Abstract

Conventional color imaging requires absorptive color-filter arrays, which exhibit low light transmission. Here, we replace the absorptive color-filter array with a transparent diffractive-filter array (DFA) and apply computational optics techniques to enable color imaging with a sensitivity that is enhanced by a factor as high as 3.12. The DFA diffracts incident light onto a conventional monochrome sensor array to create intensity distributions that are wavelength dependent. By first calibrating these wavelength-dependent intensity distributions and then applying computational techniques, we demonstrate single-shot hyperspectral imaging and absorption-free color imaging.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Hybrid-resolution multispectral imaging using color filter array

Yuri Murakami, Masahiro Yamaguchi, and Nagaaki Ohyama
Opt. Express 20(7) 7173-7183 (2012)

Combining transverse field detectors and color filter arrays to improve multispectral imaging systems

Miguel A. Martínez, Eva M. Valero, Javier Hernández-Andrés, Javier Romero, and Giacomo Langfelder
Appl. Opt. 53(13) C14-C24 (2014)

Spatial optical crosstalk in CMOS image sensors integrated with plasmonic color filters

Yan Yu, Qin Chen, Long Wen, Xin Hu, and Hui-Fang Zhang
Opt. Express 23(17) 21994-22003 (2015)

References

  • View by:
  • |
  • |
  • |

  1. B. E. Bayer, “Color imaging array,” U.S. Patent3,971,065 (July20, 1976).
  2. Y. Yu, L. Wen, S. Song, and Q. Chen, “Transmissive/reflective structural color filters: theory and applications,” J. Nanomater. 2014, 212637 (2014).
  3. N. Dean, “Colouring at the nanoscale,” Nat. Photonics 10, 15–16 (2015).
  4. P. B. Catrysee and B. A. Wandell, “Integrated color pixels in 0.18-μm complementary metal oxide semiconductor technology,” J. Opt. Soc. Am. A 20, 2293–2306 (2003).
    [Crossref]
  5. K. Kumar, H. Duan, R. S. Hegde, S. C. W. Koh, J. N. Wei, and J. K. W. Yang, “Printing colour at the optical diffraction limit,” Nat. Nanotechnol. 7, 557–561 (2012).
    [Crossref]
  6. Q. Chen, D. Das, D. Chitnis, K. Walls, T. D. Drysdale, S. Collins, and D. R. S. Cumming, “A CMOS image sensor integrated with plasmonic colour filters,” Plasmonics 7, 695–699 (2012).
    [Crossref]
  7. L. Lin and A. Roberts, “Angle-robust resonances in cross shaped aperture arrays,” Appl. Phys. Lett. 97, 061109 (2010).
    [Crossref]
  8. E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nat. Photonics 2, 161–164 (2008).
    [Crossref]
  9. S. Yokogawa, S. P. Burgos, and H. A. Atwater, “Plasmonic color filters for CMOS image sensor applications,” Nano Lett. 12, 4349–4354 (2012).
    [Crossref]
  10. S. P. Burgos, S. Yokogawa, and H. A. Atwater, “Color imaging via nearest neighbor hole coupling in plasmonic color filters integrated onto a complementary metal-oxide semiconductor image sensor,” ACS Nano 7, 10038–10047 (2013).
    [Crossref]
  11. K. Walls, Q. Chen, J. Grant, S. Collins, D. R. S. Cumming, and T. D. Drysdale, “Narrowband multispectral filter set for visible band,” Opt. Express 20, 21917–21923 (2012).
    [Crossref]
  12. A. F. Kaplan, T. Xu, and L. J. Guo, “High efficiency resonance based spectrum filters with tunable transmission bandwidth fabricated using nanoimprint lithography,” Appl. Phys. Lett. 99, 143111 (2011).
    [Crossref]
  13. M. J. Uddin and R. Magnusson, “Efficient guided-mode resonant tunable color filters,” IEEE Photon. Technol. Lett. 24, 1552–1554 (2012).
    [Crossref]
  14. L. Frey, P. Parrein, J. Raby, C. Pelle, D. Herault, M. Marty, and J. Michailos, “Color filters including infrared cut-off integrated on CMOS image sensor,” Opt. Express 19, 13073–13080 (2011).
    [Crossref]
  15. S. Nishiwaki, T. Nakamura, M. Hiramoto, T. Fujii, and M. Suzuki, “Efficient colour splitters for high-pixel-density image sensors,” Nat. Photonics 7, 240–246 (2013).
    [Crossref]
  16. A. Wagadarikar, R. John, R. Willett, and D. Brady, “Single disperser design for coded aperture snapshot spectral imaging,” Appl. Opt. 47, B44–B51 (2008).
    [Crossref]
  17. M. Jayapala, A. Lambrechts, N. Tack, B. Geelen, B. Masschelein, and P. Soussan, “Monolithic integration of flexible spectral filters with CMOS image sensors at wafer level for low cost hyperspectral imaging,” in International Image Sensor Workshop (Snowbird, 2013).
  18. L. J. Guo, “Recent progress in nanoimprint technology and its applications,” J. Phys. D 37, R123–R141 (2004).
    [Crossref]
  19. M. D. Galus, E. Moon, H. I. Smith, and R. Menon, “Replication of diffractive-optical arrays via photocurable nanoimprint lithography,” J. Vac. Sci. Technol. B 24, 2960–2963 (2006).
    [Crossref]
  20. K. Reimer, H. J. Quenzer, M. Jurss, and B. Wagner, “Micro-optic fabrication using one-level gray-tone lithography,” Proc. SPIE 3008, 279–288 (1997).
    [Crossref]
  21. P. Wang and R. Menon, “Computational spectrometer based on a broadband diffractive optic,” Opt. Express 22, 14575–14587 (2014).
    [Crossref]
  22. B. Redding, S. F. Liew, R. Sarma, and H. Cao, “Compact spectrometer based on a disordered photonic chip,” Nat. Photonics 7, 746–751 (2013).
    [Crossref]
  23. B. Redding, S. M. Popoff, and H. Cao, “All-fiber spectrometer based on speckle pattern reconstruction,” Opt. Express 21, 6584–6600 (2013).
    [Crossref]
  24. P. Wang and R. Menon, “Computational spectroscopy via singular-value-decomposition and regularization,” Opt. Express 22, 21541–21550 (2014).
    [Crossref]
  25. P. Wang and R. Menon, “Optimization of periodic nanostructures for enhanced light-trapping in ultra-thin photovoltaics,” Opt. Express 21, 6274–6285 (2013).
    [Crossref]
  26. B. Shen, P. Wang, R. Polson, and R. Menon, “An ultra-high efficiency metamaterial polarizer,” Optica 1, 356–360 (2014).
    [Crossref]
  27. B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4  μm2 footprint,” Nat. Photonics 9, 378–382 (2015).
    [Crossref]
  28. P. Wang and R. Menon, “Optical microlithography on oblique and multiplane surfaces using diffractive phase masks,” J. Micro/Nanolithogr. MEMS, MOEMS 14, 023507 (2015).
    [Crossref]
  29. P. Wang, J. A. Dominguez-Caballero, D. J. Friedman, and R. Menon, “A new class of multi-bandgap high-efficiency photovoltaics enabled by broadband diffractive optics,” Prog. Photovoltaics 23, 1073–1079 (2015).
    [Crossref]
  30. P. Wang, C. G. Ebeling, J. Gerton, and R. Menon, “Hyper-spectral imaging in scanning-confocal-fluorescence microscopy using a novel broadband diffractive optic,” Opt. Commun. 324, 73–80 (2014).
    [Crossref]
  31. M. Mahy, L. Van Eycken, and A. Oosterlinck, “Evaluation of uniform color spaces developed after the adoption of CIELAB and CIELUV,” Color Res. Appl. 19, 105–121 (1994).
  32. J. W. Goodman, Introduction to Fourier Optics (Roberts & Company, 2005).

