Abstract

Silicon single-photon avalanche diodes (SPADs) are core devices for single-photon detection in the visible and the near-infrared wavelength range and are widely used in many fields such as astronomy, biology, lidar, quantum optics, and quantum information. Due to limitations in their structural design and fabrication, however, the key parameters of detection efficiency and timing jitter cannot be optimized simultaneously. Here, we propose a nanostructured silicon SPAD that achieves high detection efficiency with excellent timing jitter over a broad spectral range. Our optical and electrical simulations show significant performance enhancement compared to conventional silicon SPAD devices. This nanostructured device can be easily fabricated and is thus well suited for practical applications.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
A first single-photon avalanche diode fabricated in standard SOI CMOS technology with a full characterization of the device

Myung-Jae Lee, Pengfei Sun, and Edoardo Charbon
Opt. Express 23(10) 13200-13209 (2015)

Avalanche photodiodes and quenching circuits for single-photon detection

S. Cova, M. Ghioni, A. Lacaita, C. Samori, and F. Zappa
Appl. Opt. 35(12) 1956-1976 (1996)

Design considerations of high-performance InGaAs/InP single-photon avalanche diodes for quantum key distribution

Jian Ma, Bing Bai, Liu-Jun Wang, Cun-Zhu Tong, Ge Jin, Jun Zhang, and Jian-Wei Pan
Appl. Opt. 55(27) 7497-7502 (2016)

References

  • View by:
  • |
  • |
  • |

  1. N. Nightingale, “A new silicon avalanche photodiode photon counting detector module for astronomy,” Exp. Astron. 1, 407–422 (1990).
    [Crossref]
  2. D. Dravins, D. Faria, and B. Nilsson, “Avalanche diodes as photon-counting detectors in astronomical photometry,” in Astronomical Telescopes and Instrumentation (International Society for Optics and Photonics, 2000), pp. 298–307.
  3. L.-Q. Li and L. M. Davis, “Single photon avalanche diode for single molecule detection,” Rev. Sci. Instrum. 64, 1524–1529 (1993).
    [Crossref]
  4. W. Becker, Advanced Time-Correlated Single Photon Counting Techniques (Springer, 2005), Vol. 81.
  5. W. Moerner and D. P. Fromm, “Methods of single-molecule fluorescence spectroscopy and microscopy,” Rev. Sci. Instrum. 74, 3597–3619 (2003).
    [Crossref]
  6. J. D. Spinhirne, “Micro pulse lidar,” IEEE Trans. Geosci. Remote Sens. 31, 48–55 (1993).
    [Crossref]
  7. M. A. Albota, R. M. Heinrichs, D. G. Kocher, D. G. Fouche, B. E. Player, M. E. O’Brien, B. F. Aull, J. J. Zayhowski, J. Mooney, B. C. Willard, and R. R. Carlson, “Three-dimensional imaging laser radar with a photon-counting avalanche photodiode array and microchip laser,” Appl. Opt. 41, 7671–7678 (2002).
    [Crossref]
  8. G. Weihs, T. Jennewein, C. Simon, H. Weinfurter, and A. Zeilinger, “Violation of Bell’s inequality under strict Einstein locality conditions,” Phys. Rev. Lett. 81, 5039–5043 (1998).
    [Crossref]
  9. D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).
    [Crossref]
  10. R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photonics 3, 696–705 (2009).
    [Crossref]
  11. Hamamatsu Photonics K. K., Photomultiplier Tubes: Basics and Applications, 3rd ed. (2007).
  12. Excelitas Technologies, SPCM-AQ Single-Photon Counting Module (2013). Available: www.excelitas.com .
  13. S. Cova, M. Ghioni, A. Lacaita, C. Samori, and F. Zappa, “Avalanche photodiodes and quenching circuits for single-photon detection,” Appl. Opt. 35, 1956–1976 (1996).
    [Crossref]
  14. A. Lacaita, M. Ghioni, and S. Cova, “Double epitaxy improves single-photon avalanche diode performance,” Electron. Lett. 25, 841–843 (1989).
    [Crossref]
  15. Photon Counting Detector Module, PDM Series (2014). Available: www.micro-photon-devices.com .
  16. M. Ghioni, G. Armellini, P. Maccagnani, I. Rech, M. K. Emsley, and M. S. Ünlü, “Resonant-cavity-enhanced single-photon avalanche diodes on reflecting silicon substrates,” IEEE Photon. Technol. Lett. 20, 413–415 (2008).
    [Crossref]
  17. E. Yablonovitch, “Statistical ray optics,” J. Opt. Soc. Am. 72, 899–907 (1982).
    [Crossref]
  18. Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A. 107, 17491–17496 (2010).
    [Crossref]
  19. J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9, 279–282 (2009).
    [Crossref]
  20. Z. Li, B. K. Nayak, V. V. Iyengar, D. McIntosh, Q. Zhou, M. C. Gupta, and J. C. Campbell, “Laser-textured silicon photodiode with broadband spectral response,” Appl. Opt. 50, 2508–2511 (2011).
    [Crossref]
  21. P. Campbell and M. A. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys. 62, 243–249 (1987).
    [Crossref]
  22. Z. Yu, A. Raman, and S. Fan, “Thermodynamic upper bound on broadband light coupling with photonic structures,” Phys. Rev. Lett. 109, 173901 (2012).
    [Crossref]
  23. K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett. 12, 1616–1619 (2012).
    [Crossref]
  24. V. Liu and S. Fan, “S 4: a free electromagnetic solver for layered periodic structures,” Comput. Phys. Commun. 183, 2233–2244 (2012).
    [Crossref]
  25. L. Li, “New formulation of the Fourier modal method for crossed surface-relief gratings,” J. Opt. Soc. Am. A 14, 2758–2767 (1997).
    [Crossref]
  26. S. G. Tikhodeev, A. Yablonskii, E. Muljarov, N. Gippius, and T. Ishihara, “Quasiguided modes and optical properties of photonic crystal slabs,” Phys. Rev. B 66, 045102 (2002).
    [Crossref]
  27. A. Gulinatti, I. Rech, S. Fumagalli, M. Assanelli, M. Ghioni, and S. D. Cova, “Modeling photon detection efficiency and temporal response of single photon avalanche diodes,” Proc. SPIE 7355, 73550X (2009).
    [Crossref]
  28. A. Spinelli and A. L. Lacaita, “Physics and numerical simulation of single photon avalanche diodes,” IEEE Trans. Electron Devices 44, 1931–1943 (1997).
    [Crossref]
  29. S. Tan, D. Ong, and H. Yow, “Theoretical analysis of breakdown probabilities and jitter in single-photon avalanche diodes,” J. Appl. Phys. 102, 044506 (2007).
    [Crossref]
  30. T. Rang, “The impact ionisation coefficient of carriers and their temperature dependence in silicon,” Radioelectronics and Communication Systems 28, 91–93 (1985).
  31. A. Spinelli and A. L. Lacaita, “Mean gain of avalanche photodiodes in a dead space model,” IEEE Trans. Electron Devices 43, 23–30 (1996).
    [Crossref]
  32. C. Tan, J. Ng, G. Rees, and J. David, “Statistics of avalanche current buildup time in single-photon avalanche diodes,” IEEE J. Sel. Top. Quantum Electron. 13, 906–910 (2007).
    [Crossref]
  33. A. Lacaita, A. Spinelli, and S. Longhi, “Avalanche transients in shallow p-n junctions biased above breakdown,” Appl. Phys. Lett. 67, 2627–2629 (1995).
    [Crossref]
  34. C. M. Natarajan, M. G. Tanner, and R. H. Hadfield, “Superconducting nanowire single-photon detectors: physics and applications,” Supercond. Sci. Technol. 25, 063001 (2012).
    [Crossref]
  35. A. Gulinatti, I. Rech, P. Maccagnani, M. Ghioni, and S. Cova, “Improving the performance of silicon single photon avalanche diodes,” Proc. SPIE 8033, 803302 (2011).
    [Crossref]
  36. K. C. Sahoo, M.-K. Lin, E.-Y. Chang, T. B. Tinh, Y. Li, and J.-H. Huang, “Silicon nitride nanopillars and nanocones formed by nickel nanoclusters and inductively coupled plasma etching for solar cell application,” Jpn. J. Appl. Phys. 48, 126508 (2009).
    [Crossref]
  37. S. Wang, B. D. Weil, Y. Li, K. X. Wang, E. Garnett, S. Fan, and Y. Cui, “Large-area free-standing ultrathin single-crystal silicon as processable materials,” Nano Lett. 13, 4393–4398 (2013).
    [Crossref]

