Abstract

Patterned illumination is now a proven technique in optical metrology and imaging, and is widely employed in both industrial and biological applications. However, existing techniques are unable to meet the pressing need for higher imaging rates. To address this challenge, we propose and demonstrate two-dimensional (2D) mechanical-scan-free arbitrary patterned illumination by 2D spectral encoding. The illumination pattern is flexibly generated at high speed by spectral shaping together with wavelength-to-2D space mapping. Performance optimization of this new patterned illumination scheme (e.g., pattern distortion and resolution) is generally an ill-defined problem involving multiple interrelated parameters. We demonstrate proof-of-principle experiments based on a multiobjective optimization routine using a genetic algorithm to validate our optimization model as well as to show the feasibility of patterned illumination by use of spectral interferometry. Adopting the wisdom of high-speed arbitrary waveform generation routinely practiced in telecommunications as well as ultrafast wavelength-sweep mechanisms, the proposed method could have an impact on advanced imaging modalities, particularly when speed is of a critical concern.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Compressive sensing based high-speed time-stretch optical microscopy for two-dimensional image acquisition

Qiang Guo, Hongwei Chen, Zhiliang Weng, Minghua Chen, Sigang Yang, and Shizhong Xie
Opt. Express 23(23) 29639-29646 (2015)

Computational illumination for high-speed in vitro Fourier ptychographic microscopy

Lei Tian, Ziji Liu, Li-Hao Yeh, Michael Chen, Jingshan Zhong, and Laura Waller
Optica 2(10) 904-911 (2015)

Correcting field-dependent aberrations with nanoscale accuracy in three-dimensional single-molecule localization microscopy

Alex von Diezmann, Maurice Y. Lee, Matthew D. Lew, and W. E. Moerner
Optica 2(11) 985-993 (2015)

References

  • View by:
  • |
  • |
  • |

  1. A. Jost and R. Heintzmann, “Superresolution multidimensional imaging with structured illumination microscopy,” Annu. Rev. Mater. Res. 43, 261–282 (2013).
    [Crossref]
  2. B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
    [Crossref]
  3. F. Deng, C. Liu, W. Sze, J. Deng, K. S. M. Fung, and E. Y. Lam, “An inspect measurement system for moving objects,” IEEE Trans. Instrum. Meas. 64, 63–74 (2015).
    [Crossref]
  4. J. Cheng, C.-K. R. Chung, E. Y. Lam, K. S. M. Fung, F. Wang, and W. H. Leung, “Structured-light based sensing using a single fixed fringe grating: Fringe boundary detection and 3-D reconstruction,” IEEE Trans. Electron. Packag. Manufact. 31, 19–31 (2008).
    [Crossref]
  5. M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198, 82–87 (2000).
    [Crossref]
  6. E. Mudry, K. Belkebir, J. Girard, J. Savatier, E. Le Moal, C. Nicoletti, M. Allain, and A. Sentenac, “Structured illumination microscopy using unknown speckle patterns,” Nat. Photonics 6, 312–315 (2012).
    [Crossref]
  7. S. S. Howard, A. Straub, N. G. Horton, D. Kobat, and C. Xu, “Frequency-multiplexed in vivo multiphoton phosphorescence lifetime microscopy,” Nat. Photonics 7, 33–37 (2012).
    [Crossref]
  8. E. D. Diebold, B. W. Buckley, D. R. Gossett, and B. Jalali, “Digitally synthesized beat frequency multiplexing for sub-millisecond fluorescence microscopy,” Nat. Photonics 7, 806–810 (2013).
    [Crossref]
  9. V. Studer, J. Bobin, M. Chahid, H. S. Mousavi, E. Candes, and M. Dahan, “Compressive fluorescence microscopy for biological and hyperspectral imaging,” Proc. Natl. Acad. Sci. USA 109, E1679–E1687 (2012).
    [Crossref]
  10. M. Duarte, M. Davenport, D. Takhar, J. Laska, T. Sun, K. Kelly, and R. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
    [Crossref]
  11. A. G. York, S. H. Parekh, D. D. Nogare, R. S. Fischer, K. Temprine, M. Mione, A. B. Chitnis, C. A. Combs, and H. Shroff, “Resolution doubling in live, multicellular organisms via multifocal structured illumination microscopy,” Nat. Methods 9, 749–754 (2012).
    [Crossref]
  12. N. Miyamoto, M. Shimakage, T. Morimoto, K. Kadota, S. Sugawa, and T. Ohmi, “A rapid prototyping of real-time pattern generator for step-and-scan lithography using digital micromirror device,” in International Conference on Field-Programmable Technology (2007), pp. 305–308.
  13. C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “What spatial light modulators can do for optical microscopy,” Laser Photon. Rev. 5, 81–101 (2011).
    [Crossref]
  14. A. M. Packer, B. Roska, and M. Häusser, “Targeting neurons and photons for optogenetics,” Nat. Neurosci. 16, 805–815 (2013).
    [Crossref]
  15. K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature 458, 1145–1149 (2009).
    [Crossref]
  16. K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. DiCarlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. USA 109, 11630–11635 (2012).
    [Crossref]
  17. K. Goda and B. Jalali, “Dispersive Fourier transformation for fast continuous single-shot measurements,” Nat. Photonics 7, 102–112 (2013).
    [Crossref]
  18. M. H. Asghari and B. Jalali, “Anamorphic transformation and its application to time-bandwidth compression,” Appl. Opt. 52, 6735–6743 (2013).
    [Crossref]
  19. A. Mahjoubfar, C. Chen, K. R. Niazi, S. Rabizadeh, and B. Jalali, “Label-free high-throughput cell screening in flow,” Biomed. Opt. Express 4, 1618–1625 (2013).
    [Crossref]
  20. A. K. S. Lau, T. T. W. Wong, K. K. Y. Ho, M. T. H. Tang, A. C. S. Chan, X. Wei, E. Y. Lam, H. C. Shum, K. K. Y. Wong, and K. K. Tsia, “Interferometric time-stretch microscopy for ultrafast quantitative cellular and tissue imaging at 1  μm,” J. Biomed. Opt. 19, 076001 (2014).
    [Crossref]
  21. T. T. W. Wong, A. K. S. Lau, K. K. Y. Ho, M. Y. H. Tang, J. D. F. Robles, X. Wei, A. C. S. Chan, A. H. L. Tang, E. Y. Lam, K. K. Y. Wong, G. C. F. Chan, H. C. Shum, and K. K. Tsia, “Asymmetric-detection time-stretch optical microscopy (ATOM) for ultrafast high-contrast cellular imaging in flow,” Sci. Rep. 4, 5636 (2014).
  22. H. Chen, C. Wang, A. Yazaki, C. Kim, K. Goda, and B. Jalali, “Ultrafast web inspection with hybrid dispersion laser scanner,” Appl. Opt. 52, 4072–4076 (2013).
    [Crossref]
  23. H. Chen, C. Lei, F. Xing, Z. Weng, M. Chen, S. Yang, and S. Xie, “Multiwavelength time-stretch imaging system,” Opt. Lett. 39, 2202–2205 (2014).
    [Crossref]
  24. K. Goda, D. R. Solli, K. K. Tsia, and B. Jalali, “Theory of amplified dispersive Fourier transformation,” Phys. Rev. A 80, 043821 (2009).
  25. B. T. Bosworth, J. R. Stroud, D. N. Tran, T. D. Tran, S. Chin, and M. A. Foster, “High-speed flow microscopy using compressed sensing with ultrafast laser pulses,” Opt. Express 23, 10521–10532 (2015).
    [Crossref]
  26. S. Xiao, A. Weiner, and C. Lin, “A dispersion law for virtually imaged phased-array spectral dispersers based on paraxial wave theory,” IEEE J. Quantum Electron. 40, 420–426 (2004).
    [Crossref]
  27. X. Hu, Q. Sun, J. Li, C. Li, Y. Liu, and J. Zhang, “Spectral dispersion modeling of virtually imaged phased array by using angular spectrum of plane waves,” Opt. Express 23, 1–12 (2015).
    [Crossref]
  28. S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445, 627–630 (2007).
    [Crossref]
  29. K. K. Tsia, K. Goda, D. Capewell, and B. Jalali, “Simultaneous mechanical-scan-free confocal microscopy and laser microsurgery,” Opt. Lett. 34, 2099–2101 (2009).
    [Crossref]
  30. Y. Park, T.-J. Ahn, J.-C. Kieffer, and J. Azaña, “Optical frequency domain reflectometry based on real-time Fourier transformation,” Opt. Express 15, 4597–4616 (2007).
    [Crossref]
  31. R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier domain mode locking (FDML): a new laser operating regime and applications for optical coherence tomography,” Opt. Express 14, 3225–3237 (2006).
    [Crossref]
  32. W.-Y. Oh, B. J. Vakoc, M. Shishkov, G. J. Tearney, and B. E. Bouma, “> 400  kHz repetition rate wavelength-swept laser and application to high-speed optical frequency domain imaging,” Opt. Lett. 35, 2919–2921 (2010).
    [Crossref]
  33. H.-C. Lee, J. J. Liu, Y. Sheikine, A. D. Aguirre, J. L. Connolly, and J. G. Fujimoto, “Ultrahigh speed spectral-domain optical coherence microscopy,” Biomed. Opt. Express 4, 1236–1254 (2013).
    [Crossref]
  34. X. Wei, A. K. S. Lau, T. T. W. Wong, C. Zhang, K. K. M. Tsia, and K. K. Y. Wong, “Coherent laser source for high frame-rate optical time-stretch microscopy at 1.0  μm,” IEEE J. Sel. Top. Quantum Electron. 20, 384–389 (2014).
    [Crossref]
  35. C. Zhang, Y. Qiu, R. Zhu, K. K. Y. Wong, and K. K. Tsia, “Serial time-encoded amplified microscopy (steam) based on a stabilized picosecond supercontinuum source,” Opt. Express 19, 15810–15816 (2011).
    [Crossref]
  36. S. Xiao, A. Weiner, and C. Lin, “Experimental and theoretical study of hyperfine WDM demultiplexer performance using the virtually imaged phased-array (VIPA),” J. Lightwave Technol. 23, 1456–1467 (2005).
    [Crossref]
  37. K. K. Tsia, K. Goda, D. Capewell, and B. Jalali, “Performance of serial time-encoded amplified microscope,” Opt. Express 18, 10016–10028 (2010).
    [Crossref]
  38. P. Metz, J. Adam, M. Gerken, and B. Jalali, “Compact, transmissive two-dimensional spatial disperser design with application in simultaneous endoscopic imaging and laser microsurgery,” Appl. Opt. 53, 376–382 (2014).
    [Crossref]
  39. P. Metz, H. Block, C. Behnke, M. Krantz, M. Gerken, and J. Adam, “Tunable elastomer-based virtually imaged phased array,” Opt. Express 21, 3324–3335 (2013).
    [Crossref]
  40. S. Xiao and A. M. Weiner, “2-D wavelength demultiplexer with potential for larger than or equal to 1000 channels in the c-band,” Opt. Express 12, 2895–2902 (2004).
    [Crossref]
  41. D. J. Gauthier, “Comment on generalized grating equation for virtually imaged phased-array spectral dispersers,” Appl. Opt. 51, 8184–8186 (2012).
    [Crossref]
  42. K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective genetic algorithm: NSGA-II,” IEEE Trans. Evol. Comput. 6, 182–197 (2002).
    [Crossref]
  43. I. Ono, S. Kobayashi, and K. Yoshida, “Optimal lens design by real-coded genetic algorithms using UNDX,” Comput. Methods Appl. Mech. Eng. 186, 483–497 (2000).
    [Crossref]
  44. M. Liebscher, K. Witowski, and T. Goel, “Decision making in multi-objective optimization for industrial applications—data mining and visualization of Pareto data,” in European LS-DYNA Conference (2009), pp. 1–17.
  45. M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. USA 102, 13081–13086 (2005).
  46. F. Chasles, B. Dubertret, and A. C. Boccara, “Optimization and characterization of a structured illumination microscope,” Opt. Express 15, 16130–16140 (2007).
    [Crossref]
  47. P. Kner, B. B. Chhun, E. R. Griffis, L. Winoto, and M. G. L. Gustafsson, “Super-resolution video microscopy of live cells by structured illumination,” Nat. Methods 6, 339–342 (2009).
    [Crossref]
  48. M. F. Langhorst, J. Schaffer, and B. Goetze, “Structure brings clarity: structured illumination microscopy in cell biology,” Biotechnol. J. 4, 858–865 (2009).
    [Crossref]
  49. D. Reolon, M. Jacquot, I. Verrier, G. Brun, and C. Veillas, “Broadband supercontinuum interferometer for high-resolution profilometry,” Opt. Express 14, 128–137 (2006).
    [Crossref]