2015 (4)

N. Dean, “Colouring at the nanoscale,” Nat. Photonics 10, 15–16 (2015).

B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4  μm2 footprint,” Nat. Photonics 9, 378–382 (2015).
[Crossref]

P. Wang and R. Menon, “Optical microlithography on oblique and multiplane surfaces using diffractive phase masks,” J. Micro/Nanolithogr. MEMS, MOEMS 14, 023507 (2015).
[Crossref]

P. Wang, J. A. Dominguez-Caballero, D. J. Friedman, and R. Menon, “A new class of multi-bandgap high-efficiency photovoltaics enabled by broadband diffractive optics,” Prog. Photovoltaics 23, 1073–1079 (2015).
[Crossref]

2014 (5)

P. Wang, C. G. Ebeling, J. Gerton, and R. Menon, “Hyper-spectral imaging in scanning-confocal-fluorescence microscopy using a novel broadband diffractive optic,” Opt. Commun. 324, 73–80 (2014).
[Crossref]

P. Wang and R. Menon, “Computational spectrometer based on a broadband diffractive optic,” Opt. Express 22, 14575–14587 (2014).
[Crossref]

P. Wang and R. Menon, “Computational spectroscopy via singular-value-decomposition and regularization,” Opt. Express 22, 21541–21550 (2014).
[Crossref]

B. Shen, P. Wang, R. Polson, and R. Menon, “An ultra-high efficiency metamaterial polarizer,” Optica 1, 356–360 (2014).
[Crossref]

Y. Yu, L. Wen, S. Song, and Q. Chen, “Transmissive/reflective structural color filters: theory and applications,” J. Nanomater. 2014, 212637 (2014).

2013 (5)

S. P. Burgos, S. Yokogawa, and H. A. Atwater, “Color imaging via nearest neighbor hole coupling in plasmonic color filters integrated onto a complementary metal-oxide semiconductor image sensor,” ACS Nano 7, 10038–10047 (2013).
[Crossref]

S. Nishiwaki, T. Nakamura, M. Hiramoto, T. Fujii, and M. Suzuki, “Efficient colour splitters for high-pixel-density image sensors,” Nat. Photonics 7, 240–246 (2013).
[Crossref]

P. Wang and R. Menon, “Optimization of periodic nanostructures for enhanced light-trapping in ultra-thin photovoltaics,” Opt. Express 21, 6274–6285 (2013).
[Crossref]

B. Redding, S. F. Liew, R. Sarma, and H. Cao, “Compact spectrometer based on a disordered photonic chip,” Nat. Photonics 7, 746–751 (2013).
[Crossref]

B. Redding, S. M. Popoff, and H. Cao, “All-fiber spectrometer based on speckle pattern reconstruction,” Opt. Express 21, 6584–6600 (2013).
[Crossref]

2012 (5)

K. Walls, Q. Chen, J. Grant, S. Collins, D. R. S. Cumming, and T. D. Drysdale, “Narrowband multispectral filter set for visible band,” Opt. Express 20, 21917–21923 (2012).
[Crossref]

M. J. Uddin and R. Magnusson, “Efficient guided-mode resonant tunable color filters,” IEEE Photon. Technol. Lett. 24, 1552–1554 (2012).
[Crossref]

