Abstract

Cavity optomechanical systems are being studied for their potential in areas such as metrology, communications, and quantum information science. For a number of recently proposed applications in which multiple optical and mechanical modes interact, an outstanding challenge is to develop multimode architectures that allow flexibility in optical and mechanical subsystem designs while maintaining the strong interactions that have been demonstrated in single-mode systems. To that end, we demonstrate slot-mode optomechanical crystals, devices in which photonic and phononic crystal nanobeams separated by a narrow slot are coupled via optomechanical interactions. These nanobeam pairs are patterned to confine a mechanical breathing mode at the center of one beam and a low-loss optical mode in the slot between the beams. This architecture affords great design flexibility toward multimode optomechanics, as well as substantial optomechanical coupling rates. We show this by producing slot-mode devices in stoichiometric Si3N4, with optical modes in the 980 nm band coupled to mechanical modes at 3.4 GHz, 1.8 GHz, and 400 MHz. We exploit the Si3N4 tensile stress to achieve slot widths down to 24 nm, which leads to enhanced optomechanical coupling, sufficient for the observation of optomechanical self-oscillations at all studied frequencies. We then develop multimode optomechanical systems with triple-beam geometries, in which two optical modes couple to a single mechanical mode, and two mechanical modes couple to a single optical mode. Taken together, these results demonstrate great flexibility in the design of multimode chip-scale optomechanical systems with large optomechanical coupling.

Full Article  |  PDF Article
OSA Recommended Articles
Slot-mode-coupled optomechanical crystals

Marcelo Davanço, Jasper Chan, Amir H. Safavi-Naeini, Oskar Painter, and Kartik Srinivasan
Opt. Express 20(22) 24394-24410 (2012)

Design of a quasi-2D photonic crystal optomechanical cavity with tunable, large x2-coupling

M. Kalaee, T. K. Paraïso, H. Pfeifer, and O. Painter
Opt. Express 24(19) 21308-21328 (2016)

References

  • View by:
  • |
  • |
  • |

  1. A. Schliesser, O. Arcizet, R. Rivière, G. Anetsberger, and T. J. Kippenberg, “Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the Heisenberg uncertainty limit,” Nat. Phys. 5, 509–514 (2009).
    [Crossref]
  2. J. D. Teufel, T. Donner, M. A. Castellanos-Beltran, J. W. Harlow, and K. W. Lehnert, “Nanomechanical motion measured with an imprecision below that at the standard quantum limit,” Nat. Nanotechnol. 4, 820–823 (2009).
    [Crossref]
  3. J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475, 359–363 (2011).
    [Crossref]
  4. J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
    [Crossref]
  5. S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010).
    [Crossref]
  6. A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
    [Crossref]
  7. J. T. Hill, A. H. Safavi-Naeini, J. Chan, and O. Painter, “Coherent optical wavelength conversion via cavity optomechanics,” Nat. Commun. 3, 1196 (2012).
    [Crossref]
  8. Y. Liu, M. Davanço, V. Aksyuk, and K. Srinivasan, “Electromagnetically induced transparency and wideband wavelength conversion in silicon nitride microdisk optomechanical resonators,” Phys. Rev. Lett. 110, 223603 (2013).
    [Crossref]
  9. C. Dong, V. Fiore, M. Kuzyk, and H. Wang, “Optomechanical dark mode,” Science 338, 1609–1613 (2012).
    [Crossref]
  10. T. Purdy, P.-L. Yu, N. Kampel, R. Peterson, K. Cicak, R. Simmonds, and C. Regal, “Optomechanical Raman-ratio thermometry,” arXiv:1406.7247 (2014).
  11. A. Shkarin, N. Flowers-Jacobs, S. Hoch, A. Kashkanova, C. Deutsch, J. Reichel, and J. Harris, “Optically mediated hybridization between two mechanical modes,” Phys. Rev. Lett. 112, 013602 (2014).
    [Crossref]
  12. F. Massel, S. U. Cho, J.-M. Pirkkalainen, P. J. Hakonen, T. T. Heikkilä, and M. A. Sillanpää, “Multimode circuit optomechanics near the quantum limit,” Nat. Commun. 3, 987 (2012).
    [Crossref]
  13. C. Dong, J. Zhang, V. Fiore, and H. Wang, “Optomechanically induced transparency and self-induced oscillations with Bogoliubov mechanical modes,” Optica 1, 425–428 (2014).
    [Crossref]
  14. Y.-D. Wang and A. A. Clerk, “Reservoir-engineered entanglement in optomechanical systems,” Phys. Rev. Lett. 110, 253601 (2013).
    [Crossref]
  15. A. Xuereb, C. Genes, and A. Dantan, “Strong coupling and long-range collective interactions in optomechanical arrays,” Phys. Rev. Lett. 109, 223601 (2012).
    [Crossref]
  16. T. Ojanen and K. Børkje, “Ground-state cooling of mechanical motion in the unresolved sideband regime by use of optomechanically induced transparency,” Phys. Rev. A 90, 013824 (2014).
    [Crossref]
  17. M. Davanço, J. Chan, A. H. Safavi-Naeini, O. Painter, and K. Srinivasan, “Slot-mode-coupled optomechanical crystals,” Opt. Express 20, 24394–24410 (2012).
    [Crossref]
  18. M. Davanço, S. Ates, Y. Liu, and K. Srinivasan, “Si3N4 optomechanical crystals in the resolved-sideband regime,” Appl. Phys. Lett. 104, 041101 (2014).
    [Crossref]
  19. J. Bochmann, A. Vainsencher, D. D. Awschalom, and A. N. Cleland, “Nanomechanical coupling between microwave and optical photons,” Nat. Phys. 9, 712–716 (2013).
    [Crossref]
  20. G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature 462, 633–636 (2009).
    [Crossref]
  21. Q. Lin, J. Rosenberg, X. Jiang, K. J. Vahala, and O. Painter, “Mechanical oscillation and cooling actuated by the optical gradient force,” Phys. Rev. Lett. 103, 103601 (2009).
    [Crossref]
  22. Y.-G. Roh, T. Tanabe, A. Shinya, H. Taniyama, E. Kuramochi, S. Matsuo, T. Sato, and M. Notomi, “Strong optomechanical interaction in a bilayer photonic crystal,” Phys. Rev. B 81, 121101 (2010).
    [Crossref]
  23. M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459, 550–555 (2009).
    [Crossref]
  24. R. M. Camacho, J. Chan, M. Eichenfield, and O. Painter, “Characterization of radiation pressure and thermal effects in a nanoscale optomechanical cavity,” Opt. Express 17, 15726–15735 (2009).
    [Crossref]
  25. Throughout this work, stated uncertainty in optical Q represents the 95% confidence interval of the Lorentzian fit of the optical spectrum.
  26. K. Grutter, M. Davanço, and K. Srinivasan, “Si3N4 nanobeam optomechanical crystals,” IEEE J. Sel. Top. Quantum Electron. 21, 61–71 (2015).
    [Crossref]
  27. T. Carmon, L. Yang, and K. Vahala, “Dynamical thermal behavior and thermal self-stability of microcavities,” Opt. Express 12, 4742–4750 (2004).
    [Crossref]
  28. M. L. Gorodetsky, A. Schliesser, G. Anetsberger, S. Deleglise, and T. J. Kippenberg, “Determination of the vacuum optomechanical coupling rate using frequency noise calibration,” Opt. Express 18, 23236–23246 (2010).
    [Crossref]
  29. K. C. Balram, M. Davanço, J. Y. Lim, J. D. Song, and K. Srinivasan, “Moving boundary and photoelastic coupling in GaAs optomechanical resonators,” Optica 1, 414–420 (2014).
    [Crossref]
  30. T. J. Kippenberg and K. J. Vahala, “Cavity opto-mechanics,” Opt. Express 15, 17172–17205 (2007).
    [Crossref]
  31. M. Eichenfield, “Cavity optomechanics in photonic and phononic crystals: Engineering the interaction of light and sound at the nanoscale,” Ph.D. thesis (California Institute of Technology, 2010).
  32. Throughout this work, uncertainty in intrinsic Qm comes from the 95% confidence interval of the intercept of the weighted linear fit of γm,eff versus optical power. Weighting is from the uncertainty in the Lorentzian fits of each mechanical spectrum.
  33. M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature 462, 78–82 (2009).
    [Crossref]
  34. M. Hossein-Zadeh, H. Rokhsari, A. Hajimiri, and K. J. Vahala, “Characterization of a radiation-pressure-driven micromechanical oscillator,” Phys. Rev. A 74, 023813 (2006).
    [Crossref]
  35. T. O. Rocheleau, A. J. Grine, K. E. Grutter, R. Schneider, N. Quack, M. C. Wu, and C. T.-C. Nguyen, “Enhancement of mechanical Q for low phase noise optomechanical oscillators,” in IEEE International Conference on Micro Electro Mechanical Systems (MEMS) (IEEE, 2013), pp. 118–121.
  36. S. Tallur, S. Sridaran, and S. A. Bhave, “A monolithic radiation-pressure driven, low phase noise silicon nitride opto-mechanical oscillator,” Opt. Express 19, 24522–24529 (2011).
    [Crossref]
  37. S. Chandorkar, M. Agarwal, R. Melamud, R. Candler, K. Goodson, and T. Kenny, “Limits of quality factor in bulk-mode micromechanical resonators,” in IEEE International Conference on Micro Electro Mechanical Systems (MEMS) (IEEE, 2008), pp. 74–77.
  38. M. Zhang, G. S. Wiederhecker, S. Manipatruni, A. Barnard, P. McEuen, and M. Lipson, “Synchronization of micromechanical oscillators using light,” Phys. Rev. Lett. 109, 233906 (2012).
    [Crossref]
  39. M. Bagheri, M. Poot, L. Fan, F. Marquardt, and H. X. Tang, “Photonic cavity synchronization of nanomechanical oscillators,” Phys. Rev. Lett. 111, 213902 (2013).
    [Crossref]