2015 (3)

2014 (5)

H. Chen, C. Lei, F. Xing, Z. Weng, M. Chen, S. Yang, and S. Xie, “Multiwavelength time-stretch imaging system,” Opt. Lett. 39, 2202–2205 (2014).
[Crossref]

X. Wei, A. K. S. Lau, T. T. W. Wong, C. Zhang, K. K. M. Tsia, and K. K. Y. Wong, “Coherent laser source for high frame-rate optical time-stretch microscopy at 1.0  μm,” IEEE J. Sel. Top. Quantum Electron. 20, 384–389 (2014).
[Crossref]

P. Metz, J. Adam, M. Gerken, and B. Jalali, “Compact, transmissive two-dimensional spatial disperser design with application in simultaneous endoscopic imaging and laser microsurgery,” Appl. Opt. 53, 376–382 (2014).
[Crossref]

A. K. S. Lau, T. T. W. Wong, K. K. Y. Ho, M. T. H. Tang, A. C. S. Chan, X. Wei, E. Y. Lam, H. C. Shum, K. K. Y. Wong, and K. K. Tsia, “Interferometric time-stretch microscopy for ultrafast quantitative cellular and tissue imaging at 1  μm,” J. Biomed. Opt. 19, 076001 (2014).
[Crossref]

T. T. W. Wong, A. K. S. Lau, K. K. Y. Ho, M. Y. H. Tang, J. D. F. Robles, X. Wei, A. C. S. Chan, A. H. L. Tang, E. Y. Lam, K. K. Y. Wong, G. C. F. Chan, H. C. Shum, and K. K. Tsia, “Asymmetric-detection time-stretch optical microscopy (ATOM) for ultrafast high-contrast cellular imaging in flow,” Sci. Rep. 4, 5636 (2014).

2013 (10)

H. Chen, C. Wang, A. Yazaki, C. Kim, K. Goda, and B. Jalali, “Ultrafast web inspection with hybrid dispersion laser scanner,” Appl. Opt. 52, 4072–4076 (2013).
[Crossref]

K. Goda and B. Jalali, “Dispersive Fourier transformation for fast continuous single-shot measurements,” Nat. Photonics 7, 102–112 (2013).
[Crossref]

M. H. Asghari and B. Jalali, “Anamorphic transformation and its application to time-bandwidth compression,” Appl. Opt. 52, 6735–6743 (2013).
[Crossref]

A. Mahjoubfar, C. Chen, K. R. Niazi, S. Rabizadeh, and B. Jalali, “Label-free high-throughput cell screening in flow,” Biomed. Opt. Express 4, 1618–1625 (2013).
[Crossref]

A. M. Packer, B. Roska, and M. Häusser, “Targeting neurons and photons for optogenetics,” Nat. Neurosci. 16, 805–815 (2013).
[Crossref]

A. Jost and R. Heintzmann, “Superresolution multidimensional imaging with structured illumination microscopy,” Annu. Rev. Mater. Res. 43, 261–282 (2013).
[Crossref]

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
[Crossref]

E. D. Diebold, B. W. Buckley, D. R. Gossett, and B. Jalali, “Digitally synthesized beat frequency multiplexing for sub-millisecond fluorescence microscopy,” Nat. Photonics 7, 806–810 (2013).
[Crossref]

P. Metz, H. Block, C. Behnke, M. Krantz, M. Gerken, and J. Adam, “Tunable elastomer-based virtually imaged phased array,” Opt. Express 21, 3324–3335 (2013).
[Crossref]

H.-C. Lee, J. J. Liu, Y. Sheikine, A. D. Aguirre, J. L. Connolly, and J. G. Fujimoto, “Ultrahigh speed spectral-domain optical coherence microscopy,” Biomed. Opt. Express 4, 1236–1254 (2013).
[Crossref]

2012 (6)

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. DiCarlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. USA 109, 11630–11635 (2012).
[Crossref]

V. Studer, J. Bobin, M. Chahid, H. S. Mousavi, E. Candes, and M. Dahan, “Compressive fluorescence microscopy for biological and hyperspectral imaging,” Proc. Natl. Acad. Sci. USA 109, E1679–E1687 (2012).
[Crossref]

E. Mudry, K. Belkebir, J. Girard, J. Savatier, E. Le Moal, C. Nicoletti, M. Allain, and A. Sentenac, “Structured illumination microscopy using unknown speckle patterns,” Nat. Photonics 6, 312–315 (2012).
[Crossref]

S. S. Howard, A. Straub, N. G. Horton, D. Kobat, and C. Xu, “Frequency-multiplexed in vivo multiphoton phosphorescence lifetime microscopy,” Nat. Photonics 7, 33–37 (2012).
[Crossref]

A. G. York, S. H. Parekh, D. D. Nogare, R. S. Fischer, K. Temprine, M. Mione, A. B. Chitnis, C. A. Combs, and H. Shroff, “Resolution doubling in live, multicellular organisms via multifocal structured illumination microscopy,” Nat. Methods 9, 749–754 (2012).
[Crossref]

D. J. Gauthier, “Comment on generalized grating equation for virtually imaged phased-array spectral dispersers,” Appl. Opt. 51, 8184–8186 (2012).
[Crossref]

2011 (2)

C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “What spatial light modulators can do for optical microscopy,” Laser Photon. Rev. 5, 81–101 (2011).
[Crossref]

C. Zhang, Y. Qiu, R. Zhu, K. K. Y. Wong, and K. K. Tsia, “Serial time-encoded amplified microscopy (steam) based on a stabilized picosecond supercontinuum source,” Opt. Express 19, 15810–15816 (2011).
[Crossref]

2010 (2)

2009 (5)

K. Goda, D. R. Solli, K. K. Tsia, and B. Jalali, “Theory of amplified dispersive Fourier transformation,” Phys. Rev. A 80, 043821 (2009).

K. K. Tsia, K. Goda, D. Capewell, and B. Jalali, “Simultaneous mechanical-scan-free confocal microscopy and laser microsurgery,” Opt. Lett. 34, 2099–2101 (2009).
[Crossref]

K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature 458, 1145–1149 (2009).
[Crossref]

P. Kner, B. B. Chhun, E. R. Griffis, L. Winoto, and M. G. L. Gustafsson, “Super-resolution video microscopy of live cells by structured illumination,” Nat. Methods 6, 339–342 (2009).
[Crossref]

M. F. Langhorst, J. Schaffer, and B. Goetze, “Structure brings clarity: structured illumination microscopy in cell biology,” Biotechnol. J. 4, 858–865 (2009).
[Crossref]

2008 (2)

M. Duarte, M. Davenport, D. Takhar, J. Laska, T. Sun, K. Kelly, and R. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
[Crossref]

J. Cheng, C.-K. R. Chung, E. Y. Lam, K. S. M. Fung, F. Wang, and W. H. Leung, “Structured-light based sensing using a single fixed fringe grating: Fringe boundary detection and 3-D reconstruction,” IEEE Trans. Electron. Packag. Manufact. 31, 19–31 (2008).
[Crossref]

2007 (3)

2006 (2)

2005 (2)

S. Xiao, A. Weiner, and C. Lin, “Experimental and theoretical study of hyperfine WDM demultiplexer performance using the virtually imaged phased-array (VIPA),” J. Lightwave Technol. 23, 1456–1467 (2005).
[Crossref]

M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. USA 102, 13081–13086 (2005).

