Abstract

Electron microscopy and electron diffraction techniques rely on electron sources. Those sources require strong electric fields to extract electrons from metals, either by the photoelectric effect, driven by multiphoton absorption of strong laser fields, or in the static field emission regime. Terahertz (THz) radiation, commonly understood to be nonionizing due to its low photon energy, is here shown to produce electron field emission. We demonstrate that a carrier-envelope phase-stable single-cycle optical field at THz frequencies interacting with a metallic microantenna can generate and accelerate ultrashort and ultrabright electron bunches into free space, and we use these electrons to excite and ionize ambient nitrogen molecules near the antenna. The associated UV emission from the gas forms a novel THz wave detector, which, in contrast with conventional photon-counting or heat-sensitive devices, is ungated and sensitive to the peak electric field in a strongly nonlinear fashion.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Electron acceleration and kinetic energy tailoring via ultrafast terahertz fields

S. R. Greig and A. Y. Elezzabi
Opt. Express 22(23) 29092-29098 (2014)

Polarization-gated surface enhanced optical fields for ultrafast electron acceleration

Peifen Lu, Jian Wu, Hongxing Qi, and Heping Zeng
Opt. Express 17(6) 4575-4586 (2009)

Self-optimization of plasmonic nanoantennas in strong femtosecond fields

Liping Shi, Bianca Iwan, Rana Nicolas, Quentin Ripault, Jose R. C. Andrade, Seunghwoi Han, Hyunwoong Kim, Willem Boutu, Dominik Franz, Torsten Heidenblut, Carsten Reinhardt, Bert Bastiaens, Tamas Nagy, Ihar Babushkin, Uwe Morgner, Seung-Woo Kim, Günter Steinmeyer, Hamed Merdji, and Milutin Kovacev
Optica 4(9) 1038-1043 (2017)

References

  • View by:
  • |
  • |
  • |

  1. J. Kupersztych, P. Monchicourt, M. Raynaud, “Ponderomotive acceleration of photoelectrons in surface-plasmon-assisted multiphoton photoelectric emission,” Phys. Rev. Lett. 86, 5180–5183 (2001).
    [Crossref]
  2. R. J. D. Miller, R. Ernstorfer, M. Harb, M. Gao, C. T. Hebeisen, H. Jean-Ruel, C. Lu, G. Moriena, G. Sciaini, “‘Making the molecular movie’: first frames,” Acta Crystallogr. Sect. A 66, 137–156 (2010).
  3. D. J. Flannigan, A. H. Zewail, “4D electron microscopy: principles and applications,” Acc. Chem. Res. 45, 1828–1839 (2012).
    [Crossref]
  4. C. Ropers, D. R. Solli, C. P. Schulz, C. Lienau, T. Elsaesser, “Localized multiphoton emission of femtosecond electron pulses from metal nanotips,” Phys. Rev. Lett. 98, 043907 (2007).
    [Crossref]
  5. M. Schenk, M. Krüger, P. Hommelhoff, “Strong-field above-threshold photoemission from sharp metal tips,” Phys. Rev. Lett. 105, 257601 (2010).
    [Crossref]
  6. G. Wachter, C. Lemell, J. Burgdörfer, M. Schenk, M. Krüger, P. Hommelhoff, “Electron rescattering at metal nanotips induced by ultrashort laser pulses,” Phys. Rev. B 86, 035402 (2012).
  7. M. Krüger, M. Schenk, P. Hommelhoff, “Attosecond control of electrons emitted from a nanoscale metal tip,” Nature 475, 78–81 (2011).
    [Crossref]
  8. L. Wimmer, G. Herink, D. R. Solli, S. V. Yalunin, K. E. Echternkamp, C. Ropers, “Terahertz control of nanotip photoemission,” Nat. Phys. 10, 432–436 (2014).
    [Crossref]
  9. T. L. Cocker, V. Jelic, M. Gupta, S. J. Molesky, J. A. J. Burgess, G. D. L. Reyes, L. V. Titova, Y. Y. Tsui, M. R. Freeman, F. A. Hegmann, “An ultrafast terahertz scanning tunnelling microscope,” Nat. Photonics 7, 620–625 (2013).
    [Crossref]
  10. G. Herink, D. R. Solli, M. Gulde, C. Ropers, “Field-driven photoemission from nanostructures quenches the quiver motion,” Nature 483, 190–193 (2012).
    [Crossref]
  11. R. Bormann, M. Gulde, A. Weismann, S. V. Yalunin, C. Ropers, “Tip-enhanced strong-field photoemission,” Phys. Rev. Lett. 105, 147601 (2010).
    [Crossref]
  12. P. Hommelhoff, Y. Sortais, A. Aghajani-Talesh, M. A. Kasevich, “Field emission tip as a nanometer source of free electron femtosecond pulses,” Phys. Rev. Lett. 96, 077401 (2006).
    [Crossref]
  13. K.-L. Yeh, M. C. Hoffmann, J. Hebling, K. A. Nelson, “Generation of 10  μJ ultrashort terahertz pulses by optical rectification,” Appl. Phys. Lett. 90, 171121 (2007).
    [Crossref]
  14. M. C. Hoffmann, J. A. Fülöp, “Intense ultrashort terahertz pulses: generation and applications,” J. Phys. D 44, 083001 (2011).
  15. H. Hirori, A. Doi, F. Blanchard, K. Tanaka, “Single-cycle terahertz pulses with amplitudes exceeding 1  MV/cm generated by optical rectification in LiNbO3,” Appl. Phys. Lett. 98, 091106 (2011).
    [Crossref]
  16. K. Iwaszczuk, A. Andryieuski, A. Lavrinenko, X.-C. Zhang, P. U. Jepsen, “Terahertz field enhancement to the MV/cm regime in a tapered parallel plate waveguide,” Opt. Express 25441, 25441–25448 (2011).
  17. C. Winnewisser, P. U. Jepsen, M. Schall, V. Schyja, H. Helm, “Electro-optic detection of THz radiation in LiTaO3, LiNbO3 and ZnTe,” Appl. Phys. Lett. 70, 3069–3071 (1997).
    [Crossref]
  18. Q. Wu, M. Litz, X.-C. Zhang, “Broadband detection capability of ZnTe electro-optic field detectors,” Appl. Phys. Lett. 68, 2924–2926 (1996).
    [Crossref]
  19. A. Nahata, D. H. Auston, T. F. Heinz, C. Wu, “Coherent detection of freely propagating terahertz radiation by electro-optic sampling,” Appl. Phys. Lett. 68, 150–152 (1996).
  20. P. Klarskov, A. C. Strikwerda, K. Iwaszczuk, P. U. Jepsen, “Experimental three-dimensional beam profiling and modeling of a terahertz beam generated from a two-color air plasma,” New J. Phys. 15, 075012 (2013).
    [Crossref]
  21. J. Dai, J. Zhang, W. Zhang, D. Grischkowsky, “Terahertz time-domain spectroscopy characterization of the far-infrared absorption and index of refraction of high-resistivity, float-zone silicon,” J. Opt. Soc. Am. B 21, 1379–1386 (2004).
    [Crossref]
  22. A. Lofthus, P. H. Krupenie, “The spectrum of molecular nitrogen,” J. Phys. Chem. Ref. Data 6, 113–307 (1977).
    [Crossref]
  23. M. Sivis, M. Duwe, B. Abel, C. Ropers, “Extreme-ultraviolet light generation in plasmonic nanostructures,” Nat. Phys. 9, 304–309 (2013).
    [Crossref]
  24. R. H. Fowler, L. Nordheim, “Electron emission in intense electric fields,” Proc. R. Soc. A 119, 173–181 (1928).
  25. R. G. Forbes, “Physics of generalized Fowler-Nordheim-type equations,” J. Vac. Sci. Technol. B 26, 788–793 (2008).
    [Crossref]
  26. Y. Itikawa, “Cross sections for electron collisions with nitrogen molecules,” J. Phys. Chem. Ref. Data 35, 31–53 (2006).
    [Crossref]
  27. F. Valk, M. Aints, P. Paris, T. Plank, J. Maksimov, A. Tamm, “Measurement of collisional quenching rate of nitrogen states N2 (C3Πu, v = 0) and N2+ (B2Σu+, v=0),” J. Phys. D 43, 385202 (2010).
  28. K. V. Kozlov, R. Brandenburg, H.-E. E. Wagner, A. M. Morozov, P. Michel, “Investigation of the filamentary and diffuse mode of barrier discharges in N2/O2 mixtures at atmospheric pressure by cross-correlation spectroscopy,” J. Phys. D 38, 518–529 (2005).
  29. P. Corkum, “Plasma perspective on strong field multiphoton ionization,” Phys. Rev. Lett. 71, 1994–1997 (1993).
    [Crossref]
  30. G. Paulus, W. Becker, H. Walther, “Classical rescattering effects in two-color above-threshold ionization,” Phys. Rev. A 52, 4043–4053 (1995).
    [Crossref]
  31. R. G. Forbes, “On the need for a tunneling pre-factor in Fowler–Nordheim tunneling theory,” J. Appl. Phys. 103, 114911 (2008).
    [Crossref]
  32. R. Gomer, “Field emission, field ionization, and field desorption,” Surf. Sci. 299, 129–152 (1994).
    [Crossref]
  33. Z. Zhang, G. Meng, Q. Wu, Z. Hu, J. Chen, Q. Xu, F. Zhou, “Enhanced cold field emission of large-area arrays of vertically aligned ZnO-nanotapers via sharpening: experiment and theory,” Sci. Rep. 4, 4676 (2014).
  34. C. J. Chen, Introduction to Scanning Tunneling Microscopy (Oxford University, 1993).
  35. C. B. Duke, “Field emission through atoms adsorbed on a metal surface,” J. Chem. Phys. 46, 923–937 (1967).
    [Crossref]

