Abstract

The localization of single fluorescent molecules enables the imaging of molecular structure and dynamics with subdiffraction precision and can be extended to three dimensions using point spread function (PSF) engineering. However, the nanoscale accuracy of localization throughout a 3D single-molecule microscope’s field of view has not yet been rigorously examined. By using regularly spaced subdiffraction apertures filled with fluorescent dyes, we reveal field-dependent aberrations as large as 50–100 nm and show that they can be corrected to less than 25 nm over an extended 3D focal volume. We demonstrate the applicability of this technique for two engineered PSFs, the double-helix PSF and the astigmatic PSF. We expect these results to be broadly applicable to 3D single-molecule tracking and superresolution methods demanding high accuracy.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Nanoscale three-dimensional single particle tracking by light-sheet-based double-helix point spread function microscopy

Bin Yu, Jie Yu, Weihai Li, Bo Cao, Heng Li, Danni Chen, and Hanben Niu
Appl. Opt. 55(3) 449-453 (2016)

Three dimensional single molecule localization using a phase retrieved pupil function

Sheng Liu, Emil B. Kromann, Wesley D. Krueger, Joerg Bewersdorf, and Keith A. Lidke
Opt. Express 21(24) 29462-29487 (2013)

References

  • View by:
  • |
  • |
  • |

  1. L. S. Barak and W. W. Webb, “Diffusion of low density lipoprotein-receptor complex on human fibroblasts,” J. Cell Biol. 95, 846–852 (1982).
    [Crossref]
  2. J. Gelles, B. J. Schnapp, and M. P. Sheetz, “Tracking kinesin-driven movements with nanometre-scale precision,” Nature 331, 450–453 (1988).
    [Crossref]
  3. T. Schmidt, G. J. Schutz, W. Baumgartner, H. J. Gruber, and H. Schindler, “Imaging of single molecule diffusion,” Proc. Natl. Acad. Sci. USA 93, 2926–2929 (1996).
    [Crossref]
  4. M. J. Saxton and K. Jacobson, “Single-particle tracking: applications to membrane dynamics,” Annu. Rev. Biophys. Biomol. Struct. 26, 373–399 (1997).
    [Crossref]
  5. A. Kusumi, T. A. Tsunoyama, K. M. Hirosawa, R. S. Kasai, and T. K. Fujiwara, “Tracking single molecules at work in living cells,” Nat. Chem. Biol. 10, 524–532 (2014).
    [Crossref]
  6. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
    [Crossref]
  7. S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91, 4258–4272 (2006).
    [Crossref]
  8. M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3, 793–796 (2006).
    [Crossref]
  9. A. Sharonov and R. M. Hochstrasser, “Wide-field subdiffraction imaging by accumulated binding of diffusing probes,” Proc. Natl. Acad. Sci. USA 103, 18911–18916 (2006).
    [Crossref]
  10. W. E. Moerner, “Microscopy beyond the diffraction limit using actively controlled single molecules,” J. Microsc. 246, 213–220 (2012).
    [Crossref]
  11. M. F. Juette, T. J. Gould, M. D. Lessard, M. J. Mlodzianoski, B. S. Nagpure, B. T. Bennett, S. T. Hess, and J. Bewersdorf, “Three-dimensional sub-100 nm resolution fluorescence microscopy of thick samples,” Nat. Methods 5, 527–529 (2008).
    [Crossref]
  12. G. Shtengel, J. A. Galbraith, C. G. Galbraith, J. Lippincott-Schwartz, J. M. Gillette, S. Manley, R. Sougrat, C. M. Waterman, P. Kanchanawong, M. W. Davidson, R. D. Fetter, and H. F. Hess, “Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure,” Proc. Natl. Acad. Sci. USA 106, 3125–3130 (2009).
    [Crossref]
  13. D. Aquino, A. Schönle, C. Geisler, C. V. Middendorff, C. A. Wurm, Y. Okamura, T. Lang, S. W. Hell, and A. Egner, “Two-color nanoscopy of three-dimensional volumes by 4Pi detection of stochastically switched fluorophores,” Nat. Methods 8, 353–359 (2011).
    [Crossref]
  14. H. P. Kao and A. S. Verkman, “Tracking of single fluorescent particles in three dimensions: use of cylindrical optics to encode particle position,” Biophys. J. 67, 1291–1300 (1994).
    [Crossref]
  15. B. Huang, W. Wang, M. Bates, and X. Zhuang, “Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy,” Science 319, 810–813 (2008).
    [Crossref]
  16. S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, and W. E. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Proc. Natl. Acad. Sci. USA 106, 2995–2999 (2009).
    [Crossref]
  17. Y. Shechtman, S. J. Sahl, A. S. Backer, and W. E. Moerner, “Optimal point spread function design for 3D imaging,” Phys. Rev. Lett. 113, 133902 (2014).
    [Crossref]
  18. A. Small and S. Stahlheber, “Fluorophore localization algorithms for super-resolution microscopy,” Nat. Methods 11, 267–279 (2014).
    [Crossref]
  19. B. Rieger and S. Stallinga, “The lateral and axial localization uncertainty in super-resolution light microscopy,” ChemPhysChem 15, 664–670 (2014).
    [Crossref]
  20. H. Deschout, F. C. Zanacchi, M. Mlodzianoski, A. Diaspro, J. Bewersdorf, S. T. Hess, and K. Braeckmans, “Precisely and accurately localizing single emitters in fluorescence microscopy,” Nat Methods 11, 253–266 (2014).
    [Crossref]
  21. R. E. Thompson, D. R. Larson, and W. W. Webb, “Precise nanometer localization analysis for individual fluorescent probes,” Biophys. J. 82, 2775–2783 (2002).
    [Crossref]
  22. K. I. Mortensen, L. S. Churchman, J. A. Spudich, and H. Flyvbjerg, “Optimized localization analysis for single-molecule tracking and super-resolution microscopy,” Nat. Methods 7, 377–381 (2010).
    [Crossref]
  23. A. Gahlmann, J. L. Ptacin, G. Grover, S. Quirin, A. R. S. von Diezmann, M. K. Lee, M. P. Backlund, L. Shapiro, R. Piestun, and W. E. Moerner, “Quantitative multicolor subdiffraction imaging of bacterial protein ultrastructures in 3D,” Nano Lett. 13, 987–993 (2013).
    [Crossref]
  24. A. Yildiz and P. R. Selvin, “Fluorescence imaging with one nanometer accuracy: application to molecular motors,” Acc. Chem. Res. 38, 574–582 (2005).
    [Crossref]
  25. A. Pertsinidis, Y. Zhang, and S. Chu, “Subnanometre single-molecule localization, registration and distance measurements,” Nature 466, 647–651 (2010).
    [Crossref]
  26. J. C. Vaughan, S. Jia, and X. Zhuang, “Ultrabright photoactivatable fluorophores created by reductive caging,” Nat. Methods 9, 1181–1184 (2012).
    [Crossref]
  27. J. Enderlein, E. Toprak, and P. R. Selvin, “Polarization effect on position accuracy of fluorophore localization,” Opt. Express 14, 8111–8120 (2006).
    [Crossref]
  28. S. Stallinga and B. Rieger, “Accuracy of the Gaussian point spread function model in 2D localization microscopy,” Opt. Express 18, 24461–24476 (2010).
    [Crossref]
  29. J. Engelhardt, J. Keller, P. Hoyer, M. Reuss, T. Staudt, and S. W. Hell, “Molecular orientation affects localization accuracy in superresolution far-field fluorescence microscopy,” Nano Lett. 11, 209–213 (2011).
    [Crossref]
  30. M. P. Backlund, M. D. Lew, A. S. Backer, S. J. Sahl, and W. E. Moerner, “The role of molecular dipole orientation in single-molecule fluorescence microscopy and implications for super-resolution imaging,” Chem. Phys. Chem. 15, 587–599 (2014).
    [Crossref]
  31. B. Hanser, M. Gustafsson, D. Agard, and J. W. Sedat, “Phase-retrieved pupil functions in wide-field fluorescence microscopy,” J. Microsc. 216, 32–48 (2004).
    [Crossref]
  32. Y. Deng and J. W. Shaevitz, “Effect of aberration on height calibration in three-dimensional localization-based microscopy and particle tracking,” Appl. Opt. 48, 1886–1890 (2009).
    [Crossref]
  33. R. McGorty, J. Schnitzbauer, W. Zhang, and B. Huang, “Correction of depth-dependent aberrations in 3D single-molecule localization and super-resolution microscopy,” Opt. Lett. 39, 275–278 (2014).
    [Crossref]
  34. S. Jia, J. C. Vaughan, and X. Zhuang, “Isotropic three-dimensional super-resolution imaging with a self-bending point spread function,” Nat. Photonics 8, 302–306 (2014).
    [Crossref]
  35. I. Koyama-Honda, K. Ritchie, T. Fujiwara, R. Iino, H. Murakoshi, R. S. Kasai, and A. Kusumi, “Fluorescence imaging for monitoring the colocalization of two single molecules in living cells,” Biophys. J. 88, 2126–2136 (2005).
    [Crossref]
  36. A. Pertsinidis, K. Mukherjee, M. Sharma, Z. P. Pang, S. R. Park, Y. Zhang, A. T. Brunger, T. C. Südhof, and S. Chu, “Ultrahigh-resolution imaging reveals formation of neuronal SNARE/Munc18 complexes in situ,” Proc. Natl. Acad. Sci. USA 110, E2812–E2820 (2013).
  37. M. A. DeWitt, A. Y. Chang, P. A. Combs, and A. Yildiz, “Cytoplasmic dynein moves through uncoordinated stepping of the AAA+ ring domains,” Science 335, 221–225 (2012).
    [Crossref]
  38. J. R. James and R. D. Vale, “Biophysical mechanism of T-cell receptor triggering in a reconstituted system,” Nature 487, 227–230 (2012).
    [Crossref]
  39. J. W. Goodman, Introduction to Fourier Optics (Roberts, 2005).
  40. A. S. Backer and W. E. Moerner, “Extending single-molecule microscopy using optical Fourier processing,” J. Phys. Chem. B 118, 8313–8329 (2014).
    [Crossref]
  41. J. Broeken, B. Rieger, and S. Stallinga, “Simultaneous measurement of position and color of single fluorescent emitters using diffractive optics,” Opt. Lett. 39, 3352–3355 (2014).
    [Crossref]
  42. M. Born and E. Wolf, Principles of Optics (Cambridge University, 1999).
  43. W. T. Welford, Aberrations of Optical Systems (Adam Hilger, 1986).
  44. J. A. Kubby, Adaptive Optics for Biological Imaging (CRC Press, 2013).
  45. K. F. Tehrani, J. Xu, Y. Zhang, P. Shen, and P. Kner, “Adaptive optics stochastic optical reconstruction microscopy (AO-STORM) using a genetic algorithm,” Opt. Express 23, 13677–13692 (2015).
    [Crossref]
  46. D. Burke, B. Patton, F. Huang, J. Bewersdorf, and M. Booth, “Adaptive optics correction of specimen-induced aberrations in single-molecule switching microscopy,” Optica 2, 177 (2015).
    [Crossref]
  47. G. Zheng, X. Ou, R. Horstmeyer, and C. Yang, “Characterization of spatially varying aberrations for wide field-of-view microscopy,” Opt. Express 21, 15131–15143 (2013).
    [Crossref]
  48. M. P. Backlund, M. D. Lew, A. S. Backer, S. J. Sahl, G. Grover, A. Agrawal, R. Piestun, and W. E. Moerner, “Simultaneous, accurate measurement of the 3D position and orientation of single molecules,” Proc. Natl. Acad. Sci. USA 109, 19087–19092 (2012).
    [Crossref]
  49. M. D. Lew, A. R. S. von Diezmann, and W. E. Moerner, “Easy-DHPSF open-source software for three-dimensional localization of single molecules with precision beyond the optical diffraction limit,” Protocol Exchange (2013), doi: 10.1038/protex.2013.026.
  50. L. S. Churchman and J. A. Spudich, “Colocalization of fluorescent probes: accurate and precise registration with nanometer resolution,” Cold Spring Harbor Protocols 2, 141–149 (2012).
  51. D. Baddeley, D. Crossman, S. Rossberger, J. E. Cheyne, J. M. Montgomery, I. D. Jayasinghe, C. Cremer, M. B. Cannell, and C. Soeller, “4D super-resolution microscopy with conventional fluorophores and single wavelength excitation in optically thick cells and tissues,” PLoS ONE 6, e20645 (2011).
    [Crossref]
  52. M. Erdelyi, E. Rees, D. Metcalf, G. S. K. Schierle, L. Dudas, J. Sinko, A. E. Knight, and C. F. Kaminski, “Correcting chromatic offset in multicolor super-resolution localization microscopy,” Opt. Express 21, 10978–10988 (2013).
    [Crossref]
  53. S. Weisenburger, B. Jing, D. Hänni, L. Reymond, B. Schuler, A. Renn, and V. Sandoghdar, “Cryogenic colocalization microscopy for nanometer-distance measurements,” ChemPhysChem 15, 763–770 (2014).
    [Crossref]
  54. F. Huang, T. M. P. Hartwich, F. E. Rivera-Molina, Y. Lin, W. C. Duim, J. J. Long, P. D. Uchil, J. R. Myers, M. A. Baird, W. Mothes, M. W. Davidson, D. Toomre, and J. Bewersdorf, “Video-rate nanoscopy using sCMOS camera-specific single-molecule localization algorithms,” Nat. Methods 10, 653–658 (2013).
    [Crossref]