S. Yokogawa, S. P. Burgos, and H. A. Atwater, “Plasmonic color filters for CMOS image sensor applications,” Nano Lett. 12, 4349–4354 (2012).
[Crossref]

K. Kumar, H. Duan, R. S. Hegde, S. C. W. Koh, J. N. Wei, and J. K. W. Yang, “Printing colour at the optical diffraction limit,” Nat. Nanotechnol. 7, 557–561 (2012).
[Crossref]

Q. Chen, D. Das, D. Chitnis, K. Walls, T. D. Drysdale, S. Collins, and D. R. S. Cumming, “A CMOS image sensor integrated with plasmonic colour filters,” Plasmonics 7, 695–699 (2012).
[Crossref]

2011 (2)

L. Frey, P. Parrein, J. Raby, C. Pelle, D. Herault, M. Marty, and J. Michailos, “Color filters including infrared cut-off integrated on CMOS image sensor,” Opt. Express 19, 13073–13080 (2011).
[Crossref]

A. F. Kaplan, T. Xu, and L. J. Guo, “High efficiency resonance based spectrum filters with tunable transmission bandwidth fabricated using nanoimprint lithography,” Appl. Phys. Lett. 99, 143111 (2011).
[Crossref]

2010 (1)

L. Lin and A. Roberts, “Angle-robust resonances in cross shaped aperture arrays,” Appl. Phys. Lett. 97, 061109 (2010).
[Crossref]

2008 (2)

E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nat. Photonics 2, 161–164 (2008).
[Crossref]

A. Wagadarikar, R. John, R. Willett, and D. Brady, “Single disperser design for coded aperture snapshot spectral imaging,” Appl. Opt. 47, B44–B51 (2008).
[Crossref]

2006 (1)

M. D. Galus, E. Moon, H. I. Smith, and R. Menon, “Replication of diffractive-optical arrays via photocurable nanoimprint lithography,” J. Vac. Sci. Technol. B 24, 2960–2963 (2006).
[Crossref]

2004 (1)

L. J. Guo, “Recent progress in nanoimprint technology and its applications,” J. Phys. D 37, R123–R141 (2004).
[Crossref]

2003 (1)

1997 (1)

K. Reimer, H. J. Quenzer, M. Jurss, and B. Wagner, “Micro-optic fabrication using one-level gray-tone lithography,” Proc. SPIE 3008, 279–288 (1997).
[Crossref]

1994 (1)

M. Mahy, L. Van Eycken, and A. Oosterlinck, “Evaluation of uniform color spaces developed after the adoption of CIELAB and CIELUV,” Color Res. Appl. 19, 105–121 (1994).

Atwater, H. A.

S. P. Burgos, S. Yokogawa, and H. A. Atwater, “Color imaging via nearest neighbor hole coupling in plasmonic color filters integrated onto a complementary metal-oxide semiconductor image sensor,” ACS Nano 7, 10038–10047 (2013).
[Crossref]

S. Yokogawa, S. P. Burgos, and H. A. Atwater, “Plasmonic color filters for CMOS image sensor applications,” Nano Lett. 12, 4349–4354 (2012).
[Crossref]

Bayer, B. E.

B. E. Bayer, “Color imaging array,” U.S. Patent3,971,065 (July20, 1976).

Brady, D.

Burgos, S. P.

S. P. Burgos, S. Yokogawa, and H. A. Atwater, “Color imaging via nearest neighbor hole coupling in plasmonic color filters integrated onto a complementary metal-oxide semiconductor image sensor,” ACS Nano 7, 10038–10047 (2013).
[Crossref]

S. Yokogawa, S. P. Burgos, and H. A. Atwater, “Plasmonic color filters for CMOS image sensor applications,” Nano Lett. 12, 4349–4354 (2012).
[Crossref]

Cao, H.

B. Redding, S. F. Liew, R. Sarma, and H. Cao, “Compact spectrometer based on a disordered photonic chip,” Nat. Photonics 7, 746–751 (2013).
[Crossref]

B. Redding, S. M. Popoff, and H. Cao, “All-fiber spectrometer based on speckle pattern reconstruction,” Opt. Express 21, 6584–6600 (2013).
[Crossref]

Catrysee, P. B.

Chen, Q.

Y. Yu, L. Wen, S. Song, and Q. Chen, “Transmissive/reflective structural color filters: theory and applications,” J. Nanomater. 2014, 212637 (2014).

Q. Chen, D. Das, D. Chitnis, K. Walls, T. D. Drysdale, S. Collins, and D. R. S. Cumming, “A CMOS image sensor integrated with plasmonic colour filters,” Plasmonics 7, 695–699 (2012).
[Crossref]

K. Walls, Q. Chen, J. Grant, S. Collins, D. R. S. Cumming, and T. D. Drysdale, “Narrowband multispectral filter set for visible band,” Opt. Express 20, 21917–21923 (2012).
[Crossref]

Chitnis, D.

Q. Chen, D. Das, D. Chitnis, K. Walls, T. D. Drysdale, S. Collins, and D. R. S. Cumming, “A CMOS image sensor integrated with plasmonic colour filters,” Plasmonics 7, 695–699 (2012).
[Crossref]

Collins, S.

Q. Chen, D. Das, D. Chitnis, K. Walls, T. D. Drysdale, S. Collins, and D. R. S. Cumming, “A CMOS image sensor integrated with plasmonic colour filters,” Plasmonics 7, 695–699 (2012).
[Crossref]

K. Walls, Q. Chen, J. Grant, S. Collins, D. R. S. Cumming, and T. D. Drysdale, “Narrowband multispectral filter set for visible band,” Opt. Express 20, 21917–21923 (2012).
[Crossref]

Cumming, D. R. S.