2004 (2)

S. Xiao and A. M. Weiner, “2-D wavelength demultiplexer with potential for larger than or equal to 1000 channels in the c-band,” Opt. Express 12, 2895–2902 (2004).
[Crossref]

S. Xiao, A. Weiner, and C. Lin, “A dispersion law for virtually imaged phased-array spectral dispersers based on paraxial wave theory,” IEEE J. Quantum Electron. 40, 420–426 (2004).
[Crossref]

2002 (1)

K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective genetic algorithm: NSGA-II,” IEEE Trans. Evol. Comput. 6, 182–197 (2002).
[Crossref]

2000 (2)

I. Ono, S. Kobayashi, and K. Yoshida, “Optimal lens design by real-coded genetic algorithms using UNDX,” Comput. Methods Appl. Mech. Eng. 186, 483–497 (2000).
[Crossref]

M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198, 82–87 (2000).
[Crossref]

Adam, J.

P. Metz, J. Adam, M. Gerken, and B. Jalali, “Compact, transmissive two-dimensional spatial disperser design with application in simultaneous endoscopic imaging and laser microsurgery,” Appl. Opt. 53, 376–382 (2014).
[Crossref]

P. Metz, H. Block, C. Behnke, M. Krantz, M. Gerken, and J. Adam, “Tunable elastomer-based virtually imaged phased array,” Opt. Express 21, 3324–3335 (2013).
[Crossref]

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. DiCarlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. USA 109, 11630–11635 (2012).
[Crossref]

Agarwal, S.

K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective genetic algorithm: NSGA-II,” IEEE Trans. Evol. Comput. 6, 182–197 (2002).
[Crossref]

Aguirre, A. D.

Ahn, T.-J.

Allain, M.

E. Mudry, K. Belkebir, J. Girard, J. Savatier, E. Le Moal, C. Nicoletti, M. Allain, and A. Sentenac, “Structured illumination microscopy using unknown speckle patterns,” Nat. Photonics 6, 312–315 (2012).
[Crossref]

Asghari, M. H.

Ayazi, A.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. DiCarlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. USA 109, 11630–11635 (2012).
[Crossref]

Azaña, J.

Baraniuk, R.

M. Duarte, M. Davenport, D. Takhar, J. Laska, T. Sun, K. Kelly, and R. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
[Crossref]

Behnke, C.

Belkebir, K.

E. Mudry, K. Belkebir, J. Girard, J. Savatier, E. Le Moal, C. Nicoletti, M. Allain, and A. Sentenac, “Structured illumination microscopy using unknown speckle patterns,” Nat. Photonics 6, 312–315 (2012).
[Crossref]

Bernet, S.

C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “What spatial light modulators can do for optical microscopy,” Laser Photon. Rev. 5, 81–101 (2011).
[Crossref]

Block, H.

Bobin, J.

V. Studer, J. Bobin, M. Chahid, H. S. Mousavi, E. Candes, and M. Dahan, “Compressive fluorescence microscopy for biological and hyperspectral imaging,” Proc. Natl. Acad. Sci. USA 109, E1679–E1687 (2012).
[Crossref]

Boccara, A. C.

Bosworth, B. T.

Bouma, B. E.

Bowman, A.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
[Crossref]

Bowman, R.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
[Crossref]

Brackbill, N.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. DiCarlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. USA 109, 11630–11635 (2012).
[Crossref]

Brun, G.

Buckley, B. W.

E. D. Diebold, B. W. Buckley, D. R. Gossett, and B. Jalali, “Digitally synthesized beat frequency multiplexing for sub-millisecond fluorescence microscopy,” Nat. Photonics 7, 806–810 (2013).
[Crossref]

Candes, E.

V. Studer, J. Bobin, M. Chahid, H. S. Mousavi, E. Candes, and M. Dahan, “Compressive fluorescence microscopy for biological and hyperspectral imaging,” Proc. Natl. Acad. Sci. USA 109, E1679–E1687 (2012).
[Crossref]

Capewell, D.

Chahid, M.

V. Studer, J. Bobin, M. Chahid, H. S. Mousavi, E. Candes, and M. Dahan, “Compressive fluorescence microscopy for biological and hyperspectral imaging,” Proc. Natl. Acad. Sci. USA 109, E1679–E1687 (2012).
[Crossref]

Chan, A. C. S.

A. K. S. Lau, T. T. W. Wong, K. K. Y. Ho, M. T. H. Tang, A. C. S. Chan, X. Wei, E. Y. Lam, H. C. Shum, K. K. Y. Wong, and K. K. Tsia, “Interferometric time-stretch microscopy for ultrafast quantitative cellular and tissue imaging at 1  μm,” J. Biomed. Opt. 19, 076001 (2014).
[Crossref]

T. T. W. Wong, A. K. S. Lau, K. K. Y. Ho, M. Y. H. Tang, J. D. F. Robles, X. Wei, A. C. S. Chan, A. H. L. Tang, E. Y. Lam, K. K. Y. Wong, G. C. F. Chan, H. C. Shum, and K. K. Tsia, “Asymmetric-detection time-stretch optical microscopy (ATOM) for ultrafast high-contrast cellular imaging in flow,” Sci. Rep. 4, 5636 (2014).

Chan, G. C. F.

T. T. W. Wong, A. K. S. Lau, K. K. Y. Ho, M. Y. H. Tang, J. D. F. Robles, X. Wei, A. C. S. Chan, A. H. L. Tang, E. Y. Lam, K. K. Y. Wong, G. C. F. Chan, H. C. Shum, and K. K. Tsia, “Asymmetric-detection time-stretch optical microscopy (ATOM) for ultrafast high-contrast cellular imaging in flow,” Sci. Rep. 4, 5636 (2014).

Chasles, F.

Chen, C.

Chen, H.

Chen, M.

Cheng, J.

J. Cheng, C.-K. R. Chung, E. Y. Lam, K. S. M. Fung, F. Wang, and W. H. Leung, “Structured-light based sensing using a single fixed fringe grating: Fringe boundary detection and 3-D reconstruction,” IEEE Trans. Electron. Packag. Manufact. 31, 19–31 (2008).
[Crossref]

Chhun, B. B.

P. Kner, B. B. Chhun, E. R. Griffis, L. Winoto, and M. G. L. Gustafsson, “Super-resolution video microscopy of live cells by structured illumination,” Nat. Methods 6, 339–342 (2009).
[Crossref]

Chin, S.

Chitnis, A. B.

A. G. York, S. H. Parekh, D. D. Nogare, R. S. Fischer, K. Temprine, M. Mione, A. B. Chitnis, C. A. Combs, and H. Shroff, “Resolution doubling in live, multicellular organisms via multifocal structured illumination microscopy,” Nat. Methods 9, 749–754 (2012).
[Crossref]

Chung, C.-K. R.

J. Cheng, C.-K. R. Chung, E. Y. Lam, K. S. M. Fung, F. Wang, and W. H. Leung, “Structured-light based sensing using a single fixed fringe grating: Fringe boundary detection and 3-D reconstruction,” IEEE Trans. Electron. Packag. Manufact. 31, 19–31 (2008).
[Crossref]

Combs, C. A.

A. G. York, S. H. Parekh, D. D. Nogare, R. S. Fischer, K. Temprine, M. Mione, A. B. Chitnis, C. A. Combs, and H. Shroff, “Resolution doubling in live, multicellular organisms via multifocal structured illumination microscopy,” Nat. Methods 9, 749–754 (2012).
[Crossref]

Connolly, J. L.

Dahan, M.

V. Studer, J. Bobin, M. Chahid, H. S. Mousavi, E. Candes, and M. Dahan, “Compressive fluorescence microscopy for biological and hyperspectral imaging,” Proc. Natl. Acad. Sci. USA 109, E1679–E1687 (2012).
[Crossref]

Davenport, M.

M. Duarte, M. Davenport, D. Takhar, J. Laska, T. Sun, K. Kelly, and R. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
[Crossref]

Deb, K.

K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective genetic algorithm: NSGA-II,” IEEE Trans. Evol. Comput. 6, 182–197 (2002).
[Crossref]

Deng, F.

F. Deng, C. Liu, W. Sze, J. Deng, K. S. M. Fung, and E. Y. Lam, “An inspect measurement system for moving objects,” IEEE Trans. Instrum. Meas. 64, 63–74 (2015).
[Crossref]

Deng, J.

F. Deng, C. Liu, W. Sze, J. Deng, K. S. M. Fung, and E. Y. Lam, “An inspect measurement system for moving objects,” IEEE Trans. Instrum. Meas. 64, 63–74 (2015).
[Crossref]

DiCarlo, D.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. DiCarlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. USA 109, 11630–11635 (2012).
[Crossref]

Diddams, S. A.

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445, 627–630 (2007).
[Crossref]

Diebold, E. D.

E. D. Diebold, B. W. Buckley, D. R. Gossett, and B. Jalali, “Digitally synthesized beat frequency multiplexing for sub-millisecond fluorescence microscopy,” Nat. Photonics 7, 806–810 (2013).
[Crossref]

Duarte, M.

M. Duarte, M. Davenport, D. Takhar, J. Laska, T. Sun, K. Kelly, and R. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
[Crossref]

Dubertret, B.

Edgar, M. P.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
[Crossref]

Fard, A. M.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. DiCarlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. USA 109, 11630–11635 (2012).
[Crossref]

Fischer, R. S.

A. G. York, S. H. Parekh, D. D. Nogare, R. S. Fischer, K. Temprine, M. Mione, A. B. Chitnis, C. A. Combs, and H. Shroff, “Resolution doubling in live, multicellular organisms via multifocal structured illumination microscopy,” Nat. Methods 9, 749–754 (2012).
[Crossref]

Foster, M. A.

Fujimoto, J. G.

Fung, K. S. M.