2015 (2)

2014 (11)

A. S. Backer and W. E. Moerner, “Extending single-molecule microscopy using optical Fourier processing,” J. Phys. Chem. B 118, 8313–8329 (2014).
[Crossref]

J. Broeken, B. Rieger, and S. Stallinga, “Simultaneous measurement of position and color of single fluorescent emitters using diffractive optics,” Opt. Lett. 39, 3352–3355 (2014).
[Crossref]

S. Weisenburger, B. Jing, D. Hänni, L. Reymond, B. Schuler, A. Renn, and V. Sandoghdar, “Cryogenic colocalization microscopy for nanometer-distance measurements,” ChemPhysChem 15, 763–770 (2014).
[Crossref]

A. Kusumi, T. A. Tsunoyama, K. M. Hirosawa, R. S. Kasai, and T. K. Fujiwara, “Tracking single molecules at work in living cells,” Nat. Chem. Biol. 10, 524–532 (2014).
[Crossref]

Y. Shechtman, S. J. Sahl, A. S. Backer, and W. E. Moerner, “Optimal point spread function design for 3D imaging,” Phys. Rev. Lett. 113, 133902 (2014).
[Crossref]

A. Small and S. Stahlheber, “Fluorophore localization algorithms for super-resolution microscopy,” Nat. Methods 11, 267–279 (2014).
[Crossref]

B. Rieger and S. Stallinga, “The lateral and axial localization uncertainty in super-resolution light microscopy,” ChemPhysChem 15, 664–670 (2014).
[Crossref]

H. Deschout, F. C. Zanacchi, M. Mlodzianoski, A. Diaspro, J. Bewersdorf, S. T. Hess, and K. Braeckmans, “Precisely and accurately localizing single emitters in fluorescence microscopy,” Nat Methods 11, 253–266 (2014).
[Crossref]

M. P. Backlund, M. D. Lew, A. S. Backer, S. J. Sahl, and W. E. Moerner, “The role of molecular dipole orientation in single-molecule fluorescence microscopy and implications for super-resolution imaging,” Chem. Phys. Chem. 15, 587–599 (2014).
[Crossref]

R. McGorty, J. Schnitzbauer, W. Zhang, and B. Huang, “Correction of depth-dependent aberrations in 3D single-molecule localization and super-resolution microscopy,” Opt. Lett. 39, 275–278 (2014).
[Crossref]

S. Jia, J. C. Vaughan, and X. Zhuang, “Isotropic three-dimensional super-resolution imaging with a self-bending point spread function,” Nat. Photonics 8, 302–306 (2014).
[Crossref]

2013 (5)

A. Gahlmann, J. L. Ptacin, G. Grover, S. Quirin, A. R. S. von Diezmann, M. K. Lee, M. P. Backlund, L. Shapiro, R. Piestun, and W. E. Moerner, “Quantitative multicolor subdiffraction imaging of bacterial protein ultrastructures in 3D,” Nano Lett. 13, 987–993 (2013).
[Crossref]

F. Huang, T. M. P. Hartwich, F. E. Rivera-Molina, Y. Lin, W. C. Duim, J. J. Long, P. D. Uchil, J. R. Myers, M. A. Baird, W. Mothes, M. W. Davidson, D. Toomre, and J. Bewersdorf, “Video-rate nanoscopy using sCMOS camera-specific single-molecule localization algorithms,” Nat. Methods 10, 653–658 (2013).
[Crossref]

M. Erdelyi, E. Rees, D. Metcalf, G. S. K. Schierle, L. Dudas, J. Sinko, A. E. Knight, and C. F. Kaminski, “Correcting chromatic offset in multicolor super-resolution localization microscopy,” Opt. Express 21, 10978–10988 (2013).
[Crossref]

A. Pertsinidis, K. Mukherjee, M. Sharma, Z. P. Pang, S. R. Park, Y. Zhang, A. T. Brunger, T. C. Südhof, and S. Chu, “Ultrahigh-resolution imaging reveals formation of neuronal SNARE/Munc18 complexes in situ,” Proc. Natl. Acad. Sci. USA 110, E2812–E2820 (2013).

G. Zheng, X. Ou, R. Horstmeyer, and C. Yang, “Characterization of spatially varying aberrations for wide field-of-view microscopy,” Opt. Express 21, 15131–15143 (2013).
[Crossref]

2012 (6)

M. P. Backlund, M. D. Lew, A. S. Backer, S. J. Sahl, G. Grover, A. Agrawal, R. Piestun, and W. E. Moerner, “Simultaneous, accurate measurement of the 3D position and orientation of single molecules,” Proc. Natl. Acad. Sci. USA 109, 19087–19092 (2012).
[Crossref]

L. S. Churchman and J. A. Spudich, “Colocalization of fluorescent probes: accurate and precise registration with nanometer resolution,” Cold Spring Harbor Protocols 2, 141–149 (2012).

M. A. DeWitt, A. Y. Chang, P. A. Combs, and A. Yildiz, “Cytoplasmic dynein moves through uncoordinated stepping of the AAA+ ring domains,” Science 335, 221–225 (2012).
[Crossref]

J. R. James and R. D. Vale, “Biophysical mechanism of T-cell receptor triggering in a reconstituted system,” Nature 487, 227–230 (2012).
[Crossref]

J. C. Vaughan, S. Jia, and X. Zhuang, “Ultrabright photoactivatable fluorophores created by reductive caging,” Nat. Methods 9, 1181–1184 (2012).
[Crossref]

W. E. Moerner, “Microscopy beyond the diffraction limit using actively controlled single molecules,” J. Microsc. 246, 213–220 (2012).
[Crossref]

2011 (3)

D. Aquino, A. Schönle, C. Geisler, C. V. Middendorff, C. A. Wurm, Y. Okamura, T. Lang, S. W. Hell, and A. Egner, “Two-color nanoscopy of three-dimensional volumes by 4Pi detection of stochastically switched fluorophores,” Nat. Methods 8, 353–359 (2011).
[Crossref]

J. Engelhardt, J. Keller, P. Hoyer, M. Reuss, T. Staudt, and S. W. Hell, “Molecular orientation affects localization accuracy in superresolution far-field fluorescence microscopy,” Nano Lett. 11, 209–213 (2011).
[Crossref]

D. Baddeley, D. Crossman, S. Rossberger, J. E. Cheyne, J. M. Montgomery, I. D. Jayasinghe, C. Cremer, M. B. Cannell, and C. Soeller, “4D super-resolution microscopy with conventional fluorophores and single wavelength excitation in optically thick cells and tissues,” PLoS ONE 6, e20645 (2011).
[Crossref]

2010 (3)

A. Pertsinidis, Y. Zhang, and S. Chu, “Subnanometre single-molecule localization, registration and distance measurements,” Nature 466, 647–651 (2010).
[Crossref]

S. Stallinga and B. Rieger, “Accuracy of the Gaussian point spread function model in 2D localization microscopy,” Opt. Express 18, 24461–24476 (2010).
[Crossref]

K. I. Mortensen, L. S. Churchman, J. A. Spudich, and H. Flyvbjerg, “Optimized localization analysis for single-molecule tracking and super-resolution microscopy,” Nat. Methods 7, 377–381 (2010).
[Crossref]

2009 (3)

S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, and W. E. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Proc. Natl. Acad. Sci. USA 106, 2995–2999 (2009).
[Crossref]

G. Shtengel, J. A. Galbraith, C. G. Galbraith, J. Lippincott-Schwartz, J. M. Gillette, S. Manley, R. Sougrat, C. M. Waterman, P. Kanchanawong, M. W. Davidson, R. D. Fetter, and H. F. Hess, “Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure,” Proc. Natl. Acad. Sci. USA 106, 3125–3130 (2009).
[Crossref]

Y. Deng and J. W. Shaevitz, “Effect of aberration on height calibration in three-dimensional localization-based microscopy and particle tracking,” Appl. Opt. 48, 1886–1890 (2009).
[Crossref]

2008 (2)

B. Huang, W. Wang, M. Bates, and X. Zhuang, “Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy,” Science 319, 810–813 (2008).
[Crossref]

M. F. Juette, T. J. Gould, M. D. Lessard, M. J. Mlodzianoski, B. S. Nagpure, B. T. Bennett, S. T. Hess, and J. Bewersdorf, “Three-dimensional sub-100 nm resolution fluorescence microscopy of thick samples,” Nat. Methods 5, 527–529 (2008).
[Crossref]

2006 (5)

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref]

S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91, 4258–4272 (2006).
[Crossref]

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3, 793–796 (2006).
[Crossref]

A. Sharonov and R. M. Hochstrasser, “Wide-field subdiffraction imaging by accumulated binding of diffusing probes,” Proc. Natl. Acad. Sci. USA 103, 18911–18916 (2006).
[Crossref]

J. Enderlein, E. Toprak, and P. R. Selvin, “Polarization effect on position accuracy of fluorophore localization,” Opt. Express 14, 8111–8120 (2006).
[Crossref]

2005 (2)

A. Yildiz and P. R. Selvin, “Fluorescence imaging with one nanometer accuracy: application to molecular motors,” Acc. Chem. Res. 38, 574–582 (2005).
[Crossref]

I. Koyama-Honda, K. Ritchie, T. Fujiwara, R. Iino, H. Murakoshi, R. S. Kasai, and A. Kusumi, “Fluorescence imaging for monitoring the colocalization of two single molecules in living cells,” Biophys. J. 88, 2126–2136 (2005).
[Crossref]

2004 (1)

B. Hanser, M. Gustafsson, D. Agard, and J. W. Sedat, “Phase-retrieved pupil functions in wide-field fluorescence microscopy,” J. Microsc. 216, 32–48 (2004).
[Crossref]

2002 (1)

R. E. Thompson, D. R. Larson, and W. W. Webb, “Precise nanometer localization analysis for individual fluorescent probes,” Biophys. J. 82, 2775–2783 (2002).
[Crossref]

1997 (1)

M. J. Saxton and K. Jacobson, “Single-particle tracking: applications to membrane dynamics,” Annu. Rev. Biophys. Biomol. Struct. 26, 373–399 (1997).
[Crossref]

1996 (1)

T. Schmidt, G. J. Schutz, W. Baumgartner, H. J. Gruber, and H. Schindler, “Imaging of single molecule diffusion,” Proc. Natl. Acad. Sci. USA 93, 2926–2929 (1996).
[Crossref]

1994 (1)

H. P. Kao and A. S. Verkman, “Tracking of single fluorescent particles in three dimensions: use of cylindrical optics to encode particle position,” Biophys. J. 67, 1291–1300 (1994).
[Crossref]

1988 (1)

J. Gelles, B. J. Schnapp, and M. P. Sheetz, “Tracking kinesin-driven movements with nanometre-scale precision,” Nature 331, 450–453 (1988).
[Crossref]

1982 (1)

L. S. Barak and W. W. Webb, “Diffusion of low density lipoprotein-receptor complex on human fibroblasts,” J. Cell Biol. 95, 846–852 (1982).
[Crossref]

Agard, D.

B. Hanser, M. Gustafsson, D. Agard, and J. W. Sedat, “Phase-retrieved pupil functions in wide-field fluorescence microscopy,” J. Microsc. 216, 32–48 (2004).
[Crossref]

Agrawal, A.

