Abstract

Synthetic single-crystal diamond has recently emerged as a promising platform for Raman lasers at exotic wavelengths due to its giant Raman shift, large transparency window, and excellent thermal properties yielding a greatly enhanced figure of merit compared to conventional materials. To date, diamond Raman lasers have been realized using bulk plates placed inside macroscopic cavities, requiring careful alignment and resulting in high threshold powers (WkW range). Here we demonstrate an on-chip Raman laser based on fully integrated, high-quality-factor, diamond racetrack microresonators embedded in silica. Pumping at telecom wavelengths, we show Stokes output discretely tunable over a 100nm bandwidth around 2 μm with output power >250 μW, extending the functionality of diamond Raman lasers to an interesting wavelength range at the edge of the mid-infrared spectrum. Continuous-wave operation with only 85mW pump threshold power in the feeding waveguide is demonstrated along with continuous, mode-hop-free tuning over 7.5GHz in a compact, integrated-optics platform.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Design of infrared and ultraviolet Raman lasers based on grating-coupled integrated diamond ring resonators

Benjamin Feigel, Hugo Thienpont, and Nathalie Vermeulen
J. Opt. Soc. Am. B 33(3) B5-B18 (2016)

Investigation of germanium Raman lasers for the mid-infrared

Francesco De Leonardis, Benedetto Troia, Richard A. Soref, and Vittorio M. N. Passaro
Opt. Express 23(13) 17237-17254 (2015)

Tunable continuous-wave diamond Raman laser

Daniele C. Parrotta, Alan J. Kemp, Martin D. Dawson, and Jennifer E. Hastie
Opt. Express 19(24) 24165-24170 (2011)

