibashi, “Wide-field laser ophthalmoscopy for mice: a novel evaluation system for retinal/choroidal angiogenesis in mice,” Investig. Ophthalmol. Vis. Sci. 54, 5288–5293 (2013).

R. P. McNabb, A. N. Kuo, J. A. Izatt, “Quantitative single and multi-surface clinical corneal topography utilizing optical coherence tomography,” Opt. Lett. 38, 1212–1214 (2013).
[Crossref]

2012 (5)

S. Ortiz, P. Perez-Merino, E. Gambra, A. de Castro, S. Marcos, “In vivo human crystalline lens topography,” Biomed. Opt. Express 3, 2471–2488 (2012).
[Crossref]

A. H. Dhalla, D. Nankivil, T. Bustamante, A. Kuo, J. A. Izatt, “Simultaneous swept source optical coherence tomography of the anterior segment and retina using coherence revival,” Opt. Lett. 37, 1883–1885 (2012).
[Crossref]

M. M. Wessel, G. D. Aaker, G. Parlitsis, M. Cho, D. J. D’Amico, S. Kiss, “Ultra-wide-field angiography improves the detection and classification of diabetic retinopathy,” Retina 32, 785–791 (2012).
[Crossref]

B. Jaeken, P. Artal, “Optical quality of emmetropic and myopic eyes in the periphery measured with high-angular resolution,” Investig. Ophthalmol. Vis. Sci. 53, 3405–3413 (2012).

Y. L. Chen, L. Shi, J. W. L. Lewis, M. Wang, “Normal and diseased personal eye modeling using age-appropriate lens parameters,” Opt. Express 20, 12498–12507 (2012).
[Crossref]

2011 (6)

2010 (4)

2009 (5)

2008 (9)

F. Schaeffel, “Binocular lens tilt and decentration measurements in healthy subjects with phakic eyes,” Investig. Ophthalmol. Vis. Sci. 49, 2216–2222 (2008).

P. Artal, J. Tabernero, “The eye’s aplanatic answer,” Nat. Photonics 2, 586–589 (2008).
[Crossref]

D. A. Atchison, E. L. Markwell, S. Kasthurirangan, J. M. Pope, G. Smith, P. G. Swann, “Age-related changes in optical and biometric characteristics of emmetropic eyes,” J. Vis. 8(4):29, 1–20 (2008).

J. A. Sakamoto, H. H. Barrett, A. V. Goncharov, “Inverse optical design of the human eye using likelihood methods and wavefront sensing,” Opt. Express 16, 304–314 (2008).
[Crossref]

A. V. Goncharov, M. Nowakowski, M. T. Sheehan, C. Dainty, “Reconstruction of the optical system of the human eye with reverse ray-tracing,” Opt. Express 16, 1692–1703 (2008).
[Crossref]

R. C. Bakaraju, K. Ehrmann, E. Papas, A. Ho, “Finite schematic eye models and their accuracy to in-vivo data,” Vis. Res. 48, 1681–1694 (2008).
[Crossref]

X. Wei, L. Thibos, “Modeling the eye’s optical system by ocular wavefront tomography,” Opt. Express 16, 20490–20502 (2008).
[Crossref]

J. A. Diaz, C. Pizarro, J. Arasa, “Single dispersive gradient-index profile for the aging human lens,” J. Opt. Soc. Am. A 25, 250–261 (2008).
[Crossref]

G. Smith, P. Bedggood, R. Ashman, M. Daaboul, A. Metha, “Exploring ocular aberrations with a schematic human eye model,” Optom. Vis. Sci. 85, 330–340 (2008).

2007 (5)

2006 (6)

P. Rosales, S. Marcos, “Phakometry and lens tilt and decentration using a custom-developed Purkinje imaging apparatus: validation and measurements,” J. Opt. Soc. Am. A 23, 509–520 (2006).
[Crossref]

J. Tabernero, A. Benito, V. Nourrit, P. Artal, “Instrument for measuring the misalignments of ocular surfaces,” Opt. Express 14, 10945–10956 (2006).
[Crossref]

J. Tabernero, P. Piers, A. Benito, M. Redondo, P. Artal, “Predicting the optical performance of eyes implanted with IOLs to correct spherical aberration,” Invest. Ophthalmol. Vis. Sci. 47, 4651–4658 (2006).

D. A. Atchison, “Optical models for human myopic eyes,” Vis. Res. 46, 2236–2250 (2006).
[Crossref]

D. A. Atchison, N. Pritchard, K. L. Schmid, “Peripheral refraction along the horizontal and vertical visual fields in myopia,” Vis. Res. 46, 1450–1458 (2006).
[Crossref]

R. Navarro, L. Gonzalez, J. L. Hernandez-Matamoros, “On the prediction of optical aberrations by personalized eye models,” Optom. Vis. Sci. 83, 371–381 (2006).

2005 (8)

L. Lundstrom, P. Unsbo, J. Gustafsson, “Off-axis wave front measurements for optical correction in eccentric viewing,” J. Biomed. Opt. 10, 034002 (2005).
[Crossref]

N. Asano-Kato, I. Toda, C. Sakai, Y. Hori-Komai, Y. Takano, M. Dogru, K. Tsubota, “Pupil decentration and iris tilting detected by Orbscan: anatomic variations among healthy subjects and influence on outcomes of laser refractive surgeries,” J. Cataract Refract. Surg. 31, 1938–1942 (2005).

D. A. Atchison, N. Pritchard, S. D. White, A. M. Griffiths, “Influence of age on peripheral refraction,” Vis. Res. 45, 715–720 (2005).
[Crossref]

A. Manivannan, J. Plskova, A. Farrow, S. McKay, P. F. Sharp, J. V. Forrester, “Ultra-wide-field fluorescein angiography of the ocular fundus,” Am. J. Ophthalmol. 140, 525–527 (2005).

E. L. Smith, C. S. Kee, R. Ramamirtham, Y. Qiao-Grider, L. F. Hung, “Peripheral vision can influence eye growth and refractive development in infant monkeys,” Invest. Ophthalmol. Vis. Sci. 46, 3965–3972 (2005).

C. E. Jones, D. A. Atchison, R. Meder, J. M. Pope, “Refractive index distribution and optical properties of the isolated human lens measured using magnetic resonance imaging (MRI),” Vis. Res. 45, 2352–2366 (2005).
[Crossref]

D. A. Atchison, N. Pritchard, K. L. Schmid, D. H. Scott, C. E. Jones, J. M. Pope, “Shape of the retinal surface in emmetropia and myopia,” Invest. Ophthalmol. Vis. Sci. 46, 2698–2707 (2005).

D. A. Atchison, G. Smith, “Chromatic dispersions of the ocular media of human eyes,” J. Opt. Soc. Am. A 22, 29–37 (2005).
[Crossref]

2004 (1)

D. A. Atchison, C. E. Jones, K. L. Schmid, N. Pritchard, J. M. Pope, W. E. Strugnell, R. A. Riley, “Eye shape in emmetropia and myopia,” Investig. Ophthalmol. Vis. Sci. 45, 3380–3386 (2004).

2003 (2)

D. A. Atchison, D. H. Scott, W. N. Charman, “Hartmann–Shack technique and refraction across the horizontal visual field,” J. Opt. Soc. Am. A 20, 965–973 (2003).
[Crossref]

K. Zadnik, R. E. Manny, J. A. Yu, G. L. Mitchell, S. A. Cotter, J. C. Quiralte, M. D. Shipp, N. E. Friedman, R. N. Kleinstein, T. W. Walker, L. A. Jones, M. L. Moeschberger, D. O. Mutti, C. L. Evaluti, “Ocular component data in schoolchildren as a function of age and gender,” Optom. Vis. Sci. 80, 226–236 (2003).

2002 (5)

2001 (3)

J. Porter, A. Guirao, I. G. Cox, D. R. Williams, “Monochromatic aberrations of the human eye in a large population,” J. Opt. Soc. Am. A 18, 1793–1803 (2001).
[Crossref]

J. S. McLellan, S. Marcos, S. A. Burns, “Age-related changes in monochromatic wave aberrations of the human eye,” Invest. Ophthalmol. Vis. Sci. 42, 1390–1395 (2001).

J. Gustafsson, E. Terenius, J. Buchheister, P. Unsbo, “Peripheral astigmatism in emmetropic eyes,” Ophthal. Physiol. Opt. 21, 393–400 (2001).

2000 (2)

1999 (3)

P. G. Gobbi, F. Carones, R. Brancato, “Optical eye model for photo-refractive surgery evaluation,” Proc. SPIE 3591, 10–21 (1999).

A. Guirao, P. Artal, “Off-axis monochromatic aberrations estimated from double pass measurements in the human eye,” Vis. Res. 39, 207–217 (1999).
[Crossref]

I. Escudero-Sanz, R. Navarro, “Off-axis aberrations of a wide-angle schematic eye model,” J. Opt. Soc. Am. A 16, 1881–1891 (1999).
[Crossref]

1998 (1)

1997 (4)

H. L. Liou, N. A. Brennan, “Anatomically accurate, finite model eye for optical modeling,” J. Opt. Soc. Am. A 14, 1684–1695 (1997).
[Crossref]

L. N. Thibos, M. Ye, X. X. Zhang, A. Bradley, “Spherical aberration of the reduced schematic eye with elliptical refracting surface,” Optom. Vis. Sci. 74, 548–556 (1997).

R. Navarro, M. A. Losada, “Aberrations and relative efficiency of light pencils in the living human eye,” Optom. Vis. Sci. 74, 540–547 (1997).

J. Z. Liang, D. R. Williams, “Aberrations and retinal image quality of the normal human eye,” J. Opt. Soc. Am. A 14, 2873–2883 (1997).
[Crossref]

1996 (2)

D. R. Williams, P. Artal, R. Navarro, M. J. McMahon, D. H. Brainard, “Off-axis optical quality and retinal sampling in the human eye,” Vis. Res. 36, 1103–1114 (1996).
[Crossref]

K. Ninn-Pedersen, “Relationships between preoperative astigmatism and corneal optical power, axial length, intraocular pressure, gender, and patient age,” J. Refract. Surg. 12, 472–482 (1996).

1994 (1)

1993 (3)

1992 (1)

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]

1987 (1)

1985 (1)

1984 (1)

O. Pomerantzeff, M. Pankratov, G. J. Wang, P. Dufault, “Wide-angle optical-model of the eye,” Am. J. Optom. Physiol. Opt. 61, 166–176 (1984).

1983 (1)

1980 (1)

1974 (1)

1971 (2)

W. Lotmar, “Theoretical eye model with aspherics,” J. Opt. Soc. Am. 61, 1522–1529 (1971).
[Crossref]

J. Hoogerheide, F. Rempt, W. G. H. Hoogenboom, “Acquired myopia in young pilots,” Ophthalmologica 163, 209–215 (1971).
[Crossref]

Aaker, G. D.