2015 (1)

K. Grutter, M. Davanço, and K. Srinivasan, “Si3N4 nanobeam optomechanical crystals,” IEEE J. Sel. Top. Quantum Electron. 21, 61–71 (2015).
[Crossref]

2014 (5)

K. C. Balram, M. Davanço, J. Y. Lim, J. D. Song, and K. Srinivasan, “Moving boundary and photoelastic coupling in GaAs optomechanical resonators,” Optica 1, 414–420 (2014).
[Crossref]

C. Dong, J. Zhang, V. Fiore, and H. Wang, “Optomechanically induced transparency and self-induced oscillations with Bogoliubov mechanical modes,” Optica 1, 425–428 (2014).
[Crossref]

A. Shkarin, N. Flowers-Jacobs, S. Hoch, A. Kashkanova, C. Deutsch, J. Reichel, and J. Harris, “Optically mediated hybridization between two mechanical modes,” Phys. Rev. Lett. 112, 013602 (2014).
[Crossref]

T. Ojanen and K. Børkje, “Ground-state cooling of mechanical motion in the unresolved sideband regime by use of optomechanically induced transparency,” Phys. Rev. A 90, 013824 (2014).
[Crossref]

M. Davanço, S. Ates, Y. Liu, and K. Srinivasan, “Si3N4 optomechanical crystals in the resolved-sideband regime,” Appl. Phys. Lett. 104, 041101 (2014).
[Crossref]

2013 (4)

J. Bochmann, A. Vainsencher, D. D. Awschalom, and A. N. Cleland, “Nanomechanical coupling between microwave and optical photons,” Nat. Phys. 9, 712–716 (2013).
[Crossref]

Y.-D. Wang and A. A. Clerk, “Reservoir-engineered entanglement in optomechanical systems,” Phys. Rev. Lett. 110, 253601 (2013).
[Crossref]

Y. Liu, M. Davanço, V. Aksyuk, and K. Srinivasan, “Electromagnetically induced transparency and wideband wavelength conversion in silicon nitride microdisk optomechanical resonators,” Phys. Rev. Lett. 110, 223603 (2013).
[Crossref]

M. Bagheri, M. Poot, L. Fan, F. Marquardt, and H. X. Tang, “Photonic cavity synchronization of nanomechanical oscillators,” Phys. Rev. Lett. 111, 213902 (2013).
[Crossref]

2012 (6)

M. Zhang, G. S. Wiederhecker, S. Manipatruni, A. Barnard, P. McEuen, and M. Lipson, “Synchronization of micromechanical oscillators using light,” Phys. Rev. Lett. 109, 233906 (2012).
[Crossref]

M. Davanço, J. Chan, A. H. Safavi-Naeini, O. Painter, and K. Srinivasan, “Slot-mode-coupled optomechanical crystals,” Opt. Express 20, 24394–24410 (2012).
[Crossref]

C. Dong, V. Fiore, M. Kuzyk, and H. Wang, “Optomechanical dark mode,” Science 338, 1609–1613 (2012).
[Crossref]

J. T. Hill, A. H. Safavi-Naeini, J. Chan, and O. Painter, “Coherent optical wavelength conversion via cavity optomechanics,” Nat. Commun. 3, 1196 (2012).
[Crossref]

A. Xuereb, C. Genes, and A. Dantan, “Strong coupling and long-range collective interactions in optomechanical arrays,” Phys. Rev. Lett. 109, 223601 (2012).
[Crossref]

F. Massel, S. U. Cho, J.-M. Pirkkalainen, P. J. Hakonen, T. T. Heikkilä, and M. A. Sillanpää, “Multimode circuit optomechanics near the quantum limit,” Nat. Commun. 3, 987 (2012).
[Crossref]

2011 (4)

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[Crossref]

J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475, 359–363 (2011).
[Crossref]

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[Crossref]

S. Tallur, S. Sridaran, and S. A. Bhave, “A monolithic radiation-pressure driven, low phase noise silicon nitride opto-mechanical oscillator,” Opt. Express 19, 24522–24529 (2011).
[Crossref]

2010 (3)

M. L. Gorodetsky, A. Schliesser, G. Anetsberger, S. Deleglise, and T. J. Kippenberg, “Determination of the vacuum optomechanical coupling rate using frequency noise calibration,” Opt. Express 18, 23236–23246 (2010).
[Crossref]

Y.-G. Roh, T. Tanabe, A. Shinya, H. Taniyama, E. Kuramochi, S. Matsuo, T. Sato, and M. Notomi, “Strong optomechanical interaction in a bilayer photonic crystal,” Phys. Rev. B 81, 121101 (2010).
[Crossref]

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010).
[Crossref]

2009 (7)

A. Schliesser, O. Arcizet, R. Rivière, G. Anetsberger, and T. J. Kippenberg, “Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the Heisenberg uncertainty limit,” Nat. Phys. 5, 509–514 (2009).
[Crossref]

J. D. Teufel, T. Donner, M. A. Castellanos-Beltran, J. W. Harlow, and K. W. Lehnert, “Nanomechanical motion measured with an imprecision below that at the standard quantum limit,” Nat. Nanotechnol. 4, 820–823 (2009).
[Crossref]

G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature 462, 633–636 (2009).
[Crossref]

Q. Lin, J. Rosenberg, X. Jiang, K. J. Vahala, and O. Painter, “Mechanical oscillation and cooling actuated by the optical gradient force,” Phys. Rev. Lett. 103, 103601 (2009).
[Crossref]

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459, 550–555 (2009).
[Crossref]

M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature 462, 78–82 (2009).
[Crossref]

R. M. Camacho, J. Chan, M. Eichenfield, and O. Painter, “Characterization of radiation pressure and thermal effects in a nanoscale optomechanical cavity,” Opt. Express 17, 15726–15735 (2009).
[Crossref]

2007 (1)

2006 (1)

M. Hossein-Zadeh, H. Rokhsari, A. Hajimiri, and K. J. Vahala, “Characterization of a radiation-pressure-driven micromechanical oscillator,” Phys. Rev. A 74, 023813 (2006).
[Crossref]

2004 (1)

Agarwal, M.