References

  • View by:
  • |
  • |
  • |

  1. R. Mildren and J. Rabeau, Optical Engineering of Diamond (Wiley, 2013).
  2. I. Friel, S. L. Geoghegan, D. J. Twitchen, and G. A. Scarsbrook, “Development of high quality single crystal diamond for novel laser applications,” Proc. SPIE 7838, 783819 (2010).
    [Crossref]
  3. A. A. Kaminskii, V. G. Ralchenko, and V. I. Konov, “CVD-diamond—a novel χ3-nonlinear active crystalline material for SRS generation in very wide spectral range,” Laser Phys. Lett. 3, 171–177 (2006).
    [Crossref]
  4. W. Lubeigt, G. M. Bonner, J. E. Hastie, M. D. Dawson, D. Burns, and A. J. Kemp, “Continuous-wave diamond Raman laser,” Opt. Lett. 35, 2994–2996 (2010).
    [Crossref]
  5. E. Granados, D. J. Spence, and R. P. Mildren, “Deep ultraviolet diamond Raman laser,” Opt. Express 19, 10857–10863 (2011).
    [Crossref]
  6. R. P. Mildren, J. E. Butler, and J. R. Rabeau, “CVD-diamond external cavity Raman laser at 573  nm,” Opt. Express 16, 18950–18955 (2008).
    [Crossref]
  7. R. P. Mildren and A. Sabella, “Highly efficient diamond Raman laser,” Opt. Lett. 34, 2811–2813 (2009).
    [Crossref]
  8. D. C. Parrotta, A. J. Kemp, M. D. Dawson, and J. E. Hastie, “Multiwatt, continuous-wave, tunable diamond Raman laser with intracavity frequency-doubling to the visible region,” IEEE J. Sel. Top. Quantum Electron. 19, 1400108 (2013).
    [Crossref]
  9. O. Kitzler, A. McKay, and R. P. Mildren, “Continuous-wave wavelength conversion for high-power applications using an external cavity diamond Raman laser,” Opt. Lett. 37, 2790–2792 (2012).
    [Crossref]
  10. A. Sabella, J. A. Piper, and R. P. Mildren, “1240  nm diamond Raman laser operating near the quantum limit,” Opt. Lett. 35, 3874–3876 (2010).
    [Crossref]
  11. A. Sabella, J. A. Piper, and R. P. Mildren, “Efficient conversion of a 1064  μm Nd:YAG laser to the eye-safe region using a diamond Raman laser,” Opt. Express 19, 23554–23560 (2011).
    [Crossref]
  12. J.-P. M. Feve, K. E. Shortoff, M. J. Bohn, and J. K. Brasseur, “High average power diamond Raman laser,” Opt. Express 19, 913–922 (2011).
    [Crossref]
  13. R. J. Williams, O. Kitzler, A. McKay, and R. P. Mildren, “Investigating diamond Raman lasers at the 100  W level using quasi-continuous-wave pumping,” Opt. Lett. 39, 4152–4155 (2014).
    [Crossref]
  14. A. Sabella, J. A. Piper, and R. P. Mildren, “Diamond Raman laser with continuously tunable output from 3.38 to 3.80  μm,” Opt. Lett. 39, 4037–4040 (2014).
    [Crossref]
  15. O. Boyraz and B. Jalali, “Demonstration of a silicon Raman laser,” Opt. Express 12, 5269–5273 (2004).
    [Crossref]
  16. H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725–728 (2005).
    [Crossref]
  17. S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415, 621–623 (2002).
    [Crossref]
  18. T. J. Kippenberg, S. M. Spillane, D. K. Armani, and K. J. Vahala, “Ultralow-threshold microcavity Raman laser on a microelectronic chip,” Opt. Lett. 29, 1224–1226 (2004).
    [Crossref]
  19. Y. Takahashi, Y. Inui, M. Chihara, T. Asano, R. Terawaki, and S. Noda, “A micrometre-scale Raman silicon laser with a microwatt threshold,” Nature 498, 470–474 (2013).
    [Crossref]
  20. H. Rong, S. Xu, O. Cohen, O. Raday, M. Lee, V. Sih, and M. Paniccia, “A cascaded silicon Raman laser,” Nat. Photonics 2, 170–174 (2008).
    [Crossref]
  21. J. A. Piper and H. M. Pask, “Crystalline Raman lasers,” IEEE J. Sel. Top. Quantum Electron. 13, 692–704 (2007).
    [Crossref]
  22. V. M. N. Passaro and F. de Leonardis, “Investigation of SOI Raman lasers for mid-infrared gas sensing,” Sensors 9, 7814–7836 (2009).
    [Crossref]
  23. R. Mildren, M. Convery, H. Pask, J. Piper, and T. McKay, “Efficient, all-solid-state, Raman laser in the yellow, orange and red,” Opt. Express 12, 785–790 (2004).
    [Crossref]
  24. H. Rong, Y.-H. Kuo, S. Xu, A. Liu, R. Jones, M. Paniccia, O. Cohen, and O. Raday, “Monolithic integrated Raman silicon laser,” Opt. Express 14, 6705–6712 (2006).
    [Crossref]
  25. D. Oh, D. Sell, H. Lee, and K. Yang, “Supercontinuum generation in an on-chip silica waveguide,” Opt. Lett. 39, 1046–1048 (2014).
    [Crossref]
  26. B. J. M. Hausmann, B. Shields, Q. Quan, P. Maletinsky, M. McCutcheon, J. T. Choy, T. M. Babinec, A. Kubanek, A. Yacoby, M. D. Lukin, and M. Lončar, “Integrated diamond networks for quantum nanophotonics,” Nano Lett. 12, 1578–1582 (2012).
    [Crossref]
  27. A. Faraon, P. E. Barclay, C. Santori, K.-M. C. Fu, and R. G. Beausoleil, “Resonant enhancement of the zero-phonon emission from a color center in a diamond cavity,” Nat. Photonics 5, 301–305 (2011).
    [Crossref]
  28. B. J. M. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Lončar, “Diamond nonlinear photonics,” Nat. Photonics 8, 369–374 (2014).
    [Crossref]
  29. B. J. M. Hausmann, I. B. Bulu, P. B. Deotare, M. McCutcheon, V. Venkataraman, M. L. Markham, D. J. Twitchen, and M. Lončar, “Integrated high-quality factor optical resonators in diamond,” Nano Lett. 13, 1898–1902 (2013).
    [Crossref]
  30. R. Soref, “Group IV photonics: enabling 2  μm communications,” Nat. Photonics 9, 358–359 (2015).
    [Crossref]
  31. M. J. Burek, N. P. De Leon, B. J. Shields, B. J. M. Hausmann, Y. Chu, Q. Quan, A. S. Zibrov, H. Park, M. D. Lukin, and M. Lončar, “Free-standing mechanical and photonic nanostructures in single-crystal diamond,” Nano Lett. 12, 6084–6089 (2012).
    [Crossref]
  32. M. J. Burek, Y. Chu, M. S. Z. Liddy, P. Patel, J. Rochman, S. Meesala, W. Hong, Q. Quan, M. D. Lukin, and M. Lončar, “High quality-factor optical nanocavities in bulk single-crystal diamond,” Nat. Commun. 5, 5718 (2014).

2015 (1)

R. Soref, “Group IV photonics: enabling 2  μm communications,” Nat. Photonics 9, 358–359 (2015).
[Crossref]

2014 (5)

M. J. Burek, Y. Chu, M. S. Z. Liddy, P. Patel, J. Rochman, S. Meesala, W. Hong, Q. Quan, M. D. Lukin, and M. Lončar, “High quality-factor optical nanocavities in bulk single-crystal diamond,” Nat. Commun. 5, 5718 (2014).