F. Deng, C. Liu, W. Sze, J. Deng, K. S. M. Fung, and E. Y. Lam, “An inspect measurement system for moving objects,” IEEE Trans. Instrum. Meas. 64, 63–74 (2015).
[Crossref]

J. Cheng, C.-K. R. Chung, E. Y. Lam, K. S. M. Fung, F. Wang, and W. H. Leung, “Structured-light based sensing using a single fixed fringe grating: Fringe boundary detection and 3-D reconstruction,” IEEE Trans. Electron. Packag. Manufact. 31, 19–31 (2008).
[Crossref]

Gauthier, D. J.

Gerken, M.

Girard, J.

E. Mudry, K. Belkebir, J. Girard, J. Savatier, E. Le Moal, C. Nicoletti, M. Allain, and A. Sentenac, “Structured illumination microscopy using unknown speckle patterns,” Nat. Photonics 6, 312–315 (2012).
[Crossref]

Goda, K.

K. Goda and B. Jalali, “Dispersive Fourier transformation for fast continuous single-shot measurements,” Nat. Photonics 7, 102–112 (2013).
[Crossref]

H. Chen, C. Wang, A. Yazaki, C. Kim, K. Goda, and B. Jalali, “Ultrafast web inspection with hybrid dispersion laser scanner,” Appl. Opt. 52, 4072–4076 (2013).
[Crossref]

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. DiCarlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. USA 109, 11630–11635 (2012).
[Crossref]

K. K. Tsia, K. Goda, D. Capewell, and B. Jalali, “Performance of serial time-encoded amplified microscope,” Opt. Express 18, 10016–10028 (2010).
[Crossref]

K. K. Tsia, K. Goda, D. Capewell, and B. Jalali, “Simultaneous mechanical-scan-free confocal microscopy and laser microsurgery,” Opt. Lett. 34, 2099–2101 (2009).
[Crossref]

K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature 458, 1145–1149 (2009).
[Crossref]

K. Goda, D. R. Solli, K. K. Tsia, and B. Jalali, “Theory of amplified dispersive Fourier transformation,” Phys. Rev. A 80, 043821 (2009).

Goel, T.

M. Liebscher, K. Witowski, and T. Goel, “Decision making in multi-objective optimization for industrial applications—data mining and visualization of Pareto data,” in European LS-DYNA Conference (2009), pp. 1–17.

Goetze, B.

M. F. Langhorst, J. Schaffer, and B. Goetze, “Structure brings clarity: structured illumination microscopy in cell biology,” Biotechnol. J. 4, 858–865 (2009).
[Crossref]

Gossett, D. R.

E. D. Diebold, B. W. Buckley, D. R. Gossett, and B. Jalali, “Digitally synthesized beat frequency multiplexing for sub-millisecond fluorescence microscopy,” Nat. Photonics 7, 806–810 (2013).
[Crossref]

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. DiCarlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. USA 109, 11630–11635 (2012).
[Crossref]

Griffis, E. R.

P. Kner, B. B. Chhun, E. R. Griffis, L. Winoto, and M. G. L. Gustafsson, “Super-resolution video microscopy of live cells by structured illumination,” Nat. Methods 6, 339–342 (2009).
[Crossref]

Gustafsson, M. G. L.

P. Kner, B. B. Chhun, E. R. Griffis, L. Winoto, and M. G. L. Gustafsson, “Super-resolution video microscopy of live cells by structured illumination,” Nat. Methods 6, 339–342 (2009).
[Crossref]

M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. USA 102, 13081–13086 (2005).

M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198, 82–87 (2000).
[Crossref]

Häusser, M.

A. M. Packer, B. Roska, and M. Häusser, “Targeting neurons and photons for optogenetics,” Nat. Neurosci. 16, 805–815 (2013).
[Crossref]

Heintzmann, R.

A. Jost and R. Heintzmann, “Superresolution multidimensional imaging with structured illumination microscopy,” Annu. Rev. Mater. Res. 43, 261–282 (2013).
[Crossref]

Ho, K. K. Y.

T. T. W. Wong, A. K. S. Lau, K. K. Y. Ho, M. Y. H. Tang, J. D. F. Robles, X. Wei, A. C. S. Chan, A. H. L. Tang, E. Y. Lam, K. K. Y. Wong, G. C. F. Chan, H. C. Shum, and K. K. Tsia, “Asymmetric-detection time-stretch optical microscopy (ATOM) for ultrafast high-contrast cellular imaging in flow,” Sci. Rep. 4, 5636 (2014).

A. K. S. Lau, T. T. W. Wong, K. K. Y. Ho, M. T. H. Tang, A. C. S. Chan, X. Wei, E. Y. Lam, H. C. Shum, K. K. Y. Wong, and K. K. Tsia, “Interferometric time-stretch microscopy for ultrafast quantitative cellular and tissue imaging at 1  μm,” J. Biomed. Opt. 19, 076001 (2014).
[Crossref]

Hollberg, L.

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445, 627–630 (2007).
[Crossref]

Horton, N. G.

S. S. Howard, A. Straub, N. G. Horton, D. Kobat, and C. Xu, “Frequency-multiplexed in vivo multiphoton phosphorescence lifetime microscopy,” Nat. Photonics 7, 33–37 (2012).
[Crossref]

Howard, S. S.

S. S. Howard, A. Straub, N. G. Horton, D. Kobat, and C. Xu, “Frequency-multiplexed in vivo multiphoton phosphorescence lifetime microscopy,” Nat. Photonics 7, 33–37 (2012).
[Crossref]

Hu, X.

Huber, R.

Hur, S. C.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. DiCarlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. USA 109, 11630–11635 (2012).
[Crossref]

Jacquot, M.

Jalali, B.

P. Metz, J. Adam, M. Gerken, and B. Jalali, “Compact, transmissive two-dimensional spatial disperser design with application in simultaneous endoscopic imaging and laser microsurgery,” Appl. Opt. 53, 376–382 (2014).
[Crossref]

M. H. Asghari and B. Jalali, “Anamorphic transformation and its application to time-bandwidth compression,” Appl. Opt. 52, 6735–6743 (2013).
[Crossref]

H. Chen, C. Wang, A. Yazaki, C. Kim, K. Goda, and B. Jalali, “Ultrafast web inspection with hybrid dispersion laser scanner,” Appl. Opt. 52, 4072–4076 (2013).
[Crossref]

A. Mahjoubfar, C. Chen, K. R. Niazi, S. Rabizadeh, and B. Jalali, “Label-free high-throughput cell screening in flow,” Biomed. Opt. Express 4, 1618–1625 (2013).
[Crossref]

K. Goda and B. Jalali, “Dispersive Fourier transformation for fast continuous single-shot measurements,” Nat. Photonics 7, 102–112 (2013).
[Crossref]

E. D. Diebold, B. W. Buckley, D. R. Gossett, and B. Jalali, “Digitally synthesized beat frequency multiplexing for sub-millisecond fluorescence microscopy,” Nat. Photonics 7, 806–810 (2013).
[Crossref]

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. DiCarlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. USA 109, 11630–11635 (2012).
[Crossref]

K. K. Tsia, K. Goda, D. Capewell, and B. Jalali, “Performance of serial time-encoded amplified microscope,” Opt. Express 18, 10016–10028 (2010).
[Crossref]

K. K. Tsia, K. Goda, D. Capewell, and B. Jalali, “Simultaneous mechanical-scan-free confocal microscopy and laser microsurgery,” Opt. Lett. 34, 2099–2101 (2009).
[Crossref]

K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature 458, 1145–1149 (2009).
[Crossref]

K. Goda, D. R. Solli, K. K. Tsia, and B. Jalali, “Theory of amplified dispersive Fourier transformation,” Phys. Rev. A 80, 043821 (2009).

Jesacher, A.

C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “What spatial light modulators can do for optical microscopy,” Laser Photon. Rev. 5, 81–101 (2011).
[Crossref]

Jost, A.

A. Jost and R. Heintzmann, “Superresolution multidimensional imaging with structured illumination microscopy,” Annu. Rev. Mater. Res. 43, 261–282 (2013).
[Crossref]

Kadota, K.

N. Miyamoto, M. Shimakage, T. Morimoto, K. Kadota, S. Sugawa, and T. Ohmi, “A rapid prototyping of real-time pattern generator for step-and-scan lithography using digital micromirror device,” in International Conference on Field-Programmable Technology (2007), pp. 305–308.

Kelly, K.

M. Duarte, M. Davenport, D. Takhar, J. Laska, T. Sun, K. Kelly, and R. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
[Crossref]

Kieffer, J.-C.

Kim, C.

Kner, P.

P. Kner, B. B. Chhun, E. R. Griffis, L. Winoto, and M. G. L. Gustafsson, “Super-resolution video microscopy of live cells by structured illumination,” Nat. Methods 6, 339–342 (2009).
[Crossref]

Kobat, D.

S. S. Howard, A. Straub, N. G. Horton, D. Kobat, and C. Xu, “Frequency-multiplexed in vivo multiphoton phosphorescence lifetime microscopy,” Nat. Photonics 7, 33–37 (2012).
[Crossref]

Kobayashi, S.

I. Ono, S. Kobayashi, and K. Yoshida, “Optimal lens design by real-coded genetic algorithms using UNDX,” Comput. Methods Appl. Mech. Eng. 186, 483–497 (2000).
[Crossref]

Krantz, M.

Lam, E. Y.

F. Deng, C. Liu, W. Sze, J. Deng, K. S. M. Fung, and E. Y. Lam, “An inspect measurement system for moving objects,” IEEE Trans. Instrum. Meas. 64, 63–74 (2015).
[Crossref]

T. T. W. Wong, A. K. S. Lau, K. K. Y. Ho, M. Y. H. Tang, J. D. F. Robles, X. Wei, A. C. S. Chan, A. H. L. Tang, E. Y. Lam, K. K. Y. Wong, G. C. F. Chan, H. C. Shum, and K. K. Tsia, “Asymmetric-detection time-stretch optical microscopy (ATOM) for ultrafast high-contrast cellular imaging in flow,” Sci. Rep. 4, 5636 (2014).