M. M. Wessel, G. D. Aaker, G. Parlitsis, M. Cho, D. J. D’Amico, S. Kiss, “Ultra-wide-field angiography improves the detection and classification of diabetic retinopathy,” Retina 32, 785–791 (2012).
[Crossref]

Arasa, J.

Arita, R.

S. Nakao, R. Arita, T. Nakama, H. Yoshikawa, S. Yoshida, H. Enaida, A. Hafezi-Moghadam, T. Matsui, T. Ishibashi, “Wide-field laser ophthalmoscopy for mice: a novel evaluation system for retinal/choroidal angiogenesis in mice,” Investig. Ophthalmol. Vis. Sci. 54, 5288–5293 (2013).

Artal, P.

P. Artal, “Optics of the eye and its impact in vision: a tutorial,” Adv. Opt. Photon. 6, 340–367 (2014).

B. Jaeken, P. Artal, “Optical quality of emmetropic and myopic eyes in the periphery measured with high-angular resolution,” Investig. Ophthalmol. Vis. Sci. 53, 3405–3413 (2012).

B. Jaeken, L. Lundstrom, P. Artal, “Fast scanning peripheral wave-front sensor for the human eye,” Opt. Express 19, 7903–7913 (2011).
[Crossref]

B. Jaeken, L. Lundstrom, P. Artal, “Peripheral aberrations in the human eye for different wavelengths: off-axis chromatic aberration,” J. Opt. Soc. Am. A 28, 1871–1879 (2011).
[Crossref]

P. Artal, J. Tabernero, “Optics of human eye: 400 years of exploration from Galileo’s time,” Appl. Opt. 49, D123–D130 (2010).
[Crossref]

L. Lundstrom, A. Mira-Agudelo, P. Artal, “Peripheral optical errors and their change with accommodation differ between emmetropic and myopic eyes,” J. Vis. 9(6):17, 1–11 (2009).

P. Artal, J. Tabernero, “The eye’s aplanatic answer,” Nat. Photonics 2, 586–589 (2008).
[Crossref]

Y. Benny, S. Manzanera, P. M. Prieto, E. N. Ribak, P. Artal, “Wide-angle chromatic aberration corrector for the human eye,” J. Opt. Soc. Am. A 24, 1538–1544 (2007).
[Crossref]

J. Tabernero, A. Benito, V. Nourrit, P. Artal, “Instrument for measuring the misalignments of ocular surfaces,” Opt. Express 14, 10945–10956 (2006).
[Crossref]

J. Tabernero, P. Piers, A. Benito, M. Redondo, P. Artal, “Predicting the optical performance of eyes implanted with IOLs to correct spherical aberration,” Invest. Ophthalmol. Vis. Sci. 47, 4651–4658 (2006).

P. M. Prieto, F. Vargas-Martin, S. Goelz, P. Artal, “Analysis of the performance of the Hartmann-Shack sensor in the human eye,” J. Opt. Soc. Am. A 17, 1388–1398 (2000).
[Crossref]

A. Guirao, P. Artal, “Off-axis monochromatic aberrations estimated from double pass measurements in the human eye,” Vis. Res. 39, 207–217 (1999).
[Crossref]

D. R. Williams, P. Artal, R. Navarro, M. J. McMahon, D. H. Brainard, “Off-axis optical quality and retinal sampling in the human eye,” Vis. Res. 36, 1103–1114 (1996).
[Crossref]

R. Navarro, P. Artal, D. R. Williams, “Modulation transfer of the human eye as a function of retinal eccentricity,” J. Opt. Soc. Am. A 10, 201–212 (1993).
[Crossref]

J. Santamaria, P. Artal, J. Bescos, “Determination of the point-spread function of human eyes using a hybrid optical-digital method,” J. Opt. Soc. Am. A 4, 1109–1114 (1987).
[Crossref]

Asano-Kato, N.

N. Asano-Kato, I. Toda, C. Sakai, Y. Hori-Komai, Y. Takano, M. Dogru, K. Tsubota, “Pupil decentration and iris tilting detected by Orbscan: anatomic variations among healthy subjects and influence on outcomes of laser refractive surgeries,” J. Cataract Refract. Surg. 31, 1938–1942 (2005).

Ashman, R.

G. Smith, P. Bedggood, R. Ashman, M. Daaboul, A. Metha, “Exploring ocular aberrations with a schematic human eye model,” Optom. Vis. Sci. 85, 330–340 (2008).

Atchison, D. A.

J. J. Rozema, D. A. Atchison, M. J. Tassignon, “Statistical eye model for normal eyes,” Investig. Ophthalmol. Vis. Sci. 52, 4525–4533 (2011).

D. A. Atchison, E. L. Markwell, S. Kasthurirangan, J. M. Pope, G. Smith, P. G. Swann, “Age-related changes in optical and biometric characteristics of emmetropic eyes,” J. Vis. 8(4):29, 1–20 (2008).

D. A. Atchison, “Optical models for human myopic eyes,” Vis. Res. 46, 2236–2250 (2006).
[Crossref]

D. A. Atchison, N. Pritchard, K. L. Schmid, “Peripheral refraction along the horizontal and vertical visual fields in myopia,” Vis. Res. 46, 1450–1458 (2006).
[Crossref]

D. A. Atchison, N. Pritchard, S. D. White, A. M. Griffiths, “Influence of age on peripheral refraction,” Vis. Res. 45, 715–720 (2005).
[Crossref]

D. A. Atchison, N. Pritchard, K. L. Schmid, D. H. Scott, C. E. Jones, J. M. Pope, “Shape of the retinal surface in emmetropia and myopia,” Invest. Ophthalmol. Vis. Sci. 46, 2698–2707 (2005).

C. E. Jones, D. A. Atchison, R. Meder, J. M. Pope, “Refractive index distribution and optical properties of the isolated human lens measured using magnetic resonance imaging (MRI),” Vis. Res. 45, 2352–2366 (2005).
[Crossref]

D. A. Atchison, G. Smith, “Chromatic dispersions of the ocular media of human eyes,” J. Opt. Soc. Am. A 22, 29–37 (2005).
[Crossref]

D. A. Atchison, C. E. Jones, K. L. Schmid, N. Pritchard, J. M. Pope, W. E. Strugnell, R. A. Riley, “Eye shape in emmetropia and myopia,” Investig. Ophthalmol. Vis. Sci. 45, 3380–3386 (2004).

D. A. Atchison, D. H. Scott, W. N. Charman, “Hartmann–Shack technique and refraction across the horizontal visual field,” J. Opt. Soc. Am. A 20, 965–973 (2003).
[Crossref]

D. A. Atchison, D. H. Scott, “Monochromatic aberrations of human eyes in the horizontal visual field,” J. Opt. Soc. Am. A 19, 2180–2184 (2002).
[Crossref]

Bakaraju, R. C.

R. C. Bakaraju, K. Ehrmann, E. Papas, A. Ho, “Finite schematic eye models and their accuracy to in-vivo data,” Vis. Res. 48, 1681–1694 (2008).
[Crossref]

Barrett, H. H.

Bedggood, P.

G. Smith, P. Bedggood, R. Ashman, M. Daaboul, A. Metha, “Exploring ocular aberrations with a schematic human eye model,” Optom. Vis. Sci. 85, 330–340 (2008).

Benito, A.

J. Tabernero, P. Piers, A. Benito, M. Redondo, P. Artal, “Predicting the optical performance of eyes implanted with IOLs to correct spherical aberration,” Invest. Ophthalmol. Vis. Sci. 47, 4651–4658 (2006).

J. Tabernero, A. Benito, V. Nourrit, P. Artal, “Instrument for measuring the misalignments of ocular surfaces,” Opt. Express 14, 10945–10956 (2006).
[Crossref]

Benny, Y.

Bescos, J.

Bille, J. F.

Blaker, J. W.

J. W. Blaker, “Toward an adaptive model of the human-eye,” J. Opt. Soc. Am. 70, 220–223 (1980).
[Crossref]

J. W. Blaker, “A comprehensive model of the aging, accommodating adult eye,” in Technical Digest on Ophthalmic and Visual Optics, (Optical Society of America, 1991), Vol. 2, pp. 28–31.

Bradley, A.

L. N. Thibos, X. Hong, A. Bradley, X. Cheng, “Statistical variation of aberration structure and image quality in a normal population of healthy eyes,” J. Opt. Soc. Am. A 19, 2329–2348 (2002).
[Crossref]

L. N. Thibos, M. Ye, X. X. Zhang, A. Bradley, “Spherical aberration of the reduced schematic eye with elliptical refracting surface,” Optom. Vis. Sci. 74, 548–556 (1997).

M. Ye, X. X. Zhang, L. Thibos, A. Bradley, “A new single-surface model eye that accurately predicts chromatic and spherical aberrations of the human eye,” Investig. Ophthalmol. Vis. Sci. 34, 774–777 (1993).

L. N. Thibos, M. Ye, X. X. Zhang, A. Bradley, “The chromatic eye: a new reduced-eye model of ocular chromatic aberration in humans,” Appl. Opt. 31, 3594–3600 (1992).
[Crossref]

Brainard, D. H.

D. R. Williams, P. Artal, R. Navarro, M. J. McMahon, D. H. Brainard, “Off-axis optical quality and retinal sampling in the human eye,” Vis. Res. 36, 1103–1114 (1996).
[Crossref]

Brancato, R.

P. G. Gobbi, F. Carones, R. Brancato, “Optical eye model for photo-refractive surgery evaluation,” Proc. SPIE 3591, 10–21 (1999).

Brennan, N. A.

Buchheister, J.

J. Gustafsson, E. Terenius, J. Buchheister, P. Unsbo, “Peripheral astigmatism in emmetropic eyes,” Ophthal. Physiol. Opt. 21, 393–400 (2001).

Burns, S. A.

J. S. McLellan, S. Marcos, S. A. Burns, “Age-related changes in monochromatic wave aberrations of the human eye,” Invest. Ophthalmol. Vis. Sci. 42, 1390–1395 (2001).

J. C. He, S. A. Burns, S. Marcos, “Monochromatic aberrations in the accommodated human eye,” Vis. Res. 40, 41–48 (2000).
[Crossref]

Bustamante, T.

Campbell, C.

Campbell, C. E.

Campbell, M. C. W.

Campin, J. A.

E. O. Curatu, G. H. Pettit, J. A. Campin, “Customized schematic eye model for refraction correction design based on ocular wavefront and corneal topography measurements,” Proc. SPIE 4611, 165–175 (2002).

Carones, F.

P. G. Gobbi, F. Carones, R. Brancato, “Optical eye model for photo-refractive surgery evaluation,” Proc. SPIE 3591, 10–21 (1999).

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]

Chang, Y.