D. Oh, D. Sell, H. Lee, and K. Yang, “Supercontinuum generation in an on-chip silica waveguide,” Opt. Lett. 39, 1046–1048 (2014).
[Crossref]

B. J. M. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Lončar, “Diamond nonlinear photonics,” Nat. Photonics 8, 369–374 (2014).
[Crossref]

R. J. Williams, O. Kitzler, A. McKay, and R. P. Mildren, “Investigating diamond Raman lasers at the 100  W level using quasi-continuous-wave pumping,” Opt. Lett. 39, 4152–4155 (2014).
[Crossref]

A. Sabella, J. A. Piper, and R. P. Mildren, “Diamond Raman laser with continuously tunable output from 3.38 to 3.80  μm,” Opt. Lett. 39, 4037–4040 (2014).
[Crossref]

2013 (3)

Y. Takahashi, Y. Inui, M. Chihara, T. Asano, R. Terawaki, and S. Noda, “A micrometre-scale Raman silicon laser with a microwatt threshold,” Nature 498, 470–474 (2013).
[Crossref]

D. C. Parrotta, A. J. Kemp, M. D. Dawson, and J. E. Hastie, “Multiwatt, continuous-wave, tunable diamond Raman laser with intracavity frequency-doubling to the visible region,” IEEE J. Sel. Top. Quantum Electron. 19, 1400108 (2013).
[Crossref]

B. J. M. Hausmann, I. B. Bulu, P. B. Deotare, M. McCutcheon, V. Venkataraman, M. L. Markham, D. J. Twitchen, and M. Lončar, “Integrated high-quality factor optical resonators in diamond,” Nano Lett. 13, 1898–1902 (2013).
[Crossref]

2012 (3)

B. J. M. Hausmann, B. Shields, Q. Quan, P. Maletinsky, M. McCutcheon, J. T. Choy, T. M. Babinec, A. Kubanek, A. Yacoby, M. D. Lukin, and M. Lončar, “Integrated diamond networks for quantum nanophotonics,” Nano Lett. 12, 1578–1582 (2012).
[Crossref]

M. J. Burek, N. P. De Leon, B. J. Shields, B. J. M. Hausmann, Y. Chu, Q. Quan, A. S. Zibrov, H. Park, M. D. Lukin, and M. Lončar, “Free-standing mechanical and photonic nanostructures in single-crystal diamond,” Nano Lett. 12, 6084–6089 (2012).
[Crossref]

O. Kitzler, A. McKay, and R. P. Mildren, “Continuous-wave wavelength conversion for high-power applications using an external cavity diamond Raman laser,” Opt. Lett. 37, 2790–2792 (2012).
[Crossref]

2011 (4)

2010 (3)

2009 (2)

R. P. Mildren and A. Sabella, “Highly efficient diamond Raman laser,” Opt. Lett. 34, 2811–2813 (2009).
[Crossref]

V. M. N. Passaro and F. de Leonardis, “Investigation of SOI Raman lasers for mid-infrared gas sensing,” Sensors 9, 7814–7836 (2009).
[Crossref]

2008 (2)

R. P. Mildren, J. E. Butler, and J. R. Rabeau, “CVD-diamond external cavity Raman laser at 573  nm,” Opt. Express 16, 18950–18955 (2008).
[Crossref]

H. Rong, S. Xu, O. Cohen, O. Raday, M. Lee, V. Sih, and M. Paniccia, “A cascaded silicon Raman laser,” Nat. Photonics 2, 170–174 (2008).
[Crossref]

2007 (1)

J. A. Piper and H. M. Pask, “Crystalline Raman lasers,” IEEE J. Sel. Top. Quantum Electron. 13, 692–704 (2007).
[Crossref]

2006 (2)

A. A. Kaminskii, V. G. Ralchenko, and V. I. Konov, “CVD-diamond—a novel χ3-nonlinear active crystalline material for SRS generation in very wide spectral range,” Laser Phys. Lett. 3, 171–177 (2006).
[Crossref]

H. Rong, Y.-H. Kuo, S. Xu, A. Liu, R. Jones, M. Paniccia, O. Cohen, and O. Raday, “Monolithic integrated Raman silicon laser,” Opt. Express 14, 6705–6712 (2006).
[Crossref]

2005 (1)

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725–728 (2005).
[Crossref]

2004 (3)

2002 (1)

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415, 621–623 (2002).
[Crossref]

Armani, D. K.

Asano, T.

Y. Takahashi, Y. Inui, M. Chihara, T. Asano, R. Terawaki, and S. Noda, “A micrometre-scale Raman silicon laser with a microwatt threshold,” Nature 498, 470–474 (2013).
[Crossref]

Babinec, T. M.