S. Chandorkar, M. Agarwal, R. Melamud, R. Candler, K. Goodson, and T. Kenny, “Limits of quality factor in bulk-mode micromechanical resonators,” in IEEE International Conference on Micro Electro Mechanical Systems (MEMS) (IEEE, 2008), pp. 74–77.

Aksyuk, V.

Y. Liu, M. Davanço, V. Aksyuk, and K. Srinivasan, “Electromagnetically induced transparency and wideband wavelength conversion in silicon nitride microdisk optomechanical resonators,” Phys. Rev. Lett. 110, 223603 (2013).
[Crossref]

Alegre, T. P. M.

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[Crossref]

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[Crossref]

Allman, M. S.

J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475, 359–363 (2011).
[Crossref]

Anetsberger, G.

M. L. Gorodetsky, A. Schliesser, G. Anetsberger, S. Deleglise, and T. J. Kippenberg, “Determination of the vacuum optomechanical coupling rate using frequency noise calibration,” Opt. Express 18, 23236–23246 (2010).
[Crossref]

A. Schliesser, O. Arcizet, R. Rivière, G. Anetsberger, and T. J. Kippenberg, “Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the Heisenberg uncertainty limit,” Nat. Phys. 5, 509–514 (2009).
[Crossref]

Arcizet, O.

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010).
[Crossref]

A. Schliesser, O. Arcizet, R. Rivière, G. Anetsberger, and T. J. Kippenberg, “Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the Heisenberg uncertainty limit,” Nat. Phys. 5, 509–514 (2009).
[Crossref]

Aspelmeyer, M.

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[Crossref]

Ates, S.

M. Davanço, S. Ates, Y. Liu, and K. Srinivasan, “Si3N4 optomechanical crystals in the resolved-sideband regime,” Appl. Phys. Lett. 104, 041101 (2014).
[Crossref]

Awschalom, D. D.

J. Bochmann, A. Vainsencher, D. D. Awschalom, and A. N. Cleland, “Nanomechanical coupling between microwave and optical photons,” Nat. Phys. 9, 712–716 (2013).
[Crossref]

Bagheri, M.

M. Bagheri, M. Poot, L. Fan, F. Marquardt, and H. X. Tang, “Photonic cavity synchronization of nanomechanical oscillators,” Phys. Rev. Lett. 111, 213902 (2013).
[Crossref]

Balram, K. C.

Barnard, A.

M. Zhang, G. S. Wiederhecker, S. Manipatruni, A. Barnard, P. McEuen, and M. Lipson, “Synchronization of micromechanical oscillators using light,” Phys. Rev. Lett. 109, 233906 (2012).
[Crossref]

Bhave, S. A.

Bochmann, J.

J. Bochmann, A. Vainsencher, D. D. Awschalom, and A. N. Cleland, “Nanomechanical coupling between microwave and optical photons,” Nat. Phys. 9, 712–716 (2013).
[Crossref]

Børkje, K.

T. Ojanen and K. Børkje, “Ground-state cooling of mechanical motion in the unresolved sideband regime by use of optomechanically induced transparency,” Phys. Rev. A 90, 013824 (2014).
[Crossref]

Camacho, R.

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459, 550–555 (2009).
[Crossref]

Camacho, R. M.

Candler, R.

S. Chandorkar, M. Agarwal, R. Melamud, R. Candler, K. Goodson, and T. Kenny, “Limits of quality factor in bulk-mode micromechanical resonators,” in IEEE International Conference on Micro Electro Mechanical Systems (MEMS) (IEEE, 2008), pp. 74–77.

Carmon, T.

Castellanos-Beltran, M. A.

J. D. Teufel, T. Donner, M. A. Castellanos-Beltran, J. W. Harlow, and K. W. Lehnert, “Nanomechanical motion measured with an imprecision below that at the standard quantum limit,” Nat. Nanotechnol. 4, 820–823 (2009).
[Crossref]

Chan, J.

J. T. Hill, A. H. Safavi-Naeini, J. Chan, and O. Painter, “Coherent optical wavelength conversion via cavity optomechanics,” Nat. Commun. 3, 1196 (2012).
[Crossref]

M. Davanço, J. Chan, A. H. Safavi-Naeini, O. Painter, and K. Srinivasan, “Slot-mode-coupled optomechanical crystals,” Opt. Express 20, 24394–24410 (2012).
[Crossref]

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[Crossref]

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[Crossref]

M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature 462, 78–82 (2009).
[Crossref]

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459, 550–555 (2009).
[Crossref]

R. M. Camacho, J. Chan, M. Eichenfield, and O. Painter, “Characterization of radiation pressure and thermal effects in a nanoscale optomechanical cavity,” Opt. Express 17, 15726–15735 (2009).
[Crossref]

Chandorkar, S.

S. Chandorkar, M. Agarwal, R. Melamud, R. Candler, K. Goodson, and T. Kenny, “Limits of quality factor in bulk-mode micromechanical resonators,” in IEEE International Conference on Micro Electro Mechanical Systems (MEMS) (IEEE, 2008), pp. 74–77.

Chang, D. E.

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[Crossref]

Chen, L.

G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature 462, 633–636 (2009).
[Crossref]

Cho, S. U.

F. Massel, S. U. Cho, J.-M. Pirkkalainen, P. J. Hakonen, T. T. Heikkilä, and M. A. Sillanpää, “Multimode circuit optomechanics near the quantum limit,” Nat. Commun. 3, 987 (2012).
[Crossref]

Cicak, K.

J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475, 359–363 (2011).
[Crossref]

T. Purdy, P.-L. Yu, N. Kampel, R. Peterson, K. Cicak, R. Simmonds, and C. Regal, “Optomechanical Raman-ratio thermometry,” arXiv:1406.7247 (2014).

Cleland, A. N.

J. Bochmann, A. Vainsencher, D. D. Awschalom, and A. N. Cleland, “Nanomechanical coupling between microwave and optical photons,” Nat. Phys. 9, 712–716 (2013).
[Crossref]

Clerk, A. A.

Y.-D. Wang and A. A. Clerk, “Reservoir-engineered entanglement in optomechanical systems,” Phys. Rev. Lett. 110, 253601 (2013).
[Crossref]

Dantan, A.

A. Xuereb, C. Genes, and A. Dantan, “Strong coupling and long-range collective interactions in optomechanical arrays,” Phys. Rev. Lett. 109, 223601 (2012).
[Crossref]

Davanço, M.

K. Grutter, M. Davanço, and K. Srinivasan, “Si3N4 nanobeam optomechanical crystals,” IEEE J. Sel. Top. Quantum Electron. 21, 61–71 (2015).
[Crossref]

M. Davanço, S. Ates, Y. Liu, and K. Srinivasan, “Si3N4 optomechanical crystals in the resolved-sideband regime,” Appl. Phys. Lett. 104, 041101 (2014).
[Crossref]

K. C. Balram, M. Davanço, J. Y. Lim, J. D. Song, and K. Srinivasan, “Moving boundary and photoelastic coupling in GaAs optomechanical resonators,” Optica 1, 414–420 (2014).
[Crossref]

Y. Liu, M. Davanço, V. Aksyuk, and K. Srinivasan, “Electromagnetically induced transparency and wideband wavelength conversion in silicon nitride microdisk optomechanical resonators,” Phys. Rev. Lett. 110, 223603 (2013).
[Crossref]

M. Davanço, J. Chan, A. H. Safavi-Naeini, O. Painter, and K. Srinivasan, “Slot-mode-coupled optomechanical crystals,” Opt. Express 20, 24394–24410 (2012).
[Crossref]

Deleglise, S.