Y. Chang, H. M. Wu, Y. F. Lin, “The axial misalignment between ocular lens and cornea observed by MRI (I): at fixed accommodative state,” Vis. Res. 47, 71–84 (2007).
[Crossref]

Charman, W. N.

Chen, Y.

G. Palczewska, T. Maeda, Y. Imanishi, W. Y. Sun, Y. Chen, D. R. Williams, D. W. Piston, A. Maeda, K. Palczewski, “Noninvasive multiphoton fluorescence microscopy resolves retinol and retinal condensation products in mouse eyes,” Nat. Med. 16, 1444–1449 (2010).
[Crossref]

Chen, Y. L.

Cheng, X.

Chia, N.

Chiu, S. J.

Cho, M.

M. M. Wessel, G. D. Aaker, G. Parlitsis, M. Cho, D. J. D’Amico, S. Kiss, “Ultra-wide-field angiography improves the detection and classification of diabetic retinopathy,” Retina 32, 785–791 (2012).
[Crossref]

Cotter, S. A.

K. Zadnik, R. E. Manny, J. A. Yu, G. L. Mitchell, S. A. Cotter, J. C. Quiralte, M. D. Shipp, N. E. Friedman, R. N. Kleinstein, T. W. Walker, L. A. Jones, M. L. Moeschberger, D. O. Mutti, C. L. Evaluti, “Ocular component data in schoolchildren as a function of age and gender,” Optom. Vis. Sci. 80, 226–236 (2003).

Cox, I. G.

Curatu, E. O.

E. O. Curatu, G. H. Pettit, J. A. Campin, “Customized schematic eye model for refraction correction design based on ocular wavefront and corneal topography measurements,” Proc. SPIE 4611, 165–175 (2002).

D’Amico, D. J.

M. M. Wessel, G. D. Aaker, G. Parlitsis, M. Cho, D. J. D’Amico, S. Kiss, “Ultra-wide-field angiography improves the detection and classification of diabetic retinopathy,” Retina 32, 785–791 (2012).
[Crossref]

Daaboul, M.

G. Smith, P. Bedggood, R. Ashman, M. Daaboul, A. Metha, “Exploring ocular aberrations with a schematic human eye model,” Optom. Vis. Sci. 85, 330–340 (2008).

Dainty, C.

de Castro, A.

Dhalla, A. H.

F. LaRocca, A. H. Dhalla, M. P. Kelly, S. Farsiu, J. A. Izatt, “Optimization of confocal scanning laser ophthalmoscope design,” J. Biomed. Opt. 18, 076015 (2013).
[Crossref]

A. H. Dhalla, D. Nankivil, T. Bustamante, A. Kuo, J. A. Izatt, “Simultaneous swept source optical coherence tomography of the anterior segment and retina using coherence revival,” Opt. Lett. 37, 1883–1885 (2012).
[Crossref]

Diaz, J. A.

Ding, S. H.

Dogru, M.

N. Asano-Kato, I. Toda, C. Sakai, Y. Hori-Komai, Y. Takano, M. Dogru, K. Tsubota, “Pupil decentration and iris tilting detected by Orbscan: anatomic variations among healthy subjects and influence on outcomes of laser refractive surgeries,” J. Cataract Refract. Surg. 31, 1938–1942 (2005).

Donnelly, W. J.

Dorronsoro, C.

Dubra, A.

Dufault, P.

O. Pomerantzeff, M. Pankratov, G. J. Wang, P. Dufault, “Wide-angle optical-model of the eye,” Am. J. Optom. Physiol. Opt. 61, 166–176 (1984).

Ehrmann, K.

C. Fedtke, K. Ehrmann, B. A. Holden, “A review of peripheral refraction techniques,” Optom. Vis. Sci. 86, 429–446 (2009).

R. C. Bakaraju, K. Ehrmann, E. Papas, A. Ho, “Finite schematic eye models and their accuracy to in-vivo data,” Vis. Res. 48, 1681–1694 (2008).
[Crossref]

Emsley, H.

H. Emsley, Visual Optics (Butterworth, 1962), Vol. 40–42, pp. 460–461.

Enaida, H.

S. Nakao, R. Arita, T. Nakama, H. Yoshikawa, S. Yoshida, H. Enaida, A. Hafezi-Moghadam, T. Matsui, T. Ishibashi, “Wide-field laser ophthalmoscopy for mice: a novel evaluation system for retinal/choroidal angiogenesis in mice,” Investig. Ophthalmol. Vis. Sci. 54, 5288–5293 (2013).

Escudero-Sanz, I.

Evaluti, C. L.

K. Zadnik, R. E. Manny, J. A. Yu, G. L. Mitchell, S. A. Cotter, J. C. Quiralte, M. D. Shipp, N. E. Friedman, R. N. Kleinstein, T. W. Walker, L. A. Jones, M. L. Moeschberger, D. O. Mutti, C. L. Evaluti, “Ocular component data in schoolchildren as a function of age and gender,” Optom. Vis. Sci. 80, 226–236 (2003).

Farrow, A.

A. Manivannan, J. Plskova, A. Farrow, S. McKay, P. F. Sharp, J. V. Forrester, “Ultra-wide-field fluorescein angiography of the ocular fundus,” Am. J. Ophthalmol. 140, 525–527 (2005).

Farsiu, S.

Fedtke, C.

C. Fedtke, K. Ehrmann, B. A. Holden, “A review of peripheral refraction techniques,” Optom. Vis. Sci. 86, 429–446 (2009).

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]

Forrester, J. V.

A. Manivannan, J. Plskova, A. Farrow, S. McKay, P. F. Sharp, J. V. Forrester, “Ultra-wide-field fluorescein angiography of the ocular fundus,” Am. J. Ophthalmol. 140, 525–527 (2005).

Friedman, N. E.

K. Zadnik, R. E. Manny, J. A. Yu, G. L. Mitchell, S. A. Cotter, J. C. Quiralte, M. D. Shipp, N. E. Friedman, R. N. Kleinstein, T. W. Walker, L. A. Jones, M. L. Moeschberger, D. O. Mutti, C. L. Evaluti, “Ocular component data in schoolchildren as a function of age and gender,” Optom. Vis. Sci. 80, 226–236 (2003).

Fujimoto, J. G.

E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, J. G. Fujimoto, “In-vivo retinal imaging by optical coherence tomography,” Opt. Lett. 18, 1864–1866 (1993).
[Crossref]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]

Gambra, E.

Gao, Z. S.

Gobbi, P. G.

P. G. Gobbi, F. Carones, R. Brancato, “Optical eye model for photo-refractive surgery evaluation,” Proc. SPIE 3591, 10–21 (1999).

Goelz, S.

Goncharov, A. V.

Gonzalez, L.

R. Navarro, L. Gonzalez, J. L. Hernandez-Matamoros, “On the prediction of optical aberrations by personalized eye models,” Optom. Vis. Sci. 83, 371–381 (2006).

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]

Griffiths, A. M.

D. A. Atchison, N. Pritchard, S. D. White, A. M. Griffiths, “Influence of age on peripheral refraction,” Vis. Res. 45, 715–720 (2005).
[Crossref]

Grimm, B.

Guirao, A.

J. Porter, A. Guirao, I. G. Cox, D. R. Williams, “Monochromatic aberrations of the human eye in a large population,” J. Opt. Soc. Am. A 18, 1793–1803 (2001).
[Crossref]

A. Guirao, P. Artal, “Off-axis monochromatic aberrations estimated from double pass measurements in the human eye,” Vis. Res. 39, 207–217 (1999).
[Crossref]

Gullstrand, A.

A. Gullstrand, von Helmholtz Handbuch der Physiologischen Optik, 3rd ed., Appendix II and IV (Voss, 1909), Vol. 1, pp. 382–415.

Gustafsson, J.

L. Lundstrom, J. Gustafsson, P. Unsbo, “Population distribution of wavefront aberrations in the peripheral human eye,” J. Opt. Soc. Am. A 26, 2192–2198 (2009).
[Crossref]

L. Lundstrom, P. Unsbo, J. Gustafsson, “Off-axis wave front measurements for optical correction in eccentric viewing,” J. Biomed. Opt. 10, 034002 (2005).
[Crossref]

J. Gustafsson, E. Terenius, J. Buchheister, P. Unsbo, “Peripheral astigmatism in emmetropic eyes,” Ophthal. Physiol. Opt. 21, 393–400 (2001).

Hafezi-Moghadam, A.

S. Nakao, R. Arita, T. Nakama, H. Yoshikawa, S. Yoshida, H. Enaida, A. Hafezi-Moghadam, T. Matsui, T. Ishibashi, “Wide-field laser ophthalmoscopy for mice: a novel evaluation system for retinal/choroidal angiogenesis in mice,” Investig. Ophthalmol. Vis. Sci. 54, 5288–5293 (2013).

He, J. C.

J. C. He, S. A. Burns, S. Marcos, “Monochromatic aberrations in the accommodated human eye,” Vis. Res. 40, 41–48 (2000).
[Crossref]

Hebert, T. J.

Hee, M. R.

E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, J. G. Fujimoto, “In-vivo retinal imaging by optical coherence tomography,” Opt. Lett. 18, 1864–1866 (1993).
[Crossref]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]

Hernandez-Matamoros, J. L.

R. Navarro, L. Gonzalez, J. L. Hernandez-Matamoros, “On the prediction of optical aberrations by personalized eye models,” Optom. Vis. Sci. 83, 371–381 (2006).

Ho, A.

R. C. Bakaraju, K. Ehrmann, E. Papas, A. Ho, “Finite schematic eye models and their accuracy to in-vivo data,” Vis. Res. 48, 1681–1694 (2008).
[Crossref]

Holden, B. A.

C. Fedtke, K. Ehrmann, B. A. Holden, “A review of peripheral refraction techniques,” Optom. Vis. Sci. 86, 429–446 (2009).

Hong, X.

Hoogenboom, W. G. H.

J. Hoogerheide, F. Rempt, W. G. H. Hoogenboom, “Acquired myopia in young pilots,” Ophthalmologica 163, 209–215 (1971).
[Crossref]

Hoogerheide, J.

J. Hoogerheide, F. Rempt, W. G. H. Hoogenboom, “Acquired myopia in young pilots,” Ophthalmologica 163, 209–215 (1971).
[Crossref]

Hori-Komai, Y.

N. Asano-Kato, I. Toda, C. Sakai, Y. Hori-Komai, Y. Takano, M. Dogru, K. Tsubota, “Pupil decentration and iris tilting detected by Orbscan: anatomic variations among healthy subjects and influence on outcomes of laser refractive surgeries,” J. Cataract Refract. Surg. 31, 1938–1942 (2005).

Huang, D.

E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, J. G. Fujimoto, “In-vivo retinal imaging by optical coherence tomography,” Opt. Lett. 18, 1864–1866 (1993).
[Crossref]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]

Hung, L. F.