B. J. M. Hausmann, B. Shields, Q. Quan, P. Maletinsky, M. McCutcheon, J. T. Choy, T. M. Babinec, A. Kubanek, A. Yacoby, M. D. Lukin, and M. Lončar, “Integrated diamond networks for quantum nanophotonics,” Nano Lett. 12, 1578–1582 (2012).
[Crossref]

Barclay, P. E.

A. Faraon, P. E. Barclay, C. Santori, K.-M. C. Fu, and R. G. Beausoleil, “Resonant enhancement of the zero-phonon emission from a color center in a diamond cavity,” Nat. Photonics 5, 301–305 (2011).
[Crossref]

Beausoleil, R. G.

A. Faraon, P. E. Barclay, C. Santori, K.-M. C. Fu, and R. G. Beausoleil, “Resonant enhancement of the zero-phonon emission from a color center in a diamond cavity,” Nat. Photonics 5, 301–305 (2011).
[Crossref]

Bohn, M. J.

Bonner, G. M.

Boyraz, O.

Brasseur, J. K.

Bulu, I.

B. J. M. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Lončar, “Diamond nonlinear photonics,” Nat. Photonics 8, 369–374 (2014).
[Crossref]

Bulu, I. B.

B. J. M. Hausmann, I. B. Bulu, P. B. Deotare, M. McCutcheon, V. Venkataraman, M. L. Markham, D. J. Twitchen, and M. Lončar, “Integrated high-quality factor optical resonators in diamond,” Nano Lett. 13, 1898–1902 (2013).
[Crossref]

Burek, M. J.

M. J. Burek, Y. Chu, M. S. Z. Liddy, P. Patel, J. Rochman, S. Meesala, W. Hong, Q. Quan, M. D. Lukin, and M. Lončar, “High quality-factor optical nanocavities in bulk single-crystal diamond,” Nat. Commun. 5, 5718 (2014).

M. J. Burek, N. P. De Leon, B. J. Shields, B. J. M. Hausmann, Y. Chu, Q. Quan, A. S. Zibrov, H. Park, M. D. Lukin, and M. Lončar, “Free-standing mechanical and photonic nanostructures in single-crystal diamond,” Nano Lett. 12, 6084–6089 (2012).
[Crossref]

Burns, D.

Butler, J. E.

Chihara, M.

Y. Takahashi, Y. Inui, M. Chihara, T. Asano, R. Terawaki, and S. Noda, “A micrometre-scale Raman silicon laser with a microwatt threshold,” Nature 498, 470–474 (2013).
[Crossref]

Choy, J. T.

B. J. M. Hausmann, B. Shields, Q. Quan, P. Maletinsky, M. McCutcheon, J. T. Choy, T. M. Babinec, A. Kubanek, A. Yacoby, M. D. Lukin, and M. Lončar, “Integrated diamond networks for quantum nanophotonics,” Nano Lett. 12, 1578–1582 (2012).
[Crossref]

Chu, Y.

M. J. Burek, Y. Chu, M. S. Z. Liddy, P. Patel, J. Rochman, S. Meesala, W. Hong, Q. Quan, M. D. Lukin, and M. Lončar, “High quality-factor optical nanocavities in bulk single-crystal diamond,” Nat. Commun. 5, 5718 (2014).

M. J. Burek, N. P. De Leon, B. J. Shields, B. J. M. Hausmann, Y. Chu, Q. Quan, A. S. Zibrov, H. Park, M. D. Lukin, and M. Lončar, “Free-standing mechanical and photonic nanostructures in single-crystal diamond,” Nano Lett. 12, 6084–6089 (2012).
[Crossref]

Cohen, O.

H. Rong, S. Xu, O. Cohen, O. Raday, M. Lee, V. Sih, and M. Paniccia, “A cascaded silicon Raman laser,” Nat. Photonics 2, 170–174 (2008).
[Crossref]

H. Rong, Y.-H. Kuo, S. Xu, A. Liu, R. Jones, M. Paniccia, O. Cohen, and O. Raday, “Monolithic integrated Raman silicon laser,” Opt. Express 14, 6705–6712 (2006).
[Crossref]

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725–728 (2005).
[Crossref]

Convery, M.

Dawson, M. D.

D. C. Parrotta, A. J. Kemp, M. D. Dawson, and J. E. Hastie, “Multiwatt, continuous-wave, tunable diamond Raman laser with intracavity frequency-doubling to the visible region,” IEEE J. Sel. Top. Quantum Electron. 19, 1400108 (2013).
[Crossref]

W. Lubeigt, G. M. Bonner, J. E. Hastie, M. D. Dawson, D. Burns, and A. J. Kemp, “Continuous-wave diamond Raman laser,” Opt. Lett. 35, 2994–2996 (2010).
[Crossref]

De Leon, N. P.