Deléglise, S.

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010).
[Crossref]

Deutsch, C.

A. Shkarin, N. Flowers-Jacobs, S. Hoch, A. Kashkanova, C. Deutsch, J. Reichel, and J. Harris, “Optically mediated hybridization between two mechanical modes,” Phys. Rev. Lett. 112, 013602 (2014).
[Crossref]

Dong, C.

Donner, T.

J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475, 359–363 (2011).
[Crossref]

J. D. Teufel, T. Donner, M. A. Castellanos-Beltran, J. W. Harlow, and K. W. Lehnert, “Nanomechanical motion measured with an imprecision below that at the standard quantum limit,” Nat. Nanotechnol. 4, 820–823 (2009).
[Crossref]

Eichenfield, M.

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[Crossref]

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459, 550–555 (2009).
[Crossref]

M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature 462, 78–82 (2009).
[Crossref]

R. M. Camacho, J. Chan, M. Eichenfield, and O. Painter, “Characterization of radiation pressure and thermal effects in a nanoscale optomechanical cavity,” Opt. Express 17, 15726–15735 (2009).
[Crossref]

M. Eichenfield, “Cavity optomechanics in photonic and phononic crystals: Engineering the interaction of light and sound at the nanoscale,” Ph.D. thesis (California Institute of Technology, 2010).

Fan, L.

M. Bagheri, M. Poot, L. Fan, F. Marquardt, and H. X. Tang, “Photonic cavity synchronization of nanomechanical oscillators,” Phys. Rev. Lett. 111, 213902 (2013).
[Crossref]

Fiore, V.

Flowers-Jacobs, N.

A. Shkarin, N. Flowers-Jacobs, S. Hoch, A. Kashkanova, C. Deutsch, J. Reichel, and J. Harris, “Optically mediated hybridization between two mechanical modes,” Phys. Rev. Lett. 112, 013602 (2014).
[Crossref]

Gavartin, E.

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010).
[Crossref]

Genes, C.

A. Xuereb, C. Genes, and A. Dantan, “Strong coupling and long-range collective interactions in optomechanical arrays,” Phys. Rev. Lett. 109, 223601 (2012).
[Crossref]

Gondarenko, A.

G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature 462, 633–636 (2009).
[Crossref]

Goodson, K.

S. Chandorkar, M. Agarwal, R. Melamud, R. Candler, K. Goodson, and T. Kenny, “Limits of quality factor in bulk-mode micromechanical resonators,” in IEEE International Conference on Micro Electro Mechanical Systems (MEMS) (IEEE, 2008), pp. 74–77.

Gorodetsky, M. L.

Grine, A. J.

T. O. Rocheleau, A. J. Grine, K. E. Grutter, R. Schneider, N. Quack, M. C. Wu, and C. T.-C. Nguyen, “Enhancement of mechanical Q for low phase noise optomechanical oscillators,” in IEEE International Conference on Micro Electro Mechanical Systems (MEMS) (IEEE, 2013), pp. 118–121.

Gröblacher, S.

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[Crossref]

Grutter, K.

K. Grutter, M. Davanço, and K. Srinivasan, “Si3N4 nanobeam optomechanical crystals,” IEEE J. Sel. Top. Quantum Electron. 21, 61–71 (2015).
[Crossref]

Grutter, K. E.

T. O. Rocheleau, A. J. Grine, K. E. Grutter, R. Schneider, N. Quack, M. C. Wu, and C. T.-C. Nguyen, “Enhancement of mechanical Q for low phase noise optomechanical oscillators,” in IEEE International Conference on Micro Electro Mechanical Systems (MEMS) (IEEE, 2013), pp. 118–121.

Hajimiri, A.

M. Hossein-Zadeh, H. Rokhsari, A. Hajimiri, and K. J. Vahala, “Characterization of a radiation-pressure-driven micromechanical oscillator,” Phys. Rev. A 74, 023813 (2006).
[Crossref]

Hakonen, P. J.

F. Massel, S. U. Cho, J.-M. Pirkkalainen, P. J. Hakonen, T. T. Heikkilä, and M. A. Sillanpää, “Multimode circuit optomechanics near the quantum limit,” Nat. Commun. 3, 987 (2012).
[Crossref]

Harlow, J. W.

J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475, 359–363 (2011).
[Crossref]

J. D. Teufel, T. Donner, M. A. Castellanos-Beltran, J. W. Harlow, and K. W. Lehnert, “Nanomechanical motion measured with an imprecision below that at the standard quantum limit,” Nat. Nanotechnol. 4, 820–823 (2009).
[Crossref]

Harris, J.

A. Shkarin, N. Flowers-Jacobs, S. Hoch, A. Kashkanova, C. Deutsch, J. Reichel, and J. Harris, “Optically mediated hybridization between two mechanical modes,” Phys. Rev. Lett. 112, 013602 (2014).
[Crossref]

Heikkilä, T. T.

F. Massel, S. U. Cho, J.-M. Pirkkalainen, P. J. Hakonen, T. T. Heikkilä, and M. A. Sillanpää, “Multimode circuit optomechanics near the quantum limit,” Nat. Commun. 3, 987 (2012).
[Crossref]

Hill, J. T.

J. T. Hill, A. H. Safavi-Naeini, J. Chan, and O. Painter, “Coherent optical wavelength conversion via cavity optomechanics,” Nat. Commun. 3, 1196 (2012).
[Crossref]

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[Crossref]

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[Crossref]

Hoch, S.

A. Shkarin, N. Flowers-Jacobs, S. Hoch, A. Kashkanova, C. Deutsch, J. Reichel, and J. Harris, “Optically mediated hybridization between two mechanical modes,” Phys. Rev. Lett. 112, 013602 (2014).
[Crossref]

Hossein-Zadeh, M.

M. Hossein-Zadeh, H. Rokhsari, A. Hajimiri, and K. J. Vahala, “Characterization of a radiation-pressure-driven micromechanical oscillator,” Phys. Rev. A 74, 023813 (2006).
[Crossref]

Jiang, X.

Q. Lin, J. Rosenberg, X. Jiang, K. J. Vahala, and O. Painter, “Mechanical oscillation and cooling actuated by the optical gradient force,” Phys. Rev. Lett. 103, 103601 (2009).
[Crossref]

Kampel, N.

T. Purdy, P.-L. Yu, N. Kampel, R. Peterson, K. Cicak, R. Simmonds, and C. Regal, “Optomechanical Raman-ratio thermometry,” arXiv:1406.7247 (2014).

Kashkanova, A.

A. Shkarin, N. Flowers-Jacobs, S. Hoch, A. Kashkanova, C. Deutsch, J. Reichel, and J. Harris, “Optically mediated hybridization between two mechanical modes,” Phys. Rev. Lett. 112, 013602 (2014).
[Crossref]

Kenny, T.

S. Chandorkar, M. Agarwal, R. Melamud, R. Candler, K. Goodson, and T. Kenny, “Limits of quality factor in bulk-mode micromechanical resonators,” in IEEE International Conference on Micro Electro Mechanical Systems (MEMS) (IEEE, 2008), pp. 74–77.

Kippenberg, T. J.