2014 (2)

L. Wimmer, G. Herink, D. R. Solli, S. V. Yalunin, K. E. Echternkamp, C. Ropers, “Terahertz control of nanotip photoemission,” Nat. Phys. 10, 432–436 (2014).
[Crossref]

Z. Zhang, G. Meng, Q. Wu, Z. Hu, J. Chen, Q. Xu, F. Zhou, “Enhanced cold field emission of large-area arrays of vertically aligned ZnO-nanotapers via sharpening: experiment and theory,” Sci. Rep. 4, 4676 (2014).

2013 (3)

P. Klarskov, A. C. Strikwerda, K. Iwaszczuk, P. U. Jepsen, “Experimental three-dimensional beam profiling and modeling of a terahertz beam generated from a two-color air plasma,” New J. Phys. 15, 075012 (2013).
[Crossref]

M. Sivis, M. Duwe, B. Abel, C. Ropers, “Extreme-ultraviolet light generation in plasmonic nanostructures,” Nat. Phys. 9, 304–309 (2013).
[Crossref]

T. L. Cocker, V. Jelic, M. Gupta, S. J. Molesky, J. A. J. Burgess, G. D. L. Reyes, L. V. Titova, Y. Y. Tsui, M. R. Freeman, F. A. Hegmann, “An ultrafast terahertz scanning tunnelling microscope,” Nat. Photonics 7, 620–625 (2013).
[Crossref]

2012 (3)

G. Herink, D. R. Solli, M. Gulde, C. Ropers, “Field-driven photoemission from nanostructures quenches the quiver motion,” Nature 483, 190–193 (2012).
[Crossref]

D. J. Flannigan, A. H. Zewail, “4D electron microscopy: principles and applications,” Acc. Chem. Res. 45, 1828–1839 (2012).
[Crossref]

G. Wachter, C. Lemell, J. Burgdörfer, M. Schenk, M. Krüger, P. Hommelhoff, “Electron rescattering at metal nanotips induced by ultrashort laser pulses,” Phys. Rev. B 86, 035402 (2012).

2011 (4)

M. Krüger, M. Schenk, P. Hommelhoff, “Attosecond control of electrons emitted from a nanoscale metal tip,” Nature 475, 78–81 (2011).
[Crossref]

M. C. Hoffmann, J. A. Fülöp, “Intense ultrashort terahertz pulses: generation and applications,” J. Phys. D 44, 083001 (2011).

H. Hirori, A. Doi, F. Blanchard, K. Tanaka, “Single-cycle terahertz pulses with amplitudes exceeding 1  MV/cm generated by optical rectification in LiNbO3,” Appl. Phys. Lett. 98, 091106 (2011).
[Crossref]

K. Iwaszczuk, A. Andryieuski, A. Lavrinenko, X.-C. Zhang, P. U. Jepsen, “Terahertz field enhancement to the MV/cm regime in a tapered parallel plate waveguide,” Opt. Express 25441, 25441–25448 (2011).

2010 (4)

M. Schenk, M. Krüger, P. Hommelhoff, “Strong-field above-threshold photoemission from sharp metal tips,” Phys. Rev. Lett. 105, 257601 (2010).
[Crossref]

R. J. D. Miller, R. Ernstorfer, M. Harb, M. Gao, C. T. Hebeisen, H. Jean-Ruel, C. Lu, G. Moriena, G. Sciaini, “‘Making the molecular movie’: first frames,” Acta Crystallogr. Sect. A 66, 137–156 (2010).

R. Bormann, M. Gulde, A. Weismann, S. V. Yalunin, C. Ropers, “Tip-enhanced strong-field photoemission,” Phys. Rev. Lett. 105, 147601 (2010).
[Crossref]

F. Valk, M. Aints, P. Paris, T. Plank, J. Maksimov, A. Tamm, “Measurement of collisional quenching rate of nitrogen states N2 (C3Πu, v = 0) and N2+ (B2Σu+, v=0),” J. Phys. D 43, 385202 (2010).

2008 (2)

R. G. Forbes, “Physics of generalized Fowler-Nordheim-type equations,” J. Vac. Sci. Technol. B 26, 788–793 (2008).
[Crossref]

R. G. Forbes, “On the need for a tunneling pre-factor in Fowler–Nordheim tunneling theory,” J. Appl. Phys. 103, 114911 (2008).
[Crossref]

2007 (2)

C. Ropers, D. R. Solli, C. P. Schulz, C. Lienau, T. Elsaesser, “Localized multiphoton emission of femtosecond electron pulses from metal nanotips,” Phys. Rev. Lett. 98, 043907 (2007).
[Crossref]

K.-L. Yeh, M. C. Hoffmann, J. Hebling, K. A. Nelson, “Generation of 10  μJ ultrashort terahertz pulses by optical rectification,” Appl. Phys. Lett. 90, 171121 (2007).
[Crossref]

2006 (2)

P. Hommelhoff, Y. Sortais, A. Aghajani-Talesh, M. A. Kasevich, “Field emission tip as a nanometer source of free electron femtosecond pulses,” Phys. Rev. Lett. 96, 077401 (2006).
[Crossref]

Y. Itikawa, “Cross sections for electron collisions with nitrogen molecules,” J. Phys. Chem. Ref. Data 35, 31–53 (2006).
[Crossref]

2005 (1)

K. V. Kozlov, R. Brandenburg, H.-E. E. Wagner, A. M. Morozov, P. Michel, “Investigation of the filamentary and diffuse mode of barrier discharges in N2/O2 mixtures at atmospheric pressure by cross-correlation spectroscopy,” J. Phys. D 38, 518–529 (2005).

2004 (1)

2001 (1)

J. Kupersztych, P. Monchicourt, M. Raynaud, “Ponderomotive acceleration of photoelectrons in surface-plasmon-assisted multiphoton photoelectric emission,” Phys. Rev. Lett. 86, 5180–5183 (2001).
[Crossref]

1997 (1)

C. Winnewisser, P. U. Jepsen, M. Schall, V. Schyja, H. Helm, “Electro-optic detection of THz radiation in LiTaO3, LiNbO3 and ZnTe,” Appl. Phys. Lett. 70, 3069–3071 (1997).
[Crossref]

1996 (2)

Q. Wu, M. Litz, X.-C. Zhang, “Broadband detection capability of ZnTe electro-optic field detectors,” Appl. Phys. Lett. 68, 2924–2926 (1996).
[Crossref]

A. Nahata, D. H. Auston, T. F. Heinz, C. Wu, “Coherent detection of freely propagating terahertz radiation by electro-optic sampling,” Appl. Phys. Lett. 68, 150–152 (1996).