2013 (1)

S. Wang, B. D. Weil, Y. Li, K. X. Wang, E. Garnett, S. Fan, and Y. Cui, “Large-area free-standing ultrathin single-crystal silicon as processable materials,” Nano Lett. 13, 4393–4398 (2013).
[Crossref]

2012 (4)

C. M. Natarajan, M. G. Tanner, and R. H. Hadfield, “Superconducting nanowire single-photon detectors: physics and applications,” Supercond. Sci. Technol. 25, 063001 (2012).
[Crossref]

Z. Yu, A. Raman, and S. Fan, “Thermodynamic upper bound on broadband light coupling with photonic structures,” Phys. Rev. Lett. 109, 173901 (2012).
[Crossref]

K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett. 12, 1616–1619 (2012).
[Crossref]

V. Liu and S. Fan, “S 4: a free electromagnetic solver for layered periodic structures,” Comput. Phys. Commun. 183, 2233–2244 (2012).
[Crossref]

2011 (2)

A. Gulinatti, I. Rech, P. Maccagnani, M. Ghioni, and S. Cova, “Improving the performance of silicon single photon avalanche diodes,” Proc. SPIE 8033, 803302 (2011).
[Crossref]

Z. Li, B. K. Nayak, V. V. Iyengar, D. McIntosh, Q. Zhou, M. C. Gupta, and J. C. Campbell, “Laser-textured silicon photodiode with broadband spectral response,” Appl. Opt. 50, 2508–2511 (2011).
[Crossref]

2010 (1)

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A. 107, 17491–17496 (2010).
[Crossref]

2009 (4)

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9, 279–282 (2009).
[Crossref]

A. Gulinatti, I. Rech, S. Fumagalli, M. Assanelli, M. Ghioni, and S. D. Cova, “Modeling photon detection efficiency and temporal response of single photon avalanche diodes,” Proc. SPIE 7355, 73550X (2009).
[Crossref]

R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photonics 3, 696–705 (2009).
[Crossref]

K. C. Sahoo, M.-K. Lin, E.-Y. Chang, T. B. Tinh, Y. Li, and J.-H. Huang, “Silicon nitride nanopillars and nanocones formed by nickel nanoclusters and inductively coupled plasma etching for solar cell application,” Jpn. J. Appl. Phys. 48, 126508 (2009).
[Crossref]

2008 (1)

M. Ghioni, G. Armellini, P. Maccagnani, I. Rech, M. K. Emsley, and M. S. Ünlü, “Resonant-cavity-enhanced single-photon avalanche diodes on reflecting silicon substrates,” IEEE Photon. Technol. Lett. 20, 413–415 (2008).
[Crossref]

2007 (2)

S. Tan, D. Ong, and H. Yow, “Theoretical analysis of breakdown probabilities and jitter in single-photon avalanche diodes,” J. Appl. Phys. 102, 044506 (2007).
[Crossref]