K. Walls, Q. Chen, J. Grant, S. Collins, D. R. S. Cumming, and T. D. Drysdale, “Narrowband multispectral filter set for visible band,” Opt. Express 20, 21917–21923 (2012).
[Crossref]

Q. Chen, D. Das, D. Chitnis, K. Walls, T. D. Drysdale, S. Collins, and D. R. S. Cumming, “A CMOS image sensor integrated with plasmonic colour filters,” Plasmonics 7, 695–699 (2012).
[Crossref]

Das, D.

Q. Chen, D. Das, D. Chitnis, K. Walls, T. D. Drysdale, S. Collins, and D. R. S. Cumming, “A CMOS image sensor integrated with plasmonic colour filters,” Plasmonics 7, 695–699 (2012).
[Crossref]

Dean, N.

N. Dean, “Colouring at the nanoscale,” Nat. Photonics 10, 15–16 (2015).

Dominguez-Caballero, J. A.

P. Wang, J. A. Dominguez-Caballero, D. J. Friedman, and R. Menon, “A new class of multi-bandgap high-efficiency photovoltaics enabled by broadband diffractive optics,” Prog. Photovoltaics 23, 1073–1079 (2015).
[Crossref]

Drysdale, T. D.

Q. Chen, D. Das, D. Chitnis, K. Walls, T. D. Drysdale, S. Collins, and D. R. S. Cumming, “A CMOS image sensor integrated with plasmonic colour filters,” Plasmonics 7, 695–699 (2012).
[Crossref]

K. Walls, Q. Chen, J. Grant, S. Collins, D. R. S. Cumming, and T. D. Drysdale, “Narrowband multispectral filter set for visible band,” Opt. Express 20, 21917–21923 (2012).
[Crossref]

Duan, H.

K. Kumar, H. Duan, R. S. Hegde, S. C. W. Koh, J. N. Wei, and J. K. W. Yang, “Printing colour at the optical diffraction limit,” Nat. Nanotechnol. 7, 557–561 (2012).
[Crossref]

Ebbesen, T. W.

E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nat. Photonics 2, 161–164 (2008).
[Crossref]

Ebeling, C. G.

P. Wang, C. G. Ebeling, J. Gerton, and R. Menon, “Hyper-spectral imaging in scanning-confocal-fluorescence microscopy using a novel broadband diffractive optic,” Opt. Commun. 324, 73–80 (2014).
[Crossref]

Frey, L.

Friedman, D. J.

P. Wang, J. A. Dominguez-Caballero, D. J. Friedman, and R. Menon, “A new class of multi-bandgap high-efficiency photovoltaics enabled by broadband diffractive optics,” Prog. Photovoltaics 23, 1073–1079 (2015).
[Crossref]

Fujii, T.

S. Nishiwaki, T. Nakamura, M. Hiramoto, T. Fujii, and M. Suzuki, “Efficient colour splitters for high-pixel-density image sensors,” Nat. Photonics 7, 240–246 (2013).
[Crossref]

Galus, M. D.

M. D. Galus, E. Moon, H. I. Smith, and R. Menon, “Replication of diffractive-optical arrays via photocurable nanoimprint lithography,” J. Vac. Sci. Technol. B 24, 2960–2963 (2006).
[Crossref]

Geelen, B.

M. Jayapala, A. Lambrechts, N. Tack, B. Geelen, B. Masschelein, and P. Soussan, “Monolithic integration of flexible spectral filters with CMOS image sensors at wafer level for low cost hyperspectral imaging,” in International Image Sensor Workshop (Snowbird, 2013).

Genet, C.

E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nat. Photonics 2, 161–164 (2008).
[Crossref]

Gerton, J.

P. Wang, C. G. Ebeling, J. Gerton, and R. Menon, “Hyper-spectral imaging in scanning-confocal-fluorescence microscopy using a novel broadband diffractive optic,” Opt. Commun. 324, 73–80 (2014).
[Crossref]

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (Roberts & Company, 2005).

Grant, J.

Guo, L. J.

A. F. Kaplan, T. Xu, and L. J. Guo, “High efficiency resonance based spectrum filters with tunable transmission bandwidth fabricated using nanoimprint lithography,” Appl. Phys. Lett. 99, 143111 (2011).
[Crossref]

L. J. Guo, “Recent progress in nanoimprint technology and its applications,” J. Phys. D 37, R123–R141 (2004).
[Crossref]

Hegde, R. S.

K. Kumar, H. Duan, R. S. Hegde, S. C. W. Koh, J. N. Wei, and J. K. W. Yang, “Printing colour at the optical diffraction limit,” Nat. Nanotechnol. 7, 557–561 (2012).
[Crossref]

Herault, D.

Hiramoto, M.

S. Nishiwaki, T. Nakamura, M. Hiramoto, T. Fujii, and M. Suzuki, “Efficient colour splitters for high-pixel-density image sensors,” Nat. Photonics 7, 240–246 (2013).
[Crossref]

Jayapala, M.

M. Jayapala, A. Lambrechts, N. Tack, B. Geelen, B. Masschelein, and P. Soussan, “Monolithic integration of flexible spectral filters with CMOS image sensors at wafer level for low cost hyperspectral imaging,” in International Image Sensor Workshop (Snowbird, 2013).

John, R.

Jurss, M.