1995 (1)

G. Paulus, W. Becker, H. Walther, “Classical rescattering effects in two-color above-threshold ionization,” Phys. Rev. A 52, 4043–4053 (1995).
[Crossref]

1994 (1)

R. Gomer, “Field emission, field ionization, and field desorption,” Surf. Sci. 299, 129–152 (1994).
[Crossref]

1993 (1)

P. Corkum, “Plasma perspective on strong field multiphoton ionization,” Phys. Rev. Lett. 71, 1994–1997 (1993).
[Crossref]

1977 (1)

A. Lofthus, P. H. Krupenie, “The spectrum of molecular nitrogen,” J. Phys. Chem. Ref. Data 6, 113–307 (1977).
[Crossref]

1967 (1)

C. B. Duke, “Field emission through atoms adsorbed on a metal surface,” J. Chem. Phys. 46, 923–937 (1967).
[Crossref]

1928 (1)

R. H. Fowler, L. Nordheim, “Electron emission in intense electric fields,” Proc. R. Soc. A 119, 173–181 (1928).

Abel, B.

M. Sivis, M. Duwe, B. Abel, C. Ropers, “Extreme-ultraviolet light generation in plasmonic nanostructures,” Nat. Phys. 9, 304–309 (2013).
[Crossref]

Aghajani-Talesh, A.

P. Hommelhoff, Y. Sortais, A. Aghajani-Talesh, M. A. Kasevich, “Field emission tip as a nanometer source of free electron femtosecond pulses,” Phys. Rev. Lett. 96, 077401 (2006).
[Crossref]

Aints, M.

F. Valk, M. Aints, P. Paris, T. Plank, J. Maksimov, A. Tamm, “Measurement of collisional quenching rate of nitrogen states N2 (C3Πu, v = 0) and N2+ (B2Σu+, v=0),” J. Phys. D 43, 385202 (2010).

Andryieuski, A.

K. Iwaszczuk, A. Andryieuski, A. Lavrinenko, X.-C. Zhang, P. U. Jepsen, “Terahertz field enhancement to the MV/cm regime in a tapered parallel plate waveguide,” Opt. Express 25441, 25441–25448 (2011).

Auston, D. H.

A. Nahata, D. H. Auston, T. F. Heinz, C. Wu, “Coherent detection of freely propagating terahertz radiation by electro-optic sampling,” Appl. Phys. Lett. 68, 150–152 (1996).

Becker, W.

G. Paulus, W. Becker, H. Walther, “Classical rescattering effects in two-color above-threshold ionization,” Phys. Rev. A 52, 4043–4053 (1995).
[Crossref]

Blanchard, F.

H. Hirori, A. Doi, F. Blanchard, K. Tanaka, “Single-cycle terahertz pulses with amplitudes exceeding 1  MV/cm generated by optical rectification in LiNbO3,” Appl. Phys. Lett. 98, 091106 (2011).
[Crossref]

Bormann, R.

R. Bormann, M. Gulde, A. Weismann, S. V. Yalunin, C. Ropers, “Tip-enhanced strong-field photoemission,” Phys. Rev. Lett. 105, 147601 (2010).
[Crossref]

Brandenburg, R.

K. V. Kozlov, R. Brandenburg, H.-E. E. Wagner, A. M. Morozov, P. Michel, “Investigation of the filamentary and diffuse mode of barrier discharges in N2/O2 mixtures at atmospheric pressure by cross-correlation spectroscopy,” J. Phys. D 38, 518–529 (2005).

Burgdörfer, J.

G. Wachter, C. Lemell, J. Burgdörfer, M. Schenk, M. Krüger, P. Hommelhoff, “Electron rescattering at metal nanotips induced by ultrashort laser pulses,” Phys. Rev. B 86, 035402 (2012).

Burgess, J. A. J.

T. L. Cocker, V. Jelic, M. Gupta, S. J. Molesky, J. A. J. Burgess, G. D. L. Reyes, L. V. Titova, Y. Y. Tsui, M. R. Freeman, F. A. Hegmann, “An ultrafast terahertz scanning tunnelling microscope,” Nat. Photonics 7, 620–625 (2013).
[Crossref]

Chen, C. J.

C. J. Chen, Introduction to Scanning Tunneling Microscopy (Oxford University, 1993).

Chen, J.

Z. Zhang, G. Meng, Q. Wu, Z. Hu, J. Chen, Q. Xu, F. Zhou, “Enhanced cold field emission of large-area arrays of vertically aligned ZnO-nanotapers via sharpening: experiment and theory,” Sci. Rep. 4, 4676 (2014).

Cocker, T. L.

T. L. Cocker, V. Jelic, M. Gupta, S. J. Molesky, J. A. J. Burgess, G. D. L. Reyes, L. V. Titova, Y. Y. Tsui, M. R. Freeman, F. A. Hegmann, “An ultrafast terahertz scanning tunnelling microscope,” Nat. Photonics 7, 620–625 (2013).
[Crossref]

Corkum, P.

P. Corkum, “Plasma perspective on strong field multiphoton ionization,” Phys. Rev. Lett. 71, 1994–1997 (1993).
[Crossref]

Dai, J.

Doi, A.

H. Hirori, A. Doi, F. Blanchard, K. Tanaka, “Single-cycle terahertz pulses with amplitudes exceeding 1  MV/cm generated by optical rectification in LiNbO3,” Appl. Phys. Lett. 98, 091106 (2011).
[Crossref]

Duke, C. B.

C. B. Duke, “Field emission through atoms adsorbed on a metal surface,” J. Chem. Phys. 46, 923–937 (1967).
[Crossref]

Duwe, M.

M. Sivis, M. Duwe, B. Abel, C. Ropers, “Extreme-ultraviolet light generation in plasmonic nanostructures,” Nat. Phys. 9, 304–309 (2013).
[Crossref]

Echternkamp, K. E.

L. Wimmer, G. Herink, D. R. Solli, S. V. Yalunin, K. E. Echternkamp, C. Ropers, “Terahertz control of nanotip photoemission,” Nat. Phys. 10, 432–436 (2014).
[Crossref]

Elsaesser, T.

C. Ropers, D. R. Solli, C. P. Schulz, C. Lienau, T. Elsaesser, “Localized multiphoton emission of femtosecond electron pulses from metal nanotips,” Phys. Rev. Lett. 98, 043907 (2007).
[Crossref]

Ernstorfer, R.

R. J. D. Miller, R. Ernstorfer, M. Harb, M. Gao, C. T. Hebeisen, H. Jean-Ruel, C. Lu, G. Moriena, G. Sciaini, “‘Making the molecular movie’: first frames,” Acta Crystallogr. Sect. A 66, 137–156 (2010).

Flannigan, D. J.

D. J. Flannigan, A. H. Zewail, “4D electron microscopy: principles and applications,” Acc. Chem. Res. 45, 1828–1839 (2012).
[Crossref]

Forbes, R. G.

R. G. Forbes, “Physics of generalized Fowler-Nordheim-type equations,” J. Vac. Sci. Technol. B 26, 788–793 (2008).
[Crossref]

R. G. Forbes, “On the need for a tunneling pre-factor in Fowler–Nordheim tunneling theory,” J. Appl. Phys. 103, 114911 (2008).
[Crossref]

Fowler, R. H.

R. H. Fowler, L. Nordheim, “Electron emission in intense electric fields,” Proc. R. Soc. A 119, 173–181 (1928).

Freeman, M. R.