C. Tan, J. Ng, G. Rees, and J. David, “Statistics of avalanche current buildup time in single-photon avalanche diodes,” IEEE J. Sel. Top. Quantum Electron. 13, 906–910 (2007).
[Crossref]

2003 (1)

W. Moerner and D. P. Fromm, “Methods of single-molecule fluorescence spectroscopy and microscopy,” Rev. Sci. Instrum. 74, 3597–3619 (2003).
[Crossref]

2002 (2)

1998 (1)

G. Weihs, T. Jennewein, C. Simon, H. Weinfurter, and A. Zeilinger, “Violation of Bell’s inequality under strict Einstein locality conditions,” Phys. Rev. Lett. 81, 5039–5043 (1998).
[Crossref]

1997 (3)

D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).
[Crossref]

A. Spinelli and A. L. Lacaita, “Physics and numerical simulation of single photon avalanche diodes,” IEEE Trans. Electron Devices 44, 1931–1943 (1997).
[Crossref]

L. Li, “New formulation of the Fourier modal method for crossed surface-relief gratings,” J. Opt. Soc. Am. A 14, 2758–2767 (1997).
[Crossref]

1996 (2)

S. Cova, M. Ghioni, A. Lacaita, C. Samori, and F. Zappa, “Avalanche photodiodes and quenching circuits for single-photon detection,” Appl. Opt. 35, 1956–1976 (1996).
[Crossref]

A. Spinelli and A. L. Lacaita, “Mean gain of avalanche photodiodes in a dead space model,” IEEE Trans. Electron Devices 43, 23–30 (1996).
[Crossref]

1995 (1)

A. Lacaita, A. Spinelli, and S. Longhi, “Avalanche transients in shallow p-n junctions biased above breakdown,” Appl. Phys. Lett. 67, 2627–2629 (1995).
[Crossref]

1993 (2)

J. D. Spinhirne, “Micro pulse lidar,” IEEE Trans. Geosci. Remote Sens. 31, 48–55 (1993).
[Crossref]

L.-Q. Li and L. M. Davis, “Single photon avalanche diode for single molecule detection,” Rev. Sci. Instrum. 64, 1524–1529 (1993).
[Crossref]

1990 (1)

N. Nightingale, “A new silicon avalanche photodiode photon counting detector module for astronomy,” Exp. Astron. 1, 407–422 (1990).
[Crossref]

1989 (1)

A. Lacaita, M. Ghioni, and S. Cova, “Double epitaxy improves single-photon avalanche diode performance,” Electron. Lett. 25, 841–843 (1989).
[Crossref]

1987 (1)

P. Campbell and M. A. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys. 62, 243–249 (1987).
[Crossref]

1985 (1)

T. Rang, “The impact ionisation coefficient of carriers and their temperature dependence in silicon,” Radioelectronics and Communication Systems 28, 91–93 (1985).

1982 (1)

Albota, M. A.

Armellini, G.

M. Ghioni, G. Armellini, P. Maccagnani, I. Rech, M. K. Emsley, and M. S. Ünlü, “Resonant-cavity-enhanced single-photon avalanche diodes on reflecting silicon substrates,” IEEE Photon. Technol. Lett. 20, 413–415 (2008).
[Crossref]

Assanelli, M.

A. Gulinatti, I. Rech, S. Fumagalli, M. Assanelli, M. Ghioni, and S. D. Cova, “Modeling photon detection efficiency and temporal response of single photon avalanche diodes,” Proc. SPIE 7355, 73550X (2009).
[Crossref]

Aull, B. F.

Becker, W.

W. Becker, Advanced Time-Correlated Single Photon Counting Techniques (Springer, 2005), Vol. 81.

Bouwmeester, D.

D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).
[Crossref]

Burkhard, G. F.

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9, 279–282 (2009).
[Crossref]

Campbell, J. C.

Campbell, P.

P. Campbell and M. A. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys. 62, 243–249 (1987).
[Crossref]

Carlson, R. R.

Chang, E.-Y.

K. C. Sahoo, M.-K. Lin, E.-Y. Chang, T. B. Tinh, Y. Li, and J.-H. Huang, “Silicon nitride nanopillars and nanocones formed by nickel nanoclusters and inductively coupled plasma etching for solar cell application,” Jpn. J. Appl. Phys. 48, 126508 (2009).
[Crossref]

Connor, S. T.

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9, 279–282 (2009).
[Crossref]

Cova, S.

A. Gulinatti, I. Rech, P. Maccagnani, M. Ghioni, and S. Cova, “Improving the performance of silicon single photon avalanche diodes,” Proc. SPIE 8033, 803302 (2011).
[Crossref]

S. Cova, M. Ghioni, A. Lacaita, C. Samori, and F. Zappa, “Avalanche photodiodes and quenching circuits for single-photon detection,” Appl. Opt. 35, 1956–1976 (1996).
[Crossref]

A. Lacaita, M. Ghioni, and S. Cova, “Double epitaxy improves single-photon avalanche diode performance,” Electron. Lett. 25, 841–843 (1989).
[Crossref]

Cova, S. D.

A. Gulinatti, I. Rech, S. Fumagalli, M. Assanelli, M. Ghioni, and S. D. Cova, “Modeling photon detection efficiency and temporal response of single photon avalanche diodes,” Proc. SPIE 7355, 73550X (2009).
[Crossref]

Cui, Y.

S. Wang, B. D. Weil, Y. Li, K. X. Wang, E. Garnett, S. Fan, and Y. Cui, “Large-area free-standing ultrathin single-crystal silicon as processable materials,” Nano Lett. 13, 4393–4398 (2013).
[Crossref]

K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett. 12, 1616–1619 (2012).
[Crossref]

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9, 279–282 (2009).
[Crossref]

David, J.