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010).
[Crossref]

M. L. Gorodetsky, A. Schliesser, G. Anetsberger, S. Deleglise, and T. J. Kippenberg, “Determination of the vacuum optomechanical coupling rate using frequency noise calibration,” Opt. Express 18, 23236–23246 (2010).
[Crossref]

A. Schliesser, O. Arcizet, R. Rivière, G. Anetsberger, and T. J. Kippenberg, “Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the Heisenberg uncertainty limit,” Nat. Phys. 5, 509–514 (2009).
[Crossref]

T. J. Kippenberg and K. J. Vahala, “Cavity opto-mechanics,” Opt. Express 15, 17172–17205 (2007).
[Crossref]

Krause, A.

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[Crossref]

Kuramochi, E.

Y.-G. Roh, T. Tanabe, A. Shinya, H. Taniyama, E. Kuramochi, S. Matsuo, T. Sato, and M. Notomi, “Strong optomechanical interaction in a bilayer photonic crystal,” Phys. Rev. B 81, 121101 (2010).
[Crossref]

Kuzyk, M.

C. Dong, V. Fiore, M. Kuzyk, and H. Wang, “Optomechanical dark mode,” Science 338, 1609–1613 (2012).
[Crossref]

Lehnert, K. W.

J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475, 359–363 (2011).
[Crossref]

J. D. Teufel, T. Donner, M. A. Castellanos-Beltran, J. W. Harlow, and K. W. Lehnert, “Nanomechanical motion measured with an imprecision below that at the standard quantum limit,” Nat. Nanotechnol. 4, 820–823 (2009).
[Crossref]

Li, D.

J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475, 359–363 (2011).
[Crossref]

Lim, J. Y.

Lin, Q.

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[Crossref]

Q. Lin, J. Rosenberg, X. Jiang, K. J. Vahala, and O. Painter, “Mechanical oscillation and cooling actuated by the optical gradient force,” Phys. Rev. Lett. 103, 103601 (2009).
[Crossref]

Lipson, M.

M. Zhang, G. S. Wiederhecker, S. Manipatruni, A. Barnard, P. McEuen, and M. Lipson, “Synchronization of micromechanical oscillators using light,” Phys. Rev. Lett. 109, 233906 (2012).
[Crossref]

G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature 462, 633–636 (2009).
[Crossref]

Liu, Y.

M. Davanço, S. Ates, Y. Liu, and K. Srinivasan, “Si3N4 optomechanical crystals in the resolved-sideband regime,” Appl. Phys. Lett. 104, 041101 (2014).
[Crossref]

Y. Liu, M. Davanço, V. Aksyuk, and K. Srinivasan, “Electromagnetically induced transparency and wideband wavelength conversion in silicon nitride microdisk optomechanical resonators,” Phys. Rev. Lett. 110, 223603 (2013).
[Crossref]

Manipatruni, S.

M. Zhang, G. S. Wiederhecker, S. Manipatruni, A. Barnard, P. McEuen, and M. Lipson, “Synchronization of micromechanical oscillators using light,” Phys. Rev. Lett. 109, 233906 (2012).
[Crossref]

Marquardt, F.

M. Bagheri, M. Poot, L. Fan, F. Marquardt, and H. X. Tang, “Photonic cavity synchronization of nanomechanical oscillators,” Phys. Rev. Lett. 111, 213902 (2013).
[Crossref]

Massel, F.

F. Massel, S. U. Cho, J.-M. Pirkkalainen, P. J. Hakonen, T. T. Heikkilä, and M. A. Sillanpää, “Multimode circuit optomechanics near the quantum limit,” Nat. Commun. 3, 987 (2012).
[Crossref]

Matsuo, S.

Y.-G. Roh, T. Tanabe, A. Shinya, H. Taniyama, E. Kuramochi, S. Matsuo, T. Sato, and M. Notomi, “Strong optomechanical interaction in a bilayer photonic crystal,” Phys. Rev. B 81, 121101 (2010).
[Crossref]

McEuen, P.

M. Zhang, G. S. Wiederhecker, S. Manipatruni, A. Barnard, P. McEuen, and M. Lipson, “Synchronization of micromechanical oscillators using light,” Phys. Rev. Lett. 109, 233906 (2012).
[Crossref]

Melamud, R.

S. Chandorkar, M. Agarwal, R. Melamud, R. Candler, K. Goodson, and T. Kenny, “Limits of quality factor in bulk-mode micromechanical resonators,” in IEEE International Conference on Micro Electro Mechanical Systems (MEMS) (IEEE, 2008), pp. 74–77.

Nguyen, C. T.-C.

T. O. Rocheleau, A. J. Grine, K. E. Grutter, R. Schneider, N. Quack, M. C. Wu, and C. T.-C. Nguyen, “Enhancement of mechanical Q for low phase noise optomechanical oscillators,” in IEEE International Conference on Micro Electro Mechanical Systems (MEMS) (IEEE, 2013), pp. 118–121.

Notomi, M.

Y.-G. Roh, T. Tanabe, A. Shinya, H. Taniyama, E. Kuramochi, S. Matsuo, T. Sato, and M. Notomi, “Strong optomechanical interaction in a bilayer photonic crystal,” Phys. Rev. B 81, 121101 (2010).
[Crossref]

Ojanen, T.

T. Ojanen and K. Børkje, “Ground-state cooling of mechanical motion in the unresolved sideband regime by use of optomechanically induced transparency,” Phys. Rev. A 90, 013824 (2014).
[Crossref]

Painter, O.

M. Davanço, J. Chan, A. H. Safavi-Naeini, O. Painter, and K. Srinivasan, “Slot-mode-coupled optomechanical crystals,” Opt. Express 20, 24394–24410 (2012).
[Crossref]

J. T. Hill, A. H. Safavi-Naeini, J. Chan, and O. Painter, “Coherent optical wavelength conversion via cavity optomechanics,” Nat. Commun. 3, 1196 (2012).
[Crossref]

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[Crossref]

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[Crossref]

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459, 550–555 (2009).
[Crossref]

Q. Lin, J. Rosenberg, X. Jiang, K. J. Vahala, and O. Painter, “Mechanical oscillation and cooling actuated by the optical gradient force,” Phys. Rev. Lett. 103, 103601 (2009).
[Crossref]

M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature 462, 78–82 (2009).
[Crossref]

R. M. Camacho, J. Chan, M. Eichenfield, and O. Painter, “Characterization of radiation pressure and thermal effects in a nanoscale optomechanical cavity,” Opt. Express 17, 15726–15735 (2009).
[Crossref]

Peterson, R.

T. Purdy, P.-L. Yu, N. Kampel, R. Peterson, K. Cicak, R. Simmonds, and C. Regal, “Optomechanical Raman-ratio thermometry,” arXiv:1406.7247 (2014).

Pirkkalainen, J.-M.

F. Massel, S. U. Cho, J.-M. Pirkkalainen, P. J. Hakonen, T. T. Heikkilä, and M. A. Sillanpää, “Multimode circuit optomechanics near the quantum limit,” Nat. Commun. 3, 987 (2012).
[Crossref]

Poot, M.

M. Bagheri, M. Poot, L. Fan, F. Marquardt, and H. X. Tang, “Photonic cavity synchronization of nanomechanical oscillators,” Phys. Rev. Lett. 111, 213902 (2013).
[Crossref]

Purdy, T.

T. Purdy, P.-L. Yu, N. Kampel, R. Peterson, K. Cicak, R. Simmonds, and C. Regal, “Optomechanical Raman-ratio thermometry,” arXiv:1406.7247 (2014).

Quack, N.

T. O. Rocheleau, A. J. Grine, K. E. Grutter, R. Schneider, N. Quack, M. C. Wu, and C. T.-C. Nguyen, “Enhancement of mechanical Q for low phase noise optomechanical oscillators,” in IEEE International Conference on Micro Electro Mechanical Systems (MEMS) (IEEE, 2013), pp. 118–121.

Regal, C.

T. Purdy, P.-L. Yu, N. Kampel, R. Peterson, K. Cicak, R. Simmonds, and C. Regal, “Optomechanical Raman-ratio thermometry,” arXiv:1406.7247 (2014).