M. J. Burek, N. P. De Leon, B. J. Shields, B. J. M. Hausmann, Y. Chu, Q. Quan, A. S. Zibrov, H. Park, M. D. Lukin, and M. Lončar, “Free-standing mechanical and photonic nanostructures in single-crystal diamond,” Nano Lett. 12, 6084–6089 (2012).
[Crossref]

de Leonardis, F.

V. M. N. Passaro and F. de Leonardis, “Investigation of SOI Raman lasers for mid-infrared gas sensing,” Sensors 9, 7814–7836 (2009).
[Crossref]

Deotare, P.

B. J. M. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Lončar, “Diamond nonlinear photonics,” Nat. Photonics 8, 369–374 (2014).
[Crossref]

Deotare, P. B.

B. J. M. Hausmann, I. B. Bulu, P. B. Deotare, M. McCutcheon, V. Venkataraman, M. L. Markham, D. J. Twitchen, and M. Lončar, “Integrated high-quality factor optical resonators in diamond,” Nano Lett. 13, 1898–1902 (2013).
[Crossref]

Fang, A.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725–728 (2005).
[Crossref]

Faraon, A.

A. Faraon, P. E. Barclay, C. Santori, K.-M. C. Fu, and R. G. Beausoleil, “Resonant enhancement of the zero-phonon emission from a color center in a diamond cavity,” Nat. Photonics 5, 301–305 (2011).
[Crossref]

Feve, J.-P. M.

Friel, I.

I. Friel, S. L. Geoghegan, D. J. Twitchen, and G. A. Scarsbrook, “Development of high quality single crystal diamond for novel laser applications,” Proc. SPIE 7838, 783819 (2010).
[Crossref]

Fu, K.-M. C.

A. Faraon, P. E. Barclay, C. Santori, K.-M. C. Fu, and R. G. Beausoleil, “Resonant enhancement of the zero-phonon emission from a color center in a diamond cavity,” Nat. Photonics 5, 301–305 (2011).
[Crossref]

Geoghegan, S. L.

I. Friel, S. L. Geoghegan, D. J. Twitchen, and G. A. Scarsbrook, “Development of high quality single crystal diamond for novel laser applications,” Proc. SPIE 7838, 783819 (2010).
[Crossref]

Granados, E.

Hak, D.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725–728 (2005).
[Crossref]

Hastie, J. E.

D. C. Parrotta, A. J. Kemp, M. D. Dawson, and J. E. Hastie, “Multiwatt, continuous-wave, tunable diamond Raman laser with intracavity frequency-doubling to the visible region,” IEEE J. Sel. Top. Quantum Electron. 19, 1400108 (2013).
[Crossref]

W. Lubeigt, G. M. Bonner, J. E. Hastie, M. D. Dawson, D. Burns, and A. J. Kemp, “Continuous-wave diamond Raman laser,” Opt. Lett. 35, 2994–2996 (2010).
[Crossref]

Hausmann, B. J. M.

B. J. M. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Lončar, “Diamond nonlinear photonics,” Nat. Photonics 8, 369–374 (2014).
[Crossref]

B. J. M. Hausmann, I. B. Bulu, P. B. Deotare, M. McCutcheon, V. Venkataraman, M. L. Markham, D. J. Twitchen, and M. Lončar, “Integrated high-quality factor optical resonators in diamond,” Nano Lett. 13, 1898–1902 (2013).
[Crossref]

M. J. Burek, N. P. De Leon, B. J. Shields, B. J. M. Hausmann, Y. Chu, Q. Quan, A. S. Zibrov, H. Park, M. D. Lukin, and M. Lončar, “Free-standing mechanical and photonic nanostructures in single-crystal diamond,” Nano Lett. 12, 6084–6089 (2012).
[Crossref]

B. J. M. Hausmann, B. Shields, Q. Quan, P. Maletinsky, M. McCutcheon, J. T. Choy, T. M. Babinec, A. Kubanek, A. Yacoby, M. D. Lukin, and M. Lončar, “Integrated diamond networks for quantum nanophotonics,” Nano Lett. 12, 1578–1582 (2012).
[Crossref]

Hong, W.

M. J. Burek, Y. Chu, M. S. Z. Liddy, P. Patel, J. Rochman, S. Meesala, W. Hong, Q. Quan, M. D. Lukin, and M. Lončar, “High quality-factor optical nanocavities in bulk single-crystal diamond,” Nat. Commun. 5, 5718 (2014).

Inui, Y.