T. L. Cocker, V. Jelic, M. Gupta, S. J. Molesky, J. A. J. Burgess, G. D. L. Reyes, L. V. Titova, Y. Y. Tsui, M. R. Freeman, F. A. Hegmann, “An ultrafast terahertz scanning tunnelling microscope,” Nat. Photonics 7, 620–625 (2013).
[Crossref]

Fülöp, J. A.

M. C. Hoffmann, J. A. Fülöp, “Intense ultrashort terahertz pulses: generation and applications,” J. Phys. D 44, 083001 (2011).

Gao, M.

R. J. D. Miller, R. Ernstorfer, M. Harb, M. Gao, C. T. Hebeisen, H. Jean-Ruel, C. Lu, G. Moriena, G. Sciaini, “‘Making the molecular movie’: first frames,” Acta Crystallogr. Sect. A 66, 137–156 (2010).

Gomer, R.

R. Gomer, “Field emission, field ionization, and field desorption,” Surf. Sci. 299, 129–152 (1994).
[Crossref]

Grischkowsky, D.

Gulde, M.

G. Herink, D. R. Solli, M. Gulde, C. Ropers, “Field-driven photoemission from nanostructures quenches the quiver motion,” Nature 483, 190–193 (2012).
[Crossref]

R. Bormann, M. Gulde, A. Weismann, S. V. Yalunin, C. Ropers, “Tip-enhanced strong-field photoemission,” Phys. Rev. Lett. 105, 147601 (2010).
[Crossref]

Gupta, M.

T. L. Cocker, V. Jelic, M. Gupta, S. J. Molesky, J. A. J. Burgess, G. D. L. Reyes, L. V. Titova, Y. Y. Tsui, M. R. Freeman, F. A. Hegmann, “An ultrafast terahertz scanning tunnelling microscope,” Nat. Photonics 7, 620–625 (2013).
[Crossref]

Harb, M.

R. J. D. Miller, R. Ernstorfer, M. Harb, M. Gao, C. T. Hebeisen, H. Jean-Ruel, C. Lu, G. Moriena, G. Sciaini, “‘Making the molecular movie’: first frames,” Acta Crystallogr. Sect. A 66, 137–156 (2010).

Hebeisen, C. T.

R. J. D. Miller, R. Ernstorfer, M. Harb, M. Gao, C. T. Hebeisen, H. Jean-Ruel, C. Lu, G. Moriena, G. Sciaini, “‘Making the molecular movie’: first frames,” Acta Crystallogr. Sect. A 66, 137–156 (2010).

Hebling, J.

K.-L. Yeh, M. C. Hoffmann, J. Hebling, K. A. Nelson, “Generation of 10  μJ ultrashort terahertz pulses by optical rectification,” Appl. Phys. Lett. 90, 171121 (2007).
[Crossref]

Hegmann, F. A.

T. L. Cocker, V. Jelic, M. Gupta, S. J. Molesky, J. A. J. Burgess, G. D. L. Reyes, L. V. Titova, Y. Y. Tsui, M. R. Freeman, F. A. Hegmann, “An ultrafast terahertz scanning tunnelling microscope,” Nat. Photonics 7, 620–625 (2013).
[Crossref]

Heinz, T. F.

A. Nahata, D. H. Auston, T. F. Heinz, C. Wu, “Coherent detection of freely propagating terahertz radiation by electro-optic sampling,” Appl. Phys. Lett. 68, 150–152 (1996).

Helm, H.

C. Winnewisser, P. U. Jepsen, M. Schall, V. Schyja, H. Helm, “Electro-optic detection of THz radiation in LiTaO3, LiNbO3 and ZnTe,” Appl. Phys. Lett. 70, 3069–3071 (1997).
[Crossref]

Herink, G.

L. Wimmer, G. Herink, D. R. Solli, S. V. Yalunin, K. E. Echternkamp, C. Ropers, “Terahertz control of nanotip photoemission,” Nat. Phys. 10, 432–436 (2014).
[Crossref]

G. Herink, D. R. Solli, M. Gulde, C. Ropers, “Field-driven photoemission from nanostructures quenches the quiver motion,” Nature 483, 190–193 (2012).
[Crossref]

Hirori, H.

H. Hirori, A. Doi, F. Blanchard, K. Tanaka, “Single-cycle terahertz pulses with amplitudes exceeding 1  MV/cm generated by optical rectification in LiNbO3,” Appl. Phys. Lett. 98, 091106 (2011).
[Crossref]

Hoffmann, M. C.

M. C. Hoffmann, J. A. Fülöp, “Intense ultrashort terahertz pulses: generation and applications,” J. Phys. D 44, 083001 (2011).

K.-L. Yeh, M. C. Hoffmann, J. Hebling, K. A. Nelson, “Generation of 10  μJ ultrashort terahertz pulses by optical rectification,” Appl. Phys. Lett. 90, 171121 (2007).
[Crossref]

Hommelhoff, P.

G. Wachter, C. Lemell, J. Burgdörfer, M. Schenk, M. Krüger, P. Hommelhoff, “Electron rescattering at metal nanotips induced by ultrashort laser pulses,” Phys. Rev. B 86, 035402 (2012).

M. Krüger, M. Schenk, P. Hommelhoff, “Attosecond control of electrons emitted from a nanoscale metal tip,” Nature 475, 78–81 (2011).
[Crossref]

M. Schenk, M. Krüger, P. Hommelhoff, “Strong-field above-threshold photoemission from sharp metal tips,” Phys. Rev. Lett. 105, 257601 (2010).
[Crossref]

P. Hommelhoff, Y. Sortais, A. Aghajani-Talesh, M. A. Kasevich, “Field emission tip as a nanometer source of free electron femtosecond pulses,” Phys. Rev. Lett. 96, 077401 (2006).
[Crossref]

Hu, Z.

Z. Zhang, G. Meng, Q. Wu, Z. Hu, J. Chen, Q. Xu, F. Zhou, “Enhanced cold field emission of large-area arrays of vertically aligned ZnO-nanotapers via sharpening: experiment and theory,” Sci. Rep. 4, 4676 (2014).

Itikawa, Y.

Y. Itikawa, “Cross sections for electron collisions with nitrogen molecules,” J. Phys. Chem. Ref. Data 35, 31–53 (2006).
[Crossref]

Iwaszczuk, K.

P. Klarskov, A. C. Strikwerda, K. Iwaszczuk, P. U. Jepsen, “Experimental three-dimensional beam profiling and modeling of a terahertz beam generated from a two-color air plasma,” New J. Phys. 15, 075012 (2013).
[Crossref]

K. Iwaszczuk, A. Andryieuski, A. Lavrinenko, X.-C. Zhang, P. U. Jepsen, “Terahertz field enhancement to the MV/cm regime in a tapered parallel plate waveguide,” Opt. Express 25441, 25441–25448 (2011).

Jean-Ruel, H.

R. J. D. Miller, R. Ernstorfer, M. Harb, M. Gao, C. T. Hebeisen, H. Jean-Ruel, C. Lu, G. Moriena, G. Sciaini, “‘Making the molecular movie’: first frames,” Acta Crystallogr. Sect. A 66, 137–156 (2010).

Jelic, V.

T. L. Cocker, V. Jelic, M. Gupta, S. J. Molesky, J. A. J. Burgess, G. D. L. Reyes, L. V. Titova, Y. Y. Tsui, M. R. Freeman, F. A. Hegmann, “An ultrafast terahertz scanning tunnelling microscope,” Nat. Photonics 7, 620–625 (2013).
[Crossref]

Jepsen, P. U.

P. Klarskov, A. C. Strikwerda, K. Iwaszczuk, P. U. Jepsen, “Experimental three-dimensional beam profiling and modeling of a terahertz beam generated from a two-color air plasma,” New J. Phys. 15, 075012 (2013).
[Crossref]

K. Iwaszczuk, A. Andryieuski, A. Lavrinenko, X.-C. Zhang, P. U. Jepsen, “Terahertz field enhancement to the MV/cm regime in a tapered parallel plate waveguide,” Opt. Express 25441, 25441–25448 (2011).