A. K. S. Lau, T. T. W. Wong, K. K. Y. Ho, M. T. H. Tang, A. C. S. Chan, X. Wei, E. Y. Lam, H. C. Shum, K. K. Y. Wong, and K. K. Tsia, “Interferometric time-stretch microscopy for ultrafast quantitative cellular and tissue imaging at 1  μm,” J. Biomed. Opt. 19, 076001 (2014).
[Crossref]

J. Cheng, C.-K. R. Chung, E. Y. Lam, K. S. M. Fung, F. Wang, and W. H. Leung, “Structured-light based sensing using a single fixed fringe grating: Fringe boundary detection and 3-D reconstruction,” IEEE Trans. Electron. Packag. Manufact. 31, 19–31 (2008).
[Crossref]

Langhorst, M. F.

M. F. Langhorst, J. Schaffer, and B. Goetze, “Structure brings clarity: structured illumination microscopy in cell biology,” Biotechnol. J. 4, 858–865 (2009).
[Crossref]

Laska, J.

M. Duarte, M. Davenport, D. Takhar, J. Laska, T. Sun, K. Kelly, and R. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
[Crossref]

Lau, A. K. S.

T. T. W. Wong, A. K. S. Lau, K. K. Y. Ho, M. Y. H. Tang, J. D. F. Robles, X. Wei, A. C. S. Chan, A. H. L. Tang, E. Y. Lam, K. K. Y. Wong, G. C. F. Chan, H. C. Shum, and K. K. Tsia, “Asymmetric-detection time-stretch optical microscopy (ATOM) for ultrafast high-contrast cellular imaging in flow,” Sci. Rep. 4, 5636 (2014).

A. K. S. Lau, T. T. W. Wong, K. K. Y. Ho, M. T. H. Tang, A. C. S. Chan, X. Wei, E. Y. Lam, H. C. Shum, K. K. Y. Wong, and K. K. Tsia, “Interferometric time-stretch microscopy for ultrafast quantitative cellular and tissue imaging at 1  μm,” J. Biomed. Opt. 19, 076001 (2014).
[Crossref]

X. Wei, A. K. S. Lau, T. T. W. Wong, C. Zhang, K. K. M. Tsia, and K. K. Y. Wong, “Coherent laser source for high frame-rate optical time-stretch microscopy at 1.0  μm,” IEEE J. Sel. Top. Quantum Electron. 20, 384–389 (2014).
[Crossref]

Le Moal, E.

E. Mudry, K. Belkebir, J. Girard, J. Savatier, E. Le Moal, C. Nicoletti, M. Allain, and A. Sentenac, “Structured illumination microscopy using unknown speckle patterns,” Nat. Photonics 6, 312–315 (2012).
[Crossref]

Lee, H.-C.

Lei, C.

Leung, W. H.

J. Cheng, C.-K. R. Chung, E. Y. Lam, K. S. M. Fung, F. Wang, and W. H. Leung, “Structured-light based sensing using a single fixed fringe grating: Fringe boundary detection and 3-D reconstruction,” IEEE Trans. Electron. Packag. Manufact. 31, 19–31 (2008).
[Crossref]

Li, C.

Li, J.

Liebscher, M.

M. Liebscher, K. Witowski, and T. Goel, “Decision making in multi-objective optimization for industrial applications—data mining and visualization of Pareto data,” in European LS-DYNA Conference (2009), pp. 1–17.

Lin, C.

S. Xiao, A. Weiner, and C. Lin, “Experimental and theoretical study of hyperfine WDM demultiplexer performance using the virtually imaged phased-array (VIPA),” J. Lightwave Technol. 23, 1456–1467 (2005).
[Crossref]

S. Xiao, A. Weiner, and C. Lin, “A dispersion law for virtually imaged phased-array spectral dispersers based on paraxial wave theory,” IEEE J. Quantum Electron. 40, 420–426 (2004).
[Crossref]

Liu, C.

F. Deng, C. Liu, W. Sze, J. Deng, K. S. M. Fung, and E. Y. Lam, “An inspect measurement system for moving objects,” IEEE Trans. Instrum. Meas. 64, 63–74 (2015).
[Crossref]

Liu, J. J.

Liu, Y.

Lonappan, C. K.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. DiCarlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. USA 109, 11630–11635 (2012).
[Crossref]

Mahjoubfar, A.

Maurer, C.

C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “What spatial light modulators can do for optical microscopy,” Laser Photon. Rev. 5, 81–101 (2011).
[Crossref]

Mbele, V.

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445, 627–630 (2007).
[Crossref]

Metz, P.

Meyarivan, T.

K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective genetic algorithm: NSGA-II,” IEEE Trans. Evol. Comput. 6, 182–197 (2002).
[Crossref]

Mione, M.

A. G. York, S. H. Parekh, D. D. Nogare, R. S. Fischer, K. Temprine, M. Mione, A. B. Chitnis, C. A. Combs, and H. Shroff, “Resolution doubling in live, multicellular organisms via multifocal structured illumination microscopy,” Nat. Methods 9, 749–754 (2012).
[Crossref]

Miyamoto, N.

N. Miyamoto, M. Shimakage, T. Morimoto, K. Kadota, S. Sugawa, and T. Ohmi, “A rapid prototyping of real-time pattern generator for step-and-scan lithography using digital micromirror device,” in International Conference on Field-Programmable Technology (2007), pp. 305–308.

Morimoto, T.

N. Miyamoto, M. Shimakage, T. Morimoto, K. Kadota, S. Sugawa, and T. Ohmi, “A rapid prototyping of real-time pattern generator for step-and-scan lithography using digital micromirror device,” in International Conference on Field-Programmable Technology (2007), pp. 305–308.

Mousavi, H. S.

V. Studer, J. Bobin, M. Chahid, H. S. Mousavi, E. Candes, and M. Dahan, “Compressive fluorescence microscopy for biological and hyperspectral imaging,” Proc. Natl. Acad. Sci. USA 109, E1679–E1687 (2012).
[Crossref]

Mudry, E.

E. Mudry, K. Belkebir, J. Girard, J. Savatier, E. Le Moal, C. Nicoletti, M. Allain, and A. Sentenac, “Structured illumination microscopy using unknown speckle patterns,” Nat. Photonics 6, 312–315 (2012).
[Crossref]

Murray, C.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. DiCarlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. USA 109, 11630–11635 (2012).
[Crossref]

Niazi, K. R.

Nicoletti, C.

E. Mudry, K. Belkebir, J. Girard, J. Savatier, E. Le Moal, C. Nicoletti, M. Allain, and A. Sentenac, “Structured illumination microscopy using unknown speckle patterns,” Nat. Photonics 6, 312–315 (2012).
[Crossref]

Nogare, D. D.

A. G. York, S. H. Parekh, D. D. Nogare, R. S. Fischer, K. Temprine, M. Mione, A. B. Chitnis, C. A. Combs, and H. Shroff, “Resolution doubling in live, multicellular organisms via multifocal structured illumination microscopy,” Nat. Methods 9, 749–754 (2012).
[Crossref]

Oh, W.-Y.

Ohmi, T.

N. Miyamoto, M. Shimakage, T. Morimoto, K. Kadota, S. Sugawa, and T. Ohmi, “A rapid prototyping of real-time pattern generator for step-and-scan lithography using digital micromirror device,” in International Conference on Field-Programmable Technology (2007), pp. 305–308.

Ono, I.

I. Ono, S. Kobayashi, and K. Yoshida, “Optimal lens design by real-coded genetic algorithms using UNDX,” Comput. Methods Appl. Mech. Eng. 186, 483–497 (2000).
[Crossref]

Packer, A. M.

A. M. Packer, B. Roska, and M. Häusser, “Targeting neurons and photons for optogenetics,” Nat. Neurosci. 16, 805–815 (2013).
[Crossref]

Padgett, M. J.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
[Crossref]

Parekh, S. H.

A. G. York, S. H. Parekh, D. D. Nogare, R. S. Fischer, K. Temprine, M. Mione, A. B. Chitnis, C. A. Combs, and H. Shroff, “Resolution doubling in live, multicellular organisms via multifocal structured illumination microscopy,” Nat. Methods 9, 749–754 (2012).
[Crossref]

Park, Y.

Pratap, A.

K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective genetic algorithm: NSGA-II,” IEEE Trans. Evol. Comput. 6, 182–197 (2002).
[Crossref]

Qiu, Y.

Rabizadeh, S.

Reolon, D.

Ritsch-Marte, M.

C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “What spatial light modulators can do for optical microscopy,” Laser Photon. Rev. 5, 81–101 (2011).
[Crossref]

Robles, J. D. F.

T. T. W. Wong, A. K. S. Lau, K. K. Y. Ho, M. Y. H. Tang, J. D. F. Robles, X. Wei, A. C. S. Chan, A. H. L. Tang, E. Y. Lam, K. K. Y. Wong, G. C. F. Chan, H. C. Shum, and K. K. Tsia, “Asymmetric-detection time-stretch optical microscopy (ATOM) for ultrafast high-contrast cellular imaging in flow,” Sci. Rep. 4, 5636 (2014).

Roska, B.

A. M. Packer, B. Roska, and M. Häusser, “Targeting neurons and photons for optogenetics,” Nat. Neurosci. 16, 805–815 (2013).
[Crossref]

Sadasivam, J.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. DiCarlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. USA 109, 11630–11635 (2012).
[Crossref]

Savatier, J.

E. Mudry, K. Belkebir, J. Girard, J. Savatier, E. Le Moal, C. Nicoletti, M. Allain, and A. Sentenac, “Structured illumination microscopy using unknown speckle patterns,” Nat. Photonics 6, 312–315 (2012).
[Crossref]

Schaffer, J.

M. F. Langhorst, J. Schaffer, and B. Goetze, “Structure brings clarity: structured illumination microscopy in cell biology,” Biotechnol. J. 4, 858–865 (2009).
[Crossref]

Sentenac, A.

E. Mudry, K. Belkebir, J. Girard, J. Savatier, E. Le Moal, C. Nicoletti, M. Allain, and A. Sentenac, “Structured illumination microscopy using unknown speckle patterns,” Nat. Photonics 6, 312–315 (2012).
[Crossref]

Sheikine, Y.