K. Reimer, H. J. Quenzer, M. Jurss, and B. Wagner, “Micro-optic fabrication using one-level gray-tone lithography,” Proc. SPIE 3008, 279–288 (1997).
[Crossref]

Kaplan, A. F.

A. F. Kaplan, T. Xu, and L. J. Guo, “High efficiency resonance based spectrum filters with tunable transmission bandwidth fabricated using nanoimprint lithography,” Appl. Phys. Lett. 99, 143111 (2011).
[Crossref]

Koh, S. C. W.

K. Kumar, H. Duan, R. S. Hegde, S. C. W. Koh, J. N. Wei, and J. K. W. Yang, “Printing colour at the optical diffraction limit,” Nat. Nanotechnol. 7, 557–561 (2012).
[Crossref]

Kumar, K.

K. Kumar, H. Duan, R. S. Hegde, S. C. W. Koh, J. N. Wei, and J. K. W. Yang, “Printing colour at the optical diffraction limit,” Nat. Nanotechnol. 7, 557–561 (2012).
[Crossref]

Lambrechts, A.

M. Jayapala, A. Lambrechts, N. Tack, B. Geelen, B. Masschelein, and P. Soussan, “Monolithic integration of flexible spectral filters with CMOS image sensors at wafer level for low cost hyperspectral imaging,” in International Image Sensor Workshop (Snowbird, 2013).

Laux, E.

E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nat. Photonics 2, 161–164 (2008).
[Crossref]

Liew, S. F.

B. Redding, S. F. Liew, R. Sarma, and H. Cao, “Compact spectrometer based on a disordered photonic chip,” Nat. Photonics 7, 746–751 (2013).
[Crossref]

Lin, L.

L. Lin and A. Roberts, “Angle-robust resonances in cross shaped aperture arrays,” Appl. Phys. Lett. 97, 061109 (2010).
[Crossref]

Magnusson, R.

M. J. Uddin and R. Magnusson, “Efficient guided-mode resonant tunable color filters,” IEEE Photon. Technol. Lett. 24, 1552–1554 (2012).
[Crossref]

Mahy, M.

M. Mahy, L. Van Eycken, and A. Oosterlinck, “Evaluation of uniform color spaces developed after the adoption of CIELAB and CIELUV,” Color Res. Appl. 19, 105–121 (1994).

Marty, M.

Masschelein, B.

M. Jayapala, A. Lambrechts, N. Tack, B. Geelen, B. Masschelein, and P. Soussan, “Monolithic integration of flexible spectral filters with CMOS image sensors at wafer level for low cost hyperspectral imaging,” in International Image Sensor Workshop (Snowbird, 2013).

Menon, R.

P. Wang, J. A. Dominguez-Caballero, D. J. Friedman, and R. Menon, “A new class of multi-bandgap high-efficiency photovoltaics enabled by broadband diffractive optics,” Prog. Photovoltaics 23, 1073–1079 (2015).
[Crossref]

B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4  μm2 footprint,” Nat. Photonics 9, 378–382 (2015).
[Crossref]

P. Wang and R. Menon, “Optical microlithography on oblique and multiplane surfaces using diffractive phase masks,” J. Micro/Nanolithogr. MEMS, MOEMS 14, 023507 (2015).
[Crossref]

P. Wang and R. Menon, “Computational spectrometer based on a broadband diffractive optic,” Opt. Express 22, 14575–14587 (2014).
[Crossref]

P. Wang, C. G. Ebeling, J. Gerton, and R. Menon, “Hyper-spectral imaging in scanning-confocal-fluorescence microscopy using a novel broadband diffractive optic,” Opt. Commun. 324, 73–80 (2014).
[Crossref]

P. Wang and R. Menon, “Computational spectroscopy via singular-value-decomposition and regularization,” Opt. Express 22, 21541–21550 (2014).
[Crossref]

B. Shen, P. Wang, R. Polson, and R. Menon, “An ultra-high efficiency metamaterial polarizer,” Optica 1, 356–360 (2014).
[Crossref]

P. Wang and R. Menon, “Optimization of periodic nanostructures for enhanced light-trapping in ultra-thin photovoltaics,” Opt. Express 21, 6274–6285 (2013).
[Crossref]

M. D. Galus, E. Moon, H. I. Smith, and R. Menon, “Replication of diffractive-optical arrays via photocurable nanoimprint lithography,” J. Vac. Sci. Technol. B 24, 2960–2963 (2006).
[Crossref]

Michailos, J.

Moon, E.

M. D. Galus, E. Moon, H. I. Smith, and R. Menon, “Replication of diffractive-optical arrays via photocurable nanoimprint lithography,” J. Vac. Sci. Technol. B 24, 2960–2963 (2006).
[Crossref]

Nakamura, T.

S. Nishiwaki, T. Nakamura, M. Hiramoto, T. Fujii, and M. Suzuki, “Efficient colour splitters for high-pixel-density image sensors,” Nat. Photonics 7, 240–246 (2013).
[Crossref]

Nishiwaki, S.

S. Nishiwaki, T. Nakamura, M. Hiramoto, T. Fujii, and M. Suzuki, “Efficient colour splitters for high-pixel-density image sensors,” Nat. Photonics 7, 240–246 (2013).
[Crossref]

Oosterlinck, A.

M. Mahy, L. Van Eycken, and A. Oosterlinck, “Evaluation of uniform color spaces developed after the adoption of CIELAB and CIELUV,” Color Res. Appl. 19, 105–121 (1994).

Parrein, P.

Pelle, C.

Polson, R.