M. P. Backlund, M. D. Lew, A. S. Backer, S. J. Sahl, G. Grover, A. Agrawal, R. Piestun, and W. E. Moerner, “Simultaneous, accurate measurement of the 3D position and orientation of single molecules,” Proc. Natl. Acad. Sci. USA 109, 19087–19092 (2012).
[Crossref]

Aquino, D.

D. Aquino, A. Schönle, C. Geisler, C. V. Middendorff, C. A. Wurm, Y. Okamura, T. Lang, S. W. Hell, and A. Egner, “Two-color nanoscopy of three-dimensional volumes by 4Pi detection of stochastically switched fluorophores,” Nat. Methods 8, 353–359 (2011).
[Crossref]

Backer, A. S.

M. P. Backlund, M. D. Lew, A. S. Backer, S. J. Sahl, and W. E. Moerner, “The role of molecular dipole orientation in single-molecule fluorescence microscopy and implications for super-resolution imaging,” Chem. Phys. Chem. 15, 587–599 (2014).
[Crossref]

Y. Shechtman, S. J. Sahl, A. S. Backer, and W. E. Moerner, “Optimal point spread function design for 3D imaging,” Phys. Rev. Lett. 113, 133902 (2014).
[Crossref]

A. S. Backer and W. E. Moerner, “Extending single-molecule microscopy using optical Fourier processing,” J. Phys. Chem. B 118, 8313–8329 (2014).
[Crossref]

M. P. Backlund, M. D. Lew, A. S. Backer, S. J. Sahl, G. Grover, A. Agrawal, R. Piestun, and W. E. Moerner, “Simultaneous, accurate measurement of the 3D position and orientation of single molecules,” Proc. Natl. Acad. Sci. USA 109, 19087–19092 (2012).
[Crossref]

Backlund, M. P.

M. P. Backlund, M. D. Lew, A. S. Backer, S. J. Sahl, and W. E. Moerner, “The role of molecular dipole orientation in single-molecule fluorescence microscopy and implications for super-resolution imaging,” Chem. Phys. Chem. 15, 587–599 (2014).
[Crossref]

A. Gahlmann, J. L. Ptacin, G. Grover, S. Quirin, A. R. S. von Diezmann, M. K. Lee, M. P. Backlund, L. Shapiro, R. Piestun, and W. E. Moerner, “Quantitative multicolor subdiffraction imaging of bacterial protein ultrastructures in 3D,” Nano Lett. 13, 987–993 (2013).
[Crossref]

M. P. Backlund, M. D. Lew, A. S. Backer, S. J. Sahl, G. Grover, A. Agrawal, R. Piestun, and W. E. Moerner, “Simultaneous, accurate measurement of the 3D position and orientation of single molecules,” Proc. Natl. Acad. Sci. USA 109, 19087–19092 (2012).
[Crossref]

Baddeley, D.

D. Baddeley, D. Crossman, S. Rossberger, J. E. Cheyne, J. M. Montgomery, I. D. Jayasinghe, C. Cremer, M. B. Cannell, and C. Soeller, “4D super-resolution microscopy with conventional fluorophores and single wavelength excitation in optically thick cells and tissues,” PLoS ONE 6, e20645 (2011).
[Crossref]

Baird, M. A.

F. Huang, T. M. P. Hartwich, F. E. Rivera-Molina, Y. Lin, W. C. Duim, J. J. Long, P. D. Uchil, J. R. Myers, M. A. Baird, W. Mothes, M. W. Davidson, D. Toomre, and J. Bewersdorf, “Video-rate nanoscopy using sCMOS camera-specific single-molecule localization algorithms,” Nat. Methods 10, 653–658 (2013).
[Crossref]

Barak, L. S.

L. S. Barak and W. W. Webb, “Diffusion of low density lipoprotein-receptor complex on human fibroblasts,” J. Cell Biol. 95, 846–852 (1982).
[Crossref]

Bates, M.

B. Huang, W. Wang, M. Bates, and X. Zhuang, “Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy,” Science 319, 810–813 (2008).
[Crossref]

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3, 793–796 (2006).
[Crossref]

Baumgartner, W.

T. Schmidt, G. J. Schutz, W. Baumgartner, H. J. Gruber, and H. Schindler, “Imaging of single molecule diffusion,” Proc. Natl. Acad. Sci. USA 93, 2926–2929 (1996).
[Crossref]

Bennett, B. T.

M. F. Juette, T. J. Gould, M. D. Lessard, M. J. Mlodzianoski, B. S. Nagpure, B. T. Bennett, S. T. Hess, and J. Bewersdorf, “Three-dimensional sub-100 nm resolution fluorescence microscopy of thick samples,” Nat. Methods 5, 527–529 (2008).
[Crossref]

Betzig, E.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref]

Bewersdorf, J.

D. Burke, B. Patton, F. Huang, J. Bewersdorf, and M. Booth, “Adaptive optics correction of specimen-induced aberrations in single-molecule switching microscopy,” Optica 2, 177 (2015).
[Crossref]

H. Deschout, F. C. Zanacchi, M. Mlodzianoski, A. Diaspro, J. Bewersdorf, S. T. Hess, and K. Braeckmans, “Precisely and accurately localizing single emitters in fluorescence microscopy,” Nat Methods 11, 253–266 (2014).
[Crossref]

F. Huang, T. M. P. Hartwich, F. E. Rivera-Molina, Y. Lin, W. C. Duim, J. J. Long, P. D. Uchil, J. R. Myers, M. A. Baird, W. Mothes, M. W. Davidson, D. Toomre, and J. Bewersdorf, “Video-rate nanoscopy using sCMOS camera-specific single-molecule localization algorithms,” Nat. Methods 10, 653–658 (2013).
[Crossref]

M. F. Juette, T. J. Gould, M. D. Lessard, M. J. Mlodzianoski, B. S. Nagpure, B. T. Bennett, S. T. Hess, and J. Bewersdorf, “Three-dimensional sub-100 nm resolution fluorescence microscopy of thick samples,” Nat. Methods 5, 527–529 (2008).
[Crossref]

Biteen, J. S.

S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, and W. E. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Proc. Natl. Acad. Sci. USA 106, 2995–2999 (2009).
[Crossref]

Bonifacino, J. S.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref]

Booth, M.

Born, M.

M. Born and E. Wolf, Principles of Optics (Cambridge University, 1999).

Braeckmans, K.

H. Deschout, F. C. Zanacchi, M. Mlodzianoski, A. Diaspro, J. Bewersdorf, S. T. Hess, and K. Braeckmans, “Precisely and accurately localizing single emitters in fluorescence microscopy,” Nat Methods 11, 253–266 (2014).
[Crossref]

Broeken, J.

Brunger, A. T.

A. Pertsinidis, K. Mukherjee, M. Sharma, Z. P. Pang, S. R. Park, Y. Zhang, A. T. Brunger, T. C. Südhof, and S. Chu, “Ultrahigh-resolution imaging reveals formation of neuronal SNARE/Munc18 complexes in situ,” Proc. Natl. Acad. Sci. USA 110, E2812–E2820 (2013).

Burke, D.

Cannell, M. B.

D. Baddeley, D. Crossman, S. Rossberger, J. E. Cheyne, J. M. Montgomery, I. D. Jayasinghe, C. Cremer, M. B. Cannell, and C. Soeller, “4D super-resolution microscopy with conventional fluorophores and single wavelength excitation in optically thick cells and tissues,” PLoS ONE 6, e20645 (2011).
[Crossref]

Chang, A. Y.

M. A. DeWitt, A. Y. Chang, P. A. Combs, and A. Yildiz, “Cytoplasmic dynein moves through uncoordinated stepping of the AAA+ ring domains,” Science 335, 221–225 (2012).
[Crossref]

Cheyne, J. E.

D. Baddeley, D. Crossman, S. Rossberger, J. E. Cheyne, J. M. Montgomery, I. D. Jayasinghe, C. Cremer, M. B. Cannell, and C. Soeller, “4D super-resolution microscopy with conventional fluorophores and single wavelength excitation in optically thick cells and tissues,” PLoS ONE 6, e20645 (2011).
[Crossref]

Chu, S.

A. Pertsinidis, K. Mukherjee, M. Sharma, Z. P. Pang, S. R. Park, Y. Zhang, A. T. Brunger, T. C. Südhof, and S. Chu, “Ultrahigh-resolution imaging reveals formation of neuronal SNARE/Munc18 complexes in situ,” Proc. Natl. Acad. Sci. USA 110, E2812–E2820 (2013).

A. Pertsinidis, Y. Zhang, and S. Chu, “Subnanometre single-molecule localization, registration and distance measurements,” Nature 466, 647–651 (2010).
[Crossref]

Churchman, L. S.

L. S. Churchman and J. A. Spudich, “Colocalization of fluorescent probes: accurate and precise registration with nanometer resolution,” Cold Spring Harbor Protocols 2, 141–149 (2012).

K. I. Mortensen, L. S. Churchman, J. A. Spudich, and H. Flyvbjerg, “Optimized localization analysis for single-molecule tracking and super-resolution microscopy,” Nat. Methods 7, 377–381 (2010).
[Crossref]

Combs, P. A.

M. A. DeWitt, A. Y. Chang, P. A. Combs, and A. Yildiz, “Cytoplasmic dynein moves through uncoordinated stepping of the AAA+ ring domains,” Science 335, 221–225 (2012).
[Crossref]

Cremer, C.

D. Baddeley, D. Crossman, S. Rossberger, J. E. Cheyne, J. M. Montgomery, I. D. Jayasinghe, C. Cremer, M. B. Cannell, and C. Soeller, “4D super-resolution microscopy with conventional fluorophores and single wavelength excitation in optically thick cells and tissues,” PLoS ONE 6, e20645 (2011).
[Crossref]

Crossman, D.

D. Baddeley, D. Crossman, S. Rossberger, J. E. Cheyne, J. M. Montgomery, I. D. Jayasinghe, C. Cremer, M. B. Cannell, and C. Soeller, “4D super-resolution microscopy with conventional fluorophores and single wavelength excitation in optically thick cells and tissues,” PLoS ONE 6, e20645 (2011).
[Crossref]

Davidson, M. W.

F. Huang, T. M. P. Hartwich, F. E. Rivera-Molina, Y. Lin, W. C. Duim, J. J. Long, P. D. Uchil, J. R. Myers, M. A. Baird, W. Mothes, M. W. Davidson, D. Toomre, and J. Bewersdorf, “Video-rate nanoscopy using sCMOS camera-specific single-molecule localization algorithms,” Nat. Methods 10, 653–658 (2013).
[Crossref]

G. Shtengel, J. A. Galbraith, C. G. Galbraith, J. Lippincott-Schwartz, J. M. Gillette, S. Manley, R. Sougrat, C. M. Waterman, P. Kanchanawong, M. W. Davidson, R. D. Fetter, and H. F. Hess, “Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure,” Proc. Natl. Acad. Sci. USA 106, 3125–3130 (2009).
[Crossref]

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref]

Deng, Y.

Deschout, H.

H. Deschout, F. C. Zanacchi, M. Mlodzianoski, A. Diaspro, J. Bewersdorf, S. T. Hess, and K. Braeckmans, “Precisely and accurately localizing single emitters in fluorescence microscopy,” Nat Methods 11, 253–266 (2014).
[Crossref]

DeWitt, M. A.

M. A. DeWitt, A. Y. Chang, P. A. Combs, and A. Yildiz, “Cytoplasmic dynein moves through uncoordinated stepping of the AAA+ ring domains,” Science 335, 221–225 (2012).
[Crossref]

Diaspro, A.

H. Deschout, F. C. Zanacchi, M. Mlodzianoski, A. Diaspro, J. Bewersdorf, S. T. Hess, and K. Braeckmans, “Precisely and accurately localizing single emitters in fluorescence microscopy,” Nat Methods 11, 253–266 (2014).
[Crossref]

Dudas, L.

Duim, W. C.

F. Huang, T. M. P. Hartwich, F. E. Rivera-Molina, Y. Lin, W. C. Duim, J. J. Long, P. D. Uchil, J. R. Myers, M. A. Baird, W. Mothes, M. W. Davidson, D. Toomre, and J. Bewersdorf, “Video-rate nanoscopy using sCMOS camera-specific single-molecule localization algorithms,” Nat. Methods 10, 653–658 (2013).
[Crossref]

Egner, A.