E. L. Smith, C. S. Kee, R. Ramamirtham, Y. Qiao-Grider, L. F. Hung, “Peripheral vision can influence eye growth and refractive development in infant monkeys,” Invest. Ophthalmol. Vis. Sci. 46, 3965–3972 (2005).

Hunter, J. J.

Imanishi, Y.

G. Palczewska, T. Maeda, Y. Imanishi, W. Y. Sun, Y. Chen, D. R. Williams, D. W. Piston, A. Maeda, K. Palczewski, “Noninvasive multiphoton fluorescence microscopy resolves retinol and retinal condensation products in mouse eyes,” Nat. Med. 16, 1444–1449 (2010).
[Crossref]

Ishibashi, T.

S. Nakao, R. Arita, T. Nakama, H. Yoshikawa, S. Yoshida, H. Enaida, A. Hafezi-Moghadam, T. Matsui, T. Ishibashi, “Wide-field laser ophthalmoscopy for mice: a novel evaluation system for retinal/choroidal angiogenesis in mice,” Investig. Ophthalmol. Vis. Sci. 54, 5288–5293 (2013).

Izatt, J. A.

Jaeken, B.

Jones, C. E.

C. E. Jones, D. A. Atchison, R. Meder, J. M. Pope, “Refractive index distribution and optical properties of the isolated human lens measured using magnetic resonance imaging (MRI),” Vis. Res. 45, 2352–2366 (2005).
[Crossref]

D. A. Atchison, N. Pritchard, K. L. Schmid, D. H. Scott, C. E. Jones, J. M. Pope, “Shape of the retinal surface in emmetropia and myopia,” Invest. Ophthalmol. Vis. Sci. 46, 2698–2707 (2005).

D. A. Atchison, C. E. Jones, K. L. Schmid, N. Pritchard, J. M. Pope, W. E. Strugnell, R. A. Riley, “Eye shape in emmetropia and myopia,” Investig. Ophthalmol. Vis. Sci. 45, 3380–3386 (2004).

Jones, L. A.

K. Zadnik, R. E. Manny, J. A. Yu, G. L. Mitchell, S. A. Cotter, J. C. Quiralte, M. D. Shipp, N. E. Friedman, R. N. Kleinstein, T. W. Walker, L. A. Jones, M. L. Moeschberger, D. O. Mutti, C. L. Evaluti, “Ocular component data in schoolchildren as a function of age and gender,” Optom. Vis. Sci. 80, 226–236 (2003).

Kasprzak, H.

A. Popiolek-Masajada, H. Kasprzak, “Model of the optical system of the human eye during accommodation,” Ophthal. Phys. Opt. 22, 201–208 (2002).

Kasthurirangan, S.

D. A. Atchison, E. L. Markwell, S. Kasthurirangan, J. M. Pope, G. Smith, P. G. Swann, “Age-related changes in optical and biometric characteristics of emmetropic eyes,” J. Vis. 8(4):29, 1–20 (2008).

Kee, C. S.

E. L. Smith, C. S. Kee, R. Ramamirtham, Y. Qiao-Grider, L. F. Hung, “Peripheral vision can influence eye growth and refractive development in infant monkeys,” Invest. Ophthalmol. Vis. Sci. 46, 3965–3972 (2005).

Kelly, M. P.

F. LaRocca, A. H. Dhalla, M. P. Kelly, S. Farsiu, J. A. Izatt, “Optimization of confocal scanning laser ophthalmoscope design,” J. Biomed. Opt. 18, 076015 (2013).
[Crossref]

Kiss, S.

M. M. Wessel, G. D. Aaker, G. Parlitsis, M. Cho, D. J. D’Amico, S. Kiss, “Ultra-wide-field angiography improves the detection and classification of diabetic retinopathy,” Retina 32, 785–791 (2012).
[Crossref]

Kleinstein, R. N.

K. Zadnik, R. E. Manny, J. A. Yu, G. L. Mitchell, S. A. Cotter, J. C. Quiralte, M. D. Shipp, N. E. Friedman, R. N. Kleinstein, T. W. Walker, L. A. Jones, M. L. Moeschberger, D. O. Mutti, C. L. Evaluti, “Ocular component data in schoolchildren as a function of age and gender,” Optom. Vis. Sci. 80, 226–236 (2003).

Kong, M. M.

Kooijman, A. C.

Kuo, A.

Kuo, A. N.

LaRocca, F.

Le Grand, Y.

Y. Le Grand, Optique Physiologique I (Editions de la Revue d’Optique, 1953), Vol. 52.

Lewis, J. W. L.

Li, X. H.

Liang, J. Z.

Lin, C. P.

E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, J. G. Fujimoto, “In-vivo retinal imaging by optical coherence tomography,” Opt. Lett. 18, 1864–1866 (1993).
[Crossref]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]

Lin, Y. F.

Y. Chang, H. M. Wu, Y. F. Lin, “The axial misalignment between ocular lens and cornea observed by MRI (I): at fixed accommodative state,” Vis. Res. 47, 71–84 (2007).
[Crossref]

Liou, H. L.

Losada, M. A.

R. Navarro, M. A. Losada, “Aberrations and relative efficiency of light pencils in the living human eye,” Optom. Vis. Sci. 74, 540–547 (1997).

Lotmar, T.

Lotmar, W.

Lundstrom, L.

Maeda, A.

G. Palczewska, T. Maeda, Y. Imanishi, W. Y. Sun, Y. Chen, D. R. Williams, D. W. Piston, A. Maeda, K. Palczewski, “Noninvasive multiphoton fluorescence microscopy resolves retinol and retinal condensation products in mouse eyes,” Nat. Med. 16, 1444–1449 (2010).
[Crossref]

Maeda, T.

G. Palczewska, T. Maeda, Y. Imanishi, W. Y. Sun, Y. Chen, D. R. Williams, D. W. Piston, A. Maeda, K. Palczewski, “Noninvasive multiphoton fluorescence microscopy resolves retinol and retinal condensation products in mouse eyes,” Nat. Med. 16, 1444–1449 (2010).
[Crossref]

Manivannan, A.

A. Manivannan, J. Plskova, A. Farrow, S. McKay, P. F. Sharp, J. V. Forrester, “Ultra-wide-field fluorescein angiography of the ocular fundus,” Am. J. Ophthalmol. 140, 525–527 (2005).

Manny, R. E.

K. Zadnik, R. E. Manny, J. A. Yu, G. L. Mitchell, S. A. Cotter, J. C. Quiralte, M. D. Shipp, N. E. Friedman, R. N. Kleinstein, T. W. Walker, L. A. Jones, M. L. Moeschberger, D. O. Mutti, C. L. Evaluti, “Ocular component data in schoolchildren as a function of age and gender,” Optom. Vis. Sci. 80, 226–236 (2003).

Manzanera, S.

Marcos, S.

Markwell, E. L.

D. A. Atchison, E. L. Markwell, S. Kasthurirangan, J. M. Pope, G. Smith, P. G. Swann, “Age-related changes in optical and biometric characteristics of emmetropic eyes,” J. Vis. 8(4):29, 1–20 (2008).

Masella, B.

Matsui, T.

S. Nakao, R. Arita, T. Nakama, H. Yoshikawa, S. Yoshida, H. Enaida, A. Hafezi-Moghadam, T. Matsui, T. Ishibashi, “Wide-field laser ophthalmoscopy for mice: a novel evaluation system for retinal/choroidal angiogenesis in mice,” Investig. Ophthalmol. Vis. Sci. 54, 5288–5293 (2013).

McKay, S.

A. Manivannan, J. Plskova, A. Farrow, S. McKay, P. F. Sharp, J. V. Forrester, “Ultra-wide-field fluorescein angiography of the ocular fundus,” Am. J. Ophthalmol. 140, 525–527 (2005).

McLellan, J. S.

J. S. McLellan, S. Marcos, S. A. Burns, “Age-related changes in monochromatic wave aberrations of the human eye,” Invest. Ophthalmol. Vis. Sci. 42, 1390–1395 (2001).

McMahon, M. J.

D. R. Williams, P. Artal, R. Navarro, M. J. McMahon, D. H. Brainard, “Off-axis optical quality and retinal sampling in the human eye,” Vis. Res. 36, 1103–1114 (1996).
[Crossref]

McNabb, R. P.

Meder, R.

C. E. Jones, D. A. Atchison, R. Meder, J. M. Pope, “Refractive index distribution and optical properties of the isolated human lens measured using magnetic resonance imaging (MRI),” Vis. Res. 45, 2352–2366 (2005).
[Crossref]

Merigan, W. H.

Metha, A.

G. Smith, P. Bedggood, R. Ashman, M. Daaboul, A. Metha, “Exploring ocular aberrations with a schematic human eye model,” Optom. Vis. Sci. 85, 330–340 (2008).

Mira-Agudelo, A.

L. Lundstrom, A. Mira-Agudelo, P. Artal, “Peripheral optical errors and their change with accommodation differ between emmetropic and myopic eyes,” J. Vis. 9(6):17, 1–11 (2009).

Mitchell, G. L.

K. Zadnik, R. E. Manny, J. A. Yu, G. L. Mitchell, S. A. Cotter, J. C. Quiralte, M. D. Shipp, N. E. Friedman, R. N. Kleinstein, T. W. Walker, L. A. Jones, M. L. Moeschberger, D. O. Mutti, C. L. Evaluti, “Ocular component data in schoolchildren as a function of age and gender,” Optom. Vis. Sci. 80, 226–236 (2003).

Moeschberger, M. L.

K. Zadnik, R. E. Manny, J. A. Yu, G. L. Mitchell, S. A. Cotter, J. C. Quiralte, M. D. Shipp, N. E. Friedman, R. N. Kleinstein, T. W. Walker, L. A. Jones, M. L. Moeschberger, D. O. Mutti, C. L. Evaluti, “Ocular component data in schoolchildren as a function of age and gender,” Optom. Vis. Sci. 80, 226–236 (2003).

Moreno, E.

Mutti, D. O.

K. Zadnik, R. E. Manny, J. A. Yu, G. L. Mitchell, S. A. Cotter, J. C. Quiralte, M. D. Shipp, N. E. Friedman, R. N. Kleinstein, T. W. Walker, L. A. Jones, M. L. Moeschberger, D. O. Mutti, C. L. Evaluti, “Ocular component data in schoolchildren as a function of age and gender,” Optom. Vis. Sci. 80, 226–236 (2003).

Nakama, T.

S. Nakao, R. Arita, T. Nakama, H. Yoshikawa, S. Yoshida, H. Enaida, A. Hafezi-Moghadam, T. Matsui, T. Ishibashi, “Wide-field laser ophthalmoscopy for mice: a novel evaluation system for retinal/choroidal angiogenesis in mice,” Investig. Ophthalmol. Vis. Sci. 54, 5288–5293 (2013).