C. Tan, J. Ng, G. Rees, and J. David, “Statistics of avalanche current buildup time in single-photon avalanche diodes,” IEEE J. Sel. Top. Quantum Electron. 13, 906–910 (2007).
[Crossref]

Davis, L. M.

L.-Q. Li and L. M. Davis, “Single photon avalanche diode for single molecule detection,” Rev. Sci. Instrum. 64, 1524–1529 (1993).
[Crossref]

Dravins, D.

D. Dravins, D. Faria, and B. Nilsson, “Avalanche diodes as photon-counting detectors in astronomical photometry,” in Astronomical Telescopes and Instrumentation (International Society for Optics and Photonics, 2000), pp. 298–307.

Eibl, M.

D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).
[Crossref]

Emsley, M. K.

M. Ghioni, G. Armellini, P. Maccagnani, I. Rech, M. K. Emsley, and M. S. Ünlü, “Resonant-cavity-enhanced single-photon avalanche diodes on reflecting silicon substrates,” IEEE Photon. Technol. Lett. 20, 413–415 (2008).
[Crossref]

Fan, S.

S. Wang, B. D. Weil, Y. Li, K. X. Wang, E. Garnett, S. Fan, and Y. Cui, “Large-area free-standing ultrathin single-crystal silicon as processable materials,” Nano Lett. 13, 4393–4398 (2013).
[Crossref]

K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett. 12, 1616–1619 (2012).
[Crossref]

Z. Yu, A. Raman, and S. Fan, “Thermodynamic upper bound on broadband light coupling with photonic structures,” Phys. Rev. Lett. 109, 173901 (2012).
[Crossref]

V. Liu and S. Fan, “S 4: a free electromagnetic solver for layered periodic structures,” Comput. Phys. Commun. 183, 2233–2244 (2012).
[Crossref]

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A. 107, 17491–17496 (2010).
[Crossref]

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9, 279–282 (2009).
[Crossref]

Faria, D.

D. Dravins, D. Faria, and B. Nilsson, “Avalanche diodes as photon-counting detectors in astronomical photometry,” in Astronomical Telescopes and Instrumentation (International Society for Optics and Photonics, 2000), pp. 298–307.

Fouche, D. G.

Fromm, D. P.

W. Moerner and D. P. Fromm, “Methods of single-molecule fluorescence spectroscopy and microscopy,” Rev. Sci. Instrum. 74, 3597–3619 (2003).
[Crossref]

Fumagalli, S.

A. Gulinatti, I. Rech, S. Fumagalli, M. Assanelli, M. Ghioni, and S. D. Cova, “Modeling photon detection efficiency and temporal response of single photon avalanche diodes,” Proc. SPIE 7355, 73550X (2009).
[Crossref]

Garnett, E.

S. Wang, B. D. Weil, Y. Li, K. X. Wang, E. Garnett, S. Fan, and Y. Cui, “Large-area free-standing ultrathin single-crystal silicon as processable materials,” Nano Lett. 13, 4393–4398 (2013).
[Crossref]

Ghioni, M.

A. Gulinatti, I. Rech, P. Maccagnani, M. Ghioni, and S. Cova, “Improving the performance of silicon single photon avalanche diodes,” Proc. SPIE 8033, 803302 (2011).
[Crossref]

A. Gulinatti, I. Rech, S. Fumagalli, M. Assanelli, M. Ghioni, and S. D. Cova, “Modeling photon detection efficiency and temporal response of single photon avalanche diodes,” Proc. SPIE 7355, 73550X (2009).
[Crossref]

M. Ghioni, G. Armellini, P. Maccagnani, I. Rech, M. K. Emsley, and M. S. Ünlü, “Resonant-cavity-enhanced single-photon avalanche diodes on reflecting silicon substrates,” IEEE Photon. Technol. Lett. 20, 413–415 (2008).
[Crossref]

S. Cova, M. Ghioni, A. Lacaita, C. Samori, and F. Zappa, “Avalanche photodiodes and quenching circuits for single-photon detection,” Appl. Opt. 35, 1956–1976 (1996).
[Crossref]

A. Lacaita, M. Ghioni, and S. Cova, “Double epitaxy improves single-photon avalanche diode performance,” Electron. Lett. 25, 841–843 (1989).
[Crossref]

Gippius, N.

S. G. Tikhodeev, A. Yablonskii, E. Muljarov, N. Gippius, and T. Ishihara, “Quasiguided modes and optical properties of photonic crystal slabs,” Phys. Rev. B 66, 045102 (2002).
[Crossref]

Green, M. A.

P. Campbell and M. A. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys. 62, 243–249 (1987).
[Crossref]

Gulinatti, A.

A. Gulinatti, I. Rech, P. Maccagnani, M. Ghioni, and S. Cova, “Improving the performance of silicon single photon avalanche diodes,” Proc. SPIE 8033, 803302 (2011).
[Crossref]

A. Gulinatti, I. Rech, S. Fumagalli, M. Assanelli, M. Ghioni, and S. D. Cova, “Modeling photon detection efficiency and temporal response of single photon avalanche diodes,” Proc. SPIE 7355, 73550X (2009).
[Crossref]

Gupta, M. C.

Hadfield, R. H.

C. M. Natarajan, M. G. Tanner, and R. H. Hadfield, “Superconducting nanowire single-photon detectors: physics and applications,” Supercond. Sci. Technol. 25, 063001 (2012).
[Crossref]

R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photonics 3, 696–705 (2009).
[Crossref]

Heinrichs, R. M.

Hsu, C.-M.

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9, 279–282 (2009).
[Crossref]

Huang, J.-H.