C. Winnewisser, P. U. Jepsen, M. Schall, V. Schyja, H. Helm, “Electro-optic detection of THz radiation in LiTaO3, LiNbO3 and ZnTe,” Appl. Phys. Lett. 70, 3069–3071 (1997).
[Crossref]

Kasevich, M. A.

P. Hommelhoff, Y. Sortais, A. Aghajani-Talesh, M. A. Kasevich, “Field emission tip as a nanometer source of free electron femtosecond pulses,” Phys. Rev. Lett. 96, 077401 (2006).
[Crossref]

Klarskov, P.

P. Klarskov, A. C. Strikwerda, K. Iwaszczuk, P. U. Jepsen, “Experimental three-dimensional beam profiling and modeling of a terahertz beam generated from a two-color air plasma,” New J. Phys. 15, 075012 (2013).
[Crossref]

Kozlov, K. V.

K. V. Kozlov, R. Brandenburg, H.-E. E. Wagner, A. M. Morozov, P. Michel, “Investigation of the filamentary and diffuse mode of barrier discharges in N2/O2 mixtures at atmospheric pressure by cross-correlation spectroscopy,” J. Phys. D 38, 518–529 (2005).

Krüger, M.

G. Wachter, C. Lemell, J. Burgdörfer, M. Schenk, M. Krüger, P. Hommelhoff, “Electron rescattering at metal nanotips induced by ultrashort laser pulses,” Phys. Rev. B 86, 035402 (2012).

M. Krüger, M. Schenk, P. Hommelhoff, “Attosecond control of electrons emitted from a nanoscale metal tip,” Nature 475, 78–81 (2011).
[Crossref]

M. Schenk, M. Krüger, P. Hommelhoff, “Strong-field above-threshold photoemission from sharp metal tips,” Phys. Rev. Lett. 105, 257601 (2010).
[Crossref]

Krupenie, P. H.

A. Lofthus, P. H. Krupenie, “The spectrum of molecular nitrogen,” J. Phys. Chem. Ref. Data 6, 113–307 (1977).
[Crossref]

Kupersztych, J.

J. Kupersztych, P. Monchicourt, M. Raynaud, “Ponderomotive acceleration of photoelectrons in surface-plasmon-assisted multiphoton photoelectric emission,” Phys. Rev. Lett. 86, 5180–5183 (2001).
[Crossref]

Lavrinenko, A.

K. Iwaszczuk, A. Andryieuski, A. Lavrinenko, X.-C. Zhang, P. U. Jepsen, “Terahertz field enhancement to the MV/cm regime in a tapered parallel plate waveguide,” Opt. Express 25441, 25441–25448 (2011).

Lemell, C.

G. Wachter, C. Lemell, J. Burgdörfer, M. Schenk, M. Krüger, P. Hommelhoff, “Electron rescattering at metal nanotips induced by ultrashort laser pulses,” Phys. Rev. B 86, 035402 (2012).

Lienau, C.

C. Ropers, D. R. Solli, C. P. Schulz, C. Lienau, T. Elsaesser, “Localized multiphoton emission of femtosecond electron pulses from metal nanotips,” Phys. Rev. Lett. 98, 043907 (2007).
[Crossref]

Litz, M.

Q. Wu, M. Litz, X.-C. Zhang, “Broadband detection capability of ZnTe electro-optic field detectors,” Appl. Phys. Lett. 68, 2924–2926 (1996).
[Crossref]

Lofthus, A.

A. Lofthus, P. H. Krupenie, “The spectrum of molecular nitrogen,” J. Phys. Chem. Ref. Data 6, 113–307 (1977).
[Crossref]

Lu, C.

R. J. D. Miller, R. Ernstorfer, M. Harb, M. Gao, C. T. Hebeisen, H. Jean-Ruel, C. Lu, G. Moriena, G. Sciaini, “‘Making the molecular movie’: first frames,” Acta Crystallogr. Sect. A 66, 137–156 (2010).

Maksimov, J.

F. Valk, M. Aints, P. Paris, T. Plank, J. Maksimov, A. Tamm, “Measurement of collisional quenching rate of nitrogen states N2 (C3Πu, v = 0) and N2+ (B2Σu+, v=0),” J. Phys. D 43, 385202 (2010).

Meng, G.

Z. Zhang, G. Meng, Q. Wu, Z. Hu, J. Chen, Q. Xu, F. Zhou, “Enhanced cold field emission of large-area arrays of vertically aligned ZnO-nanotapers via sharpening: experiment and theory,” Sci. Rep. 4, 4676 (2014).

Michel, P.

K. V. Kozlov, R. Brandenburg, H.-E. E. Wagner, A. M. Morozov, P. Michel, “Investigation of the filamentary and diffuse mode of barrier discharges in N2/O2 mixtures at atmospheric pressure by cross-correlation spectroscopy,” J. Phys. D 38, 518–529 (2005).

Miller, R. J. D.

R. J. D. Miller, R. Ernstorfer, M. Harb, M. Gao, C. T. Hebeisen, H. Jean-Ruel, C. Lu, G. Moriena, G. Sciaini, “‘Making the molecular movie’: first frames,” Acta Crystallogr. Sect. A 66, 137–156 (2010).

Molesky, S. J.

T. L. Cocker, V. Jelic, M. Gupta, S. J. Molesky, J. A. J. Burgess, G. D. L. Reyes, L. V. Titova, Y. Y. Tsui, M. R. Freeman, F. A. Hegmann, “An ultrafast terahertz scanning tunnelling microscope,” Nat. Photonics 7, 620–625 (2013).
[Crossref]

Monchicourt, P.

J. Kupersztych, P. Monchicourt, M. Raynaud, “Ponderomotive acceleration of photoelectrons in surface-plasmon-assisted multiphoton photoelectric emission,” Phys. Rev. Lett. 86, 5180–5183 (2001).
[Crossref]

Moriena, G.

R. J. D. Miller, R. Ernstorfer, M. Harb, M. Gao, C. T. Hebeisen, H. Jean-Ruel, C. Lu, G. Moriena, G. Sciaini, “‘Making the molecular movie’: first frames,” Acta Crystallogr. Sect. A 66, 137–156 (2010).

Morozov, A. M.

K. V. Kozlov, R. Brandenburg, H.-E. E. Wagner, A. M. Morozov, P. Michel, “Investigation of the filamentary and diffuse mode of barrier discharges in N2/O2 mixtures at atmospheric pressure by cross-correlation spectroscopy,” J. Phys. D 38, 518–529 (2005).

Nahata, A.

A. Nahata, D. H. Auston, T. F. Heinz, C. Wu, “Coherent detection of freely propagating terahertz radiation by electro-optic sampling,” Appl. Phys. Lett. 68, 150–152 (1996).

Nelson, K. A.

K.-L. Yeh, M. C. Hoffmann, J. Hebling, K. A. Nelson, “Generation of 10  μJ ultrashort terahertz pulses by optical rectification,” Appl. Phys. Lett. 90, 171121 (2007).
[Crossref]

Nordheim, L.

R. H. Fowler, L. Nordheim, “Electron emission in intense electric fields,” Proc. R. Soc. A 119, 173–181 (1928).

Paris, P.

F. Valk, M. Aints, P. Paris, T. Plank, J. Maksimov, A. Tamm, “Measurement of collisional quenching rate of nitrogen states N2 (C3Πu, v = 0) and N2+ (B2Σu+, v=0),” J. Phys. D 43, 385202 (2010).

Paulus, G.

G. Paulus, W. Becker, H. Walther, “Classical rescattering effects in two-color above-threshold ionization,” Phys. Rev. A 52, 4043–4053 (1995).
[Crossref]

Plank, T.

F. Valk, M. Aints, P. Paris, T. Plank, J. Maksimov, A. Tamm, “Measurement of collisional quenching rate of nitrogen states N2 (C3Πu, v = 0) and N2+ (B2Σu+, v=0),” J. Phys. D 43, 385202 (2010).

Raynaud, M.