D. Aquino, A. Schönle, C. Geisler, C. V. Middendorff, C. A. Wurm, Y. Okamura, T. Lang, S. W. Hell, and A. Egner, “Two-color nanoscopy of three-dimensional volumes by 4Pi detection of stochastically switched fluorophores,” Nat. Methods 8, 353–359 (2011).
[Crossref]

Enderlein, J.

Engelhardt, J.

J. Engelhardt, J. Keller, P. Hoyer, M. Reuss, T. Staudt, and S. W. Hell, “Molecular orientation affects localization accuracy in superresolution far-field fluorescence microscopy,” Nano Lett. 11, 209–213 (2011).
[Crossref]

Erdelyi, M.

Fetter, R. D.

G. Shtengel, J. A. Galbraith, C. G. Galbraith, J. Lippincott-Schwartz, J. M. Gillette, S. Manley, R. Sougrat, C. M. Waterman, P. Kanchanawong, M. W. Davidson, R. D. Fetter, and H. F. Hess, “Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure,” Proc. Natl. Acad. Sci. USA 106, 3125–3130 (2009).
[Crossref]

Flyvbjerg, H.

K. I. Mortensen, L. S. Churchman, J. A. Spudich, and H. Flyvbjerg, “Optimized localization analysis for single-molecule tracking and super-resolution microscopy,” Nat. Methods 7, 377–381 (2010).
[Crossref]

Fujiwara, T.

I. Koyama-Honda, K. Ritchie, T. Fujiwara, R. Iino, H. Murakoshi, R. S. Kasai, and A. Kusumi, “Fluorescence imaging for monitoring the colocalization of two single molecules in living cells,” Biophys. J. 88, 2126–2136 (2005).
[Crossref]

Fujiwara, T. K.

A. Kusumi, T. A. Tsunoyama, K. M. Hirosawa, R. S. Kasai, and T. K. Fujiwara, “Tracking single molecules at work in living cells,” Nat. Chem. Biol. 10, 524–532 (2014).
[Crossref]

Gahlmann, A.

A. Gahlmann, J. L. Ptacin, G. Grover, S. Quirin, A. R. S. von Diezmann, M. K. Lee, M. P. Backlund, L. Shapiro, R. Piestun, and W. E. Moerner, “Quantitative multicolor subdiffraction imaging of bacterial protein ultrastructures in 3D,” Nano Lett. 13, 987–993 (2013).
[Crossref]

Galbraith, C. G.

G. Shtengel, J. A. Galbraith, C. G. Galbraith, J. Lippincott-Schwartz, J. M. Gillette, S. Manley, R. Sougrat, C. M. Waterman, P. Kanchanawong, M. W. Davidson, R. D. Fetter, and H. F. Hess, “Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure,” Proc. Natl. Acad. Sci. USA 106, 3125–3130 (2009).
[Crossref]

Galbraith, J. A.

G. Shtengel, J. A. Galbraith, C. G. Galbraith, J. Lippincott-Schwartz, J. M. Gillette, S. Manley, R. Sougrat, C. M. Waterman, P. Kanchanawong, M. W. Davidson, R. D. Fetter, and H. F. Hess, “Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure,” Proc. Natl. Acad. Sci. USA 106, 3125–3130 (2009).
[Crossref]

Geisler, C.

D. Aquino, A. Schönle, C. Geisler, C. V. Middendorff, C. A. Wurm, Y. Okamura, T. Lang, S. W. Hell, and A. Egner, “Two-color nanoscopy of three-dimensional volumes by 4Pi detection of stochastically switched fluorophores,” Nat. Methods 8, 353–359 (2011).
[Crossref]

Gelles, J.

J. Gelles, B. J. Schnapp, and M. P. Sheetz, “Tracking kinesin-driven movements with nanometre-scale precision,” Nature 331, 450–453 (1988).
[Crossref]

Gillette, J. M.

G. Shtengel, J. A. Galbraith, C. G. Galbraith, J. Lippincott-Schwartz, J. M. Gillette, S. Manley, R. Sougrat, C. M. Waterman, P. Kanchanawong, M. W. Davidson, R. D. Fetter, and H. F. Hess, “Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure,” Proc. Natl. Acad. Sci. USA 106, 3125–3130 (2009).
[Crossref]

Girirajan, T. P. K.

S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91, 4258–4272 (2006).
[Crossref]

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (Roberts, 2005).

Gould, T. J.

M. F. Juette, T. J. Gould, M. D. Lessard, M. J. Mlodzianoski, B. S. Nagpure, B. T. Bennett, S. T. Hess, and J. Bewersdorf, “Three-dimensional sub-100 nm resolution fluorescence microscopy of thick samples,” Nat. Methods 5, 527–529 (2008).
[Crossref]

Grover, G.

A. Gahlmann, J. L. Ptacin, G. Grover, S. Quirin, A. R. S. von Diezmann, M. K. Lee, M. P. Backlund, L. Shapiro, R. Piestun, and W. E. Moerner, “Quantitative multicolor subdiffraction imaging of bacterial protein ultrastructures in 3D,” Nano Lett. 13, 987–993 (2013).
[Crossref]

M. P. Backlund, M. D. Lew, A. S. Backer, S. J. Sahl, G. Grover, A. Agrawal, R. Piestun, and W. E. Moerner, “Simultaneous, accurate measurement of the 3D position and orientation of single molecules,” Proc. Natl. Acad. Sci. USA 109, 19087–19092 (2012).
[Crossref]

Gruber, H. J.

T. Schmidt, G. J. Schutz, W. Baumgartner, H. J. Gruber, and H. Schindler, “Imaging of single molecule diffusion,” Proc. Natl. Acad. Sci. USA 93, 2926–2929 (1996).
[Crossref]

Gustafsson, M.

B. Hanser, M. Gustafsson, D. Agard, and J. W. Sedat, “Phase-retrieved pupil functions in wide-field fluorescence microscopy,” J. Microsc. 216, 32–48 (2004).
[Crossref]

Hänni, D.

S. Weisenburger, B. Jing, D. Hänni, L. Reymond, B. Schuler, A. Renn, and V. Sandoghdar, “Cryogenic colocalization microscopy for nanometer-distance measurements,” ChemPhysChem 15, 763–770 (2014).
[Crossref]

Hanser, B.

B. Hanser, M. Gustafsson, D. Agard, and J. W. Sedat, “Phase-retrieved pupil functions in wide-field fluorescence microscopy,” J. Microsc. 216, 32–48 (2004).
[Crossref]

Hartwich, T. M. P.

F. Huang, T. M. P. Hartwich, F. E. Rivera-Molina, Y. Lin, W. C. Duim, J. J. Long, P. D. Uchil, J. R. Myers, M. A. Baird, W. Mothes, M. W. Davidson, D. Toomre, and J. Bewersdorf, “Video-rate nanoscopy using sCMOS camera-specific single-molecule localization algorithms,” Nat. Methods 10, 653–658 (2013).
[Crossref]

Hell, S. W.

J. Engelhardt, J. Keller, P. Hoyer, M. Reuss, T. Staudt, and S. W. Hell, “Molecular orientation affects localization accuracy in superresolution far-field fluorescence microscopy,” Nano Lett. 11, 209–213 (2011).
[Crossref]

D. Aquino, A. Schönle, C. Geisler, C. V. Middendorff, C. A. Wurm, Y. Okamura, T. Lang, S. W. Hell, and A. Egner, “Two-color nanoscopy of three-dimensional volumes by 4Pi detection of stochastically switched fluorophores,” Nat. Methods 8, 353–359 (2011).
[Crossref]

Hess, H. F.

G. Shtengel, J. A. Galbraith, C. G. Galbraith, J. Lippincott-Schwartz, J. M. Gillette, S. Manley, R. Sougrat, C. M. Waterman, P. Kanchanawong, M. W. Davidson, R. D. Fetter, and H. F. Hess, “Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure,” Proc. Natl. Acad. Sci. USA 106, 3125–3130 (2009).
[Crossref]

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref]

Hess, S. T.

H. Deschout, F. C. Zanacchi, M. Mlodzianoski, A. Diaspro, J. Bewersdorf, S. T. Hess, and K. Braeckmans, “Precisely and accurately localizing single emitters in fluorescence microscopy,” Nat Methods 11, 253–266 (2014).
[Crossref]

M. F. Juette, T. J. Gould, M. D. Lessard, M. J. Mlodzianoski, B. S. Nagpure, B. T. Bennett, S. T. Hess, and J. Bewersdorf, “Three-dimensional sub-100 nm resolution fluorescence microscopy of thick samples,” Nat. Methods 5, 527–529 (2008).
[Crossref]

S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91, 4258–4272 (2006).
[Crossref]

Hirosawa, K. M.

A. Kusumi, T. A. Tsunoyama, K. M. Hirosawa, R. S. Kasai, and T. K. Fujiwara, “Tracking single molecules at work in living cells,” Nat. Chem. Biol. 10, 524–532 (2014).
[Crossref]

Hochstrasser, R. M.

A. Sharonov and R. M. Hochstrasser, “Wide-field subdiffraction imaging by accumulated binding of diffusing probes,” Proc. Natl. Acad. Sci. USA 103, 18911–18916 (2006).
[Crossref]

Horstmeyer, R.

Hoyer, P.

J. Engelhardt, J. Keller, P. Hoyer, M. Reuss, T. Staudt, and S. W. Hell, “Molecular orientation affects localization accuracy in superresolution far-field fluorescence microscopy,” Nano Lett. 11, 209–213 (2011).
[Crossref]

Huang, B.

R. McGorty, J. Schnitzbauer, W. Zhang, and B. Huang, “Correction of depth-dependent aberrations in 3D single-molecule localization and super-resolution microscopy,” Opt. Lett. 39, 275–278 (2014).
[Crossref]

B. Huang, W. Wang, M. Bates, and X. Zhuang, “Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy,” Science 319, 810–813 (2008).
[Crossref]

Huang, F.

D. Burke, B. Patton, F. Huang, J. Bewersdorf, and M. Booth, “Adaptive optics correction of specimen-induced aberrations in single-molecule switching microscopy,” Optica 2, 177 (2015).
[Crossref]

F. Huang, T. M. P. Hartwich, F. E. Rivera-Molina, Y. Lin, W. C. Duim, J. J. Long, P. D. Uchil, J. R. Myers, M. A. Baird, W. Mothes, M. W. Davidson, D. Toomre, and J. Bewersdorf, “Video-rate nanoscopy using sCMOS camera-specific single-molecule localization algorithms,” Nat. Methods 10, 653–658 (2013).
[Crossref]

Iino, R.

I. Koyama-Honda, K. Ritchie, T. Fujiwara, R. Iino, H. Murakoshi, R. S. Kasai, and A. Kusumi, “Fluorescence imaging for monitoring the colocalization of two single molecules in living cells,” Biophys. J. 88, 2126–2136 (2005).
[Crossref]

Jacobson, K.

M. J. Saxton and K. Jacobson, “Single-particle tracking: applications to membrane dynamics,” Annu. Rev. Biophys. Biomol. Struct. 26, 373–399 (1997).
[Crossref]

James, J. R.

J. R. James and R. D. Vale, “Biophysical mechanism of T-cell receptor triggering in a reconstituted system,” Nature 487, 227–230 (2012).
[Crossref]

Jayasinghe, I. D.

D. Baddeley, D. Crossman, S. Rossberger, J. E. Cheyne, J. M. Montgomery, I. D. Jayasinghe, C. Cremer, M. B. Cannell, and C. Soeller, “4D super-resolution microscopy with conventional fluorophores and single wavelength excitation in optically thick cells and tissues,” PLoS ONE 6, e20645 (2011).
[Crossref]

Jia, S.

S. Jia, J. C. Vaughan, and X. Zhuang, “Isotropic three-dimensional super-resolution imaging with a self-bending point spread function,” Nat. Photonics 8, 302–306 (2014).
[Crossref]

J. C. Vaughan, S. Jia, and X. Zhuang, “Ultrabright photoactivatable fluorophores created by reductive caging,” Nat. Methods 9, 1181–1184 (2012).
[Crossref]

Jing, B.

S. Weisenburger, B. Jing, D. Hänni, L. Reymond, B. Schuler, A. Renn, and V. Sandoghdar, “Cryogenic colocalization microscopy for nanometer-distance measurements,” ChemPhysChem 15, 763–770 (2014).
[Crossref]

Juette, M. F.