B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4  μm2 footprint,” Nat. Photonics 9, 378–382 (2015).
[Crossref]

B. Shen, P. Wang, R. Polson, and R. Menon, “An ultra-high efficiency metamaterial polarizer,” Optica 1, 356–360 (2014).
[Crossref]

Popoff, S. M.

Quenzer, H. J.

K. Reimer, H. J. Quenzer, M. Jurss, and B. Wagner, “Micro-optic fabrication using one-level gray-tone lithography,” Proc. SPIE 3008, 279–288 (1997).
[Crossref]

Raby, J.

Redding, B.

B. Redding, S. M. Popoff, and H. Cao, “All-fiber spectrometer based on speckle pattern reconstruction,” Opt. Express 21, 6584–6600 (2013).
[Crossref]

B. Redding, S. F. Liew, R. Sarma, and H. Cao, “Compact spectrometer based on a disordered photonic chip,” Nat. Photonics 7, 746–751 (2013).
[Crossref]

Reimer, K.

K. Reimer, H. J. Quenzer, M. Jurss, and B. Wagner, “Micro-optic fabrication using one-level gray-tone lithography,” Proc. SPIE 3008, 279–288 (1997).
[Crossref]

Roberts, A.

L. Lin and A. Roberts, “Angle-robust resonances in cross shaped aperture arrays,” Appl. Phys. Lett. 97, 061109 (2010).
[Crossref]

Sarma, R.

B. Redding, S. F. Liew, R. Sarma, and H. Cao, “Compact spectrometer based on a disordered photonic chip,” Nat. Photonics 7, 746–751 (2013).
[Crossref]

Shen, B.

B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4  μm2 footprint,” Nat. Photonics 9, 378–382 (2015).
[Crossref]

B. Shen, P. Wang, R. Polson, and R. Menon, “An ultra-high efficiency metamaterial polarizer,” Optica 1, 356–360 (2014).
[Crossref]

Skauli, T.

E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nat. Photonics 2, 161–164 (2008).
[Crossref]

Smith, H. I.

M. D. Galus, E. Moon, H. I. Smith, and R. Menon, “Replication of diffractive-optical arrays via photocurable nanoimprint lithography,” J. Vac. Sci. Technol. B 24, 2960–2963 (2006).
[Crossref]

Song, S.

Y. Yu, L. Wen, S. Song, and Q. Chen, “Transmissive/reflective structural color filters: theory and applications,” J. Nanomater. 2014, 212637 (2014).

Soussan, P.

M. Jayapala, A. Lambrechts, N. Tack, B. Geelen, B. Masschelein, and P. Soussan, “Monolithic integration of flexible spectral filters with CMOS image sensors at wafer level for low cost hyperspectral imaging,” in International Image Sensor Workshop (Snowbird, 2013).

Suzuki, M.

S. Nishiwaki, T. Nakamura, M. Hiramoto, T. Fujii, and M. Suzuki, “Efficient colour splitters for high-pixel-density image sensors,” Nat. Photonics 7, 240–246 (2013).
[Crossref]

Tack, N.

M. Jayapala, A. Lambrechts, N. Tack, B. Geelen, B. Masschelein, and P. Soussan, “Monolithic integration of flexible spectral filters with CMOS image sensors at wafer level for low cost hyperspectral imaging,” in International Image Sensor Workshop (Snowbird, 2013).

Uddin, M. J.

M. J. Uddin and R. Magnusson, “Efficient guided-mode resonant tunable color filters,” IEEE Photon. Technol. Lett. 24, 1552–1554 (2012).
[Crossref]

Van Eycken, L.

M. Mahy, L. Van Eycken, and A. Oosterlinck, “Evaluation of uniform color spaces developed after the adoption of CIELAB and CIELUV,” Color Res. Appl. 19, 105–121 (1994).

Wagadarikar, A.

Wagner, B.

K. Reimer, H. J. Quenzer, M. Jurss, and B. Wagner, “Micro-optic fabrication using one-level gray-tone lithography,” Proc. SPIE 3008, 279–288 (1997).
[Crossref]

Walls, K.

Q. Chen, D. Das, D. Chitnis, K. Walls, T. D. Drysdale, S. Collins, and D. R. S. Cumming, “A CMOS image sensor integrated with plasmonic colour filters,” Plasmonics 7, 695–699 (2012).
[Crossref]

K. Walls, Q. Chen, J. Grant, S. Collins, D. R. S. Cumming, and T. D. Drysdale, “Narrowband multispectral filter set for visible band,” Opt. Express 20, 21917–21923 (2012).
[Crossref]

Wandell, B. A.

Wang, P.

B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4  μm2 footprint,” Nat. Photonics 9, 378–382 (2015).
[Crossref]

P. Wang, J. A. Dominguez-Caballero, D. J. Friedman, and R. Menon, “A new class of multi-bandgap high-efficiency photovoltaics enabled by broadband diffractive optics,” Prog. Photovoltaics 23, 1073–1079 (2015).
[Crossref]

P. Wang and R. Menon, “Optical microlithography on oblique and multiplane surfaces using diffractive phase masks,” J. Micro/Nanolithogr. MEMS, MOEMS 14, 023507 (2015).
[Crossref]

P. Wang, C. G. Ebeling, J. Gerton, and R. Menon, “Hyper-spectral imaging in scanning-confocal-fluorescence microscopy using a novel broadband diffractive optic,” Opt. Commun. 324, 73–80 (2014).
[Crossref]

P. Wang and R. Menon, “Computational spectroscopy via singular-value-decomposition and regularization,” Opt. Express 22, 21541–21550 (2014).
[Crossref]

P. Wang and R. Menon, “Computational spectrometer based on a broadband diffractive optic,” Opt. Express 22, 14575–14587 (2014).
[Crossref]

B. Shen, P. Wang, R. Polson, and R. Menon, “An ultra-high efficiency metamaterial polarizer,” Optica 1, 356–360 (2014).
[Crossref]

P. Wang and R. Menon, “Optimization of periodic nanostructures for enhanced light-trapping in ultra-thin photovoltaics,” Opt. Express 21, 6274–6285 (2013).
[Crossref]

Wei, J. N.