Nakao, S.

S. Nakao, R. Arita, T. Nakama, H. Yoshikawa, S. Yoshida, H. Enaida, A. Hafezi-Moghadam, T. Matsui, T. Ishibashi, “Wide-field laser ophthalmoscopy for mice: a novel evaluation system for retinal/choroidal angiogenesis in mice,” Investig. Ophthalmol. Vis. Sci. 54, 5288–5293 (2013).

Nankivil, D.

Navarro, R.

R. Navarro, L. Gonzalez, J. L. Hernandez-Matamoros, “On the prediction of optical aberrations by personalized eye models,” Optom. Vis. Sci. 83, 371–381 (2006).

I. Escudero-Sanz, R. Navarro, “Off-axis aberrations of a wide-angle schematic eye model,” J. Opt. Soc. Am. A 16, 1881–1891 (1999).
[Crossref]

R. Navarro, E. Moreno, C. Dorronsoro, “Monochromatic aberrations and point-spread functions of the human eye across the visual field,” J. Opt. Soc. Am. A 15, 2522–2529 (1998).
[Crossref]

R. Navarro, M. A. Losada, “Aberrations and relative efficiency of light pencils in the living human eye,” Optom. Vis. Sci. 74, 540–547 (1997).

D. R. Williams, P. Artal, R. Navarro, M. J. McMahon, D. H. Brainard, “Off-axis optical quality and retinal sampling in the human eye,” Vis. Res. 36, 1103–1114 (1996).
[Crossref]

R. Navarro, P. Artal, D. R. Williams, “Modulation transfer of the human eye as a function of retinal eccentricity,” J. Opt. Soc. Am. A 10, 201–212 (1993).
[Crossref]

R. Navarro, J. Santamaria, J. Bescos, “Accommodation-dependent model of the human-eye with aspherics,” J. Opt. Soc. Am. A 2, 1273–1281 (1985).
[Crossref]

Ninn-Pedersen, K.

K. Ninn-Pedersen, “Relationships between preoperative astigmatism and corneal optical power, axial length, intraocular pressure, gender, and patient age,” J. Refract. Surg. 12, 472–482 (1996).

Norrby, S.

Nourrit, V.

Nowakowski, M.

Ortiz, S.

Palczewska, G.

J. J. Hunter, B. Masella, A. Dubra, R. Sharma, L. Yin, W. H. Merigan, G. Palczewska, K. Palczewski, D. R. Williams, “Images of photoreceptors in living primate eyes using adaptive optics two-photon ophthalmoscopy,” Biomed. Opt. Express 2, 139–148 (2011).
[Crossref]

G. Palczewska, T. Maeda, Y. Imanishi, W. Y. Sun, Y. Chen, D. R. Williams, D. W. Piston, A. Maeda, K. Palczewski, “Noninvasive multiphoton fluorescence microscopy resolves retinol and retinal condensation products in mouse eyes,” Nat. Med. 16, 1444–1449 (2010).
[Crossref]

Palczewski, K.

J. J. Hunter, B. Masella, A. Dubra, R. Sharma, L. Yin, W. H. Merigan, G. Palczewska, K. Palczewski, D. R. Williams, “Images of photoreceptors in living primate eyes using adaptive optics two-photon ophthalmoscopy,” Biomed. Opt. Express 2, 139–148 (2011).
[Crossref]

G. Palczewska, T. Maeda, Y. Imanishi, W. Y. Sun, Y. Chen, D. R. Williams, D. W. Piston, A. Maeda, K. Palczewski, “Noninvasive multiphoton fluorescence microscopy resolves retinol and retinal condensation products in mouse eyes,” Nat. Med. 16, 1444–1449 (2010).
[Crossref]

Pankratov, M.

O. Pomerantzeff, M. Pankratov, G. J. Wang, P. Dufault, “Wide-angle optical-model of the eye,” Am. J. Optom. Physiol. Opt. 61, 166–176 (1984).

Papas, E.

R. C. Bakaraju, K. Ehrmann, E. Papas, A. Ho, “Finite schematic eye models and their accuracy to in-vivo data,” Vis. Res. 48, 1681–1694 (2008).
[Crossref]

Parlitsis, G.

M. M. Wessel, G. D. Aaker, G. Parlitsis, M. Cho, D. J. D’Amico, S. Kiss, “Ultra-wide-field angiography improves the detection and classification of diabetic retinopathy,” Retina 32, 785–791 (2012).
[Crossref]

Perez-Merino, P.

Pettit, G. H.

E. O. Curatu, G. H. Pettit, J. A. Campin, “Customized schematic eye model for refraction correction design based on ocular wavefront and corneal topography measurements,” Proc. SPIE 4611, 165–175 (2002).

Piers, P.

S. Norrby, P. Piers, C. Campbell, M. D. van der Mooren, “Model eyes for evaluation of intraocular lenses,” Appl. Opt. 46, 6595–6605 (2007).
[Crossref]

J. Tabernero, P. Piers, A. Benito, M. Redondo, P. Artal, “Predicting the optical performance of eyes implanted with IOLs to correct spherical aberration,” Invest. Ophthalmol. Vis. Sci. 47, 4651–4658 (2006).

Piston, D. W.

G. Palczewska, T. Maeda, Y. Imanishi, W. Y. Sun, Y. Chen, D. R. Williams, D. W. Piston, A. Maeda, K. Palczewski, “Noninvasive multiphoton fluorescence microscopy resolves retinol and retinal condensation products in mouse eyes,” Nat. Med. 16, 1444–1449 (2010).
[Crossref]

Pizarro, C.

Plskova, J.

A. Manivannan, J. Plskova, A. Farrow, S. McKay, P. F. Sharp, J. V. Forrester, “Ultra-wide-field fluorescein angiography of the ocular fundus,” Am. J. Ophthalmol. 140, 525–527 (2005).

Pomerantzeff, O.

O. Pomerantzeff, M. Pankratov, G. J. Wang, P. Dufault, “Wide-angle optical-model of the eye,” Am. J. Optom. Physiol. Opt. 61, 166–176 (1984).

Pope, J. M.

D. A. Atchison, E. L. Markwell, S. Kasthurirangan, J. M. Pope, G. Smith, P. G. Swann, “Age-related changes in optical and biometric characteristics of emmetropic eyes,” J. Vis. 8(4):29, 1–20 (2008).

C. E. Jones, D. A. Atchison, R. Meder, J. M. Pope, “Refractive index distribution and optical properties of the isolated human lens measured using magnetic resonance imaging (MRI),” Vis. Res. 45, 2352–2366 (2005).
[Crossref]

D. A. Atchison, N. Pritchard, K. L. Schmid, D. H. Scott, C. E. Jones, J. M. Pope, “Shape of the retinal surface in emmetropia and myopia,” Invest. Ophthalmol. Vis. Sci. 46, 2698–2707 (2005).

D. A. Atchison, C. E. Jones, K. L. Schmid, N. Pritchard, J. M. Pope, W. E. Strugnell, R. A. Riley, “Eye shape in emmetropia and myopia,” Investig. Ophthalmol. Vis. Sci. 45, 3380–3386 (2004).

Popiolek-Masajada, A.

A. Popiolek-Masajada, H. Kasprzak, “Model of the optical system of the human eye during accommodation,” Ophthal. Phys. Opt. 22, 201–208 (2002).

Porter, J.

Prieto, P. M.

Pritchard, N.

D. A. Atchison, N. Pritchard, K. L. Schmid, “Peripheral refraction along the horizontal and vertical visual fields in myopia,” Vis. Res. 46, 1450–1458 (2006).
[Crossref]

D. A. Atchison, N. Pritchard, S. D. White, A. M. Griffiths, “Influence of age on peripheral refraction,” Vis. Res. 45, 715–720 (2005).
[Crossref]

D. A. Atchison, N. Pritchard, K. L. Schmid, D. H. Scott, C. E. Jones, J. M. Pope, “Shape of the retinal surface in emmetropia and myopia,” Invest. Ophthalmol. Vis. Sci. 46, 2698–2707 (2005).

D. A. Atchison, C. E. Jones, K. L. Schmid, N. Pritchard, J. M. Pope, W. E. Strugnell, R. A. Riley, “Eye shape in emmetropia and myopia,” Investig. Ophthalmol. Vis. Sci. 45, 3380–3386 (2004).

Puliafito, C. A.

E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, J. G. Fujimoto, “In-vivo retinal imaging by optical coherence tomography,” Opt. Lett. 18, 1864–1866 (1993).
[Crossref]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]

Qiao-Grider, Y.

E. L. Smith, C. S. Kee, R. Ramamirtham, Y. Qiao-Grider, L. F. Hung, “Peripheral vision can influence eye growth and refractive development in infant monkeys,” Invest. Ophthalmol. Vis. Sci. 46, 3965–3972 (2005).

Qu, X. M.

Queener, H.

Quiralte, J. C.

K. Zadnik, R. E. Manny, J. A. Yu, G. L. Mitchell, S. A. Cotter, J. C. Quiralte, M. D. Shipp, N. E. Friedman, R. N. Kleinstein, T. W. Walker, L. A. Jones, M. L. Moeschberger, D. O. Mutti, C. L. Evaluti, “Ocular component data in schoolchildren as a function of age and gender,” Optom. Vis. Sci. 80, 226–236 (2003).

Ramamirtham, R.

E. L. Smith, C. S. Kee, R. Ramamirtham, Y. Qiao-Grider, L. F. Hung, “Peripheral vision can influence eye growth and refractive development in infant monkeys,” Invest. Ophthalmol. Vis. Sci. 46, 3965–3972 (2005).

Redondo, M.

J. Tabernero, P. Piers, A. Benito, M. Redondo, P. Artal, “Predicting the optical performance of eyes implanted with IOLs to correct spherical aberration,” Invest. Ophthalmol. Vis. Sci. 47, 4651–4658 (2006).

Remon, L.

Rempt, F.

J. Hoogerheide, F. Rempt, W. G. H. Hoogenboom, “Acquired myopia in young pilots,” Ophthalmologica 163, 209–215 (1971).
[Crossref]

Ribak, E. N.

Riley, R. A.

D. A. Atchison, C. E. Jones, K. L. Schmid, N. Pritchard, J. M. Pope, W. E. Strugnell, R. A. Riley, “Eye shape in emmetropia and myopia,” Investig. Ophthalmol. Vis. Sci. 45, 3380–3386 (2004).

Romero-Borja, F.

Roorda, A.

Rosales, P.

Rozema, J. J.

J. J. Rozema, D. A. Atchison, M. J. Tassignon, “Statistical eye model for normal eyes,” Investig. Ophthalmol. Vis. Sci. 52, 4525–4533 (2011).

Sakai, C.