Shimakage, M.

N. Miyamoto, M. Shimakage, T. Morimoto, K. Kadota, S. Sugawa, and T. Ohmi, “A rapid prototyping of real-time pattern generator for step-and-scan lithography using digital micromirror device,” in International Conference on Field-Programmable Technology (2007), pp. 305–308.

Shishkov, M.

Shroff, H.

A. G. York, S. H. Parekh, D. D. Nogare, R. S. Fischer, K. Temprine, M. Mione, A. B. Chitnis, C. A. Combs, and H. Shroff, “Resolution doubling in live, multicellular organisms via multifocal structured illumination microscopy,” Nat. Methods 9, 749–754 (2012).
[Crossref]

Shum, H. C.

A. K. S. Lau, T. T. W. Wong, K. K. Y. Ho, M. T. H. Tang, A. C. S. Chan, X. Wei, E. Y. Lam, H. C. Shum, K. K. Y. Wong, and K. K. Tsia, “Interferometric time-stretch microscopy for ultrafast quantitative cellular and tissue imaging at 1  μm,” J. Biomed. Opt. 19, 076001 (2014).
[Crossref]

T. T. W. Wong, A. K. S. Lau, K. K. Y. Ho, M. Y. H. Tang, J. D. F. Robles, X. Wei, A. C. S. Chan, A. H. L. Tang, E. Y. Lam, K. K. Y. Wong, G. C. F. Chan, H. C. Shum, and K. K. Tsia, “Asymmetric-detection time-stretch optical microscopy (ATOM) for ultrafast high-contrast cellular imaging in flow,” Sci. Rep. 4, 5636 (2014).

Solli, D. R.

K. Goda, D. R. Solli, K. K. Tsia, and B. Jalali, “Theory of amplified dispersive Fourier transformation,” Phys. Rev. A 80, 043821 (2009).

Sollier, E.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. DiCarlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. USA 109, 11630–11635 (2012).
[Crossref]

Straub, A.

S. S. Howard, A. Straub, N. G. Horton, D. Kobat, and C. Xu, “Frequency-multiplexed in vivo multiphoton phosphorescence lifetime microscopy,” Nat. Photonics 7, 33–37 (2012).
[Crossref]

Stroud, J. R.

Studer, V.

V. Studer, J. Bobin, M. Chahid, H. S. Mousavi, E. Candes, and M. Dahan, “Compressive fluorescence microscopy for biological and hyperspectral imaging,” Proc. Natl. Acad. Sci. USA 109, E1679–E1687 (2012).
[Crossref]

Sugawa, S.

N. Miyamoto, M. Shimakage, T. Morimoto, K. Kadota, S. Sugawa, and T. Ohmi, “A rapid prototyping of real-time pattern generator for step-and-scan lithography using digital micromirror device,” in International Conference on Field-Programmable Technology (2007), pp. 305–308.

Sun, B.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
[Crossref]

Sun, Q.

Sun, T.

M. Duarte, M. Davenport, D. Takhar, J. Laska, T. Sun, K. Kelly, and R. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
[Crossref]

Sze, W.

F. Deng, C. Liu, W. Sze, J. Deng, K. S. M. Fung, and E. Y. Lam, “An inspect measurement system for moving objects,” IEEE Trans. Instrum. Meas. 64, 63–74 (2015).
[Crossref]

Takhar, D.

M. Duarte, M. Davenport, D. Takhar, J. Laska, T. Sun, K. Kelly, and R. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
[Crossref]

Tang, A. H. L.

T. T. W. Wong, A. K. S. Lau, K. K. Y. Ho, M. Y. H. Tang, J. D. F. Robles, X. Wei, A. C. S. Chan, A. H. L. Tang, E. Y. Lam, K. K. Y. Wong, G. C. F. Chan, H. C. Shum, and K. K. Tsia, “Asymmetric-detection time-stretch optical microscopy (ATOM) for ultrafast high-contrast cellular imaging in flow,” Sci. Rep. 4, 5636 (2014).

Tang, M. T. H.

A. K. S. Lau, T. T. W. Wong, K. K. Y. Ho, M. T. H. Tang, A. C. S. Chan, X. Wei, E. Y. Lam, H. C. Shum, K. K. Y. Wong, and K. K. Tsia, “Interferometric time-stretch microscopy for ultrafast quantitative cellular and tissue imaging at 1  μm,” J. Biomed. Opt. 19, 076001 (2014).
[Crossref]

Tang, M. Y. H.

T. T. W. Wong, A. K. S. Lau, K. K. Y. Ho, M. Y. H. Tang, J. D. F. Robles, X. Wei, A. C. S. Chan, A. H. L. Tang, E. Y. Lam, K. K. Y. Wong, G. C. F. Chan, H. C. Shum, and K. K. Tsia, “Asymmetric-detection time-stretch optical microscopy (ATOM) for ultrafast high-contrast cellular imaging in flow,” Sci. Rep. 4, 5636 (2014).

Tearney, G. J.

Temprine, K.

A. G. York, S. H. Parekh, D. D. Nogare, R. S. Fischer, K. Temprine, M. Mione, A. B. Chitnis, C. A. Combs, and H. Shroff, “Resolution doubling in live, multicellular organisms via multifocal structured illumination microscopy,” Nat. Methods 9, 749–754 (2012).
[Crossref]

Tran, D. N.

Tran, T. D.

Tsia, K. K.

A. K. S. Lau, T. T. W. Wong, K. K. Y. Ho, M. T. H. Tang, A. C. S. Chan, X. Wei, E. Y. Lam, H. C. Shum, K. K. Y. Wong, and K. K. Tsia, “Interferometric time-stretch microscopy for ultrafast quantitative cellular and tissue imaging at 1  μm,” J. Biomed. Opt. 19, 076001 (2014).
[Crossref]

T. T. W. Wong, A. K. S. Lau, K. K. Y. Ho, M. Y. H. Tang, J. D. F. Robles, X. Wei, A. C. S. Chan, A. H. L. Tang, E. Y. Lam, K. K. Y. Wong, G. C. F. Chan, H. C. Shum, and K. K. Tsia, “Asymmetric-detection time-stretch optical microscopy (ATOM) for ultrafast high-contrast cellular imaging in flow,” Sci. Rep. 4, 5636 (2014).

C. Zhang, Y. Qiu, R. Zhu, K. K. Y. Wong, and K. K. Tsia, “Serial time-encoded amplified microscopy (steam) based on a stabilized picosecond supercontinuum source,” Opt. Express 19, 15810–15816 (2011).
[Crossref]

K. K. Tsia, K. Goda, D. Capewell, and B. Jalali, “Performance of serial time-encoded amplified microscope,” Opt. Express 18, 10016–10028 (2010).
[Crossref]

K. K. Tsia, K. Goda, D. Capewell, and B. Jalali, “Simultaneous mechanical-scan-free confocal microscopy and laser microsurgery,” Opt. Lett. 34, 2099–2101 (2009).
[Crossref]

K. Goda, D. R. Solli, K. K. Tsia, and B. Jalali, “Theory of amplified dispersive Fourier transformation,” Phys. Rev. A 80, 043821 (2009).

K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature 458, 1145–1149 (2009).
[Crossref]

Tsia, K. K. M.

X. Wei, A. K. S. Lau, T. T. W. Wong, C. Zhang, K. K. M. Tsia, and K. K. Y. Wong, “Coherent laser source for high frame-rate optical time-stretch microscopy at 1.0  μm,” IEEE J. Sel. Top. Quantum Electron. 20, 384–389 (2014).
[Crossref]

Vakoc, B. J.

Veillas, C.

Verrier, I.

Vittert, L. E.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
[Crossref]

Wang, C.

H. Chen, C. Wang, A. Yazaki, C. Kim, K. Goda, and B. Jalali, “Ultrafast web inspection with hybrid dispersion laser scanner,” Appl. Opt. 52, 4072–4076 (2013).
[Crossref]

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. DiCarlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. USA 109, 11630–11635 (2012).
[Crossref]

Wang, F.

J. Cheng, C.-K. R. Chung, E. Y. Lam, K. S. M. Fung, F. Wang, and W. H. Leung, “Structured-light based sensing using a single fixed fringe grating: Fringe boundary detection and 3-D reconstruction,” IEEE Trans. Electron. Packag. Manufact. 31, 19–31 (2008).
[Crossref]

Wei, X.

T. T. W. Wong, A. K. S. Lau, K. K. Y. Ho, M. Y. H. Tang, J. D. F. Robles, X. Wei, A. C. S. Chan, A. H. L. Tang, E. Y. Lam, K. K. Y. Wong, G. C. F. Chan, H. C. Shum, and K. K. Tsia, “Asymmetric-detection time-stretch optical microscopy (ATOM) for ultrafast high-contrast cellular imaging in flow,” Sci. Rep. 4, 5636 (2014).

A. K. S. Lau, T. T. W. Wong, K. K. Y. Ho, M. T. H. Tang, A. C. S. Chan, X. Wei, E. Y. Lam, H. C. Shum, K. K. Y. Wong, and K. K. Tsia, “Interferometric time-stretch microscopy for ultrafast quantitative cellular and tissue imaging at 1  μm,” J. Biomed. Opt. 19, 076001 (2014).
[Crossref]

X. Wei, A. K. S. Lau, T. T. W. Wong, C. Zhang, K. K. M. Tsia, and K. K. Y. Wong, “Coherent laser source for high frame-rate optical time-stretch microscopy at 1.0  μm,” IEEE J. Sel. Top. Quantum Electron. 20, 384–389 (2014).
[Crossref]

Weiner, A.

S. Xiao, A. Weiner, and C. Lin, “Experimental and theoretical study of hyperfine WDM demultiplexer performance using the virtually imaged phased-array (VIPA),” J. Lightwave Technol. 23, 1456–1467 (2005).
[Crossref]

S. Xiao, A. Weiner, and C. Lin, “A dispersion law for virtually imaged phased-array spectral dispersers based on paraxial wave theory,” IEEE J. Quantum Electron. 40, 420–426 (2004).
[Crossref]

Weiner, A. M.