K. Kumar, H. Duan, R. S. Hegde, S. C. W. Koh, J. N. Wei, and J. K. W. Yang, “Printing colour at the optical diffraction limit,” Nat. Nanotechnol. 7, 557–561 (2012).
[Crossref]

Wen, L.

Y. Yu, L. Wen, S. Song, and Q. Chen, “Transmissive/reflective structural color filters: theory and applications,” J. Nanomater. 2014, 212637 (2014).

Willett, R.

Xu, T.

A. F. Kaplan, T. Xu, and L. J. Guo, “High efficiency resonance based spectrum filters with tunable transmission bandwidth fabricated using nanoimprint lithography,” Appl. Phys. Lett. 99, 143111 (2011).
[Crossref]

Yang, J. K. W.

K. Kumar, H. Duan, R. S. Hegde, S. C. W. Koh, J. N. Wei, and J. K. W. Yang, “Printing colour at the optical diffraction limit,” Nat. Nanotechnol. 7, 557–561 (2012).
[Crossref]

Yokogawa, S.

S. P. Burgos, S. Yokogawa, and H. A. Atwater, “Color imaging via nearest neighbor hole coupling in plasmonic color filters integrated onto a complementary metal-oxide semiconductor image sensor,” ACS Nano 7, 10038–10047 (2013).
[Crossref]

S. Yokogawa, S. P. Burgos, and H. A. Atwater, “Plasmonic color filters for CMOS image sensor applications,” Nano Lett. 12, 4349–4354 (2012).
[Crossref]

Yu, Y.

Y. Yu, L. Wen, S. Song, and Q. Chen, “Transmissive/reflective structural color filters: theory and applications,” J. Nanomater. 2014, 212637 (2014).

ACS Nano (1)

S. P. Burgos, S. Yokogawa, and H. A. Atwater, “Color imaging via nearest neighbor hole coupling in plasmonic color filters integrated onto a complementary metal-oxide semiconductor image sensor,” ACS Nano 7, 10038–10047 (2013).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

A. F. Kaplan, T. Xu, and L. J. Guo, “High efficiency resonance based spectrum filters with tunable transmission bandwidth fabricated using nanoimprint lithography,” Appl. Phys. Lett. 99, 143111 (2011).
[Crossref]

L. Lin and A. Roberts, “Angle-robust resonances in cross shaped aperture arrays,” Appl. Phys. Lett. 97, 061109 (2010).
[Crossref]

Color Res. Appl. (1)

M. Mahy, L. Van Eycken, and A. Oosterlinck, “Evaluation of uniform color spaces developed after the adoption of CIELAB and CIELUV,” Color Res. Appl. 19, 105–121 (1994).

IEEE Photon. Technol. Lett. (1)

M. J. Uddin and R. Magnusson, “Efficient guided-mode resonant tunable color filters,” IEEE Photon. Technol. Lett. 24, 1552–1554 (2012).
[Crossref]

J. Micro/Nanolithogr. MEMS, MOEMS (1)

P. Wang and R. Menon, “Optical microlithography on oblique and multiplane surfaces using diffractive phase masks,” J. Micro/Nanolithogr. MEMS, MOEMS 14, 023507 (2015).
[Crossref]

J. Nanomater. (1)

Y. Yu, L. Wen, S. Song, and Q. Chen, “Transmissive/reflective structural color filters: theory and applications,” J. Nanomater. 2014, 212637 (2014).

J. Opt. Soc. Am. A (1)

J. Phys. D (1)

L. J. Guo, “Recent progress in nanoimprint technology and its applications,” J. Phys. D 37, R123–R141 (2004).
[Crossref]

J. Vac. Sci. Technol. B (1)

M. D. Galus, E. Moon, H. I. Smith, and R. Menon, “Replication of diffractive-optical arrays via photocurable nanoimprint lithography,” J. Vac. Sci. Technol. B 24, 2960–2963 (2006).
[Crossref]

Nano Lett. (1)

S. Yokogawa, S. P. Burgos, and H. A. Atwater, “Plasmonic color filters for CMOS image sensor applications,” Nano Lett. 12, 4349–4354 (2012).
[Crossref]

Nat. Nanotechnol. (1)

K. Kumar, H. Duan, R. S. Hegde, S. C. W. Koh, J. N. Wei, and J. K. W. Yang, “Printing colour at the optical diffraction limit,” Nat. Nanotechnol. 7, 557–561 (2012).
[Crossref]

Nat. Photonics (5)

N. Dean, “Colouring at the nanoscale,” Nat. Photonics 10, 15–16 (2015).

E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nat. Photonics 2, 161–164 (2008).
[Crossref]

S. Nishiwaki, T. Nakamura, M. Hiramoto, T. Fujii, and M. Suzuki, “Efficient colour splitters for high-pixel-density image sensors,” Nat. Photonics 7, 240–246 (2013).
[Crossref]