M. F. Juette, T. J. Gould, M. D. Lessard, M. J. Mlodzianoski, B. S. Nagpure, B. T. Bennett, S. T. Hess, and J. Bewersdorf, “Three-dimensional sub-100 nm resolution fluorescence microscopy of thick samples,” Nat. Methods 5, 527–529 (2008).
[Crossref]

Kaminski, C. F.

Kanchanawong, P.

G. Shtengel, J. A. Galbraith, C. G. Galbraith, J. Lippincott-Schwartz, J. M. Gillette, S. Manley, R. Sougrat, C. M. Waterman, P. Kanchanawong, M. W. Davidson, R. D. Fetter, and H. F. Hess, “Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure,” Proc. Natl. Acad. Sci. USA 106, 3125–3130 (2009).
[Crossref]

Kao, H. P.

H. P. Kao and A. S. Verkman, “Tracking of single fluorescent particles in three dimensions: use of cylindrical optics to encode particle position,” Biophys. J. 67, 1291–1300 (1994).
[Crossref]

Kasai, R. S.

A. Kusumi, T. A. Tsunoyama, K. M. Hirosawa, R. S. Kasai, and T. K. Fujiwara, “Tracking single molecules at work in living cells,” Nat. Chem. Biol. 10, 524–532 (2014).
[Crossref]

I. Koyama-Honda, K. Ritchie, T. Fujiwara, R. Iino, H. Murakoshi, R. S. Kasai, and A. Kusumi, “Fluorescence imaging for monitoring the colocalization of two single molecules in living cells,” Biophys. J. 88, 2126–2136 (2005).
[Crossref]

Keller, J.

J. Engelhardt, J. Keller, P. Hoyer, M. Reuss, T. Staudt, and S. W. Hell, “Molecular orientation affects localization accuracy in superresolution far-field fluorescence microscopy,” Nano Lett. 11, 209–213 (2011).
[Crossref]

Kner, P.

Knight, A. E.

Koyama-Honda, I.

I. Koyama-Honda, K. Ritchie, T. Fujiwara, R. Iino, H. Murakoshi, R. S. Kasai, and A. Kusumi, “Fluorescence imaging for monitoring the colocalization of two single molecules in living cells,” Biophys. J. 88, 2126–2136 (2005).
[Crossref]

Kubby, J. A.

J. A. Kubby, Adaptive Optics for Biological Imaging (CRC Press, 2013).

Kusumi, A.

A. Kusumi, T. A. Tsunoyama, K. M. Hirosawa, R. S. Kasai, and T. K. Fujiwara, “Tracking single molecules at work in living cells,” Nat. Chem. Biol. 10, 524–532 (2014).
[Crossref]

I. Koyama-Honda, K. Ritchie, T. Fujiwara, R. Iino, H. Murakoshi, R. S. Kasai, and A. Kusumi, “Fluorescence imaging for monitoring the colocalization of two single molecules in living cells,” Biophys. J. 88, 2126–2136 (2005).
[Crossref]

Lang, T.

D. Aquino, A. Schönle, C. Geisler, C. V. Middendorff, C. A. Wurm, Y. Okamura, T. Lang, S. W. Hell, and A. Egner, “Two-color nanoscopy of three-dimensional volumes by 4Pi detection of stochastically switched fluorophores,” Nat. Methods 8, 353–359 (2011).
[Crossref]

Larson, D. R.

R. E. Thompson, D. R. Larson, and W. W. Webb, “Precise nanometer localization analysis for individual fluorescent probes,” Biophys. J. 82, 2775–2783 (2002).
[Crossref]

Lee, M. K.

A. Gahlmann, J. L. Ptacin, G. Grover, S. Quirin, A. R. S. von Diezmann, M. K. Lee, M. P. Backlund, L. Shapiro, R. Piestun, and W. E. Moerner, “Quantitative multicolor subdiffraction imaging of bacterial protein ultrastructures in 3D,” Nano Lett. 13, 987–993 (2013).
[Crossref]

Lessard, M. D.

M. F. Juette, T. J. Gould, M. D. Lessard, M. J. Mlodzianoski, B. S. Nagpure, B. T. Bennett, S. T. Hess, and J. Bewersdorf, “Three-dimensional sub-100 nm resolution fluorescence microscopy of thick samples,” Nat. Methods 5, 527–529 (2008).
[Crossref]

Lew, M. D.

M. P. Backlund, M. D. Lew, A. S. Backer, S. J. Sahl, and W. E. Moerner, “The role of molecular dipole orientation in single-molecule fluorescence microscopy and implications for super-resolution imaging,” Chem. Phys. Chem. 15, 587–599 (2014).
[Crossref]

M. P. Backlund, M. D. Lew, A. S. Backer, S. J. Sahl, G. Grover, A. Agrawal, R. Piestun, and W. E. Moerner, “Simultaneous, accurate measurement of the 3D position and orientation of single molecules,” Proc. Natl. Acad. Sci. USA 109, 19087–19092 (2012).
[Crossref]

M. D. Lew, A. R. S. von Diezmann, and W. E. Moerner, “Easy-DHPSF open-source software for three-dimensional localization of single molecules with precision beyond the optical diffraction limit,” Protocol Exchange (2013), doi: 10.1038/protex.2013.026.

Lin, Y.

F. Huang, T. M. P. Hartwich, F. E. Rivera-Molina, Y. Lin, W. C. Duim, J. J. Long, P. D. Uchil, J. R. Myers, M. A. Baird, W. Mothes, M. W. Davidson, D. Toomre, and J. Bewersdorf, “Video-rate nanoscopy using sCMOS camera-specific single-molecule localization algorithms,” Nat. Methods 10, 653–658 (2013).
[Crossref]

Lindwasser, O. W.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref]

Lippincott-Schwartz, J.

G. Shtengel, J. A. Galbraith, C. G. Galbraith, J. Lippincott-Schwartz, J. M. Gillette, S. Manley, R. Sougrat, C. M. Waterman, P. Kanchanawong, M. W. Davidson, R. D. Fetter, and H. F. Hess, “Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure,” Proc. Natl. Acad. Sci. USA 106, 3125–3130 (2009).
[Crossref]

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref]

Liu, N.

S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, and W. E. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Proc. Natl. Acad. Sci. USA 106, 2995–2999 (2009).
[Crossref]

Long, J. J.

F. Huang, T. M. P. Hartwich, F. E. Rivera-Molina, Y. Lin, W. C. Duim, J. J. Long, P. D. Uchil, J. R. Myers, M. A. Baird, W. Mothes, M. W. Davidson, D. Toomre, and J. Bewersdorf, “Video-rate nanoscopy using sCMOS camera-specific single-molecule localization algorithms,” Nat. Methods 10, 653–658 (2013).
[Crossref]

Lord, S. J.

S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, and W. E. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Proc. Natl. Acad. Sci. USA 106, 2995–2999 (2009).
[Crossref]

Manley, S.

G. Shtengel, J. A. Galbraith, C. G. Galbraith, J. Lippincott-Schwartz, J. M. Gillette, S. Manley, R. Sougrat, C. M. Waterman, P. Kanchanawong, M. W. Davidson, R. D. Fetter, and H. F. Hess, “Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure,” Proc. Natl. Acad. Sci. USA 106, 3125–3130 (2009).
[Crossref]

Mason, M. D.

S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91, 4258–4272 (2006).
[Crossref]

McGorty, R.

Metcalf, D.

Middendorff, C. V.

D. Aquino, A. Schönle, C. Geisler, C. V. Middendorff, C. A. Wurm, Y. Okamura, T. Lang, S. W. Hell, and A. Egner, “Two-color nanoscopy of three-dimensional volumes by 4Pi detection of stochastically switched fluorophores,” Nat. Methods 8, 353–359 (2011).
[Crossref]

Mlodzianoski, M.

H. Deschout, F. C. Zanacchi, M. Mlodzianoski, A. Diaspro, J. Bewersdorf, S. T. Hess, and K. Braeckmans, “Precisely and accurately localizing single emitters in fluorescence microscopy,” Nat Methods 11, 253–266 (2014).
[Crossref]

Mlodzianoski, M. J.

M. F. Juette, T. J. Gould, M. D. Lessard, M. J. Mlodzianoski, B. S. Nagpure, B. T. Bennett, S. T. Hess, and J. Bewersdorf, “Three-dimensional sub-100 nm resolution fluorescence microscopy of thick samples,” Nat. Methods 5, 527–529 (2008).
[Crossref]

Moerner, W. E.

Y. Shechtman, S. J. Sahl, A. S. Backer, and W. E. Moerner, “Optimal point spread function design for 3D imaging,” Phys. Rev. Lett. 113, 133902 (2014).
[Crossref]

M. P. Backlund, M. D. Lew, A. S. Backer, S. J. Sahl, and W. E. Moerner, “The role of molecular dipole orientation in single-molecule fluorescence microscopy and implications for super-resolution imaging,” Chem. Phys. Chem. 15, 587–599 (2014).
[Crossref]

A. S. Backer and W. E. Moerner, “Extending single-molecule microscopy using optical Fourier processing,” J. Phys. Chem. B 118, 8313–8329 (2014).
[Crossref]

A. Gahlmann, J. L. Ptacin, G. Grover, S. Quirin, A. R. S. von Diezmann, M. K. Lee, M. P. Backlund, L. Shapiro, R. Piestun, and W. E. Moerner, “Quantitative multicolor subdiffraction imaging of bacterial protein ultrastructures in 3D,” Nano Lett. 13, 987–993 (2013).
[Crossref]

W. E. Moerner, “Microscopy beyond the diffraction limit using actively controlled single molecules,” J. Microsc. 246, 213–220 (2012).
[Crossref]

M. P. Backlund, M. D. Lew, A. S. Backer, S. J. Sahl, G. Grover, A. Agrawal, R. Piestun, and W. E. Moerner, “Simultaneous, accurate measurement of the 3D position and orientation of single molecules,” Proc. Natl. Acad. Sci. USA 109, 19087–19092 (2012).
[Crossref]

S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, and W. E. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Proc. Natl. Acad. Sci. USA 106, 2995–2999 (2009).
[Crossref]

M. D. Lew, A. R. S. von Diezmann, and W. E. Moerner, “Easy-DHPSF open-source software for three-dimensional localization of single molecules with precision beyond the optical diffraction limit,” Protocol Exchange (2013), doi: 10.1038/protex.2013.026.

Montgomery, J. M.

D. Baddeley, D. Crossman, S. Rossberger, J. E. Cheyne, J. M. Montgomery, I. D. Jayasinghe, C. Cremer, M. B. Cannell, and C. Soeller, “4D super-resolution microscopy with conventional fluorophores and single wavelength excitation in optically thick cells and tissues,” PLoS ONE 6, e20645 (2011).
[Crossref]

Mortensen, K. I.

K. I. Mortensen, L. S. Churchman, J. A. Spudich, and H. Flyvbjerg, “Optimized localization analysis for single-molecule tracking and super-resolution microscopy,” Nat. Methods 7, 377–381 (2010).
[Crossref]

Mothes, W.

F. Huang, T. M. P. Hartwich, F. E. Rivera-Molina, Y. Lin, W. C. Duim, J. J. Long, P. D. Uchil, J. R. Myers, M. A. Baird, W. Mothes, M. W. Davidson, D. Toomre, and J. Bewersdorf, “Video-rate nanoscopy using sCMOS camera-specific single-molecule localization algorithms,” Nat. Methods 10, 653–658 (2013).
[Crossref]

Mukherjee, K.

A. Pertsinidis, K. Mukherjee, M. Sharma, Z. P. Pang, S. R. Park, Y. Zhang, A. T. Brunger, T. C. Südhof, and S. Chu, “Ultrahigh-resolution imaging reveals formation of neuronal SNARE/Munc18 complexes in situ,” Proc. Natl. Acad. Sci. USA 110, E2812–E2820 (2013).

Murakoshi, H.

I. Koyama-Honda, K. Ritchie, T. Fujiwara, R. Iino, H. Murakoshi, R. S. Kasai, and A. Kusumi, “Fluorescence imaging for monitoring the colocalization of two single molecules in living cells,” Biophys. J. 88, 2126–2136 (2005).
[Crossref]

Myers, J. R.

F. Huang, T. M. P. Hartwich, F. E. Rivera-Molina, Y. Lin, W. C. Duim, J. J. Long, P. D. Uchil, J. R. Myers, M. A. Baird, W. Mothes, M. W. Davidson, D. Toomre, and J. Bewersdorf, “Video-rate nanoscopy using sCMOS camera-specific single-molecule localization algorithms,” Nat. Methods 10, 653–658 (2013).
[Crossref]

Nagpure, B. S.