N. Asano-Kato, I. Toda, C. Sakai, Y. Hori-Komai, Y. Takano, M. Dogru, K. Tsubota, “Pupil decentration and iris tilting detected by Orbscan: anatomic variations among healthy subjects and influence on outcomes of laser refractive surgeries,” J. Cataract Refract. Surg. 31, 1938–1942 (2005).

Sakamoto, J. A.

Santamaria, J.

Schaeffel, F.

F. Schaeffel, “Binocular lens tilt and decentration measurements in healthy subjects with phakic eyes,” Investig. Ophthalmol. Vis. Sci. 49, 2216–2222 (2008).

Schmid, K. L.

D. A. Atchison, N. Pritchard, K. L. Schmid, “Peripheral refraction along the horizontal and vertical visual fields in myopia,” Vis. Res. 46, 1450–1458 (2006).
[Crossref]

D. A. Atchison, N. Pritchard, K. L. Schmid, D. H. Scott, C. E. Jones, J. M. Pope, “Shape of the retinal surface in emmetropia and myopia,” Invest. Ophthalmol. Vis. Sci. 46, 2698–2707 (2005).

D. A. Atchison, C. E. Jones, K. L. Schmid, N. Pritchard, J. M. Pope, W. E. Strugnell, R. A. Riley, “Eye shape in emmetropia and myopia,” Investig. Ophthalmol. Vis. Sci. 45, 3380–3386 (2004).

Schuman, J. S.

E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, J. G. Fujimoto, “In-vivo retinal imaging by optical coherence tomography,” Opt. Lett. 18, 1864–1866 (1993).
[Crossref]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]

Scott, D. H.

Sharma, R.

Sharp, P. F.

A. Manivannan, J. Plskova, A. Farrow, S. McKay, P. F. Sharp, J. V. Forrester, “Ultra-wide-field fluorescein angiography of the ocular fundus,” Am. J. Ophthalmol. 140, 525–527 (2005).

Sheehan, M. T.

Shi, L.

Shipp, M. D.

K. Zadnik, R. E. Manny, J. A. Yu, G. L. Mitchell, S. A. Cotter, J. C. Quiralte, M. D. Shipp, N. E. Friedman, R. N. Kleinstein, T. W. Walker, L. A. Jones, M. L. Moeschberger, D. O. Mutti, C. L. Evaluti, “Ocular component data in schoolchildren as a function of age and gender,” Optom. Vis. Sci. 80, 226–236 (2003).

Siedlecki, D.

Smith, E. L.

E. L. Smith, C. S. Kee, R. Ramamirtham, Y. Qiao-Grider, L. F. Hung, “Peripheral vision can influence eye growth and refractive development in infant monkeys,” Invest. Ophthalmol. Vis. Sci. 46, 3965–3972 (2005).

Smith, G.

D. A. Atchison, E. L. Markwell, S. Kasthurirangan, J. M. Pope, G. Smith, P. G. Swann, “Age-related changes in optical and biometric characteristics of emmetropic eyes,” J. Vis. 8(4):29, 1–20 (2008).

G. Smith, P. Bedggood, R. Ashman, M. Daaboul, A. Metha, “Exploring ocular aberrations with a schematic human eye model,” Optom. Vis. Sci. 85, 330–340 (2008).

D. A. Atchison, G. Smith, “Chromatic dispersions of the ocular media of human eyes,” J. Opt. Soc. Am. A 22, 29–37 (2005).
[Crossref]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]

Strugnell, W. E.

D. A. Atchison, C. E. Jones, K. L. Schmid, N. Pritchard, J. M. Pope, W. E. Strugnell, R. A. Riley, “Eye shape in emmetropia and myopia,” Investig. Ophthalmol. Vis. Sci. 45, 3380–3386 (2004).

Sun, W. Y.

G. Palczewska, T. Maeda, Y. Imanishi, W. Y. Sun, Y. Chen, D. R. Williams, D. W. Piston, A. Maeda, K. Palczewski, “Noninvasive multiphoton fluorescence microscopy resolves retinol and retinal condensation products in mouse eyes,” Nat. Med. 16, 1444–1449 (2010).
[Crossref]

Swann, P. G.

D. A. Atchison, E. L. Markwell, S. Kasthurirangan, J. M. Pope, G. Smith, P. G. Swann, “Age-related changes in optical and biometric characteristics of emmetropic eyes,” J. Vis. 8(4):29, 1–20 (2008).

Swanson, E. A.

E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, J. G. Fujimoto, “In-vivo retinal imaging by optical coherence tomography,” Opt. Lett. 18, 1864–1866 (1993).
[Crossref]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]

Szkulmowski, M.

Tabernero, J.

P. Artal, J. Tabernero, “Optics of human eye: 400 years of exploration from Galileo’s time,” Appl. Opt. 49, D123–D130 (2010).
[Crossref]

P. Artal, J. Tabernero, “The eye’s aplanatic answer,” Nat. Photonics 2, 586–589 (2008).
[Crossref]

J. Tabernero, P. Piers, A. Benito, M. Redondo, P. Artal, “Predicting the optical performance of eyes implanted with IOLs to correct spherical aberration,” Invest. Ophthalmol. Vis. Sci. 47, 4651–4658 (2006).

J. Tabernero, A. Benito, V. Nourrit, P. Artal, “Instrument for measuring the misalignments of ocular surfaces,” Opt. Express 14, 10945–10956 (2006).
[Crossref]

Takano, Y.

N. Asano-Kato, I. Toda, C. Sakai, Y. Hori-Komai, Y. Takano, M. Dogru, K. Tsubota, “Pupil decentration and iris tilting detected by Orbscan: anatomic variations among healthy subjects and influence on outcomes of laser refractive surgeries,” J. Cataract Refract. Surg. 31, 1938–1942 (2005).

Tassignon, M. J.

J. J. Rozema, D. A. Atchison, M. J. Tassignon, “Statistical eye model for normal eyes,” Investig. Ophthalmol. Vis. Sci. 52, 4525–4533 (2011).

Terenius, E.

J. Gustafsson, E. Terenius, J. Buchheister, P. Unsbo, “Peripheral astigmatism in emmetropic eyes,” Ophthal. Physiol. Opt. 21, 393–400 (2001).

Thibos, L.

Thibos, L. N.

Toda, I.

N. Asano-Kato, I. Toda, C. Sakai, Y. Hori-Komai, Y. Takano, M. Dogru, K. Tsubota, “Pupil decentration and iris tilting detected by Orbscan: anatomic variations among healthy subjects and influence on outcomes of laser refractive surgeries,” J. Cataract Refract. Surg. 31, 1938–1942 (2005).

Tsubota, K.

N. Asano-Kato, I. Toda, C. Sakai, Y. Hori-Komai, Y. Takano, M. Dogru, K. Tsubota, “Pupil decentration and iris tilting detected by Orbscan: anatomic variations among healthy subjects and influence on outcomes of laser refractive surgeries,” J. Cataract Refract. Surg. 31, 1938–1942 (2005).

Unsbo, P.

L. Lundstrom, J. Gustafsson, P. Unsbo, “Population distribution of wavefront aberrations in the peripheral human eye,” J. Opt. Soc. Am. A 26, 2192–2198 (2009).
[Crossref]

L. Lundstrom, P. Unsbo, J. Gustafsson, “Off-axis wave front measurements for optical correction in eccentric viewing,” J. Biomed. Opt. 10, 034002 (2005).
[Crossref]

J. Gustafsson, E. Terenius, J. Buchheister, P. Unsbo, “Peripheral astigmatism in emmetropic eyes,” Ophthal. Physiol. Opt. 21, 393–400 (2001).

van der Mooren, M. D.

Vargas-Martin, F.

Walker, T. W.

K. Zadnik, R. E. Manny, J. A. Yu, G. L. Mitchell, S. A. Cotter, J. C. Quiralte, M. D. Shipp, N. E. Friedman, R. N. Kleinstein, T. W. Walker, L. A. Jones, M. L. Moeschberger, D. O. Mutti, C. L. Evaluti, “Ocular component data in schoolchildren as a function of age and gender,” Optom. Vis. Sci. 80, 226–236 (2003).

Wang, G. J.

O. Pomerantzeff, M. Pankratov, G. J. Wang, P. Dufault, “Wide-angle optical-model of the eye,” Am. J. Optom. Physiol. Opt. 61, 166–176 (1984).

Wang, M.

Wei, X.

Wessel, M. M.

M. M. Wessel, G. D. Aaker, G. Parlitsis, M. Cho, D. J. D’Amico, S. Kiss, “Ultra-wide-field angiography improves the detection and classification of diabetic retinopathy,” Retina 32, 785–791 (2012).
[Crossref]

White, S. D.

D. A. Atchison, N. Pritchard, S. D. White, A. M. Griffiths, “Influence of age on peripheral refraction,” Vis. Res. 45, 715–720 (2005).
[Crossref]

Williams, D. R.

Wojtkowski, M.

Wu, H. M.

Y. Chang, H. M. Wu, Y. F. Lin, “The axial misalignment between ocular lens and cornea observed by MRI (I): at fixed accommodative state,” Vis. Res. 47, 71–84 (2007).
[Crossref]

Ye, M.

L. N. Thibos, M. Ye, X. X. Zhang, A. Bradley, “Spherical aberration of the reduced schematic eye with elliptical refracting surface,” Optom. Vis. Sci. 74, 548–556 (1997).

M. Ye, X. X. Zhang, L. Thibos, A. Bradley, “A new single-surface model eye that accurately predicts chromatic and spherical aberrations of the human eye,” Investig. Ophthalmol. Vis. Sci. 34, 774–777 (1993).

L. N. Thibos, M. Ye, X. X. Zhang, A. Bradley, “The chromatic eye: a new reduced-eye model of ocular chromatic aberration in humans,” Appl. Opt. 31, 3594–3600 (1992).
[Crossref]

Yin, L.

Yoshida, S.

S. Nakao, R. Arita, T. Nakama, H. Yoshikawa, S. Yoshida, H. Enaida, A. Hafezi-Moghadam, T. Matsui, T. Ishibashi, “Wide-field laser ophthalmoscopy for mice: a novel evaluation system for retinal/choroidal angiogenesis in mice,” Investig. Ophthalmol. Vis. Sci. 54, 5288–5293 (2013).

Yoshikawa, H.

S. Nakao, R. Arita, T. Nakama, H. Yoshikawa, S. Yoshida, H. Enaida, A. Hafezi-Moghadam, T. Matsui, T. Ishibashi, “Wide-field laser ophthalmoscopy for mice: a novel evaluation system for retinal/choroidal angiogenesis in mice,” Investig. Ophthalmol. Vis. Sci. 54, 5288–5293 (2013).

Yu, J. A.