Reichel, J.

A. Shkarin, N. Flowers-Jacobs, S. Hoch, A. Kashkanova, C. Deutsch, J. Reichel, and J. Harris, “Optically mediated hybridization between two mechanical modes,” Phys. Rev. Lett. 112, 013602 (2014).
[Crossref]

Rivière, R.

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010).
[Crossref]

A. Schliesser, O. Arcizet, R. Rivière, G. Anetsberger, and T. J. Kippenberg, “Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the Heisenberg uncertainty limit,” Nat. Phys. 5, 509–514 (2009).
[Crossref]

Rocheleau, T. O.

T. O. Rocheleau, A. J. Grine, K. E. Grutter, R. Schneider, N. Quack, M. C. Wu, and C. T.-C. Nguyen, “Enhancement of mechanical Q for low phase noise optomechanical oscillators,” in IEEE International Conference on Micro Electro Mechanical Systems (MEMS) (IEEE, 2013), pp. 118–121.

Roh, Y.-G.

Y.-G. Roh, T. Tanabe, A. Shinya, H. Taniyama, E. Kuramochi, S. Matsuo, T. Sato, and M. Notomi, “Strong optomechanical interaction in a bilayer photonic crystal,” Phys. Rev. B 81, 121101 (2010).
[Crossref]

Rokhsari, H.

M. Hossein-Zadeh, H. Rokhsari, A. Hajimiri, and K. J. Vahala, “Characterization of a radiation-pressure-driven micromechanical oscillator,” Phys. Rev. A 74, 023813 (2006).
[Crossref]

Rosenberg, J.

Q. Lin, J. Rosenberg, X. Jiang, K. J. Vahala, and O. Painter, “Mechanical oscillation and cooling actuated by the optical gradient force,” Phys. Rev. Lett. 103, 103601 (2009).
[Crossref]

Safavi-Naeini, A. H.

J. T. Hill, A. H. Safavi-Naeini, J. Chan, and O. Painter, “Coherent optical wavelength conversion via cavity optomechanics,” Nat. Commun. 3, 1196 (2012).
[Crossref]

M. Davanço, J. Chan, A. H. Safavi-Naeini, O. Painter, and K. Srinivasan, “Slot-mode-coupled optomechanical crystals,” Opt. Express 20, 24394–24410 (2012).
[Crossref]

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[Crossref]

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[Crossref]

Sato, T.

Y.-G. Roh, T. Tanabe, A. Shinya, H. Taniyama, E. Kuramochi, S. Matsuo, T. Sato, and M. Notomi, “Strong optomechanical interaction in a bilayer photonic crystal,” Phys. Rev. B 81, 121101 (2010).
[Crossref]

Schliesser, A.

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010).
[Crossref]

M. L. Gorodetsky, A. Schliesser, G. Anetsberger, S. Deleglise, and T. J. Kippenberg, “Determination of the vacuum optomechanical coupling rate using frequency noise calibration,” Opt. Express 18, 23236–23246 (2010).
[Crossref]

A. Schliesser, O. Arcizet, R. Rivière, G. Anetsberger, and T. J. Kippenberg, “Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the Heisenberg uncertainty limit,” Nat. Phys. 5, 509–514 (2009).
[Crossref]

Schneider, R.

T. O. Rocheleau, A. J. Grine, K. E. Grutter, R. Schneider, N. Quack, M. C. Wu, and C. T.-C. Nguyen, “Enhancement of mechanical Q for low phase noise optomechanical oscillators,” in IEEE International Conference on Micro Electro Mechanical Systems (MEMS) (IEEE, 2013), pp. 118–121.

Shinya, A.

Y.-G. Roh, T. Tanabe, A. Shinya, H. Taniyama, E. Kuramochi, S. Matsuo, T. Sato, and M. Notomi, “Strong optomechanical interaction in a bilayer photonic crystal,” Phys. Rev. B 81, 121101 (2010).
[Crossref]

Shkarin, A.

A. Shkarin, N. Flowers-Jacobs, S. Hoch, A. Kashkanova, C. Deutsch, J. Reichel, and J. Harris, “Optically mediated hybridization between two mechanical modes,” Phys. Rev. Lett. 112, 013602 (2014).
[Crossref]

Sillanpää, M. A.

F. Massel, S. U. Cho, J.-M. Pirkkalainen, P. J. Hakonen, T. T. Heikkilä, and M. A. Sillanpää, “Multimode circuit optomechanics near the quantum limit,” Nat. Commun. 3, 987 (2012).
[Crossref]

Simmonds, R.

T. Purdy, P.-L. Yu, N. Kampel, R. Peterson, K. Cicak, R. Simmonds, and C. Regal, “Optomechanical Raman-ratio thermometry,” arXiv:1406.7247 (2014).

Simmonds, R. W.

J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475, 359–363 (2011).
[Crossref]

Sirois, A. J.

J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475, 359–363 (2011).
[Crossref]

Song, J. D.

Sridaran, S.

Srinivasan, K.

K. Grutter, M. Davanço, and K. Srinivasan, “Si3N4 nanobeam optomechanical crystals,” IEEE J. Sel. Top. Quantum Electron. 21, 61–71 (2015).
[Crossref]

M. Davanço, S. Ates, Y. Liu, and K. Srinivasan, “Si3N4 optomechanical crystals in the resolved-sideband regime,” Appl. Phys. Lett. 104, 041101 (2014).
[Crossref]

K. C. Balram, M. Davanço, J. Y. Lim, J. D. Song, and K. Srinivasan, “Moving boundary and photoelastic coupling in GaAs optomechanical resonators,” Optica 1, 414–420 (2014).
[Crossref]

Y. Liu, M. Davanço, V. Aksyuk, and K. Srinivasan, “Electromagnetically induced transparency and wideband wavelength conversion in silicon nitride microdisk optomechanical resonators,” Phys. Rev. Lett. 110, 223603 (2013).
[Crossref]

M. Davanço, J. Chan, A. H. Safavi-Naeini, O. Painter, and K. Srinivasan, “Slot-mode-coupled optomechanical crystals,” Opt. Express 20, 24394–24410 (2012).
[Crossref]

Tallur, S.

Tanabe, T.

Y.-G. Roh, T. Tanabe, A. Shinya, H. Taniyama, E. Kuramochi, S. Matsuo, T. Sato, and M. Notomi, “Strong optomechanical interaction in a bilayer photonic crystal,” Phys. Rev. B 81, 121101 (2010).
[Crossref]

Tang, H. X.

M. Bagheri, M. Poot, L. Fan, F. Marquardt, and H. X. Tang, “Photonic cavity synchronization of nanomechanical oscillators,” Phys. Rev. Lett. 111, 213902 (2013).
[Crossref]

Taniyama, H.

Y.-G. Roh, T. Tanabe, A. Shinya, H. Taniyama, E. Kuramochi, S. Matsuo, T. Sato, and M. Notomi, “Strong optomechanical interaction in a bilayer photonic crystal,” Phys. Rev. B 81, 121101 (2010).
[Crossref]

Teufel, J. D.

J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475, 359–363 (2011).
[Crossref]

J. D. Teufel, T. Donner, M. A. Castellanos-Beltran, J. W. Harlow, and K. W. Lehnert, “Nanomechanical motion measured with an imprecision below that at the standard quantum limit,” Nat. Nanotechnol. 4, 820–823 (2009).
[Crossref]

Vahala, K.

Vahala, K. J.