J. Kupersztych, P. Monchicourt, M. Raynaud, “Ponderomotive acceleration of photoelectrons in surface-plasmon-assisted multiphoton photoelectric emission,” Phys. Rev. Lett. 86, 5180–5183 (2001).
[Crossref]

Reyes, G. D. L.

T. L. Cocker, V. Jelic, M. Gupta, S. J. Molesky, J. A. J. Burgess, G. D. L. Reyes, L. V. Titova, Y. Y. Tsui, M. R. Freeman, F. A. Hegmann, “An ultrafast terahertz scanning tunnelling microscope,” Nat. Photonics 7, 620–625 (2013).
[Crossref]

Ropers, C.

L. Wimmer, G. Herink, D. R. Solli, S. V. Yalunin, K. E. Echternkamp, C. Ropers, “Terahertz control of nanotip photoemission,” Nat. Phys. 10, 432–436 (2014).
[Crossref]

M. Sivis, M. Duwe, B. Abel, C. Ropers, “Extreme-ultraviolet light generation in plasmonic nanostructures,” Nat. Phys. 9, 304–309 (2013).
[Crossref]

G. Herink, D. R. Solli, M. Gulde, C. Ropers, “Field-driven photoemission from nanostructures quenches the quiver motion,” Nature 483, 190–193 (2012).
[Crossref]

R. Bormann, M. Gulde, A. Weismann, S. V. Yalunin, C. Ropers, “Tip-enhanced strong-field photoemission,” Phys. Rev. Lett. 105, 147601 (2010).
[Crossref]

C. Ropers, D. R. Solli, C. P. Schulz, C. Lienau, T. Elsaesser, “Localized multiphoton emission of femtosecond electron pulses from metal nanotips,” Phys. Rev. Lett. 98, 043907 (2007).
[Crossref]

Schall, M.

C. Winnewisser, P. U. Jepsen, M. Schall, V. Schyja, H. Helm, “Electro-optic detection of THz radiation in LiTaO3, LiNbO3 and ZnTe,” Appl. Phys. Lett. 70, 3069–3071 (1997).
[Crossref]

Schenk, M.

G. Wachter, C. Lemell, J. Burgdörfer, M. Schenk, M. Krüger, P. Hommelhoff, “Electron rescattering at metal nanotips induced by ultrashort laser pulses,” Phys. Rev. B 86, 035402 (2012).

M. Krüger, M. Schenk, P. Hommelhoff, “Attosecond control of electrons emitted from a nanoscale metal tip,” Nature 475, 78–81 (2011).
[Crossref]

M. Schenk, M. Krüger, P. Hommelhoff, “Strong-field above-threshold photoemission from sharp metal tips,” Phys. Rev. Lett. 105, 257601 (2010).
[Crossref]

Schulz, C. P.

C. Ropers, D. R. Solli, C. P. Schulz, C. Lienau, T. Elsaesser, “Localized multiphoton emission of femtosecond electron pulses from metal nanotips,” Phys. Rev. Lett. 98, 043907 (2007).
[Crossref]

Schyja, V.

C. Winnewisser, P. U. Jepsen, M. Schall, V. Schyja, H. Helm, “Electro-optic detection of THz radiation in LiTaO3, LiNbO3 and ZnTe,” Appl. Phys. Lett. 70, 3069–3071 (1997).
[Crossref]

Sciaini, G.

R. J. D. Miller, R. Ernstorfer, M. Harb, M. Gao, C. T. Hebeisen, H. Jean-Ruel, C. Lu, G. Moriena, G. Sciaini, “‘Making the molecular movie’: first frames,” Acta Crystallogr. Sect. A 66, 137–156 (2010).

Sivis, M.

M. Sivis, M. Duwe, B. Abel, C. Ropers, “Extreme-ultraviolet light generation in plasmonic nanostructures,” Nat. Phys. 9, 304–309 (2013).
[Crossref]

Solli, D. R.

L. Wimmer, G. Herink, D. R. Solli, S. V. Yalunin, K. E. Echternkamp, C. Ropers, “Terahertz control of nanotip photoemission,” Nat. Phys. 10, 432–436 (2014).
[Crossref]

G. Herink, D. R. Solli, M. Gulde, C. Ropers, “Field-driven photoemission from nanostructures quenches the quiver motion,” Nature 483, 190–193 (2012).
[Crossref]

C. Ropers, D. R. Solli, C. P. Schulz, C. Lienau, T. Elsaesser, “Localized multiphoton emission of femtosecond electron pulses from metal nanotips,” Phys. Rev. Lett. 98, 043907 (2007).
[Crossref]

Sortais, Y.

P. Hommelhoff, Y. Sortais, A. Aghajani-Talesh, M. A. Kasevich, “Field emission tip as a nanometer source of free electron femtosecond pulses,” Phys. Rev. Lett. 96, 077401 (2006).
[Crossref]

Strikwerda, A. C.

P. Klarskov, A. C. Strikwerda, K. Iwaszczuk, P. U. Jepsen, “Experimental three-dimensional beam profiling and modeling of a terahertz beam generated from a two-color air plasma,” New J. Phys. 15, 075012 (2013).
[Crossref]

Tamm, A.

F. Valk, M. Aints, P. Paris, T. Plank, J. Maksimov, A. Tamm, “Measurement of collisional quenching rate of nitrogen states N2 (C3Πu, v = 0) and N2+ (B2Σu+, v=0),” J. Phys. D 43, 385202 (2010).

Tanaka, K.

H. Hirori, A. Doi, F. Blanchard, K. Tanaka, “Single-cycle terahertz pulses with amplitudes exceeding 1  MV/cm generated by optical rectification in LiNbO3,” Appl. Phys. Lett. 98, 091106 (2011).
[Crossref]

Titova, L. V.

T. L. Cocker, V. Jelic, M. Gupta, S. J. Molesky, J. A. J. Burgess, G. D. L. Reyes, L. V. Titova, Y. Y. Tsui, M. R. Freeman, F. A. Hegmann, “An ultrafast terahertz scanning tunnelling microscope,” Nat. Photonics 7, 620–625 (2013).
[Crossref]

Tsui, Y. Y.

T. L. Cocker, V. Jelic, M. Gupta, S. J. Molesky, J. A. J. Burgess, G. D. L. Reyes, L. V. Titova, Y. Y. Tsui, M. R. Freeman, F. A. Hegmann, “An ultrafast terahertz scanning tunnelling microscope,” Nat. Photonics 7, 620–625 (2013).
[Crossref]

Valk, F.

F. Valk, M. Aints, P. Paris, T. Plank, J. Maksimov, A. Tamm, “Measurement of collisional quenching rate of nitrogen states N2 (C3Πu, v = 0) and N2+ (B2Σu+, v=0),” J. Phys. D 43, 385202 (2010).

Wachter, G.

G. Wachter, C. Lemell, J. Burgdörfer, M. Schenk, M. Krüger, P. Hommelhoff, “Electron rescattering at metal nanotips induced by ultrashort laser pulses,” Phys. Rev. B 86, 035402 (2012).

Wagner, H.-E. E.

K. V. Kozlov, R. Brandenburg, H.-E. E. Wagner, A. M. Morozov, P. Michel, “Investigation of the filamentary and diffuse mode of barrier discharges in N2/O2 mixtures at atmospheric pressure by cross-correlation spectroscopy,” J. Phys. D 38, 518–529 (2005).

Walther, H.

G. Paulus, W. Becker, H. Walther, “Classical rescattering effects in two-color above-threshold ionization,” Phys. Rev. A 52, 4043–4053 (1995).
[Crossref]

Weismann, A.

R. Bormann, M. Gulde, A. Weismann, S. V. Yalunin, C. Ropers, “Tip-enhanced strong-field photoemission,” Phys. Rev. Lett. 105, 147601 (2010).
[Crossref]

Wimmer, L.

L. Wimmer, G. Herink, D. R. Solli, S. V. Yalunin, K. E. Echternkamp, C. Ropers, “Terahertz control of nanotip photoemission,” Nat. Phys. 10, 432–436 (2014).
[Crossref]

Winnewisser, C.