K. C. Sahoo, M.-K. Lin, E.-Y. Chang, T. B. Tinh, Y. Li, and J.-H. Huang, “Silicon nitride nanopillars and nanocones formed by nickel nanoclusters and inductively coupled plasma etching for solar cell application,” Jpn. J. Appl. Phys. 48, 126508 (2009).
[Crossref]

Ishihara, T.

S. G. Tikhodeev, A. Yablonskii, E. Muljarov, N. Gippius, and T. Ishihara, “Quasiguided modes and optical properties of photonic crystal slabs,” Phys. Rev. B 66, 045102 (2002).
[Crossref]

Iyengar, V. V.

Jennewein, T.

G. Weihs, T. Jennewein, C. Simon, H. Weinfurter, and A. Zeilinger, “Violation of Bell’s inequality under strict Einstein locality conditions,” Phys. Rev. Lett. 81, 5039–5043 (1998).
[Crossref]

Kocher, D. G.

Lacaita, A.

S. Cova, M. Ghioni, A. Lacaita, C. Samori, and F. Zappa, “Avalanche photodiodes and quenching circuits for single-photon detection,” Appl. Opt. 35, 1956–1976 (1996).
[Crossref]

A. Lacaita, A. Spinelli, and S. Longhi, “Avalanche transients in shallow p-n junctions biased above breakdown,” Appl. Phys. Lett. 67, 2627–2629 (1995).
[Crossref]

A. Lacaita, M. Ghioni, and S. Cova, “Double epitaxy improves single-photon avalanche diode performance,” Electron. Lett. 25, 841–843 (1989).
[Crossref]

Lacaita, A. L.

A. Spinelli and A. L. Lacaita, “Physics and numerical simulation of single photon avalanche diodes,” IEEE Trans. Electron Devices 44, 1931–1943 (1997).
[Crossref]

A. Spinelli and A. L. Lacaita, “Mean gain of avalanche photodiodes in a dead space model,” IEEE Trans. Electron Devices 43, 23–30 (1996).
[Crossref]

Li, L.

Li, L.-Q.

L.-Q. Li and L. M. Davis, “Single photon avalanche diode for single molecule detection,” Rev. Sci. Instrum. 64, 1524–1529 (1993).
[Crossref]

Li, Y.

S. Wang, B. D. Weil, Y. Li, K. X. Wang, E. Garnett, S. Fan, and Y. Cui, “Large-area free-standing ultrathin single-crystal silicon as processable materials,” Nano Lett. 13, 4393–4398 (2013).
[Crossref]

K. C. Sahoo, M.-K. Lin, E.-Y. Chang, T. B. Tinh, Y. Li, and J.-H. Huang, “Silicon nitride nanopillars and nanocones formed by nickel nanoclusters and inductively coupled plasma etching for solar cell application,” Jpn. J. Appl. Phys. 48, 126508 (2009).
[Crossref]

Li, Z.

Lin, M.-K.

K. C. Sahoo, M.-K. Lin, E.-Y. Chang, T. B. Tinh, Y. Li, and J.-H. Huang, “Silicon nitride nanopillars and nanocones formed by nickel nanoclusters and inductively coupled plasma etching for solar cell application,” Jpn. J. Appl. Phys. 48, 126508 (2009).
[Crossref]

Liu, V.

V. Liu and S. Fan, “S 4: a free electromagnetic solver for layered periodic structures,” Comput. Phys. Commun. 183, 2233–2244 (2012).
[Crossref]

K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett. 12, 1616–1619 (2012).
[Crossref]

Longhi, S.

A. Lacaita, A. Spinelli, and S. Longhi, “Avalanche transients in shallow p-n junctions biased above breakdown,” Appl. Phys. Lett. 67, 2627–2629 (1995).
[Crossref]

Maccagnani, P.

A. Gulinatti, I. Rech, P. Maccagnani, M. Ghioni, and S. Cova, “Improving the performance of silicon single photon avalanche diodes,” Proc. SPIE 8033, 803302 (2011).
[Crossref]

M. Ghioni, G. Armellini, P. Maccagnani, I. Rech, M. K. Emsley, and M. S. Ünlü, “Resonant-cavity-enhanced single-photon avalanche diodes on reflecting silicon substrates,” IEEE Photon. Technol. Lett. 20, 413–415 (2008).
[Crossref]

Mattle, K.

D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).
[Crossref]

McGehee, M.

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9, 279–282 (2009).
[Crossref]

McIntosh, D.

Moerner, W.

W. Moerner and D. P. Fromm, “Methods of single-molecule fluorescence spectroscopy and microscopy,” Rev. Sci. Instrum. 74, 3597–3619 (2003).
[Crossref]

Mooney, J.

Muljarov, E.

S. G. Tikhodeev, A. Yablonskii, E. Muljarov, N. Gippius, and T. Ishihara, “Quasiguided modes and optical properties of photonic crystal slabs,” Phys. Rev. B 66, 045102 (2002).
[Crossref]

Natarajan, C. M.

C. M. Natarajan, M. G. Tanner, and R. H. Hadfield, “Superconducting nanowire single-photon detectors: physics and applications,” Supercond. Sci. Technol. 25, 063001 (2012).
[Crossref]

Nayak, B. K.

Ng, J.

C. Tan, J. Ng, G. Rees, and J. David, “Statistics of avalanche current buildup time in single-photon avalanche diodes,” IEEE J. Sel. Top. Quantum Electron. 13, 906–910 (2007).
[Crossref]

Nightingale, N.

N. Nightingale, “A new silicon avalanche photodiode photon counting detector module for astronomy,” Exp. Astron. 1, 407–422 (1990).
[Crossref]

Nilsson, B.

D. Dravins, D. Faria, and B. Nilsson, “Avalanche diodes as photon-counting detectors in astronomical photometry,” in Astronomical Telescopes and Instrumentation (International Society for Optics and Photonics, 2000), pp. 298–307.