Q. Lin, J. Rosenberg, X. Jiang, K. J. Vahala, and O. Painter, “Mechanical oscillation and cooling actuated by the optical gradient force,” Phys. Rev. Lett. 103, 103601 (2009).
[Crossref]

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459, 550–555 (2009).
[Crossref]

M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature 462, 78–82 (2009).
[Crossref]

T. J. Kippenberg and K. J. Vahala, “Cavity opto-mechanics,” Opt. Express 15, 17172–17205 (2007).
[Crossref]

M. Hossein-Zadeh, H. Rokhsari, A. Hajimiri, and K. J. Vahala, “Characterization of a radiation-pressure-driven micromechanical oscillator,” Phys. Rev. A 74, 023813 (2006).
[Crossref]

Vainsencher, A.

J. Bochmann, A. Vainsencher, D. D. Awschalom, and A. N. Cleland, “Nanomechanical coupling between microwave and optical photons,” Nat. Phys. 9, 712–716 (2013).
[Crossref]

Wang, H.

Wang, Y.-D.

Y.-D. Wang and A. A. Clerk, “Reservoir-engineered entanglement in optomechanical systems,” Phys. Rev. Lett. 110, 253601 (2013).
[Crossref]

Weis, S.

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010).
[Crossref]

Whittaker, J. D.

J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475, 359–363 (2011).
[Crossref]

Wiederhecker, G. S.

M. Zhang, G. S. Wiederhecker, S. Manipatruni, A. Barnard, P. McEuen, and M. Lipson, “Synchronization of micromechanical oscillators using light,” Phys. Rev. Lett. 109, 233906 (2012).
[Crossref]

G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature 462, 633–636 (2009).
[Crossref]

Winger, M.

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[Crossref]

Wu, M. C.

T. O. Rocheleau, A. J. Grine, K. E. Grutter, R. Schneider, N. Quack, M. C. Wu, and C. T.-C. Nguyen, “Enhancement of mechanical Q for low phase noise optomechanical oscillators,” in IEEE International Conference on Micro Electro Mechanical Systems (MEMS) (IEEE, 2013), pp. 118–121.

Xuereb, A.

A. Xuereb, C. Genes, and A. Dantan, “Strong coupling and long-range collective interactions in optomechanical arrays,” Phys. Rev. Lett. 109, 223601 (2012).
[Crossref]

Yang, L.

Yu, P.-L.

T. Purdy, P.-L. Yu, N. Kampel, R. Peterson, K. Cicak, R. Simmonds, and C. Regal, “Optomechanical Raman-ratio thermometry,” arXiv:1406.7247 (2014).

Zhang, J.

Zhang, M.

M. Zhang, G. S. Wiederhecker, S. Manipatruni, A. Barnard, P. McEuen, and M. Lipson, “Synchronization of micromechanical oscillators using light,” Phys. Rev. Lett. 109, 233906 (2012).
[Crossref]

Appl. Phys. Lett. (1)

M. Davanço, S. Ates, Y. Liu, and K. Srinivasan, “Si3N4 optomechanical crystals in the resolved-sideband regime,” Appl. Phys. Lett. 104, 041101 (2014).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

K. Grutter, M. Davanço, and K. Srinivasan, “Si3N4 nanobeam optomechanical crystals,” IEEE J. Sel. Top. Quantum Electron. 21, 61–71 (2015).
[Crossref]

Nat. Commun. (2)

J. T. Hill, A. H. Safavi-Naeini, J. Chan, and O. Painter, “Coherent optical wavelength conversion via cavity optomechanics,” Nat. Commun. 3, 1196 (2012).
[Crossref]

F. Massel, S. U. Cho, J.-M. Pirkkalainen, P. J. Hakonen, T. T. Heikkilä, and M. A. Sillanpää, “Multimode circuit optomechanics near the quantum limit,” Nat. Commun. 3, 987 (2012).
[Crossref]

Nat. Nanotechnol. (1)

J. D. Teufel, T. Donner, M. A. Castellanos-Beltran, J. W. Harlow, and K. W. Lehnert, “Nanomechanical motion measured with an imprecision below that at the standard quantum limit,” Nat. Nanotechnol. 4, 820–823 (2009).
[Crossref]

Nat. Phys. (2)

A. Schliesser, O. Arcizet, R. Rivière, G. Anetsberger, and T. J. Kippenberg, “Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the Heisenberg uncertainty limit,” Nat. Phys. 5, 509–514 (2009).
[Crossref]

J. Bochmann, A. Vainsencher, D. D. Awschalom, and A. N. Cleland, “Nanomechanical coupling between microwave and optical photons,” Nat. Phys. 9, 712–716 (2013).
[Crossref]

Nature (6)

G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature 462, 633–636 (2009).
[Crossref]

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459, 550–555 (2009).
[Crossref]

M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature 462, 78–82 (2009).
[Crossref]

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[Crossref]

J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475, 359–363 (2011).
[Crossref]

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[Crossref]

Opt. Express (6)

Optica (2)

Phys. Rev. A (2)

T. Ojanen and K. Børkje, “Ground-state cooling of mechanical motion in the unresolved sideband regime by use of optomechanically induced transparency,” Phys. Rev. A 90, 013824 (2014).
[Crossref]

M. Hossein-Zadeh, H. Rokhsari, A. Hajimiri, and K. J. Vahala, “Characterization of a radiation-pressure-driven micromechanical oscillator,” Phys. Rev. A 74, 023813 (2006).
[Crossref]

Phys. Rev. B (1)

Y.-G. Roh, T. Tanabe, A. Shinya, H. Taniyama, E. Kuramochi, S. Matsuo, T. Sato, and M. Notomi, “Strong optomechanical interaction in a bilayer photonic crystal,” Phys. Rev. B 81, 121101 (2010).
[Crossref]

Phys. Rev. Lett. (7)

Q. Lin, J. Rosenberg, X. Jiang, K. J. Vahala, and O. Painter, “Mechanical oscillation and cooling actuated by the optical gradient force,” Phys. Rev. Lett. 103, 103601 (2009).
[Crossref]

A. Shkarin, N. Flowers-Jacobs, S. Hoch, A. Kashkanova, C. Deutsch, J. Reichel, and J. Harris, “Optically mediated hybridization between two mechanical modes,” Phys. Rev. Lett. 112, 013602 (2014).
[Crossref]

Y.-D. Wang and A. A. Clerk, “Reservoir-engineered entanglement in optomechanical systems,” Phys. Rev. Lett. 110, 253601 (2013).
[Crossref]

A. Xuereb, C. Genes, and A. Dantan, “Strong coupling and long-range collective interactions in optomechanical arrays,” Phys. Rev. Lett. 109, 223601 (2012).
[Crossref]

Y. Liu, M. Davanço, V. Aksyuk, and K. Srinivasan, “Electromagnetically induced transparency and wideband wavelength conversion in silicon nitride microdisk optomechanical resonators,” Phys. Rev. Lett. 110, 223603 (2013).
[Crossref]

M. Zhang, G. S. Wiederhecker, S. Manipatruni, A. Barnard, P. McEuen, and M. Lipson, “Synchronization of micromechanical oscillators using light,” Phys. Rev. Lett. 109, 233906 (2012).
[Crossref]

M. Bagheri, M. Poot, L. Fan, F. Marquardt, and H. X. Tang, “Photonic cavity synchronization of nanomechanical oscillators,” Phys. Rev. Lett. 111, 213902 (2013).
[Crossref]

Science (2)

C. Dong, V. Fiore, M. Kuzyk, and H. Wang, “Optomechanical dark mode,” Science 338, 1609–1613 (2012).
[Crossref]

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010).
[Crossref]

Other (6)

T. Purdy, P.-L. Yu, N. Kampel, R. Peterson, K. Cicak, R. Simmonds, and C. Regal, “Optomechanical Raman-ratio thermometry,” arXiv:1406.7247 (2014).

Throughout this work, stated uncertainty in optical Q represents the 95% confidence interval of the Lorentzian fit of the optical spectrum.