M. F. Juette, T. J. Gould, M. D. Lessard, M. J. Mlodzianoski, B. S. Nagpure, B. T. Bennett, S. T. Hess, and J. Bewersdorf, “Three-dimensional sub-100 nm resolution fluorescence microscopy of thick samples,” Nat. Methods 5, 527–529 (2008).
[Crossref]

Okamura, Y.

D. Aquino, A. Schönle, C. Geisler, C. V. Middendorff, C. A. Wurm, Y. Okamura, T. Lang, S. W. Hell, and A. Egner, “Two-color nanoscopy of three-dimensional volumes by 4Pi detection of stochastically switched fluorophores,” Nat. Methods 8, 353–359 (2011).
[Crossref]

Olenych, S.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref]

Ou, X.

Pang, Z. P.

A. Pertsinidis, K. Mukherjee, M. Sharma, Z. P. Pang, S. R. Park, Y. Zhang, A. T. Brunger, T. C. Südhof, and S. Chu, “Ultrahigh-resolution imaging reveals formation of neuronal SNARE/Munc18 complexes in situ,” Proc. Natl. Acad. Sci. USA 110, E2812–E2820 (2013).

Park, S. R.

A. Pertsinidis, K. Mukherjee, M. Sharma, Z. P. Pang, S. R. Park, Y. Zhang, A. T. Brunger, T. C. Südhof, and S. Chu, “Ultrahigh-resolution imaging reveals formation of neuronal SNARE/Munc18 complexes in situ,” Proc. Natl. Acad. Sci. USA 110, E2812–E2820 (2013).

Patterson, G. H.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref]

Patton, B.

Pavani, S. R. P.

S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, and W. E. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Proc. Natl. Acad. Sci. USA 106, 2995–2999 (2009).
[Crossref]

Pertsinidis, A.

A. Pertsinidis, K. Mukherjee, M. Sharma, Z. P. Pang, S. R. Park, Y. Zhang, A. T. Brunger, T. C. Südhof, and S. Chu, “Ultrahigh-resolution imaging reveals formation of neuronal SNARE/Munc18 complexes in situ,” Proc. Natl. Acad. Sci. USA 110, E2812–E2820 (2013).

A. Pertsinidis, Y. Zhang, and S. Chu, “Subnanometre single-molecule localization, registration and distance measurements,” Nature 466, 647–651 (2010).
[Crossref]

Piestun, R.

A. Gahlmann, J. L. Ptacin, G. Grover, S. Quirin, A. R. S. von Diezmann, M. K. Lee, M. P. Backlund, L. Shapiro, R. Piestun, and W. E. Moerner, “Quantitative multicolor subdiffraction imaging of bacterial protein ultrastructures in 3D,” Nano Lett. 13, 987–993 (2013).
[Crossref]

M. P. Backlund, M. D. Lew, A. S. Backer, S. J. Sahl, G. Grover, A. Agrawal, R. Piestun, and W. E. Moerner, “Simultaneous, accurate measurement of the 3D position and orientation of single molecules,” Proc. Natl. Acad. Sci. USA 109, 19087–19092 (2012).
[Crossref]

S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, and W. E. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Proc. Natl. Acad. Sci. USA 106, 2995–2999 (2009).
[Crossref]

Ptacin, J. L.

A. Gahlmann, J. L. Ptacin, G. Grover, S. Quirin, A. R. S. von Diezmann, M. K. Lee, M. P. Backlund, L. Shapiro, R. Piestun, and W. E. Moerner, “Quantitative multicolor subdiffraction imaging of bacterial protein ultrastructures in 3D,” Nano Lett. 13, 987–993 (2013).
[Crossref]

Quirin, S.

A. Gahlmann, J. L. Ptacin, G. Grover, S. Quirin, A. R. S. von Diezmann, M. K. Lee, M. P. Backlund, L. Shapiro, R. Piestun, and W. E. Moerner, “Quantitative multicolor subdiffraction imaging of bacterial protein ultrastructures in 3D,” Nano Lett. 13, 987–993 (2013).
[Crossref]

Rees, E.

Renn, A.

S. Weisenburger, B. Jing, D. Hänni, L. Reymond, B. Schuler, A. Renn, and V. Sandoghdar, “Cryogenic colocalization microscopy for nanometer-distance measurements,” ChemPhysChem 15, 763–770 (2014).
[Crossref]

Reuss, M.

J. Engelhardt, J. Keller, P. Hoyer, M. Reuss, T. Staudt, and S. W. Hell, “Molecular orientation affects localization accuracy in superresolution far-field fluorescence microscopy,” Nano Lett. 11, 209–213 (2011).
[Crossref]

Reymond, L.

S. Weisenburger, B. Jing, D. Hänni, L. Reymond, B. Schuler, A. Renn, and V. Sandoghdar, “Cryogenic colocalization microscopy for nanometer-distance measurements,” ChemPhysChem 15, 763–770 (2014).
[Crossref]

Rieger, B.

Ritchie, K.

I. Koyama-Honda, K. Ritchie, T. Fujiwara, R. Iino, H. Murakoshi, R. S. Kasai, and A. Kusumi, “Fluorescence imaging for monitoring the colocalization of two single molecules in living cells,” Biophys. J. 88, 2126–2136 (2005).
[Crossref]

Rivera-Molina, F. E.

F. Huang, T. M. P. Hartwich, F. E. Rivera-Molina, Y. Lin, W. C. Duim, J. J. Long, P. D. Uchil, J. R. Myers, M. A. Baird, W. Mothes, M. W. Davidson, D. Toomre, and J. Bewersdorf, “Video-rate nanoscopy using sCMOS camera-specific single-molecule localization algorithms,” Nat. Methods 10, 653–658 (2013).
[Crossref]

Rossberger, S.

D. Baddeley, D. Crossman, S. Rossberger, J. E. Cheyne, J. M. Montgomery, I. D. Jayasinghe, C. Cremer, M. B. Cannell, and C. Soeller, “4D super-resolution microscopy with conventional fluorophores and single wavelength excitation in optically thick cells and tissues,” PLoS ONE 6, e20645 (2011).
[Crossref]

Rust, M. J.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3, 793–796 (2006).
[Crossref]

Sahl, S. J.

M. P. Backlund, M. D. Lew, A. S. Backer, S. J. Sahl, and W. E. Moerner, “The role of molecular dipole orientation in single-molecule fluorescence microscopy and implications for super-resolution imaging,” Chem. Phys. Chem. 15, 587–599 (2014).
[Crossref]

Y. Shechtman, S. J. Sahl, A. S. Backer, and W. E. Moerner, “Optimal point spread function design for 3D imaging,” Phys. Rev. Lett. 113, 133902 (2014).
[Crossref]

M. P. Backlund, M. D. Lew, A. S. Backer, S. J. Sahl, G. Grover, A. Agrawal, R. Piestun, and W. E. Moerner, “Simultaneous, accurate measurement of the 3D position and orientation of single molecules,” Proc. Natl. Acad. Sci. USA 109, 19087–19092 (2012).
[Crossref]

Sandoghdar, V.

S. Weisenburger, B. Jing, D. Hänni, L. Reymond, B. Schuler, A. Renn, and V. Sandoghdar, “Cryogenic colocalization microscopy for nanometer-distance measurements,” ChemPhysChem 15, 763–770 (2014).
[Crossref]

Saxton, M. J.

M. J. Saxton and K. Jacobson, “Single-particle tracking: applications to membrane dynamics,” Annu. Rev. Biophys. Biomol. Struct. 26, 373–399 (1997).
[Crossref]

Schierle, G. S. K.

Schindler, H.

T. Schmidt, G. J. Schutz, W. Baumgartner, H. J. Gruber, and H. Schindler, “Imaging of single molecule diffusion,” Proc. Natl. Acad. Sci. USA 93, 2926–2929 (1996).
[Crossref]

Schmidt, T.

T. Schmidt, G. J. Schutz, W. Baumgartner, H. J. Gruber, and H. Schindler, “Imaging of single molecule diffusion,” Proc. Natl. Acad. Sci. USA 93, 2926–2929 (1996).
[Crossref]

Schnapp, B. J.

J. Gelles, B. J. Schnapp, and M. P. Sheetz, “Tracking kinesin-driven movements with nanometre-scale precision,” Nature 331, 450–453 (1988).
[Crossref]

Schnitzbauer, J.

Schönle, A.

D. Aquino, A. Schönle, C. Geisler, C. V. Middendorff, C. A. Wurm, Y. Okamura, T. Lang, S. W. Hell, and A. Egner, “Two-color nanoscopy of three-dimensional volumes by 4Pi detection of stochastically switched fluorophores,” Nat. Methods 8, 353–359 (2011).
[Crossref]

Schuler, B.

S. Weisenburger, B. Jing, D. Hänni, L. Reymond, B. Schuler, A. Renn, and V. Sandoghdar, “Cryogenic colocalization microscopy for nanometer-distance measurements,” ChemPhysChem 15, 763–770 (2014).
[Crossref]

Schutz, G. J.

T. Schmidt, G. J. Schutz, W. Baumgartner, H. J. Gruber, and H. Schindler, “Imaging of single molecule diffusion,” Proc. Natl. Acad. Sci. USA 93, 2926–2929 (1996).
[Crossref]

Sedat, J. W.

B. Hanser, M. Gustafsson, D. Agard, and J. W. Sedat, “Phase-retrieved pupil functions in wide-field fluorescence microscopy,” J. Microsc. 216, 32–48 (2004).
[Crossref]

Selvin, P. R.

J. Enderlein, E. Toprak, and P. R. Selvin, “Polarization effect on position accuracy of fluorophore localization,” Opt. Express 14, 8111–8120 (2006).
[Crossref]

A. Yildiz and P. R. Selvin, “Fluorescence imaging with one nanometer accuracy: application to molecular motors,” Acc. Chem. Res. 38, 574–582 (2005).
[Crossref]

Shaevitz, J. W.

Shapiro, L.

A. Gahlmann, J. L. Ptacin, G. Grover, S. Quirin, A. R. S. von Diezmann, M. K. Lee, M. P. Backlund, L. Shapiro, R. Piestun, and W. E. Moerner, “Quantitative multicolor subdiffraction imaging of bacterial protein ultrastructures in 3D,” Nano Lett. 13, 987–993 (2013).
[Crossref]

Sharma, M.

A. Pertsinidis, K. Mukherjee, M. Sharma, Z. P. Pang, S. R. Park, Y. Zhang, A. T. Brunger, T. C. Südhof, and S. Chu, “Ultrahigh-resolution imaging reveals formation of neuronal SNARE/Munc18 complexes in situ,” Proc. Natl. Acad. Sci. USA 110, E2812–E2820 (2013).

Sharonov, A.

A. Sharonov and R. M. Hochstrasser, “Wide-field subdiffraction imaging by accumulated binding of diffusing probes,” Proc. Natl. Acad. Sci. USA 103, 18911–18916 (2006).
[Crossref]

Shechtman, Y.

Y. Shechtman, S. J. Sahl, A. S. Backer, and W. E. Moerner, “Optimal point spread function design for 3D imaging,” Phys. Rev. Lett. 113, 133902 (2014).
[Crossref]

Sheetz, M. P.

J. Gelles, B. J. Schnapp, and M. P. Sheetz, “Tracking kinesin-driven movements with nanometre-scale precision,” Nature 331, 450–453 (1988).
[Crossref]

Shen, P.

Shtengel, G.

G. Shtengel, J. A. Galbraith, C. G. Galbraith, J. Lippincott-Schwartz, J. M. Gillette, S. Manley, R. Sougrat, C. M. Waterman, P. Kanchanawong, M. W. Davidson, R. D. Fetter, and H. F. Hess, “Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure,” Proc. Natl. Acad. Sci. USA 106, 3125–3130 (2009).
[Crossref]

Sinko, J.

Small, A.

A. Small and S. Stahlheber, “Fluorophore localization algorithms for super-resolution microscopy,” Nat. Methods 11, 267–279 (2014).
[Crossref]

Soeller, C.

D. Baddeley, D. Crossman, S. Rossberger, J. E. Cheyne, J. M. Montgomery, I. D. Jayasinghe, C. Cremer, M. B. Cannell, and C. Soeller, “4D super-resolution microscopy with conventional fluorophores and single wavelength excitation in optically thick cells and tissues,” PLoS ONE 6, e20645 (2011).
[Crossref]

Sougrat, R.