Welsh, S.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
[Crossref]

Weng, Z.

Winoto, L.

P. Kner, B. B. Chhun, E. R. Griffis, L. Winoto, and M. G. L. Gustafsson, “Super-resolution video microscopy of live cells by structured illumination,” Nat. Methods 6, 339–342 (2009).
[Crossref]

Witowski, K.

M. Liebscher, K. Witowski, and T. Goel, “Decision making in multi-objective optimization for industrial applications—data mining and visualization of Pareto data,” in European LS-DYNA Conference (2009), pp. 1–17.

Wojtkowski, M.

Wong, K. K. Y.

X. Wei, A. K. S. Lau, T. T. W. Wong, C. Zhang, K. K. M. Tsia, and K. K. Y. Wong, “Coherent laser source for high frame-rate optical time-stretch microscopy at 1.0  μm,” IEEE J. Sel. Top. Quantum Electron. 20, 384–389 (2014).
[Crossref]

T. T. W. Wong, A. K. S. Lau, K. K. Y. Ho, M. Y. H. Tang, J. D. F. Robles, X. Wei, A. C. S. Chan, A. H. L. Tang, E. Y. Lam, K. K. Y. Wong, G. C. F. Chan, H. C. Shum, and K. K. Tsia, “Asymmetric-detection time-stretch optical microscopy (ATOM) for ultrafast high-contrast cellular imaging in flow,” Sci. Rep. 4, 5636 (2014).

A. K. S. Lau, T. T. W. Wong, K. K. Y. Ho, M. T. H. Tang, A. C. S. Chan, X. Wei, E. Y. Lam, H. C. Shum, K. K. Y. Wong, and K. K. Tsia, “Interferometric time-stretch microscopy for ultrafast quantitative cellular and tissue imaging at 1  μm,” J. Biomed. Opt. 19, 076001 (2014).
[Crossref]

C. Zhang, Y. Qiu, R. Zhu, K. K. Y. Wong, and K. K. Tsia, “Serial time-encoded amplified microscopy (steam) based on a stabilized picosecond supercontinuum source,” Opt. Express 19, 15810–15816 (2011).
[Crossref]

Wong, T. T. W.

T. T. W. Wong, A. K. S. Lau, K. K. Y. Ho, M. Y. H. Tang, J. D. F. Robles, X. Wei, A. C. S. Chan, A. H. L. Tang, E. Y. Lam, K. K. Y. Wong, G. C. F. Chan, H. C. Shum, and K. K. Tsia, “Asymmetric-detection time-stretch optical microscopy (ATOM) for ultrafast high-contrast cellular imaging in flow,” Sci. Rep. 4, 5636 (2014).

A. K. S. Lau, T. T. W. Wong, K. K. Y. Ho, M. T. H. Tang, A. C. S. Chan, X. Wei, E. Y. Lam, H. C. Shum, K. K. Y. Wong, and K. K. Tsia, “Interferometric time-stretch microscopy for ultrafast quantitative cellular and tissue imaging at 1  μm,” J. Biomed. Opt. 19, 076001 (2014).
[Crossref]

X. Wei, A. K. S. Lau, T. T. W. Wong, C. Zhang, K. K. M. Tsia, and K. K. Y. Wong, “Coherent laser source for high frame-rate optical time-stretch microscopy at 1.0  μm,” IEEE J. Sel. Top. Quantum Electron. 20, 384–389 (2014).
[Crossref]

Xiao, S.

Xie, S.

Xing, F.

Xu, C.

S. S. Howard, A. Straub, N. G. Horton, D. Kobat, and C. Xu, “Frequency-multiplexed in vivo multiphoton phosphorescence lifetime microscopy,” Nat. Photonics 7, 33–37 (2012).
[Crossref]

Yang, S.

Yazaki, A.

York, A. G.

A. G. York, S. H. Parekh, D. D. Nogare, R. S. Fischer, K. Temprine, M. Mione, A. B. Chitnis, C. A. Combs, and H. Shroff, “Resolution doubling in live, multicellular organisms via multifocal structured illumination microscopy,” Nat. Methods 9, 749–754 (2012).
[Crossref]

Yoshida, K.

I. Ono, S. Kobayashi, and K. Yoshida, “Optimal lens design by real-coded genetic algorithms using UNDX,” Comput. Methods Appl. Mech. Eng. 186, 483–497 (2000).
[Crossref]

Zhang, C.

X. Wei, A. K. S. Lau, T. T. W. Wong, C. Zhang, K. K. M. Tsia, and K. K. Y. Wong, “Coherent laser source for high frame-rate optical time-stretch microscopy at 1.0  μm,” IEEE J. Sel. Top. Quantum Electron. 20, 384–389 (2014).
[Crossref]

C. Zhang, Y. Qiu, R. Zhu, K. K. Y. Wong, and K. K. Tsia, “Serial time-encoded amplified microscopy (steam) based on a stabilized picosecond supercontinuum source,” Opt. Express 19, 15810–15816 (2011).
[Crossref]

Zhang, J.

Zhu, R.

Annu. Rev. Mater. Res. (1)

A. Jost and R. Heintzmann, “Superresolution multidimensional imaging with structured illumination microscopy,” Annu. Rev. Mater. Res. 43, 261–282 (2013).
[Crossref]

Appl. Opt. (4)

Biomed. Opt. Express (2)

Biotechnol. J. (1)

M. F. Langhorst, J. Schaffer, and B. Goetze, “Structure brings clarity: structured illumination microscopy in cell biology,” Biotechnol. J. 4, 858–865 (2009).
[Crossref]

Comput. Methods Appl. Mech. Eng. (1)

I. Ono, S. Kobayashi, and K. Yoshida, “Optimal lens design by real-coded genetic algorithms using UNDX,” Comput. Methods Appl. Mech. Eng. 186, 483–497 (2000).
[Crossref]

IEEE J. Quantum Electron. (1)

S. Xiao, A. Weiner, and C. Lin, “A dispersion law for virtually imaged phased-array spectral dispersers based on paraxial wave theory,” IEEE J. Quantum Electron. 40, 420–426 (2004).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

X. Wei, A. K. S. Lau, T. T. W. Wong, C. Zhang, K. K. M. Tsia, and K. K. Y. Wong, “Coherent laser source for high frame-rate optical time-stretch microscopy at 1.0  μm,” IEEE J. Sel. Top. Quantum Electron. 20, 384–389 (2014).
[Crossref]

IEEE Signal Process. Mag. (1)

M. Duarte, M. Davenport, D. Takhar, J. Laska, T. Sun, K. Kelly, and R. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
[Crossref]

IEEE Trans. Electron. Packag. Manufact. (1)

J. Cheng, C.-K. R. Chung, E. Y. Lam, K. S. M. Fung, F. Wang, and W. H. Leung, “Structured-light based sensing using a single fixed fringe grating: Fringe boundary detection and 3-D reconstruction,” IEEE Trans. Electron. Packag. Manufact. 31, 19–31 (2008).
[Crossref]

IEEE Trans. Evol. Comput. (1)

K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective genetic algorithm: NSGA-II,” IEEE Trans. Evol. Comput. 6, 182–197 (2002).
[Crossref]

IEEE Trans. Instrum. Meas. (1)

F. Deng, C. Liu, W. Sze, J. Deng, K. S. M. Fung, and E. Y. Lam, “An inspect measurement system for moving objects,” IEEE Trans. Instrum. Meas. 64, 63–74 (2015).
[Crossref]

J. Biomed. Opt. (1)

A. K. S. Lau, T. T. W. Wong, K. K. Y. Ho, M. T. H. Tang, A. C. S. Chan, X. Wei, E. Y. Lam, H. C. Shum, K. K. Y. Wong, and K. K. Tsia, “Interferometric time-stretch microscopy for ultrafast quantitative cellular and tissue imaging at 1  μm,” J. Biomed. Opt. 19, 076001 (2014).
[Crossref]

J. Lightwave Technol. (1)

J. Microsc. (1)

M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198, 82–87 (2000).
[Crossref]

Laser Photon. Rev. (1)

C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “What spatial light modulators can do for optical microscopy,” Laser Photon. Rev. 5, 81–101 (2011).
[Crossref]

Nat. Methods (2)

A. G. York, S. H. Parekh, D. D. Nogare, R. S. Fischer, K. Temprine, M. Mione, A. B. Chitnis, C. A. Combs, and H. Shroff, “Resolution doubling in live, multicellular organisms via multifocal structured illumination microscopy,” Nat. Methods 9, 749–754 (2012).
[Crossref]

P. Kner, B. B. Chhun, E. R. Griffis, L. Winoto, and M. G. L. Gustafsson, “Super-resolution video microscopy of live cells by structured illumination,” Nat. Methods 6, 339–342 (2009).
[Crossref]

Nat. Neurosci. (1)

A. M. Packer, B. Roska, and M. Häusser, “Targeting neurons and photons for optogenetics,” Nat. Neurosci. 16, 805–815 (2013).
[Crossref]

Nat. Photonics (4)

K. Goda and B. Jalali, “Dispersive Fourier transformation for fast continuous single-shot measurements,” Nat. Photonics 7, 102–112 (2013).
[Crossref]

E. Mudry, K. Belkebir, J. Girard, J. Savatier, E. Le Moal, C. Nicoletti, M. Allain, and A. Sentenac, “Structured illumination microscopy using unknown speckle patterns,” Nat. Photonics 6, 312–315 (2012).
[Crossref]

S. S. Howard, A. Straub, N. G. Horton, D. Kobat, and C. Xu, “Frequency-multiplexed in vivo multiphoton phosphorescence lifetime microscopy,” Nat. Photonics 7, 33–37 (2012).
[Crossref]

E. D. Diebold, B. W. Buckley, D. R. Gossett, and B. Jalali, “Digitally synthesized beat frequency multiplexing for sub-millisecond fluorescence microscopy,” Nat. Photonics 7, 806–810 (2013).
[Crossref]