K. Zadnik, R. E. Manny, J. A. Yu, G. L. Mitchell, S. A. Cotter, J. C. Quiralte, M. D. Shipp, N. E. Friedman, R. N. Kleinstein, T. W. Walker, L. A. Jones, M. L. Moeschberger, D. O. Mutti, C. L. Evaluti, “Ocular component data in schoolchildren as a function of age and gender,” Optom. Vis. Sci. 80, 226–236 (2003).

Yu, M. Q.

Zadnik, K.

K. Zadnik, R. E. Manny, J. A. Yu, G. L. Mitchell, S. A. Cotter, J. C. Quiralte, M. D. Shipp, N. E. Friedman, R. N. Kleinstein, T. W. Walker, L. A. Jones, M. L. Moeschberger, D. O. Mutti, C. L. Evaluti, “Ocular component data in schoolchildren as a function of age and gender,” Optom. Vis. Sci. 80, 226–236 (2003).

Zhang, X. X.

L. N. Thibos, M. Ye, X. X. Zhang, A. Bradley, “Spherical aberration of the reduced schematic eye with elliptical refracting surface,” Optom. Vis. Sci. 74, 548–556 (1997).

M. Ye, X. X. Zhang, L. Thibos, A. Bradley, “A new single-surface model eye that accurately predicts chromatic and spherical aberrations of the human eye,” Investig. Ophthalmol. Vis. Sci. 34, 774–777 (1993).

L. N. Thibos, M. Ye, X. X. Zhang, A. Bradley, “The chromatic eye: a new reduced-eye model of ocular chromatic aberration in humans,” Appl. Opt. 31, 3594–3600 (1992).
[Crossref]

Adv. Opt. Photon. (1)

Am. J. Ophthalmol. (1)

A. Manivannan, J. Plskova, A. Farrow, S. McKay, P. F. Sharp, J. V. Forrester, “Ultra-wide-field fluorescein angiography of the ocular fundus,” Am. J. Ophthalmol. 140, 525–527 (2005).

Am. J. Optom. Physiol. Opt. (1)

O. Pomerantzeff, M. Pankratov, G. J. Wang, P. Dufault, “Wide-angle optical-model of the eye,” Am. J. Optom. Physiol. Opt. 61, 166–176 (1984).

Appl. Opt. (4)

Biomed. Opt. Express (5)

Invest. Ophthalmol. Vis. Sci. (4)

E. L. Smith, C. S. Kee, R. Ramamirtham, Y. Qiao-Grider, L. F. Hung, “Peripheral vision can influence eye growth and refractive development in infant monkeys,” Invest. Ophthalmol. Vis. Sci. 46, 3965–3972 (2005).

J. Tabernero, P. Piers, A. Benito, M. Redondo, P. Artal, “Predicting the optical performance of eyes implanted with IOLs to correct spherical aberration,” Invest. Ophthalmol. Vis. Sci. 47, 4651–4658 (2006).

J. S. McLellan, S. Marcos, S. A. Burns, “Age-related changes in monochromatic wave aberrations of the human eye,” Invest. Ophthalmol. Vis. Sci. 42, 1390–1395 (2001).

D. A. Atchison, N. Pritchard, K. L. Schmid, D. H. Scott, C. E. Jones, J. M. Pope, “Shape of the retinal surface in emmetropia and myopia,” Invest. Ophthalmol. Vis. Sci. 46, 2698–2707 (2005).

Investig. Ophthalmol. Vis. Sci. (6)

D. A. Atchison, C. E. Jones, K. L. Schmid, N. Pritchard, J. M. Pope, W. E. Strugnell, R. A. Riley, “Eye shape in emmetropia and myopia,” Investig. Ophthalmol. Vis. Sci. 45, 3380–3386 (2004).

J. J. Rozema, D. A. Atchison, M. J. Tassignon, “Statistical eye model for normal eyes,” Investig. Ophthalmol. Vis. Sci. 52, 4525–4533 (2011).

F. Schaeffel, “Binocular lens tilt and decentration measurements in healthy subjects with phakic eyes,” Investig. Ophthalmol. Vis. Sci. 49, 2216–2222 (2008).

S. Nakao, R. Arita, T. Nakama, H. Yoshikawa, S. Yoshida, H. Enaida, A. Hafezi-Moghadam, T. Matsui, T. Ishibashi, “Wide-field laser ophthalmoscopy for mice: a novel evaluation system for retinal/choroidal angiogenesis in mice,” Investig. Ophthalmol. Vis. Sci. 54, 5288–5293 (2013).

B. Jaeken, P. Artal, “Optical quality of emmetropic and myopic eyes in the periphery measured with high-angular resolution,” Investig. Ophthalmol. Vis. Sci. 53, 3405–3413 (2012).

M. Ye, X. X. Zhang, L. Thibos, A. Bradley, “A new single-surface model eye that accurately predicts chromatic and spherical aberrations of the human eye,” Investig. Ophthalmol. Vis. Sci. 34, 774–777 (1993).

J. Biomed. Opt. (2)

L. Lundstrom, P. Unsbo, J. Gustafsson, “Off-axis wave front measurements for optical correction in eccentric viewing,” J. Biomed. Opt. 10, 034002 (2005).
[Crossref]

F. LaRocca, A. H. Dhalla, M. P. Kelly, S. Farsiu, J. A. Izatt, “Optimization of confocal scanning laser ophthalmoscope design,” J. Biomed. Opt. 18, 076015 (2013).
[Crossref]

J. Cataract Refract. Surg. (1)

N. Asano-Kato, I. Toda, C. Sakai, Y. Hori-Komai, Y. Takano, M. Dogru, K. Tsubota, “Pupil decentration and iris tilting detected by Orbscan: anatomic variations among healthy subjects and influence on outcomes of laser refractive surgeries,” J. Cataract Refract. Surg. 31, 1938–1942 (2005).

J. Opt. Soc. Am. (4)

J. Opt. Soc. Am. A (21)

H. L. Liou, N. A. Brennan, “Anatomically accurate, finite model eye for optical modeling,” J. Opt. Soc. Am. A 14, 1684–1695 (1997).
[Crossref]

I. Escudero-Sanz, R. Navarro, “Off-axis aberrations of a wide-angle schematic eye model,” J. Opt. Soc. Am. A 16, 1881–1891 (1999).
[Crossref]

A. V. Goncharov, C. Dainty, “Wide-field schematic eye models with gradient-index lens,” J. Opt. Soc. Am. A 24, 2157–2174 (2007).
[Crossref]

J. A. Diaz, C. Pizarro, J. Arasa, “Single dispersive gradient-index profile for the aging human lens,” J. Opt. Soc. Am. A 25, 250–261 (2008).
[Crossref]

R. Navarro, P. Artal, D. R. Williams, “Modulation transfer of the human eye as a function of retinal eccentricity,” J. Opt. Soc. Am. A 10, 201–212 (1993).
[Crossref]

D. A. Atchison, D. H. Scott, W. N. Charman, “Hartmann–Shack technique and refraction across the horizontal visual field,” J. Opt. Soc. Am. A 20, 965–973 (2003).
[Crossref]

C. E. Campbell, “Nested shell optical model of the lens of the human eye,” J. Opt. Soc. Am. A 27, 2432–2441 (2010).
[Crossref]

J. Santamaria, P. Artal, J. Bescos, “Determination of the point-spread function of human eyes using a hybrid optical-digital method,” J. Opt. Soc. Am. A 4, 1109–1114 (1987).
[Crossref]

Y. Benny, S. Manzanera, P. M. Prieto, E. N. Ribak, P. Artal, “Wide-angle chromatic aberration corrector for the human eye,” J. Opt. Soc. Am. A 24, 1538–1544 (2007).
[Crossref]

J. Z. Liang, B. Grimm, S. Goelz, J. F. Bille, “Objective measurement of wave aberrations of the human eye with the use of a Hartmann-Shack wave-front sensor,” J. Opt. Soc. Am. A 11, 1949–1957 (1994).
[Crossref]

P. M. Prieto, F. Vargas-Martin, S. Goelz, P. Artal, “Analysis of the performance of the Hartmann-Shack sensor in the human eye,” J. Opt. Soc. Am. A 17, 1388–1398 (2000).
[Crossref]

J. Z. Liang, D. R. Williams, “Aberrations and retinal image quality of the normal human eye,” J. Opt. Soc. Am. A 14, 2873–2883 (1997).
[Crossref]

R. Navarro, E. Moreno, C. Dorronsoro, “Monochromatic aberrations and point-spread functions of the human eye across the visual field,” J. Opt. Soc. Am. A 15, 2522–2529 (1998).
[Crossref]

D. A. Atchison, D. H. Scott, “Monochromatic aberrations of human eyes in the horizontal visual field,” J. Opt. Soc. Am. A 19, 2180–2184 (2002).
[Crossref]

R. Navarro, J. Santamaria, J. Bescos, “Accommodation-dependent model of the human-eye with aspherics,” J. Opt. Soc. Am. A 2, 1273–1281 (1985).
[Crossref]

L. Lundstrom, J. Gustafsson, P. Unsbo, “Population distribution of wavefront aberrations in the peripheral human eye,” J. Opt. Soc. Am. A 26, 2192–2198 (2009).
[Crossref]

D. A. Atchison, G. Smith, “Chromatic dispersions of the ocular media of human eyes,” J. Opt. Soc. Am. A 22, 29–37 (2005).
[Crossref]

B. Jaeken, L. Lundstrom, P. Artal, “Peripheral aberrations in the human eye for different wavelengths: off-axis chromatic aberration,” J. Opt. Soc. Am. A 28, 1871–1879 (2011).
[Crossref]

P. Rosales, S. Marcos, “Phakometry and lens tilt and decentration using a custom-developed Purkinje imaging apparatus: validation and measurements,” J. Opt. Soc. Am. A 23, 509–520 (2006).
[Crossref]

L. N. Thibos, X. Hong, A. Bradley, X. Cheng, “Statistical variation of aberration structure and image quality in a normal population of healthy eyes,” J. Opt. Soc. Am. A 19, 2329–2348 (2002).
[Crossref]

J. Porter, A. Guirao, I. G. Cox, D. R. Williams, “Monochromatic aberrations of the human eye in a large population,” J. Opt. Soc. Am. A 18, 1793–1803 (2001).
[Crossref]

J. Refract. Surg. (1)

K. Ninn-Pedersen, “Relationships between preoperative astigmatism and corneal optical power, axial length, intraocular pressure, gender, and patient age,” J. Refract. Surg. 12, 472–482 (1996).

J. Vis. (2)

L. Lundstrom, A. Mira-Agudelo, P. Artal, “Peripheral optical errors and their change with accommodation differ between emmetropic and myopic eyes,” J. Vis. 9(6):17, 1–11 (2009).