T. O. Rocheleau, A. J. Grine, K. E. Grutter, R. Schneider, N. Quack, M. C. Wu, and C. T.-C. Nguyen, “Enhancement of mechanical Q for low phase noise optomechanical oscillators,” in IEEE International Conference on Micro Electro Mechanical Systems (MEMS) (IEEE, 2013), pp. 118–121.

M. Eichenfield, “Cavity optomechanics in photonic and phononic crystals: Engineering the interaction of light and sound at the nanoscale,” Ph.D. thesis (California Institute of Technology, 2010).

Throughout this work, uncertainty in intrinsic Qm comes from the 95% confidence interval of the intercept of the weighted linear fit of γm,eff versus optical power. Weighting is from the uncertainty in the Lorentzian fits of each mechanical spectrum.

S. Chandorkar, M. Agarwal, R. Melamud, R. Candler, K. Goodson, and T. Kenny, “Limits of quality factor in bulk-mode micromechanical resonators,” in IEEE International Conference on Micro Electro Mechanical Systems (MEMS) (IEEE, 2008), pp. 74–77.

Supplementary Material (1)

NameDescription
» Supplement 1: PDF (2151 KB)      Supplemental document

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. (a) Variation of the optomechanical crystal lattice constant along the length of the beams. The period is fixed in the mirror regions at the beam ends and varies quadratically in the center cavity region. (b) The slot-mode optomechanical crystal is formed by parallel optical and mechanical beams that are separated by a narrow slot. The zoomed-in image of the center shows the finite element method (FEM) simulated electric field amplitude of the optical slot mode around 980 nm. (c) FEM simulation of the breathing mode of the mechanical beam (around 3.4 GHz). (d), (e), and (f) The width of the slot is varied in an FEM simulation of the (d) resonant wavelength, (e) optical quality factor (Qo), and (f) optomechanical coupling g0/(2π).
Fig. 2.
Fig. 2. (a) FEM simulation of a tensile-stressed beam with stress-tuning slits at the ends. (b) Displacement at beam center with respect to slit depth. FEM results (curve) are for a beam with the same dimensions as the optical beam of the slot-mode device. The error bars on the measured data are due to the uncertainty in the SEM measurements and are 1 standard deviation values. (c) SEM images of a released device. Insets show the slot width at the beam end is about 70 nm, shrinking to 24 nm at the beam center.
Fig. 3.
Fig. 3. (a) Optical modes are detected by swept-wavelength spectroscopy, while mechanical modes are measured when the laser is on the blue-detuned shoulder of the optical mode. For g0 calibration, the laser is phase modulated. (b) Optical resonant wavelength of three devices with different stress-tuned slot widths. Inset: the optical spectrum and fit of the highest measured Qo among these devices, having a designed gap of 50 nm and Qo=(1.65±0.09)×105 [25]. (c) Example mechanical spectrum, including phase modulator calibration peak. This power spectral density plot is referenced to a power of 1mW=0dB. The Lorentzian fit of the thermal noise spectrum is in red.
Fig. 4.
Fig. 4. (a) Mechanical spectra at different input optical powers (Pin) for a device with a designed stress-tuned slot width of 70 nm, intrinsic Qo=(3.7±0.1)×104, intrinsic Qm=2380±90 [32], and Ωm/(2π)3.31GHz. (b) Mechanical spectra at different Pin for a device with 20 nm designed stress-tuned slot width, intrinsic Qo=(3.2±0.1)×104, intrinsic Qm=2400±300, and Ωm/(2π)3.49GHz. (c) Measured γm,eff/(2π) of the devices from (a) (blue) and (b) (red). The error bars represent the uncertainty in the fit of the mechanical spectra to a Lorentzian. The dashed lines show weighted linear fits of the subthreshold γm,eff/(2π). The power spectral density plots in (a) and (b) are referenced to a power of 1mW=0dB.
Fig. 5.
Fig. 5. (a) FEM simulation of the fundamental lateral flexural beam mode. (b) Measured 3 dB linewidth of the fundamental flexural beam mode (blue) and the breathing mode (red) as a function of Pin. The error bars represent the uncertainty in the fit of the mechanical spectra to a Lorentzian. The fundamental mode self-oscillates at Pin150μW, while the breathing mode self-oscillates at Pin900μW. (c) Sidebands on the breathing mode (red) and the spectrum of harmonics of the lower frequency flexural beam modes (blue) line up, indicating a mixing between the two. Inset: the full, double-sided spectrum around the self-oscillating breathing mode. All power spectral density plots in (c) are referenced to a power of 1mW=0dB.
Fig. 6.
Fig. 6. (a) FEM simulation of the 1.8 GHz band mechanical breathing mode of the 1.55 μm wide mechanical beam. (b) SEM image of a fabricated 1.8 GHz band device. (c) Detected mechanical spectra at different FTW input optical powers. (d) At a FTW input optical power of 4.7 mW, harmonics of the 1.895 GHz mechanical mode are visible. (e) Measured γm,eff/(2π) of the 1.895 GHz mechanical mode. The error bars represent the uncertainty in the fit of the mechanical spectra to a Lorentzian. The dashed line shows the weighted linear fit of the subthreshold γm,eff/(2π). (f) FEM simulation of the 400 MHz band mechanical breathing mode of the 4 μm wide mechanical beam. (g) SEM image of a fabricated 400 MHz band device. (h) Mechanical spectra measured at different FTW input optical powers. (i) At a FTW input optical power of 2.6mW, harmonics of the 414 MHz mechanical mode are visible. (j) Measured γm,eff/(2π) of the 414 MHz mechanical mode. The error bars represent the uncertainty in the fit of the mechanical spectra to a Lorentzian. The dashed line shows the weighted linear fit of the subthreshold γm,eff/(2π). The power spectral density plots in (c), (d), (h), and (i) are referenced to a power of 1mW=0dB.
Fig. 7.
Fig. 7. (a) FEM simulation of the optical mode of an M-O-M device designed for coupling to 3.4 GHz band (bottom beam) and 1.8 GHz band (top beam) mechanical breathing modes. The optical mode is in both slots simultaneously. (b) SEM image of a fabricated M-O-M device. (c) Optical spectrum of the M-O-M device. The measurement is in gray, and the Lorentzian fit is in red. The measured intrinsic Qo=(1.26±0.02)×105. (d) Both mechanical modes measured simultaneously, FTW input power 3mW. The data are in gray, and the Lorentzian fits are in red. At this optical input power, the 1.93 GHz mode has effective Qm=3175±2, and the 3.484 GHz mode has effective Qm=3350±10, where uncertainty comes from a 95% confidence interval of fit. Insets: FEM eigenmode simulations of corresponding mechanical breathing modes.
Fig. 8.
Fig. 8. (a) SEM image of the fabricated O-M-O device. (b) Separately measured optical spectra of the O-M-O device. The data are in gray, and the Lorentzian fits are in red. The 947.34 nm mode (“bottom” beam) has intrinsic Qo=(1.1±0.1)×105, and the 973.21 nm mode (“top” beam) has intrinsic Qo=(1.05±0.02)×105. Insets: FEM simulations of the optical slot modes associated with bottom and top optical beams. (c) Mechanical spectra measured at different FTW input optical powers. The top spectra were acquired while optically coupled to the top beam, and the bottom spectra were acquired while optically coupled to the bottom beam. (d) γm,eff/(2π) as measured via the top optical mode (red) and the bottom optical mode (blue) with respect to FTW input power. The dashed lines show weighted linear fits of γm,eff/(2π). The error bars represent the uncertainty in the fit of the mechanical spectra to a Lorentzian.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

γm,eff=γm+g02ωoκexPinΔ2+(κ/2)2(κ/2(Δ+Ωm)2+(κ/2)2κ/2(ΔΩm)2+(κ/2)2)
=γm+g02S(κ,κex,ωo,Δ,Ωm)Pin.

Metrics