B. Redding, S. F. Liew, R. Sarma, and H. Cao, “Compact spectrometer based on a disordered photonic chip,” Nat. Photonics 7, 746–751 (2013).
[Crossref]

B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4  μm2 footprint,” Nat. Photonics 9, 378–382 (2015).
[Crossref]

Opt. Commun. (1)

P. Wang, C. G. Ebeling, J. Gerton, and R. Menon, “Hyper-spectral imaging in scanning-confocal-fluorescence microscopy using a novel broadband diffractive optic,” Opt. Commun. 324, 73–80 (2014).
[Crossref]

Opt. Express (6)

Optica (1)

Plasmonics (1)

Q. Chen, D. Das, D. Chitnis, K. Walls, T. D. Drysdale, S. Collins, and D. R. S. Cumming, “A CMOS image sensor integrated with plasmonic colour filters,” Plasmonics 7, 695–699 (2012).
[Crossref]

Proc. SPIE (1)

K. Reimer, H. J. Quenzer, M. Jurss, and B. Wagner, “Micro-optic fabrication using one-level gray-tone lithography,” Proc. SPIE 3008, 279–288 (1997).
[Crossref]

Prog. Photovoltaics (1)

P. Wang, J. A. Dominguez-Caballero, D. J. Friedman, and R. Menon, “A new class of multi-bandgap high-efficiency photovoltaics enabled by broadband diffractive optics,” Prog. Photovoltaics 23, 1073–1079 (2015).
[Crossref]

Other (3)

J. W. Goodman, Introduction to Fourier Optics (Roberts & Company, 2005).

M. Jayapala, A. Lambrechts, N. Tack, B. Geelen, B. Masschelein, and P. Soussan, “Monolithic integration of flexible spectral filters with CMOS image sensors at wafer level for low cost hyperspectral imaging,” in International Image Sensor Workshop (Snowbird, 2013).

B. E. Bayer, “Color imaging array,” U.S. Patent3,971,065 (July20, 1976).

Supplementary Material (1)

NameDescription
» Supplement 1: PDF (4281 KB)      Supplemental document

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

(a) Schematic of one spatial pixel of the color sensor composed of a unit cell of the DFA (6×6 squares) and 3×3 sensor pixels. One DFA unit cell offers color for one image pixel. (b) Photograph of the DFA sensor assembly. (c) Optical micrograph of a portion of the fabricated DFA (scale bar: 50 μm). (d) Atomic-force micrograph of a small region of the DFA. The dotted white rectangle delineates one DFA unit cell.

Fig. 2.
Fig. 2.

(a) Measured light intensity distributions of five wavelength samples at three different values of d. (b) Measured correlation of the diffracted light intensity as a function of spectral resolution for d=0.3mm (green line), 0.5 mm (magenta line), and 1.5 mm (cyan line). Inset, measured spectral resolution as a function of d.

Fig. 3.
Fig. 3.

Reconstructed color (a)–(e) and photon-flux spectrum (f)–(j) of blue (a,f), green (b,g), red (c,h), yellow (d,i), and purple (e,j) colors. The experiments were conducted for three gaps: d=0.3mm (orange), 0.5 mm (cyan), and 1.5 mm (light green). The reference spectrum and color values are plotted in black. The spectra Φ are normalized. The delta E (ΔE) values based on CIE94 are also given.

Fig. 4.
Fig. 4.

Experimental results of color imaging of a printed rainbow object. The exposure time is 14 ms. (a) Reference image captured by a sensor with a Bayer filter. (b) Grayscale image captured by our DFA sensor assembly; it is undersampled to avoid crosstalk. Color image reconstructed from (b) using (c) DBS algorithm and (c)  regularization algorithm. Both (b) and (c) are denoised using the same filter. (e) Image interpolated to 744×480 image pixels from (d). (f) Reconstructed hyperspectral image at λ=480, 530, 580, 630, and 680 nm. They are denoised by filtering and then interpolated. The sensor chip used for reference in (a) is the same chip used for the image in (b). All other experimental conditions were also identical.

Fig. 5.
Fig. 5.

(a) Measured average image intensity from the Bayer-filter-based color sensor (blue line) and our DFA sensor assembly (red line). The enhancement in sensitivity is plotted using a black line. (b) Measured MTF versus spatial frequency ν at d=0.3mm (blue line), 0.5 mm (green line), and 1.5 mm (red line). Left, center, and right bottom insets show captured grayscale images of two spatial frequencies at two gaps. Right top inset shows spatial resolution versus gap d estimated by numerical simulations of the far-field diffraction patterns.

Fig. 6.
Fig. 6.

(a) Height profile of one unit cell of the DFA (5×51μm squares) that covers 3×3 1.67 μm sensor pixels and represents one image pixel. Sensor pixels are delineated by dashed white lines. (b) Calculated spectral correlation function (insets show simulated SS-PSF received by one 3×3 sensor array at three representative wavelengths). (c) Original test pattern and (d) reconstructed image by regularization without undersampling. (e) Original objects, their numerically synthesized raw monochrome images, and the reconstruction results at five small representative locations (7×7 image pixels) in the image.

Fig. 7.
Fig. 7.

(a) Simulated spectral and spatial resolutions as a function of gap d for the 1 μm DFA in Fig. 6(a). (b) Calculated resolution product at different gaps. The minimum occurs at d=0.01mm.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

C(x,y,δλ)=PSF(x,y,λ)·PSF(x,y,λ+δλ)PSF(x,y,λ)·PSF(x,y,λ+δλ)1,
C(ν)=Imax(ν)Imin(ν)Imax(ν)+Imin(ν),

Metrics