O’Brien, M. E.

Ong, D.

S. Tan, D. Ong, and H. Yow, “Theoretical analysis of breakdown probabilities and jitter in single-photon avalanche diodes,” J. Appl. Phys. 102, 044506 (2007).
[Crossref]

Pan, J.-W.

D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).
[Crossref]

Player, B. E.

Raman, A.

Z. Yu, A. Raman, and S. Fan, “Thermodynamic upper bound on broadband light coupling with photonic structures,” Phys. Rev. Lett. 109, 173901 (2012).
[Crossref]

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A. 107, 17491–17496 (2010).
[Crossref]

Rang, T.

T. Rang, “The impact ionisation coefficient of carriers and their temperature dependence in silicon,” Radioelectronics and Communication Systems 28, 91–93 (1985).

Rech, I.

A. Gulinatti, I. Rech, P. Maccagnani, M. Ghioni, and S. Cova, “Improving the performance of silicon single photon avalanche diodes,” Proc. SPIE 8033, 803302 (2011).
[Crossref]

A. Gulinatti, I. Rech, S. Fumagalli, M. Assanelli, M. Ghioni, and S. D. Cova, “Modeling photon detection efficiency and temporal response of single photon avalanche diodes,” Proc. SPIE 7355, 73550X (2009).
[Crossref]

M. Ghioni, G. Armellini, P. Maccagnani, I. Rech, M. K. Emsley, and M. S. Ünlü, “Resonant-cavity-enhanced single-photon avalanche diodes on reflecting silicon substrates,” IEEE Photon. Technol. Lett. 20, 413–415 (2008).
[Crossref]

Rees, G.

C. Tan, J. Ng, G. Rees, and J. David, “Statistics of avalanche current buildup time in single-photon avalanche diodes,” IEEE J. Sel. Top. Quantum Electron. 13, 906–910 (2007).
[Crossref]

Sahoo, K. C.

K. C. Sahoo, M.-K. Lin, E.-Y. Chang, T. B. Tinh, Y. Li, and J.-H. Huang, “Silicon nitride nanopillars and nanocones formed by nickel nanoclusters and inductively coupled plasma etching for solar cell application,” Jpn. J. Appl. Phys. 48, 126508 (2009).
[Crossref]

Samori, C.

Simon, C.

G. Weihs, T. Jennewein, C. Simon, H. Weinfurter, and A. Zeilinger, “Violation of Bell’s inequality under strict Einstein locality conditions,” Phys. Rev. Lett. 81, 5039–5043 (1998).
[Crossref]

Spinelli, A.

A. Spinelli and A. L. Lacaita, “Physics and numerical simulation of single photon avalanche diodes,” IEEE Trans. Electron Devices 44, 1931–1943 (1997).
[Crossref]

A. Spinelli and A. L. Lacaita, “Mean gain of avalanche photodiodes in a dead space model,” IEEE Trans. Electron Devices 43, 23–30 (1996).
[Crossref]

A. Lacaita, A. Spinelli, and S. Longhi, “Avalanche transients in shallow p-n junctions biased above breakdown,” Appl. Phys. Lett. 67, 2627–2629 (1995).
[Crossref]

Spinhirne, J. D.

J. D. Spinhirne, “Micro pulse lidar,” IEEE Trans. Geosci. Remote Sens. 31, 48–55 (1993).
[Crossref]

Tan, C.

C. Tan, J. Ng, G. Rees, and J. David, “Statistics of avalanche current buildup time in single-photon avalanche diodes,” IEEE J. Sel. Top. Quantum Electron. 13, 906–910 (2007).
[Crossref]

Tan, S.

S. Tan, D. Ong, and H. Yow, “Theoretical analysis of breakdown probabilities and jitter in single-photon avalanche diodes,” J. Appl. Phys. 102, 044506 (2007).
[Crossref]

Tanner, M. G.

C. M. Natarajan, M. G. Tanner, and R. H. Hadfield, “Superconducting nanowire single-photon detectors: physics and applications,” Supercond. Sci. Technol. 25, 063001 (2012).
[Crossref]

Tikhodeev, S. G.

S. G. Tikhodeev, A. Yablonskii, E. Muljarov, N. Gippius, and T. Ishihara, “Quasiguided modes and optical properties of photonic crystal slabs,” Phys. Rev. B 66, 045102 (2002).
[Crossref]

Tinh, T. B.

K. C. Sahoo, M.-K. Lin, E.-Y. Chang, T. B. Tinh, Y. Li, and J.-H. Huang, “Silicon nitride nanopillars and nanocones formed by nickel nanoclusters and inductively coupled plasma etching for solar cell application,” Jpn. J. Appl. Phys. 48, 126508 (2009).
[Crossref]

Ünlü, M. S.

M. Ghioni, G. Armellini, P. Maccagnani, I. Rech, M. K. Emsley, and M. S. Ünlü, “Resonant-cavity-enhanced single-photon avalanche diodes on reflecting silicon substrates,” IEEE Photon. Technol. Lett. 20, 413–415 (2008).
[Crossref]

Wang, K. X.

S. Wang, B. D. Weil, Y. Li, K. X. Wang, E. Garnett, S. Fan, and Y. Cui, “Large-area free-standing ultrathin single-crystal silicon as processable materials,” Nano Lett. 13, 4393–4398 (2013).
[Crossref]

K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett. 12, 1616–1619 (2012).
[Crossref]

Wang, Q.

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9, 279–282 (2009).
[Crossref]

Wang, S.

S. Wang, B. D. Weil, Y. Li, K. X. Wang, E. Garnett, S. Fan, and Y. Cui, “Large-area free-standing ultrathin single-crystal silicon as processable materials,” Nano Lett. 13, 4393–4398 (2013).
[Crossref]

Weihs, G.

