Abstract

High-resolution, wide-field-of-view photography has undergone substantial improvements since the advent of multiscale lens design. Here, we present and evaluate a multiscale camera capable of a 10 μrad instantaneous field of view over a 36° field of view. We experimentally verify this camera’s optical performance at the individual microcamera level and report a 2.4 gigapixel panorama stitched from five snapshots. The results are consistent with the use of parallel camera arrays to produce scalable imagery at a substantial resolution range.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Characterization of the AWARE 10 two-gigapixel wide-field-of-view visible imager

D. L. Marks, P. R. Llull, Z. Phillips, J. G. Anderson, S. D. Feller, E. M. Vera, H. S. Son, S.-H. Youn, J. Kim, M. E. Gehm, D. J. Brady, J. M. Nichols, K. P. Judd, M. D. Duncan, J. R. Waterman, R. A. Stack, A. Johnson, R. Tennill, and C. C. Olson
Appl. Opt. 53(13) C54-C63 (2014)

Range performance of the DARPA AWARE wide field-of-view visible imager

J. M. Nichols, K. P. Judd, C. C. Olson, K. Novak, J. R. Waterman, S. Feller, S. McCain, J. Anderson, and D. Brady
Appl. Opt. 55(16) 4478-4484 (2016)

Development of a scalable image formation pipeline for multiscale gigapixel photography

D. R. Golish, E. M. Vera, K. J. Kelly, Q. Gong, P. A. Jansen, J. M. Hughes, D. S. Kittle, D. J. Brady, and M. E. Gehm
Opt. Express 20(20) 22048-22062 (2012)

References

  • View by:
  • |
  • |
  • |

  1. D. J. Brady, Optical Imaging and Spectroscopy (Wiley-Interscience, 2009).
  2. A. W. Lohmann, Appl. Opt. 28, 4996 (1989).
    [Crossref]
  3. S.-B. Rim, P. B. Catrysse, R. Dinyari, K. Huang, and P. Peumans, Opt. Express 16, 4965 (2008).
    [Crossref]
  4. D. Brady, M. Gehm, R. Stack, D. Marks, D. Kittle, D. Golish, E. Vera, and S. Feller, Nature 486, 386 (2012).
    [Crossref]
  5. D. L. Marks, P. R. Llull, Z. Phillips, J. G. Anderson, S. D. Feller, E. M. Vera, H. S. Son, S.-H. Youn, J. Kim, M. E. Gehm, D. J. Brady, J. M. Nichols, K. P. Judd, M. D. Duncan, J. R. Waterman, R. A. Stack, A. Johnson, R. Tennill, and C. C. Olson, Appl. Opt. 53, C54 (2014).
    [Crossref]
  6. E. J. Tremblay, D. L. Marks, D. J. Brady, and J. E. Ford, Appl. Opt. 51, 4691 (2012).
    [Crossref]
  7. O. S. Cossairt, D. Miau, and S. K. Nayar, “Gigapixel Computational Imaging,” in IEEE International Conference on Gigapixel Computational Imaging, in Computational Photography (ICCP), Pittsburgh (IEEE, 2011), pp. 1–8.
  8. Example AWARE 40 panorama, http://aqueti.tv/aware40/ (2015).

2014 (1)

2012 (2)

E. J. Tremblay, D. L. Marks, D. J. Brady, and J. E. Ford, Appl. Opt. 51, 4691 (2012).
[Crossref]

D. Brady, M. Gehm, R. Stack, D. Marks, D. Kittle, D. Golish, E. Vera, and S. Feller, Nature 486, 386 (2012).
[Crossref]

2008 (1)

1989 (1)

Anderson, J. G.

Brady, D.

D. Brady, M. Gehm, R. Stack, D. Marks, D. Kittle, D. Golish, E. Vera, and S. Feller, Nature 486, 386 (2012).
[Crossref]

Brady, D. J.

Catrysse, P. B.

Cossairt, O. S.

O. S. Cossairt, D. Miau, and S. K. Nayar, “Gigapixel Computational Imaging,” in IEEE International Conference on Gigapixel Computational Imaging, in Computational Photography (ICCP), Pittsburgh (IEEE, 2011), pp. 1–8.

Dinyari, R.

Duncan, M. D.

Feller, S.

D. Brady, M. Gehm, R. Stack, D. Marks, D. Kittle, D. Golish, E. Vera, and S. Feller, Nature 486, 386 (2012).
[Crossref]

Feller, S. D.