Y. Takahashi, Y. Inui, M. Chihara, T. Asano, R. Terawaki, and S. Noda, “A micrometre-scale Raman silicon laser with a microwatt threshold,” Nature 498, 470–474 (2013).
[Crossref]

Jalali, B.

Jones, R.

H. Rong, Y.-H. Kuo, S. Xu, A. Liu, R. Jones, M. Paniccia, O. Cohen, and O. Raday, “Monolithic integrated Raman silicon laser,” Opt. Express 14, 6705–6712 (2006).
[Crossref]

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725–728 (2005).
[Crossref]

Kaminskii, A. A.

A. A. Kaminskii, V. G. Ralchenko, and V. I. Konov, “CVD-diamond—a novel χ3-nonlinear active crystalline material for SRS generation in very wide spectral range,” Laser Phys. Lett. 3, 171–177 (2006).
[Crossref]

Kemp, A. J.

D. C. Parrotta, A. J. Kemp, M. D. Dawson, and J. E. Hastie, “Multiwatt, continuous-wave, tunable diamond Raman laser with intracavity frequency-doubling to the visible region,” IEEE J. Sel. Top. Quantum Electron. 19, 1400108 (2013).
[Crossref]

W. Lubeigt, G. M. Bonner, J. E. Hastie, M. D. Dawson, D. Burns, and A. J. Kemp, “Continuous-wave diamond Raman laser,” Opt. Lett. 35, 2994–2996 (2010).
[Crossref]

Kippenberg, T. J.

T. J. Kippenberg, S. M. Spillane, D. K. Armani, and K. J. Vahala, “Ultralow-threshold microcavity Raman laser on a microelectronic chip,” Opt. Lett. 29, 1224–1226 (2004).
[Crossref]

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415, 621–623 (2002).
[Crossref]

Kitzler, O.

Konov, V. I.

A. A. Kaminskii, V. G. Ralchenko, and V. I. Konov, “CVD-diamond—a novel χ3-nonlinear active crystalline material for SRS generation in very wide spectral range,” Laser Phys. Lett. 3, 171–177 (2006).
[Crossref]

Kubanek, A.

B. J. M. Hausmann, B. Shields, Q. Quan, P. Maletinsky, M. McCutcheon, J. T. Choy, T. M. Babinec, A. Kubanek, A. Yacoby, M. D. Lukin, and M. Lončar, “Integrated diamond networks for quantum nanophotonics,” Nano Lett. 12, 1578–1582 (2012).
[Crossref]

Kuo, Y.-H.

Lee, H.

Lee, M.

H. Rong, S. Xu, O. Cohen, O. Raday, M. Lee, V. Sih, and M. Paniccia, “A cascaded silicon Raman laser,” Nat. Photonics 2, 170–174 (2008).
[Crossref]

Liddy, M. S. Z.

M. J. Burek, Y. Chu, M. S. Z. Liddy, P. Patel, J. Rochman, S. Meesala, W. Hong, Q. Quan, M. D. Lukin, and M. Lončar, “High quality-factor optical nanocavities in bulk single-crystal diamond,” Nat. Commun. 5, 5718 (2014).

Liu, A.

H. Rong, Y.-H. Kuo, S. Xu, A. Liu, R. Jones, M. Paniccia, O. Cohen, and O. Raday, “Monolithic integrated Raman silicon laser,” Opt. Express 14, 6705–6712 (2006).
[Crossref]

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725–728 (2005).
[Crossref]

Loncar, M.

M. J. Burek, Y. Chu, M. S. Z. Liddy, P. Patel, J. Rochman, S. Meesala, W. Hong, Q. Quan, M. D. Lukin, and M. Lončar, “High quality-factor optical nanocavities in bulk single-crystal diamond,” Nat. Commun. 5, 5718 (2014).

B. J. M. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Lončar, “Diamond nonlinear photonics,” Nat. Photonics 8, 369–374 (2014).
[Crossref]

B. J. M. Hausmann, I. B. Bulu, P. B. Deotare, M. McCutcheon, V. Venkataraman, M. L. Markham, D. J. Twitchen, and M. Lončar, “Integrated high-quality factor optical resonators in diamond,” Nano Lett. 13, 1898–1902 (2013).
[Crossref]

B. J. M. Hausmann, B. Shields, Q. Quan, P. Maletinsky, M. McCutcheon, J. T. Choy, T. M. Babinec, A. Kubanek, A. Yacoby, M. D. Lukin, and M. Lončar, “Integrated diamond networks for quantum nanophotonics,” Nano Lett. 12, 1578–1582 (2012).
[Crossref]

M. J. Burek, N. P. De Leon, B. J. Shields, B. J. M. Hausmann, Y. Chu, Q. Quan, A. S. Zibrov, H. Park, M. D. Lukin, and M. Lončar, “Free-standing mechanical and photonic nanostructures in single-crystal diamond,” Nano Lett. 12, 6084–6089 (2012).
[Crossref]

Lubeigt, W.