G. Shtengel, J. A. Galbraith, C. G. Galbraith, J. Lippincott-Schwartz, J. M. Gillette, S. Manley, R. Sougrat, C. M. Waterman, P. Kanchanawong, M. W. Davidson, R. D. Fetter, and H. F. Hess, “Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure,” Proc. Natl. Acad. Sci. USA 106, 3125–3130 (2009).
[Crossref]

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref]

Spudich, J. A.

L. S. Churchman and J. A. Spudich, “Colocalization of fluorescent probes: accurate and precise registration with nanometer resolution,” Cold Spring Harbor Protocols 2, 141–149 (2012).

K. I. Mortensen, L. S. Churchman, J. A. Spudich, and H. Flyvbjerg, “Optimized localization analysis for single-molecule tracking and super-resolution microscopy,” Nat. Methods 7, 377–381 (2010).
[Crossref]

Stahlheber, S.

A. Small and S. Stahlheber, “Fluorophore localization algorithms for super-resolution microscopy,” Nat. Methods 11, 267–279 (2014).
[Crossref]

Stallinga, S.

Staudt, T.

J. Engelhardt, J. Keller, P. Hoyer, M. Reuss, T. Staudt, and S. W. Hell, “Molecular orientation affects localization accuracy in superresolution far-field fluorescence microscopy,” Nano Lett. 11, 209–213 (2011).
[Crossref]

Südhof, T. C.

A. Pertsinidis, K. Mukherjee, M. Sharma, Z. P. Pang, S. R. Park, Y. Zhang, A. T. Brunger, T. C. Südhof, and S. Chu, “Ultrahigh-resolution imaging reveals formation of neuronal SNARE/Munc18 complexes in situ,” Proc. Natl. Acad. Sci. USA 110, E2812–E2820 (2013).

Tehrani, K. F.

Thompson, M. A.

S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, and W. E. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Proc. Natl. Acad. Sci. USA 106, 2995–2999 (2009).
[Crossref]

Thompson, R. E.

R. E. Thompson, D. R. Larson, and W. W. Webb, “Precise nanometer localization analysis for individual fluorescent probes,” Biophys. J. 82, 2775–2783 (2002).
[Crossref]

Toomre, D.

F. Huang, T. M. P. Hartwich, F. E. Rivera-Molina, Y. Lin, W. C. Duim, J. J. Long, P. D. Uchil, J. R. Myers, M. A. Baird, W. Mothes, M. W. Davidson, D. Toomre, and J. Bewersdorf, “Video-rate nanoscopy using sCMOS camera-specific single-molecule localization algorithms,” Nat. Methods 10, 653–658 (2013).
[Crossref]

Toprak, E.

Tsunoyama, T. A.

A. Kusumi, T. A. Tsunoyama, K. M. Hirosawa, R. S. Kasai, and T. K. Fujiwara, “Tracking single molecules at work in living cells,” Nat. Chem. Biol. 10, 524–532 (2014).
[Crossref]

Twieg, R. J.

S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, and W. E. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Proc. Natl. Acad. Sci. USA 106, 2995–2999 (2009).
[Crossref]

Uchil, P. D.

F. Huang, T. M. P. Hartwich, F. E. Rivera-Molina, Y. Lin, W. C. Duim, J. J. Long, P. D. Uchil, J. R. Myers, M. A. Baird, W. Mothes, M. W. Davidson, D. Toomre, and J. Bewersdorf, “Video-rate nanoscopy using sCMOS camera-specific single-molecule localization algorithms,” Nat. Methods 10, 653–658 (2013).
[Crossref]

Vale, R. D.

J. R. James and R. D. Vale, “Biophysical mechanism of T-cell receptor triggering in a reconstituted system,” Nature 487, 227–230 (2012).
[Crossref]

Vaughan, J. C.

S. Jia, J. C. Vaughan, and X. Zhuang, “Isotropic three-dimensional super-resolution imaging with a self-bending point spread function,” Nat. Photonics 8, 302–306 (2014).
[Crossref]

J. C. Vaughan, S. Jia, and X. Zhuang, “Ultrabright photoactivatable fluorophores created by reductive caging,” Nat. Methods 9, 1181–1184 (2012).
[Crossref]

Verkman, A. S.

H. P. Kao and A. S. Verkman, “Tracking of single fluorescent particles in three dimensions: use of cylindrical optics to encode particle position,” Biophys. J. 67, 1291–1300 (1994).
[Crossref]

von Diezmann, A. R. S.

A. Gahlmann, J. L. Ptacin, G. Grover, S. Quirin, A. R. S. von Diezmann, M. K. Lee, M. P. Backlund, L. Shapiro, R. Piestun, and W. E. Moerner, “Quantitative multicolor subdiffraction imaging of bacterial protein ultrastructures in 3D,” Nano Lett. 13, 987–993 (2013).
[Crossref]

M. D. Lew, A. R. S. von Diezmann, and W. E. Moerner, “Easy-DHPSF open-source software for three-dimensional localization of single molecules with precision beyond the optical diffraction limit,” Protocol Exchange (2013), doi: 10.1038/protex.2013.026.

Wang, W.

B. Huang, W. Wang, M. Bates, and X. Zhuang, “Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy,” Science 319, 810–813 (2008).
[Crossref]

Waterman, C. M.

G. Shtengel, J. A. Galbraith, C. G. Galbraith, J. Lippincott-Schwartz, J. M. Gillette, S. Manley, R. Sougrat, C. M. Waterman, P. Kanchanawong, M. W. Davidson, R. D. Fetter, and H. F. Hess, “Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure,” Proc. Natl. Acad. Sci. USA 106, 3125–3130 (2009).
[Crossref]

Webb, W. W.

R. E. Thompson, D. R. Larson, and W. W. Webb, “Precise nanometer localization analysis for individual fluorescent probes,” Biophys. J. 82, 2775–2783 (2002).
[Crossref]

L. S. Barak and W. W. Webb, “Diffusion of low density lipoprotein-receptor complex on human fibroblasts,” J. Cell Biol. 95, 846–852 (1982).
[Crossref]

Weisenburger, S.

S. Weisenburger, B. Jing, D. Hänni, L. Reymond, B. Schuler, A. Renn, and V. Sandoghdar, “Cryogenic colocalization microscopy for nanometer-distance measurements,” ChemPhysChem 15, 763–770 (2014).
[Crossref]

Welford, W. T.

W. T. Welford, Aberrations of Optical Systems (Adam Hilger, 1986).

Wolf, E.

M. Born and E. Wolf, Principles of Optics (Cambridge University, 1999).

Wurm, C. A.

D. Aquino, A. Schönle, C. Geisler, C. V. Middendorff, C. A. Wurm, Y. Okamura, T. Lang, S. W. Hell, and A. Egner, “Two-color nanoscopy of three-dimensional volumes by 4Pi detection of stochastically switched fluorophores,” Nat. Methods 8, 353–359 (2011).
[Crossref]

Xu, J.

Yang, C.

Yildiz, A.

M. A. DeWitt, A. Y. Chang, P. A. Combs, and A. Yildiz, “Cytoplasmic dynein moves through uncoordinated stepping of the AAA+ ring domains,” Science 335, 221–225 (2012).
[Crossref]

A. Yildiz and P. R. Selvin, “Fluorescence imaging with one nanometer accuracy: application to molecular motors,” Acc. Chem. Res. 38, 574–582 (2005).
[Crossref]

Zanacchi, F. C.

H. Deschout, F. C. Zanacchi, M. Mlodzianoski, A. Diaspro, J. Bewersdorf, S. T. Hess, and K. Braeckmans, “Precisely and accurately localizing single emitters in fluorescence microscopy,” Nat Methods 11, 253–266 (2014).
[Crossref]

Zhang, W.

Zhang, Y.

K. F. Tehrani, J. Xu, Y. Zhang, P. Shen, and P. Kner, “Adaptive optics stochastic optical reconstruction microscopy (AO-STORM) using a genetic algorithm,” Opt. Express 23, 13677–13692 (2015).
[Crossref]

A. Pertsinidis, K. Mukherjee, M. Sharma, Z. P. Pang, S. R. Park, Y. Zhang, A. T. Brunger, T. C. Südhof, and S. Chu, “Ultrahigh-resolution imaging reveals formation of neuronal SNARE/Munc18 complexes in situ,” Proc. Natl. Acad. Sci. USA 110, E2812–E2820 (2013).

A. Pertsinidis, Y. Zhang, and S. Chu, “Subnanometre single-molecule localization, registration and distance measurements,” Nature 466, 647–651 (2010).
[Crossref]

Zheng, G.

Zhuang, X.

S. Jia, J. C. Vaughan, and X. Zhuang, “Isotropic three-dimensional super-resolution imaging with a self-bending point spread function,” Nat. Photonics 8, 302–306 (2014).
[Crossref]

J. C. Vaughan, S. Jia, and X. Zhuang, “Ultrabright photoactivatable fluorophores created by reductive caging,” Nat. Methods 9, 1181–1184 (2012).
[Crossref]

B. Huang, W. Wang, M. Bates, and X. Zhuang, “Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy,” Science 319, 810–813 (2008).
[Crossref]

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3, 793–796 (2006).
[Crossref]

Acc. Chem. Res. (1)

A. Yildiz and P. R. Selvin, “Fluorescence imaging with one nanometer accuracy: application to molecular motors,” Acc. Chem. Res. 38, 574–582 (2005).
[Crossref]

Annu. Rev. Biophys. Biomol. Struct. (1)

M. J. Saxton and K. Jacobson, “Single-particle tracking: applications to membrane dynamics,” Annu. Rev. Biophys. Biomol. Struct. 26, 373–399 (1997).
[Crossref]

Appl. Opt. (1)

Biophys. J. (4)

I. Koyama-Honda, K. Ritchie, T. Fujiwara, R. Iino, H. Murakoshi, R. S. Kasai, and A. Kusumi, “Fluorescence imaging for monitoring the colocalization of two single molecules in living cells,” Biophys. J. 88, 2126–2136 (2005).
[Crossref]

R. E. Thompson, D. R. Larson, and W. W. Webb, “Precise nanometer localization analysis for individual fluorescent probes,” Biophys. J. 82, 2775–2783 (2002).
[Crossref]

S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91, 4258–4272 (2006).
[Crossref]

H. P. Kao and A. S. Verkman, “Tracking of single fluorescent particles in three dimensions: use of cylindrical optics to encode particle position,” Biophys. J. 67, 1291–1300 (1994).
[Crossref]

Chem. Phys. Chem. (1)

M. P. Backlund, M. D. Lew, A. S. Backer, S. J. Sahl, and W. E. Moerner, “The role of molecular dipole orientation in single-molecule fluorescence microscopy and implications for super-resolution imaging,” Chem. Phys. Chem. 15, 587–599 (2014).
[Crossref]

ChemPhysChem (2)

B. Rieger and S. Stallinga, “The lateral and axial localization uncertainty in super-resolution light microscopy,” ChemPhysChem 15, 664–670 (2014).
[Crossref]

S. Weisenburger, B. Jing, D. Hänni, L. Reymond, B. Schuler, A. Renn, and V. Sandoghdar, “Cryogenic colocalization microscopy for nanometer-distance measurements,” ChemPhysChem 15, 763–770 (2014).
[Crossref]

Cold Spring Harbor Protocols (1)

L. S. Churchman and J. A. Spudich, “Colocalization of fluorescent probes: accurate and precise registration with nanometer resolution,” Cold Spring Harbor Protocols 2, 141–149 (2012).