G. Weihs, T. Jennewein, C. Simon, H. Weinfurter, and A. Zeilinger, “Violation of Bell’s inequality under strict Einstein locality conditions,” Phys. Rev. Lett. 81, 5039–5043 (1998).
[Crossref]

Weil, B. D.

S. Wang, B. D. Weil, Y. Li, K. X. Wang, E. Garnett, S. Fan, and Y. Cui, “Large-area free-standing ultrathin single-crystal silicon as processable materials,” Nano Lett. 13, 4393–4398 (2013).
[Crossref]

Weinfurter, H.

G. Weihs, T. Jennewein, C. Simon, H. Weinfurter, and A. Zeilinger, “Violation of Bell’s inequality under strict Einstein locality conditions,” Phys. Rev. Lett. 81, 5039–5043 (1998).
[Crossref]

D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).
[Crossref]

Willard, B. C.

Xu, Y.

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9, 279–282 (2009).
[Crossref]

Yablonovitch, E.

Yablonskii, A.

S. G. Tikhodeev, A. Yablonskii, E. Muljarov, N. Gippius, and T. Ishihara, “Quasiguided modes and optical properties of photonic crystal slabs,” Phys. Rev. B 66, 045102 (2002).
[Crossref]

Yow, H.

S. Tan, D. Ong, and H. Yow, “Theoretical analysis of breakdown probabilities and jitter in single-photon avalanche diodes,” J. Appl. Phys. 102, 044506 (2007).
[Crossref]

Yu, Z.

K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett. 12, 1616–1619 (2012).
[Crossref]

Z. Yu, A. Raman, and S. Fan, “Thermodynamic upper bound on broadband light coupling with photonic structures,” Phys. Rev. Lett. 109, 173901 (2012).
[Crossref]

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A. 107, 17491–17496 (2010).
[Crossref]

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9, 279–282 (2009).
[Crossref]

Zappa, F.

Zayhowski, J. J.

Zeilinger, A.

G. Weihs, T. Jennewein, C. Simon, H. Weinfurter, and A. Zeilinger, “Violation of Bell’s inequality under strict Einstein locality conditions,” Phys. Rev. Lett. 81, 5039–5043 (1998).
[Crossref]

D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).
[Crossref]

Zhou, Q.

Zhu, J.

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9, 279–282 (2009).
[Crossref]

Appl. Opt. (3)

Appl. Phys. Lett. (1)

A. Lacaita, A. Spinelli, and S. Longhi, “Avalanche transients in shallow p-n junctions biased above breakdown,” Appl. Phys. Lett. 67, 2627–2629 (1995).
[Crossref]

Comput. Phys. Commun. (1)

V. Liu and S. Fan, “S 4: a free electromagnetic solver for layered periodic structures,” Comput. Phys. Commun. 183, 2233–2244 (2012).
[Crossref]

Electron. Lett. (1)

A. Lacaita, M. Ghioni, and S. Cova, “Double epitaxy improves single-photon avalanche diode performance,” Electron. Lett. 25, 841–843 (1989).
[Crossref]

Exp. Astron. (1)

N. Nightingale, “A new silicon avalanche photodiode photon counting detector module for astronomy,” Exp. Astron. 1, 407–422 (1990).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

C. Tan, J. Ng, G. Rees, and J. David, “Statistics of avalanche current buildup time in single-photon avalanche diodes,” IEEE J. Sel. Top. Quantum Electron. 13, 906–910 (2007).
[Crossref]

IEEE Photon. Technol. Lett. (1)

M. Ghioni, G. Armellini, P. Maccagnani, I. Rech, M. K. Emsley, and M. S. Ünlü, “Resonant-cavity-enhanced single-photon avalanche diodes on reflecting silicon substrates,” IEEE Photon. Technol. Lett. 20, 413–415 (2008).
[Crossref]

IEEE Trans. Electron Devices (2)

A. Spinelli and A. L. Lacaita, “Physics and numerical simulation of single photon avalanche diodes,” IEEE Trans. Electron Devices 44, 1931–1943 (1997).
[Crossref]

A. Spinelli and A. L. Lacaita, “Mean gain of avalanche photodiodes in a dead space model,” IEEE Trans. Electron Devices 43, 23–30 (1996).
[Crossref]

IEEE Trans. Geosci. Remote Sens. (1)

J. D. Spinhirne, “Micro pulse lidar,” IEEE Trans. Geosci. Remote Sens. 31, 48–55 (1993).
[Crossref]

J. Appl. Phys. (2)

P. Campbell and M. A. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys. 62, 243–249 (1987).
[Crossref]

S. Tan, D. Ong, and H. Yow, “Theoretical analysis of breakdown probabilities and jitter in single-photon avalanche diodes,” J. Appl. Phys. 102, 044506 (2007).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

Jpn. J. Appl. Phys. (1)

K. C. Sahoo, M.-K. Lin, E.-Y. Chang, T. B. Tinh, Y. Li, and J.-H. Huang, “Silicon nitride nanopillars and nanocones formed by nickel nanoclusters and inductively coupled plasma etching for solar cell application,” Jpn. J. Appl. Phys. 48, 126508 (2009).
[Crossref]

Nano Lett. (3)

S. Wang, B. D. Weil, Y. Li, K. X. Wang, E. Garnett, S. Fan, and Y. Cui, “Large-area free-standing ultrathin single-crystal silicon as processable materials,” Nano Lett. 13, 4393–4398 (2013).
[Crossref]

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9, 279–282 (2009).
[Crossref]

K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett. 12, 1616–1619 (2012).
[Crossref]

Nat. Photonics (1)

R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photonics 3, 696–705 (2009).
[Crossref]

Nature (1)

D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).
[Crossref]