Ford, J. E.

Gehm, M.

D. Brady, M. Gehm, R. Stack, D. Marks, D. Kittle, D. Golish, E. Vera, and S. Feller, Nature 486, 386 (2012).
[Crossref]

Gehm, M. E.

Golish, D.

D. Brady, M. Gehm, R. Stack, D. Marks, D. Kittle, D. Golish, E. Vera, and S. Feller, Nature 486, 386 (2012).
[Crossref]

Huang, K.

Johnson, A.

Judd, K. P.

Kim, J.

Kittle, D.

D. Brady, M. Gehm, R. Stack, D. Marks, D. Kittle, D. Golish, E. Vera, and S. Feller, Nature 486, 386 (2012).
[Crossref]

Llull, P. R.

Lohmann, A. W.

Marks, D.

D. Brady, M. Gehm, R. Stack, D. Marks, D. Kittle, D. Golish, E. Vera, and S. Feller, Nature 486, 386 (2012).
[Crossref]

Marks, D. L.

Miau, D.

O. S. Cossairt, D. Miau, and S. K. Nayar, “Gigapixel Computational Imaging,” in IEEE International Conference on Gigapixel Computational Imaging, in Computational Photography (ICCP), Pittsburgh (IEEE, 2011), pp. 1–8.

Nayar, S. K.

O. S. Cossairt, D. Miau, and S. K. Nayar, “Gigapixel Computational Imaging,” in IEEE International Conference on Gigapixel Computational Imaging, in Computational Photography (ICCP), Pittsburgh (IEEE, 2011), pp. 1–8.

Nichols, J. M.

Olson, C. C.

Peumans, P.

Phillips, Z.

Rim, S.-B.

Son, H. S.

Stack, R.

D. Brady, M. Gehm, R. Stack, D. Marks, D. Kittle, D. Golish, E. Vera, and S. Feller, Nature 486, 386 (2012).
[Crossref]

Stack, R. A.

Tennill, R.

Tremblay, E. J.

Vera, E.

D. Brady, M. Gehm, R. Stack, D. Marks, D. Kittle, D. Golish, E. Vera, and S. Feller, Nature 486, 386 (2012).
[Crossref]

Vera, E. M.

Waterman, J. R.

Youn, S.-H.

Appl. Opt. (3)

Nature (1)

D. Brady, M. Gehm, R. Stack, D. Marks, D. Kittle, D. Golish, E. Vera, and S. Feller, Nature 486, 386 (2012).
[Crossref]

Opt. Express (1)

Other (3)

D. J. Brady, Optical Imaging and Spectroscopy (Wiley-Interscience, 2009).

O. S. Cossairt, D. Miau, and S. K. Nayar, “Gigapixel Computational Imaging,” in IEEE International Conference on Gigapixel Computational Imaging, in Computational Photography (ICCP), Pittsburgh (IEEE, 2011), pp. 1–8.

Example AWARE 40 panorama, http://aqueti.tv/aware40/ (2015).

Supplementary Material (1)

NameDescription
» Supplement 1: PDF (5896 KB)      Supplemental document

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. AWARE 40 prototype camera with its anodized steel covers removed.
Fig. 2.
Fig. 2. Numeric layout of microcameras placed in the AWARE 40 dome. The four highlighted circles show the microcameras tested for MTF and chromatic aberration performance. Note the different radial distances from the center (cameras 123–124).
Fig. 3.
Fig. 3. Polychromatic on-axis, .5-field and .7-field MTF plots. (a) Zemax-computed microcamera MTFs. (b) MTFs for four microcameras as measured by the slant edge method. Figure 2 shows the locations of these microcameras within the dome.
Fig. 4.
Fig. 4. Chromatic aberration performance of four microcameras. (a) Theoretical lateral chromatic aberration performance for on-axis microcameras. (b) Theoretical lateral chromatic aberration performance for micorcameras at the edge of the objective lens’s FOV. This is the dominant contributor to the overall spot size of 2.5 μm. (c) Experimental lateral chromatic aberration curves.
Fig. 5.
Fig. 5. Cropped panorama taken by the AWARE 40 camera. (a) Panoramic photograph. (b)–(d) Crops from the photo showing some objects. (e)–(g) Highly zoomed-in crops from their corresponding cropped photos.

Tables (1)

Tables Icon

Table 1. Comparison of the As-Constructed AWARE Camerasa

Metrics