Lukin, M. D.

M. J. Burek, Y. Chu, M. S. Z. Liddy, P. Patel, J. Rochman, S. Meesala, W. Hong, Q. Quan, M. D. Lukin, and M. Lončar, “High quality-factor optical nanocavities in bulk single-crystal diamond,” Nat. Commun. 5, 5718 (2014).

M. J. Burek, N. P. De Leon, B. J. Shields, B. J. M. Hausmann, Y. Chu, Q. Quan, A. S. Zibrov, H. Park, M. D. Lukin, and M. Lončar, “Free-standing mechanical and photonic nanostructures in single-crystal diamond,” Nano Lett. 12, 6084–6089 (2012).
[Crossref]

B. J. M. Hausmann, B. Shields, Q. Quan, P. Maletinsky, M. McCutcheon, J. T. Choy, T. M. Babinec, A. Kubanek, A. Yacoby, M. D. Lukin, and M. Lončar, “Integrated diamond networks for quantum nanophotonics,” Nano Lett. 12, 1578–1582 (2012).
[Crossref]

Maletinsky, P.

B. J. M. Hausmann, B. Shields, Q. Quan, P. Maletinsky, M. McCutcheon, J. T. Choy, T. M. Babinec, A. Kubanek, A. Yacoby, M. D. Lukin, and M. Lončar, “Integrated diamond networks for quantum nanophotonics,” Nano Lett. 12, 1578–1582 (2012).
[Crossref]

Markham, M. L.

B. J. M. Hausmann, I. B. Bulu, P. B. Deotare, M. McCutcheon, V. Venkataraman, M. L. Markham, D. J. Twitchen, and M. Lončar, “Integrated high-quality factor optical resonators in diamond,” Nano Lett. 13, 1898–1902 (2013).
[Crossref]

McCutcheon, M.

B. J. M. Hausmann, I. B. Bulu, P. B. Deotare, M. McCutcheon, V. Venkataraman, M. L. Markham, D. J. Twitchen, and M. Lončar, “Integrated high-quality factor optical resonators in diamond,” Nano Lett. 13, 1898–1902 (2013).
[Crossref]

B. J. M. Hausmann, B. Shields, Q. Quan, P. Maletinsky, M. McCutcheon, J. T. Choy, T. M. Babinec, A. Kubanek, A. Yacoby, M. D. Lukin, and M. Lončar, “Integrated diamond networks for quantum nanophotonics,” Nano Lett. 12, 1578–1582 (2012).
[Crossref]

McKay, A.

McKay, T.

Meesala, S.

M. J. Burek, Y. Chu, M. S. Z. Liddy, P. Patel, J. Rochman, S. Meesala, W. Hong, Q. Quan, M. D. Lukin, and M. Lončar, “High quality-factor optical nanocavities in bulk single-crystal diamond,” Nat. Commun. 5, 5718 (2014).

Mildren, R.

Mildren, R. P.

Noda, S.

Y. Takahashi, Y. Inui, M. Chihara, T. Asano, R. Terawaki, and S. Noda, “A micrometre-scale Raman silicon laser with a microwatt threshold,” Nature 498, 470–474 (2013).
[Crossref]

Oh, D.

Paniccia, M.

H. Rong, S. Xu, O. Cohen, O. Raday, M. Lee, V. Sih, and M. Paniccia, “A cascaded silicon Raman laser,” Nat. Photonics 2, 170–174 (2008).
[Crossref]

H. Rong, Y.-H. Kuo, S. Xu, A. Liu, R. Jones, M. Paniccia, O. Cohen, and O. Raday, “Monolithic integrated Raman silicon laser,” Opt. Express 14, 6705–6712 (2006).
[Crossref]

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725–728 (2005).
[Crossref]

Park, H.

M. J. Burek, N. P. De Leon, B. J. Shields, B. J. M. Hausmann, Y. Chu, Q. Quan, A. S. Zibrov, H. Park, M. D. Lukin, and M. Lončar, “Free-standing mechanical and photonic nanostructures in single-crystal diamond,” Nano Lett. 12, 6084–6089 (2012).
[Crossref]

Parrotta, D. C.

D. C. Parrotta, A. J. Kemp, M. D. Dawson, and J. E. Hastie, “Multiwatt, continuous-wave, tunable diamond Raman laser with intracavity frequency-doubling to the visible region,” IEEE J. Sel. Top. Quantum Electron. 19, 1400108 (2013).
[Crossref]

Pask, H.