C. Winnewisser, P. U. Jepsen, M. Schall, V. Schyja, H. Helm, “Electro-optic detection of THz radiation in LiTaO3, LiNbO3 and ZnTe,” Appl. Phys. Lett. 70, 3069–3071 (1997).
[Crossref]

Wu, C.

A. Nahata, D. H. Auston, T. F. Heinz, C. Wu, “Coherent detection of freely propagating terahertz radiation by electro-optic sampling,” Appl. Phys. Lett. 68, 150–152 (1996).

Wu, Q.

Z. Zhang, G. Meng, Q. Wu, Z. Hu, J. Chen, Q. Xu, F. Zhou, “Enhanced cold field emission of large-area arrays of vertically aligned ZnO-nanotapers via sharpening: experiment and theory,” Sci. Rep. 4, 4676 (2014).

Q. Wu, M. Litz, X.-C. Zhang, “Broadband detection capability of ZnTe electro-optic field detectors,” Appl. Phys. Lett. 68, 2924–2926 (1996).
[Crossref]

Xu, Q.

Z. Zhang, G. Meng, Q. Wu, Z. Hu, J. Chen, Q. Xu, F. Zhou, “Enhanced cold field emission of large-area arrays of vertically aligned ZnO-nanotapers via sharpening: experiment and theory,” Sci. Rep. 4, 4676 (2014).

Yalunin, S. V.

L. Wimmer, G. Herink, D. R. Solli, S. V. Yalunin, K. E. Echternkamp, C. Ropers, “Terahertz control of nanotip photoemission,” Nat. Phys. 10, 432–436 (2014).
[Crossref]

R. Bormann, M. Gulde, A. Weismann, S. V. Yalunin, C. Ropers, “Tip-enhanced strong-field photoemission,” Phys. Rev. Lett. 105, 147601 (2010).
[Crossref]

Yeh, K.-L.

K.-L. Yeh, M. C. Hoffmann, J. Hebling, K. A. Nelson, “Generation of 10  μJ ultrashort terahertz pulses by optical rectification,” Appl. Phys. Lett. 90, 171121 (2007).
[Crossref]

Zewail, A. H.

D. J. Flannigan, A. H. Zewail, “4D electron microscopy: principles and applications,” Acc. Chem. Res. 45, 1828–1839 (2012).
[Crossref]

Zhang, J.

Zhang, W.

Zhang, X.-C.

K. Iwaszczuk, A. Andryieuski, A. Lavrinenko, X.-C. Zhang, P. U. Jepsen, “Terahertz field enhancement to the MV/cm regime in a tapered parallel plate waveguide,” Opt. Express 25441, 25441–25448 (2011).

Q. Wu, M. Litz, X.-C. Zhang, “Broadband detection capability of ZnTe electro-optic field detectors,” Appl. Phys. Lett. 68, 2924–2926 (1996).
[Crossref]

Zhang, Z.

Z. Zhang, G. Meng, Q. Wu, Z. Hu, J. Chen, Q. Xu, F. Zhou, “Enhanced cold field emission of large-area arrays of vertically aligned ZnO-nanotapers via sharpening: experiment and theory,” Sci. Rep. 4, 4676 (2014).

Zhou, F.

Z. Zhang, G. Meng, Q. Wu, Z. Hu, J. Chen, Q. Xu, F. Zhou, “Enhanced cold field emission of large-area arrays of vertically aligned ZnO-nanotapers via sharpening: experiment and theory,” Sci. Rep. 4, 4676 (2014).

Acc. Chem. Res. (1)

D. J. Flannigan, A. H. Zewail, “4D electron microscopy: principles and applications,” Acc. Chem. Res. 45, 1828–1839 (2012).
[Crossref]

Acta Crystallogr. Sect. A (1)

R. J. D. Miller, R. Ernstorfer, M. Harb, M. Gao, C. T. Hebeisen, H. Jean-Ruel, C. Lu, G. Moriena, G. Sciaini, “‘Making the molecular movie’: first frames,” Acta Crystallogr. Sect. A 66, 137–156 (2010).

Appl. Phys. Lett. (5)

K.-L. Yeh, M. C. Hoffmann, J. Hebling, K. A. Nelson, “Generation of 10  μJ ultrashort terahertz pulses by optical rectification,” Appl. Phys. Lett. 90, 171121 (2007).
[Crossref]

C. Winnewisser, P. U. Jepsen, M. Schall, V. Schyja, H. Helm, “Electro-optic detection of THz radiation in LiTaO3, LiNbO3 and ZnTe,” Appl. Phys. Lett. 70, 3069–3071 (1997).
[Crossref]

Q. Wu, M. Litz, X.-C. Zhang, “Broadband detection capability of ZnTe electro-optic field detectors,” Appl. Phys. Lett. 68, 2924–2926 (1996).
[Crossref]

A. Nahata, D. H. Auston, T. F. Heinz, C. Wu, “Coherent detection of freely propagating terahertz radiation by electro-optic sampling,” Appl. Phys. Lett. 68, 150–152 (1996).

H. Hirori, A. Doi, F. Blanchard, K. Tanaka, “Single-cycle terahertz pulses with amplitudes exceeding 1  MV/cm generated by optical rectification in LiNbO3,” Appl. Phys. Lett. 98, 091106 (2011).
[Crossref]

J. Appl. Phys. (1)

R. G. Forbes, “On the need for a tunneling pre-factor in Fowler–Nordheim tunneling theory,” J. Appl. Phys. 103, 114911 (2008).
[Crossref]

J. Chem. Phys. (1)

C. B. Duke, “Field emission through atoms adsorbed on a metal surface,” J. Chem. Phys. 46, 923–937 (1967).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. Ref. Data (2)

A. Lofthus, P. H. Krupenie, “The spectrum of molecular nitrogen,” J. Phys. Chem. Ref. Data 6, 113–307 (1977).
[Crossref]

Y. Itikawa, “Cross sections for electron collisions with nitrogen molecules,” J. Phys. Chem. Ref. Data 35, 31–53 (2006).
[Crossref]

J. Phys. D (3)

F. Valk, M. Aints, P. Paris, T. Plank, J. Maksimov, A. Tamm, “Measurement of collisional quenching rate of nitrogen states N2 (C3Πu, v = 0) and N2+ (B2Σu+, v=0),” J. Phys. D 43, 385202 (2010).

K. V. Kozlov, R. Brandenburg, H.-E. E. Wagner, A. M. Morozov, P. Michel, “Investigation of the filamentary and diffuse mode of barrier discharges in N2/O2 mixtures at atmospheric pressure by cross-correlation spectroscopy,” J. Phys. D 38, 518–529 (2005).

M. C. Hoffmann, J. A. Fülöp, “Intense ultrashort terahertz pulses: generation and applications,” J. Phys. D 44, 083001 (2011).

J. Vac. Sci. Technol. B (1)

R. G. Forbes, “Physics of generalized Fowler-Nordheim-type equations,” J. Vac. Sci. Technol. B 26, 788–793 (2008).
[Crossref]

Nat. Photonics (1)

T. L. Cocker, V. Jelic, M. Gupta, S. J. Molesky, J. A. J. Burgess, G. D. L. Reyes, L. V. Titova, Y. Y. Tsui, M. R. Freeman, F. A. Hegmann, “An ultrafast terahertz scanning tunnelling microscope,” Nat. Photonics 7, 620–625 (2013).
[Crossref]

Nat. Phys. (2)

L. Wimmer, G. Herink, D. R. Solli, S. V. Yalunin, K. E. Echternkamp, C. Ropers, “Terahertz control of nanotip photoemission,” Nat. Phys. 10, 432–436 (2014).
[Crossref]

M. Sivis, M. Duwe, B. Abel, C. Ropers, “Extreme-ultraviolet light generation in plasmonic nanostructures,” Nat. Phys. 9, 304–309 (2013).
[Crossref]

Nature (2)

G. Herink, D. R. Solli, M. Gulde, C. Ropers, “Field-driven photoemission from nanostructures quenches the quiver motion,” Nature 483, 190–193 (2012).
[Crossref]

M. Krüger, M. Schenk, P. Hommelhoff, “Attosecond control of electrons emitted from a nanoscale metal tip,” Nature 475, 78–81 (2011).
[Crossref]

New J. Phys. (1)

P. Klarskov, A. C. Strikwerda, K. Iwaszczuk, P. U. Jepsen, “Experimental three-dimensional beam profiling and modeling of a terahertz beam generated from a two-color air plasma,” New J. Phys. 15, 075012 (2013).
[Crossref]

Opt. Express (1)

K. Iwaszczuk, A. Andryieuski, A. Lavrinenko, X.-C. Zhang, P. U. Jepsen, “Terahertz field enhancement to the MV/cm regime in a tapered parallel plate waveguide,” Opt. Express 25441, 25441–25448 (2011).