D. A. Atchison, E. L. Markwell, S. Kasthurirangan, J. M. Pope, G. Smith, P. G. Swann, “Age-related changes in optical and biometric characteristics of emmetropic eyes,” J. Vis. 8(4):29, 1–20 (2008).

Nat. Med. (1)

G. Palczewska, T. Maeda, Y. Imanishi, W. Y. Sun, Y. Chen, D. R. Williams, D. W. Piston, A. Maeda, K. Palczewski, “Noninvasive multiphoton fluorescence microscopy resolves retinol and retinal condensation products in mouse eyes,” Nat. Med. 16, 1444–1449 (2010).
[Crossref]

Nat. Photonics (1)

P. Artal, J. Tabernero, “The eye’s aplanatic answer,” Nat. Photonics 2, 586–589 (2008).
[Crossref]

Ophthal. Phys. Opt. (1)

A. Popiolek-Masajada, H. Kasprzak, “Model of the optical system of the human eye during accommodation,” Ophthal. Phys. Opt. 22, 201–208 (2002).

Ophthal. Physiol. Opt. (1)

J. Gustafsson, E. Terenius, J. Buchheister, P. Unsbo, “Peripheral astigmatism in emmetropic eyes,” Ophthal. Physiol. Opt. 21, 393–400 (2001).

Ophthalmologica (1)

J. Hoogerheide, F. Rempt, W. G. H. Hoogenboom, “Acquired myopia in young pilots,” Ophthalmologica 163, 209–215 (1971).
[Crossref]

Opt. Express (10)

M. M. Kong, Z. S. Gao, X. H. Li, S. H. Ding, X. M. Qu, M. Q. Yu, “A generic eye model by reverse building based on Chinese population,” Opt. Express 17, 13283–13297 (2009).
[Crossref]

P. Rosales, S. Marcos, “Customized computer models of eyes with intraocular lenses,” Opt. Express 15, 2204–2218 (2007).
[Crossref]

Y. L. Chen, L. Shi, J. W. L. Lewis, M. Wang, “Normal and diseased personal eye modeling using age-appropriate lens parameters,” Opt. Express 20, 12498–12507 (2012).
[Crossref]

B. Jaeken, L. Lundstrom, P. Artal, “Fast scanning peripheral wave-front sensor for the human eye,” Opt. Express 19, 7903–7913 (2011).
[Crossref]

X. Wei, L. Thibos, “Design and validation of a scanning Shack Hartmann aberrometer for measurements of the eye over a wide field of view,” Opt. Express 18, 1134–1143 (2010).
[Crossref]

X. Wei, L. Thibos, “Modeling the eye’s optical system by ocular wavefront tomography,” Opt. Express 16, 20490–20502 (2008).
[Crossref]

A. Roorda, F. Romero-Borja, W. J. Donnelly, H. Queener, T. J. Hebert, M. C. W. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express 10, 405–412 (2002).
[Crossref]

J. Tabernero, A. Benito, V. Nourrit, P. Artal, “Instrument for measuring the misalignments of ocular surfaces,” Opt. Express 14, 10945–10956 (2006).
[Crossref]

J. A. Sakamoto, H. H. Barrett, A. V. Goncharov, “Inverse optical design of the human eye using likelihood methods and wavefront sensing,” Opt. Express 16, 304–314 (2008).
[Crossref]

A. V. Goncharov, M. Nowakowski, M. T. Sheehan, C. Dainty, “Reconstruction of the optical system of the human eye with reverse ray-tracing,” Opt. Express 16, 1692–1703 (2008).
[Crossref]

Opt. Lett. (3)

Optom. Vis. Sci. (6)

K. Zadnik, R. E. Manny, J. A. Yu, G. L. Mitchell, S. A. Cotter, J. C. Quiralte, M. D. Shipp, N. E. Friedman, R. N. Kleinstein, T. W. Walker, L. A. Jones, M. L. Moeschberger, D. O. Mutti, C. L. Evaluti, “Ocular component data in schoolchildren as a function of age and gender,” Optom. Vis. Sci. 80, 226–236 (2003).

C. Fedtke, K. Ehrmann, B. A. Holden, “A review of peripheral refraction techniques,” Optom. Vis. Sci. 86, 429–446 (2009).

R. Navarro, M. A. Losada, “Aberrations and relative efficiency of light pencils in the living human eye,” Optom. Vis. Sci. 74, 540–547 (1997).

G. Smith, P. Bedggood, R. Ashman, M. Daaboul, A. Metha, “Exploring ocular aberrations with a schematic human eye model,” Optom. Vis. Sci. 85, 330–340 (2008).

L. N. Thibos, M. Ye, X. X. Zhang, A. Bradley, “Spherical aberration of the reduced schematic eye with elliptical refracting surface,” Optom. Vis. Sci. 74, 548–556 (1997).

R. Navarro, L. Gonzalez, J. L. Hernandez-Matamoros, “On the prediction of optical aberrations by personalized eye models,” Optom. Vis. Sci. 83, 371–381 (2006).

Proc. SPIE (2)

P. G. Gobbi, F. Carones, R. Brancato, “Optical eye model for photo-refractive surgery evaluation,” Proc. SPIE 3591, 10–21 (1999).

E. O. Curatu, G. H. Pettit, J. A. Campin, “Customized schematic eye model for refraction correction design based on ocular wavefront and corneal topography measurements,” Proc. SPIE 4611, 165–175 (2002).

Retina (1)

M. M. Wessel, G. D. Aaker, G. Parlitsis, M. Cho, D. J. D’Amico, S. Kiss, “Ultra-wide-field angiography improves the detection and classification of diabetic retinopathy,” Retina 32, 785–791 (2012).
[Crossref]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]

Vis. Res. (9)

D. A. Atchison, N. Pritchard, K. L. Schmid, “Peripheral refraction along the horizontal and vertical visual fields in myopia,” Vis. Res. 46, 1450–1458 (2006).
[Crossref]

A. Guirao, P. Artal, “Off-axis monochromatic aberrations estimated from double pass measurements in the human eye,” Vis. Res. 39, 207–217 (1999).
[Crossref]

D. R. Williams, P. Artal, R. Navarro, M. J. McMahon, D. H. Brainard, “Off-axis optical quality and retinal sampling in the human eye,” Vis. Res. 36, 1103–1114 (1996).
[Crossref]

D. A. Atchison, “Optical models for human myopic eyes,” Vis. Res. 46, 2236–2250 (2006).
[Crossref]

D. A. Atchison, N. Pritchard, S. D. White, A. M. Griffiths, “Influence of age on peripheral refraction,” Vis. Res. 45, 715–720 (2005).
[Crossref]

J. C. He, S. A. Burns, S. Marcos, “Monochromatic aberrations in the accommodated human eye,” Vis. Res. 40, 41–48 (2000).
[Crossref]

R. C. Bakaraju, K. Ehrmann, E. Papas, A. Ho, “Finite schematic eye models and their accuracy to in-vivo data,” Vis. Res. 48, 1681–1694 (2008).
[Crossref]

C. E. Jones, D. A. Atchison, R. Meder, J. M. Pope, “Refractive index distribution and optical properties of the isolated human lens measured using magnetic resonance imaging (MRI),” Vis. Res. 45, 2352–2366 (2005).
[Crossref]

Y. Chang, H. M. Wu, Y. F. Lin, “The axial misalignment between ocular lens and cornea observed by MRI (I): at fixed accommodative state,” Vis. Res. 47, 71–84 (2007).
[Crossref]

Other (4)

A. Gullstrand, von Helmholtz Handbuch der Physiologischen Optik, 3rd ed., Appendix II and IV (Voss, 1909), Vol. 1, pp. 382–415.

Y. Le Grand, Optique Physiologique I (Editions de la Revue d’Optique, 1953), Vol. 52.

H. Emsley, Visual Optics (Butterworth, 1962), Vol. 40–42, pp. 460–461.

J. W. Blaker, “A comprehensive model of the aging, accommodating adult eye,” in Technical Digest on Ophthalmic and Visual Optics, (Optical Society of America, 1991), Vol. 2, pp. 28–31.

Supplementary Material (1)

» Supplement 1: PDF (957 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematic ray trace of the proposed model eye. The colored lines represent point sources that originated from various retinal eccentricities spanning a ± 40 ° angle range in the pupil.

Fig. 2.
Fig. 2.

RMS wavefront error of the various eye models as compared to the measured wavefront data set along the horizontal meridian. The on-axis (0°) defocus magnitude for each eye model was subtracted from the defocus value of the other eccentricities in order to illustrate more clearly the variation in RMS wavefront error with retinal eccentricity. The standard deviation of the measured data set was 0.138 μm .

Fig. 3.
Fig. 3.

Plots demonstrating individual Zernike aberration terms versus retinal eccentricity across the horizontal meridian. The most significant Zernike aberrations include (a) oblique astigmatism, (b) defocus, (c) vertical astigmatism, (d) horizontal coma, (e) oblique trefoil, and (f) spherical aberration. The key ophthalmic terms of (g) mean sphere and (h) cylinder are displayed as well. The error bars correspond to the standard deviation in the measured data set over the 101 tested eyes.

Fig. 4.
Fig. 4.

Two-dimensional grid of measured wavefront data (left) compared with the aberrations calculated for the newly proposed eye model (right) in the pupil plane. Data was acquired in 1° steps along the horizontal and 5° steps along the vertical for 10 subjects. The aberration terms shown are the four largest contributors to the overall wavefront profile of the measured data set. On-axis defocus was subtracted from the mean sphere measurement in order to isolate the changes in defocus with retinal eccentricity.

Fig. 5.
Fig. 5.

Diagrams representing the theoretical focal spot profile of a perfectly collimated beam entering the eye at varying field angles along the horizontal meridian for two wide-field schematic eyes (Navarro [47] and G&D 30S [50]), our proposed eye, and the average of the measured data set [28].

Fig. 6.
Fig. 6.

Comparison of chromatic focal shift for various eye models as a function of retinal eccentricity. The chromatic focal shift was calculated as the difference in mean sphere of the red (671 nm) and blue (475 nm) focal points. The error bars of the measured data set correspond to the standard deviation between 11 individuals.

Fig. 7.
Fig. 7.

Plots showing the variation of Zernike coefficients across the horizontal meridian for eyes (101 total) divided into subgroups based upon central refractive error. The colors represent different magnitudes of central refractive error within 1 D ranges. (a) Mean sphere, (b) cylinder, (c) coma, and (d) trefoil are shown because they are the largest varying aberrations in the measured data set along the horizontal meridian. Error bars correspond to the standard deviation within a given refractive group.

Tables (3)

Tables Icon

Table 1. Parameters of Eye Model

Tables Icon

Table 2. Schott Dispersion Coefficients of Eye Model Media

Tables Icon

Table 3. Sellmeier Dispersion Coefficients of Crystalline Lens ( n ref = 555 nm )

Metrics