J. Cell Biol. (1)

L. S. Barak and W. W. Webb, “Diffusion of low density lipoprotein-receptor complex on human fibroblasts,” J. Cell Biol. 95, 846–852 (1982).
[Crossref]

J. Microsc. (2)

W. E. Moerner, “Microscopy beyond the diffraction limit using actively controlled single molecules,” J. Microsc. 246, 213–220 (2012).
[Crossref]

B. Hanser, M. Gustafsson, D. Agard, and J. W. Sedat, “Phase-retrieved pupil functions in wide-field fluorescence microscopy,” J. Microsc. 216, 32–48 (2004).
[Crossref]

J. Phys. Chem. B (1)

A. S. Backer and W. E. Moerner, “Extending single-molecule microscopy using optical Fourier processing,” J. Phys. Chem. B 118, 8313–8329 (2014).
[Crossref]

Nano Lett. (2)

A. Gahlmann, J. L. Ptacin, G. Grover, S. Quirin, A. R. S. von Diezmann, M. K. Lee, M. P. Backlund, L. Shapiro, R. Piestun, and W. E. Moerner, “Quantitative multicolor subdiffraction imaging of bacterial protein ultrastructures in 3D,” Nano Lett. 13, 987–993 (2013).
[Crossref]

J. Engelhardt, J. Keller, P. Hoyer, M. Reuss, T. Staudt, and S. W. Hell, “Molecular orientation affects localization accuracy in superresolution far-field fluorescence microscopy,” Nano Lett. 11, 209–213 (2011).
[Crossref]

Nat Methods (1)

H. Deschout, F. C. Zanacchi, M. Mlodzianoski, A. Diaspro, J. Bewersdorf, S. T. Hess, and K. Braeckmans, “Precisely and accurately localizing single emitters in fluorescence microscopy,” Nat Methods 11, 253–266 (2014).
[Crossref]

Nat. Chem. Biol. (1)

A. Kusumi, T. A. Tsunoyama, K. M. Hirosawa, R. S. Kasai, and T. K. Fujiwara, “Tracking single molecules at work in living cells,” Nat. Chem. Biol. 10, 524–532 (2014).
[Crossref]

Nat. Methods (7)

M. F. Juette, T. J. Gould, M. D. Lessard, M. J. Mlodzianoski, B. S. Nagpure, B. T. Bennett, S. T. Hess, and J. Bewersdorf, “Three-dimensional sub-100 nm resolution fluorescence microscopy of thick samples,” Nat. Methods 5, 527–529 (2008).
[Crossref]

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3, 793–796 (2006).
[Crossref]

A. Small and S. Stahlheber, “Fluorophore localization algorithms for super-resolution microscopy,” Nat. Methods 11, 267–279 (2014).
[Crossref]

D. Aquino, A. Schönle, C. Geisler, C. V. Middendorff, C. A. Wurm, Y. Okamura, T. Lang, S. W. Hell, and A. Egner, “Two-color nanoscopy of three-dimensional volumes by 4Pi detection of stochastically switched fluorophores,” Nat. Methods 8, 353–359 (2011).
[Crossref]

J. C. Vaughan, S. Jia, and X. Zhuang, “Ultrabright photoactivatable fluorophores created by reductive caging,” Nat. Methods 9, 1181–1184 (2012).
[Crossref]

K. I. Mortensen, L. S. Churchman, J. A. Spudich, and H. Flyvbjerg, “Optimized localization analysis for single-molecule tracking and super-resolution microscopy,” Nat. Methods 7, 377–381 (2010).
[Crossref]

F. Huang, T. M. P. Hartwich, F. E. Rivera-Molina, Y. Lin, W. C. Duim, J. J. Long, P. D. Uchil, J. R. Myers, M. A. Baird, W. Mothes, M. W. Davidson, D. Toomre, and J. Bewersdorf, “Video-rate nanoscopy using sCMOS camera-specific single-molecule localization algorithms,” Nat. Methods 10, 653–658 (2013).
[Crossref]

Nat. Photonics (1)

S. Jia, J. C. Vaughan, and X. Zhuang, “Isotropic three-dimensional super-resolution imaging with a self-bending point spread function,” Nat. Photonics 8, 302–306 (2014).
[Crossref]

Nature (3)

A. Pertsinidis, Y. Zhang, and S. Chu, “Subnanometre single-molecule localization, registration and distance measurements,” Nature 466, 647–651 (2010).
[Crossref]

J. R. James and R. D. Vale, “Biophysical mechanism of T-cell receptor triggering in a reconstituted system,” Nature 487, 227–230 (2012).
[Crossref]

J. Gelles, B. J. Schnapp, and M. P. Sheetz, “Tracking kinesin-driven movements with nanometre-scale precision,” Nature 331, 450–453 (1988).
[Crossref]

Opt. Express (5)

Opt. Lett. (2)

Optica (1)

Phys. Rev. Lett. (1)

Y. Shechtman, S. J. Sahl, A. S. Backer, and W. E. Moerner, “Optimal point spread function design for 3D imaging,” Phys. Rev. Lett. 113, 133902 (2014).
[Crossref]

PLoS ONE (1)

D. Baddeley, D. Crossman, S. Rossberger, J. E. Cheyne, J. M. Montgomery, I. D. Jayasinghe, C. Cremer, M. B. Cannell, and C. Soeller, “4D super-resolution microscopy with conventional fluorophores and single wavelength excitation in optically thick cells and tissues,” PLoS ONE 6, e20645 (2011).
[Crossref]

Proc. Natl. Acad. Sci. USA (6)

M. P. Backlund, M. D. Lew, A. S. Backer, S. J. Sahl, G. Grover, A. Agrawal, R. Piestun, and W. E. Moerner, “Simultaneous, accurate measurement of the 3D position and orientation of single molecules,” Proc. Natl. Acad. Sci. USA 109, 19087–19092 (2012).
[Crossref]

S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, and W. E. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Proc. Natl. Acad. Sci. USA 106, 2995–2999 (2009).
[Crossref]

T. Schmidt, G. J. Schutz, W. Baumgartner, H. J. Gruber, and H. Schindler, “Imaging of single molecule diffusion,” Proc. Natl. Acad. Sci. USA 93, 2926–2929 (1996).
[Crossref]

A. Sharonov and R. M. Hochstrasser, “Wide-field subdiffraction imaging by accumulated binding of diffusing probes,” Proc. Natl. Acad. Sci. USA 103, 18911–18916 (2006).
[Crossref]

G. Shtengel, J. A. Galbraith, C. G. Galbraith, J. Lippincott-Schwartz, J. M. Gillette, S. Manley, R. Sougrat, C. M. Waterman, P. Kanchanawong, M. W. Davidson, R. D. Fetter, and H. F. Hess, “Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure,” Proc. Natl. Acad. Sci. USA 106, 3125–3130 (2009).
[Crossref]

A. Pertsinidis, K. Mukherjee, M. Sharma, Z. P. Pang, S. R. Park, Y. Zhang, A. T. Brunger, T. C. Südhof, and S. Chu, “Ultrahigh-resolution imaging reveals formation of neuronal SNARE/Munc18 complexes in situ,” Proc. Natl. Acad. Sci. USA 110, E2812–E2820 (2013).

Science (3)

M. A. DeWitt, A. Y. Chang, P. A. Combs, and A. Yildiz, “Cytoplasmic dynein moves through uncoordinated stepping of the AAA+ ring domains,” Science 335, 221–225 (2012).
[Crossref]

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref]

B. Huang, W. Wang, M. Bates, and X. Zhuang, “Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy,” Science 319, 810–813 (2008).
[Crossref]

Other (5)

J. W. Goodman, Introduction to Fourier Optics (Roberts, 2005).

M. D. Lew, A. R. S. von Diezmann, and W. E. Moerner, “Easy-DHPSF open-source software for three-dimensional localization of single molecules with precision beyond the optical diffraction limit,” Protocol Exchange (2013), doi: 10.1038/protex.2013.026.

M. Born and E. Wolf, Principles of Optics (Cambridge University, 1999).

W. T. Welford, Aberrations of Optical Systems (Adam Hilger, 1986).

J. A. Kubby, Adaptive Optics for Biological Imaging (CRC Press, 2013).

Supplementary Material (1)

NameDescription
» Supplement 1: PDF (5311 KB)      Supplemetal document

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Schematic of a 4f optical processing system using a transmissive phase mask. The full illumination path is not shown but is typical of a wide-field epifluorescence microscope, with illumination (green) provided by lasers coupled up to the sample, and collected fluorescence (red) sent through a separate detection path. BFP, back focal plane; PM, phase mask; FP, Fourier plane; IIP, intermediate image plane; IP; image plane; L, lens; OL, objective lens; TL, tube lens; DM, dichroic mirror; M, mirror; EMCCD, electron-multiplying charge-coupled device camera. Inset: the DH-PSF and astigmatism phase mask patterns. (b) Images of the DH-PSF and astigmatic PSF at various levels of defocus, as taken from a calibration scan acquired with fluorescence from a single hole of a NHA (Fig. 2), using a SLM to generate the double-helix and astigmatism phase patterns. (Pixel size=160nm.)

Fig. 2.
Fig. 2.

Subdiffraction holes in a NHA function as regularly spaced fluorescent point emitters. (a) Schematic depicting nanohole geometry. Wide-field epi-illumination (green) passes through the glass coverslip into a nanohole etched into a layer of aluminum. An aqueous solution of fluorescent dyes fills the nanohole from the top, and the spatially restricted light emitted from dyes diffusing within the nanohole (orange) is detected from below, as shown in Fig. 1, mimicking a point emitter. (b) Scanning electron microscope image of a NHA, showing the pitch of 2.5 μm and hole diameters of 200nm. (c) Images of the DH-PSF acquired using the NHA in (b) when filled with fluorescent dyes. Scale bar: 5 μm. (d) Images of the DH-PSF as generated by 100 nm diameter fluorescent beads acquired using the same optical configuration as in (c).

Fig. 3.
Fig. 3.

Calibration scans using a NHA reveal field-dependent variations in the response of the DH-PSF for a setup using a transmissive phase mask. (a) The observed z positions, zobs, from a simultaneous z-scan of >100 nanoholes within a 30μm FOV. The z positions are extracted from the DH-PSF images of each nanohole using the calibration function θ(z) generated from a single nanohole over the defocus range zcal. The variation in zobs (colored lines) relative to the calibration nanohole (dotted black line) is described by a constant error zobs,0 ranging from 40 to 70 nm in addition to a variation in PSF response accuracy Δzobs/Δzcal, which itself changes over the calibration z range. (b) The interpolated spatial variation of zobs,0 (gray scale) between nanoholes [dots colored as in (a), calibration nanohole marked in white]. (c) The spatial variation of the residual errors in zobs,0 after removing planar sample tilt, zres,0. (d-f) The variation in DH-PSF 3D response described as the fractional departure of Δzobs/Δzcal from unity, i.e., (ΔzobsΔzcal)/Δzcal, at (d) 300nm, (e) 0 nm, and (f) +300nm defocus, interpolated between nanoholes. Note that the total magnitude of variation (60nm) is substantially greater than the effective z localization precision of the holes at each zcal step (2nm).

Fig. 4.
Fig. 4.

Calibration scans using a NHA compare the field-dependent variations in the response of the DH-PSF and the astigmatic PSF, with the phase masks encoded using a spatial light modulator. (a)–(c) describe the DH-PSF and (d)–(f) describe the astigmatic PSF. (a), (d) The observed z positions, zobs (colored lines), from a simultaneous z-scan of >150 nanoholes within an 33μm FOV. The images generated from each nanohole were fit using the calibration function generated from a single nanohole over the range of defocus positions zcal, with the black dotted line describing the response of the calibration nanohole. Inset: the interpolated spatial variation of zobs,0 with nanohole positions marked as color-coded dots. (b), (e) The spatial variation of the residual errors in zobs,0 after removing planar sample tilt, zres,0. (c), (f) The variation in 3D response described as the fractional departure of Δzobs/Δzcal from unity, i.e., (ΔzobsΔzcal)/Δzcal, at +300nm defocus. White dots: calibration nanohole.

Fig. 5.
Fig. 5.

Field-dependent z localization error for the DH-PSF imaging system characterized with a NHA in Fig. 3 is measured using fluorescent beads as test emitters and is reduced by using local rather than global calibrations. (a) The errors in 3D single-emitter localization when using a global calibration (nanohole shown in Fig. 3) for z position estimation throughout the FOV, measured as a function of z displacement relative to an initial position (z=0). (b) The field dependence of localization errors in (a) at z=300nm, with dots marking the positions of each bead, colored as in (a). (c) The errors for the single-emitter data in (a) when using a local calibration. (d) The field dependence of localization errors in (c) at z=300nm, with dots marking the positions of each bead, colored as in (d). (e) The z-localization errors for the FOV over the z range of 700 to 700 nm, described as the standard deviation of the surface interpolated between beads at each z slice. (f) The peak-to-peak range of the systematic errors for a 30 μm FOV over the z range of 700 to 700 nm, calculated from a plane fit to the errors at each z slice.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

E2(x,y)=F{eiψ(ξ,η)F{E1(x,y)}},
E2(x,y)=g(xx,yy)E1(x,y)dxdy,
E2(x,y)=h(x,y;x,y)E1(x,y)dxdy,

Metrics