Phys. Rev. A (1)

G. Paulus, W. Becker, H. Walther, “Classical rescattering effects in two-color above-threshold ionization,” Phys. Rev. A 52, 4043–4053 (1995).
[Crossref]

Phys. Rev. B (1)

G. Wachter, C. Lemell, J. Burgdörfer, M. Schenk, M. Krüger, P. Hommelhoff, “Electron rescattering at metal nanotips induced by ultrashort laser pulses,” Phys. Rev. B 86, 035402 (2012).

Phys. Rev. Lett. (6)

R. Bormann, M. Gulde, A. Weismann, S. V. Yalunin, C. Ropers, “Tip-enhanced strong-field photoemission,” Phys. Rev. Lett. 105, 147601 (2010).
[Crossref]

P. Hommelhoff, Y. Sortais, A. Aghajani-Talesh, M. A. Kasevich, “Field emission tip as a nanometer source of free electron femtosecond pulses,” Phys. Rev. Lett. 96, 077401 (2006).
[Crossref]

J. Kupersztych, P. Monchicourt, M. Raynaud, “Ponderomotive acceleration of photoelectrons in surface-plasmon-assisted multiphoton photoelectric emission,” Phys. Rev. Lett. 86, 5180–5183 (2001).
[Crossref]

C. Ropers, D. R. Solli, C. P. Schulz, C. Lienau, T. Elsaesser, “Localized multiphoton emission of femtosecond electron pulses from metal nanotips,” Phys. Rev. Lett. 98, 043907 (2007).
[Crossref]

M. Schenk, M. Krüger, P. Hommelhoff, “Strong-field above-threshold photoemission from sharp metal tips,” Phys. Rev. Lett. 105, 257601 (2010).
[Crossref]

P. Corkum, “Plasma perspective on strong field multiphoton ionization,” Phys. Rev. Lett. 71, 1994–1997 (1993).
[Crossref]

Proc. R. Soc. A (1)

R. H. Fowler, L. Nordheim, “Electron emission in intense electric fields,” Proc. R. Soc. A 119, 173–181 (1928).

Sci. Rep. (1)

Z. Zhang, G. Meng, Q. Wu, Z. Hu, J. Chen, Q. Xu, F. Zhou, “Enhanced cold field emission of large-area arrays of vertically aligned ZnO-nanotapers via sharpening: experiment and theory,” Sci. Rep. 4, 4676 (2014).

Surf. Sci. (1)

R. Gomer, “Field emission, field ionization, and field desorption,” Surf. Sci. 299, 129–152 (1994).
[Crossref]

Other (1)

C. J. Chen, Introduction to Scanning Tunneling Microscopy (Oxford University, 1993).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1. (a) Schematic of the experimental setup. (b) Imaging setup for determination of the UV emission profile. (c) Determination of the emission directionality. (d) Time-domain waveform and (e) corresponding amplitude spectrum of the THz driving electric field at the sample.
Fig. 2.
Fig. 2. Optimized design of lengths and periods of resonant dipole antennas on HR-Si for (a) I-shape and (b) T-shape structures. The width of all the antennas is kept constant at w=5μm, and the thickness of the gold layer is d=200nm.
Fig. 3.
Fig. 3. Intensity spectrum of the detected UV light. Markers show positions and radiative strengths of the second positive system of excited N2 (C3Πu to B3Πg transition) and the first negative system of excited N2+ (B2Σu+ to X2Σg+ transition) [22]. Numbers on the plot indicate initial and final vibrational states of the molecule.
Fig. 4.
Fig. 4. (a) SEM cross-sectional image of sample covered with 55 nm thick layer of isolating SiO2. Black/dark gray, HR-Si; bright gold/gray, SiO2 (b) Simulation of peak time-domain field enhancement as a function of distance from the metal surface for bare sample and sample covered with 55 nm of SiO2.
Fig. 5.
Fig. 5. (a) Intensity of UV emission at 337 nm as a function of pressure of the gas surrounding THz resonant antenna. The sample is in a vacuum chamber, which is pumped out while monitoring UV emission and gas pressure. (b) UV emission in both dry atmospheric air and pure nitrogen. The response time of the PMT used in the experiment is too slow to fully investigate the dynamics of UV emission in air, but it is fast enough to resolve it in pure nitrogen. PMT response is measured by illumination with a 400 nm 100 fs pulse.
Fig. 6.
Fig. 6. I-shape and T-shape antennas for electron field emission fabricated by standard UV lithography. (a), (b) Scanning electron micrograph images of a unit cell for (a) I-shape and (d) T-shape antennas optimized for 0.3 THz on a high-resistivity silicon (HR Si) substrate. The inset shows the gold surface topology with visible irregular grains in the 20–100 nm size range. Full-wave numerical simulations of the field amplitude enhancement on a logarithmic scale at the resonant frequency for (b) I-shape and (e) T-shape antennas. The inset shows a close-up on a linear scale of the field enhancement at the tips. (c), (f) Experimentally determined UV emission patterns. The spatial scale on all the (a)–(f) plots is kept fixed; thus the position of UV emission is directly comparable to the SEM image and numerical simulation. (g) Time-domain and (h) frequency-domain β field enhancement of surface field at the X and Y points of a T-shape antenna.
Fig. 7.
Fig. 7. UV emission intensity as a function of the polarization direction of the incident THz transient indicating symmetry breaking of the emission pattern due to the sign of the electron charge and asymmetry of the THz pulse.
Fig. 8.
Fig. 8. Ultrafast electron field emission, generation of nitrogen plasma, and emission of UV radiation using ultrashort high-power THz transients. Step ①, field-induced electron emission. Surface electric field Es induced by the THz wave tilts the potential outside the metal, thus allowing electrons to tunnel through the potential barrier Φ. Step ②, the external THz electric field accelerates the electrons, which acquire kinetic energy up to 100 eV. Step ③, electrons collide with molecular nitrogen and generate nitrogen plasma (mix of molecules in excited and ionized states). Step ④, nitrogen molecules emit UV radiation and relax to a lower energy state.
Fig. 9.
Fig. 9. (a) Cross section for electron collisions with nitrogen molecules for various processes. Adapted from [26]. (b) Calculated time between scatterings of electrons with nitrogen molecules at atmospheric pressure for various processes.
Fig. 10.
Fig. 10. UV emission from various length antenna structures illuminated with THz radiation. (a) 337 nm pulse energy detected by a PMT at the position of 60 mm away from the sample as a function of the incident peak THz field for I-shape antennas with various resonant frequencies. The inset shows the corresponding F-N plots displayed as ln(IUV/Eav2) versus 1/Eav. (b) Measurement and four-step model simulation of the number of the excited N2 molecules as a function of the incident peak electric field. The inset shows simulation of the maximum electron kinetic energy before it elastically scatters off an N2 molecule. (c) CST time-domain simulation of the field enhancement at the surface of the tip of the antenna and estimation of the field enhancement based on the F-N plot for various I-shape antennas.

Tables (1)

Tables Icon

Table 1. Summary of Several Characteristic Parameters for the Samples with Highest and Lowest Time-Domain Field Enhancements

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

J=αMλCa(βE0)2Φ1exp(vbΦ32βE0),

Metrics