Nature (2)

K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature 458, 1145–1149 (2009).
[Crossref]

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445, 627–630 (2007).
[Crossref]

Opt. Express (10)

S. Xiao and A. M. Weiner, “2-D wavelength demultiplexer with potential for larger than or equal to 1000 channels in the c-band,” Opt. Express 12, 2895–2902 (2004).
[Crossref]

K. K. Tsia, K. Goda, D. Capewell, and B. Jalali, “Performance of serial time-encoded amplified microscope,” Opt. Express 18, 10016–10028 (2010).
[Crossref]

C. Zhang, Y. Qiu, R. Zhu, K. K. Y. Wong, and K. K. Tsia, “Serial time-encoded amplified microscopy (steam) based on a stabilized picosecond supercontinuum source,” Opt. Express 19, 15810–15816 (2011).
[Crossref]

B. T. Bosworth, J. R. Stroud, D. N. Tran, T. D. Tran, S. Chin, and M. A. Foster, “High-speed flow microscopy using compressed sensing with ultrafast laser pulses,” Opt. Express 23, 10521–10532 (2015).
[Crossref]

P. Metz, H. Block, C. Behnke, M. Krantz, M. Gerken, and J. Adam, “Tunable elastomer-based virtually imaged phased array,” Opt. Express 21, 3324–3335 (2013).
[Crossref]

D. Reolon, M. Jacquot, I. Verrier, G. Brun, and C. Veillas, “Broadband supercontinuum interferometer for high-resolution profilometry,” Opt. Express 14, 128–137 (2006).
[Crossref]

R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier domain mode locking (FDML): a new laser operating regime and applications for optical coherence tomography,” Opt. Express 14, 3225–3237 (2006).
[Crossref]

X. Hu, Q. Sun, J. Li, C. Li, Y. Liu, and J. Zhang, “Spectral dispersion modeling of virtually imaged phased array by using angular spectrum of plane waves,” Opt. Express 23, 1–12 (2015).
[Crossref]

Y. Park, T.-J. Ahn, J.-C. Kieffer, and J. Azaña, “Optical frequency domain reflectometry based on real-time Fourier transformation,” Opt. Express 15, 4597–4616 (2007).
[Crossref]

F. Chasles, B. Dubertret, and A. C. Boccara, “Optimization and characterization of a structured illumination microscope,” Opt. Express 15, 16130–16140 (2007).
[Crossref]

Opt. Lett. (3)

Phys. Rev. A (1)

K. Goda, D. R. Solli, K. K. Tsia, and B. Jalali, “Theory of amplified dispersive Fourier transformation,” Phys. Rev. A 80, 043821 (2009).

Proc. Natl. Acad. Sci. USA (3)

M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. USA 102, 13081–13086 (2005).

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. DiCarlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. USA 109, 11630–11635 (2012).
[Crossref]

V. Studer, J. Bobin, M. Chahid, H. S. Mousavi, E. Candes, and M. Dahan, “Compressive fluorescence microscopy for biological and hyperspectral imaging,” Proc. Natl. Acad. Sci. USA 109, E1679–E1687 (2012).
[Crossref]

Sci. Rep. (1)

T. T. W. Wong, A. K. S. Lau, K. K. Y. Ho, M. Y. H. Tang, J. D. F. Robles, X. Wei, A. C. S. Chan, A. H. L. Tang, E. Y. Lam, K. K. Y. Wong, G. C. F. Chan, H. C. Shum, and K. K. Tsia, “Asymmetric-detection time-stretch optical microscopy (ATOM) for ultrafast high-contrast cellular imaging in flow,” Sci. Rep. 4, 5636 (2014).

Science (1)

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
[Crossref]

Other (2)

N. Miyamoto, M. Shimakage, T. Morimoto, K. Kadota, S. Sugawa, and T. Ohmi, “A rapid prototyping of real-time pattern generator for step-and-scan lithography using digital micromirror device,” in International Conference on Field-Programmable Technology (2007), pp. 305–308.

M. Liebscher, K. Witowski, and T. Goel, “Decision making in multi-objective optimization for industrial applications—data mining and visualization of Pareto data,” in European LS-DYNA Conference (2009), pp. 1–17.

Supplementary Material (1)

NameDescription
» Supplement 1: PDF (1147 KB)      Supplemental document

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Generic schematic of 2D spectrally encoded patterned illumination. The input light is a broadband source followed by user-defined spectral shaping. The spectrum is then mapped into a 2D space by the 2D spatial disperser (details are shown in Fig. 2). Note that each single-shot spectrum corresponds to single illumination pattern. CL, cylindrical lens; VIPA, virtually imaged phase array; DG, diffraction grating.
Fig. 2.
Fig. 2. (a) Detailed illustrations of the key parameters involved in the 2D spatial disperser, which mainly consists of a diffraction grating and a VIPA. Detailed description of the parameters w, α, R1R2, β, d, θx, and θy are detailed in the text. (b) Illustration of the 2D spectral lattice labeled with the parameters which are related to the key metrics measured in the optimization algorithm [see Eqs. (3), (4), (7), and (8)]. A detailed description of these parameters, Δθx,FOV, Δθy,FOV, Δθy,FSR, Δθy,FSR, δθx, δy, and Δ1, Δ2, Δ3 are detailed in the text and Supplement 1.
Fig. 3.
Fig. 3. (a)–(d) Multiobjective genetic algorithm results in 178 Pareto-optimal solutions. Each metric is reorganized in a 2D map representation, with a map size of 13×13 to visualize the performance tradeoff. These maps represent the scores [i.e., from 0 (worst) to 1 (best)] of the four criteria for individual solutions in the map, i.e., (a) (A1)2, aspect ratio; (b) (S0.72)2, illumination uniformity; (c) E, degree of astigmatism; and (d) D, degree of spatial distortion. (e) Illumination performances of the five selected solutions [(i)–(v)] highlighted in (a)–(d). These five solutions representatively illustrate how one dominating performance metric compromises the other three: (i) close-to-unity aspect ratio; (ii) illumination uniformity; (iii) lowest astigmatism; (iv) minimal spatial distortion; (v) a compromise of all four criteria. Note that the spectral illumination is false-color-coded with wavelength (with a range between 1.06 and 1.08 μm).
Fig. 4.
Fig. 4. Organized maps of the five design parameters corresponding to the Pareto-optimal solutions in Fig. 3: (a) roundtrip loss R1R2 (in dB), (b) VIPA tilt angle α (in degrees), (c) grating tilt angle β (in degrees), (d) grating groove separation d (in μm), and (e) input beam diameter w (in μm). Implicit constraints are highlighted on top of the maps to ensure (a) low roundtrip loss, (d) predefined groove separation, and (e) large beam diameter. The solution selected for the experimental demonstration is marked with an asterisk.
Fig. 5.
Fig. 5. Simulated arbitrary illumination patterns by 2D spectral encoding based on the parameters chosen from the selected solution (asterisk in Fig. 4). We consider a broadband source, with a Gaussian spectral profile centered at 1.07 μm and with a bandwidth of 20 nm. (a) Amplitude-modulated spectrum designed for generation of a periodic stripes pattern, as shown in (c). Note that the spectrum is periodically chirped in order to compensate for the nonlinear wavelength-to-space mapping. (b) Amplitude-modulated spectrum designed for generation of a Hadamard mask, as shown in (d). In both (c) and (d), the simulated images (right) are compared with the target patterns (left). It demonstrates the flexibility of spectral shaping for arbitrary patterned illumination. The calibration steps are detailed in Supplement 1, Section S2.
Fig. 6.
Fig. 6. Table of experimental evaluation on the selected 2D spatial disperser design in terms of the four performance metrics: (a) and (b) aspect ratio and spatial distortion, (c) and (d) degree of astigmatism, and (e)–(g) illumination uniformity. To evaluate aspect ratio and spatial distortion, we employ a continuous wave (CW) wavelength tunable laser and sweep the lasing wavelength at a fixed step of 0.3 nm to generate a 2D illumination pattern with discrete PSF spots, as shown in (b). The mapping pattern is consistent with the simulation in (a). The degree of astigmatism is evaluated by fixing the CW wavelength and observing the corresponding PSF profile [see (d)]. We employ an SC source to evaluate the illumination uniformity [see (f)]. Note that there is a mild undulation along the x axis observed in both simulation and experiment [see the line cuts (h) and (g)]. All the illumination patterns are captured by a CMOS image sensor.
Fig. 7.
Fig. 7. Schematic of the delayed spectral interferometer setup for proof-of-principle demonstration of patterned illumination by 2D spectral encoding.
Fig. 8.
Fig. 8. Table of different captured illumination patterns (by CMOS image sensor) generated by the delayed spectral interferometer. (Top row) Spatial frequency of the periodic pattern can be changed by adjusting the interferogram fringe density at a large step size in time; (middle row) orientation of the periodic pattern can be manipulated by adjusting the interferogram fringe density at a small step size in time; (bottom row) spatial phase of the periodic pattern can be shifted by spectrally shifting the interferogram fringes. Here, ΔνFSR denotes the free spectral range of the VIPA in terms of frequency. Supplement 1, Section S3 further explains how these parameters are adjusted with a small temporal delay change δτ in the spectral interferometer.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

d[sin(θx,i+β)+sinβ]=λi,
θy,i2(cosαin2n)+θy,itanαincosαncosαin=mλi2t,
A=Δθx,FOVΔθy,FOV,
D=1Nj|ϵ(aj)|+|ϵ(bj)|,
δθx=|dθxdλ/λc|×δλgratingλc=λcdcos(β)×λcw[sinβ+sin(θx+β)],
δθy=|dθydλ/λc|×δλVIPAλc=|1sin2α2(n2sin2α)+α/n2|×1R1R2πmR1R2,
E=1(min{δθx,δθy}max{δθx,δθy})2.
S=0.72Δθx,FSRδθx,
minimize(w,α,β,R1R2,d){(A1)2,(S1)2,E,D}subject toEqs.(1),(2),(5),and(6).

Metrics