Phys. Rev. B (1)

S. G. Tikhodeev, A. Yablonskii, E. Muljarov, N. Gippius, and T. Ishihara, “Quasiguided modes and optical properties of photonic crystal slabs,” Phys. Rev. B 66, 045102 (2002).
[Crossref]

Phys. Rev. Lett. (2)

Z. Yu, A. Raman, and S. Fan, “Thermodynamic upper bound on broadband light coupling with photonic structures,” Phys. Rev. Lett. 109, 173901 (2012).
[Crossref]

G. Weihs, T. Jennewein, C. Simon, H. Weinfurter, and A. Zeilinger, “Violation of Bell’s inequality under strict Einstein locality conditions,” Phys. Rev. Lett. 81, 5039–5043 (1998).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (1)

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A. 107, 17491–17496 (2010).
[Crossref]

Proc. SPIE (2)

A. Gulinatti, I. Rech, P. Maccagnani, M. Ghioni, and S. Cova, “Improving the performance of silicon single photon avalanche diodes,” Proc. SPIE 8033, 803302 (2011).
[Crossref]

A. Gulinatti, I. Rech, S. Fumagalli, M. Assanelli, M. Ghioni, and S. D. Cova, “Modeling photon detection efficiency and temporal response of single photon avalanche diodes,” Proc. SPIE 7355, 73550X (2009).
[Crossref]

Radioelectronics and Communication Systems (1)

T. Rang, “The impact ionisation coefficient of carriers and their temperature dependence in silicon,” Radioelectronics and Communication Systems 28, 91–93 (1985).

Rev. Sci. Instrum. (2)

W. Moerner and D. P. Fromm, “Methods of single-molecule fluorescence spectroscopy and microscopy,” Rev. Sci. Instrum. 74, 3597–3619 (2003).
[Crossref]

L.-Q. Li and L. M. Davis, “Single photon avalanche diode for single molecule detection,” Rev. Sci. Instrum. 64, 1524–1529 (1993).
[Crossref]

Supercond. Sci. Technol. (1)

C. M. Natarajan, M. G. Tanner, and R. H. Hadfield, “Superconducting nanowire single-photon detectors: physics and applications,” Supercond. Sci. Technol. 25, 063001 (2012).
[Crossref]

Other (5)

W. Becker, Advanced Time-Correlated Single Photon Counting Techniques (Springer, 2005), Vol. 81.

D. Dravins, D. Faria, and B. Nilsson, “Avalanche diodes as photon-counting detectors in astronomical photometry,” in Astronomical Telescopes and Instrumentation (International Society for Optics and Photonics, 2000), pp. 298–307.

Hamamatsu Photonics K. K., Photomultiplier Tubes: Basics and Applications, 3rd ed. (2007).

Excelitas Technologies, SPCM-AQ Single-Photon Counting Module (2013). Available: www.excelitas.com .

Photon Counting Detector Module, PDM Series (2014). Available: www.micro-photon-devices.com .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Structure of two silicon single-photon avalanche diodes (SPADs). (a) Nanostructured SPAD. There are silicon nitride nanocone gratings on the surface, and a silicon nanocone grating on the bottom. For the upper gratings, the period is 400 nm, and the base diameter and the height of the nanocones are 400 and 800 nm, respectively. For the lower gratings, the period is 800 nm, and the base diameter and the height of the nanocones are 750 and 250 nm, respectively. On the bottom of the device there is a silver layer with a thickness of 200 nm. Between the silver layer and the lower gratings there is a silicon oxide spacer layer with a thickness of 2000 nm. (b) Conventional flat-film SPAD. Compared with the nanostructured SPAD, all the gratings are removed, and an additional antireflection layer of silicon nitride with a thickness of 100 nm is placed on the top instead. The dimensions of other layers are the same as the nanostructured SPAD.

Fig. 2.
Fig. 2.

(a) Absorption spectrum of two SPADs. Black and green solid lines represent conventional thin-film structure and nanocone structure, respectively. The nanostructured SPAD has an absorption efficiency higher than 60% over the spectral range from 400 to 1000 nm. The difference between the two lines clearly shows the advantages of the nanostructure, particularly in the NIR region. The red dot line represents the theoretical limit of Eq. (2). (b) Detection efficiency as a function of wavelength with an excess bias voltage Vex=4V. Here we calculate the detection efficiency at a typical wavelength represented by solid dots, and the dotted line between solid dots is just for guiding.

Fig. 3.
Fig. 3.

Timing response of nanostructured SPAD at 800 nm, biased with excess bias voltage Vex=4V.

Fig. 4.
Fig. 4.

Timing jitter versus wavelength of two SPADs. Both SPADs are biased with the same excess bias voltage Vex=4V. The inset shows the excess voltage dependence of timing jitter at 900 nm for the nanocone SPAD.

Fig. 5.
Fig. 5.

Timing jitter as a function of detection efficiency for nanostructured SPAD and flat-film SPAD with thick depletion region. Both timing jitter and detection efficiency change with the increase of excess voltage; for some points the corresponding excess voltage has been indicated.

Fig. 6.
Fig. 6.

Thickness of the i-layer is increased to 3 μm. (a) Absorption spectrum for both structures when both structures have higher absorption efficiency. For the nanostructured SPAD (green solid line), the absorption efficiency is higher than 80% over the spectral range from 400 to 1000 nm. The red dot line represents the theoretical limit of Eq. (2). (b) Detection efficiency as a function of wavelength with Vex=11V.

Fig. 7.
Fig. 7.

Timing jitter as a function of excess voltage for the nanocone SPAD with thicker depletion region.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Pa=1eα·d,
Pau=111+4n2αd,
he(ξ)={0,ξdeαeexp[αe(ξde)],ξ>de,
σ=tb2tb2,

Metrics