Pask, H. M.

J. A. Piper and H. M. Pask, “Crystalline Raman lasers,” IEEE J. Sel. Top. Quantum Electron. 13, 692–704 (2007).
[Crossref]

Passaro, V. M. N.

V. M. N. Passaro and F. de Leonardis, “Investigation of SOI Raman lasers for mid-infrared gas sensing,” Sensors 9, 7814–7836 (2009).
[Crossref]

Patel, P.

M. J. Burek, Y. Chu, M. S. Z. Liddy, P. Patel, J. Rochman, S. Meesala, W. Hong, Q. Quan, M. D. Lukin, and M. Lončar, “High quality-factor optical nanocavities in bulk single-crystal diamond,” Nat. Commun. 5, 5718 (2014).

Piper, J.

Piper, J. A.

Quan, Q.

M. J. Burek, Y. Chu, M. S. Z. Liddy, P. Patel, J. Rochman, S. Meesala, W. Hong, Q. Quan, M. D. Lukin, and M. Lončar, “High quality-factor optical nanocavities in bulk single-crystal diamond,” Nat. Commun. 5, 5718 (2014).

B. J. M. Hausmann, B. Shields, Q. Quan, P. Maletinsky, M. McCutcheon, J. T. Choy, T. M. Babinec, A. Kubanek, A. Yacoby, M. D. Lukin, and M. Lončar, “Integrated diamond networks for quantum nanophotonics,” Nano Lett. 12, 1578–1582 (2012).
[Crossref]

M. J. Burek, N. P. De Leon, B. J. Shields, B. J. M. Hausmann, Y. Chu, Q. Quan, A. S. Zibrov, H. Park, M. D. Lukin, and M. Lončar, “Free-standing mechanical and photonic nanostructures in single-crystal diamond,” Nano Lett. 12, 6084–6089 (2012).
[Crossref]

Rabeau, J.

R. Mildren and J. Rabeau, Optical Engineering of Diamond (Wiley, 2013).

Rabeau, J. R.

Raday, O.

H. Rong, S. Xu, O. Cohen, O. Raday, M. Lee, V. Sih, and M. Paniccia, “A cascaded silicon Raman laser,” Nat. Photonics 2, 170–174 (2008).
[Crossref]

H. Rong, Y.-H. Kuo, S. Xu, A. Liu, R. Jones, M. Paniccia, O. Cohen, and O. Raday, “Monolithic integrated Raman silicon laser,” Opt. Express 14, 6705–6712 (2006).
[Crossref]

Ralchenko, V. G.

A. A. Kaminskii, V. G. Ralchenko, and V. I. Konov, “CVD-diamond—a novel χ3-nonlinear active crystalline material for SRS generation in very wide spectral range,” Laser Phys. Lett. 3, 171–177 (2006).
[Crossref]

Rochman, J.

M. J. Burek, Y. Chu, M. S. Z. Liddy, P. Patel, J. Rochman, S. Meesala, W. Hong, Q. Quan, M. D. Lukin, and M. Lončar, “High quality-factor optical nanocavities in bulk single-crystal diamond,” Nat. Commun. 5, 5718 (2014).

Rong, H.

H. Rong, S. Xu, O. Cohen, O. Raday, M. Lee, V. Sih, and M. Paniccia, “A cascaded silicon Raman laser,” Nat. Photonics 2, 170–174 (2008).
[Crossref]

H. Rong, Y.-H. Kuo, S. Xu, A. Liu, R. Jones, M. Paniccia, O. Cohen, and O. Raday, “Monolithic integrated Raman silicon laser,” Opt. Express 14, 6705–6712 (2006).
[Crossref]

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725–728 (2005).
[Crossref]

Sabella, A.

Santori, C.

A. Faraon, P. E. Barclay, C. Santori, K.-M. C. Fu, and R. G. Beausoleil, “Resonant enhancement of the zero-phonon emission from a color center in a diamond cavity,” Nat. Photonics 5, 301–305 (2011).
[Crossref]

Scarsbrook, G. A.

I. Friel, S. L. Geoghegan, D. J. Twitchen, and G. A. Scarsbrook, “Development of high quality single crystal diamond for novel laser applications,” Proc. SPIE 7838, 783819 (2010).
[Crossref]

Sell, D.

Shields, B.

B. J. M. Hausmann, B. Shields, Q. Quan, P. Maletinsky, M. McCutcheon, J. T. Choy, T. M. Babinec, A. Kubanek, A. Yacoby, M. D. Lukin, and M. Lončar, “Integrated diamond networks for quantum nanophotonics,” Nano Lett. 12, 1578–1582 (2012).
[Crossref]

Shields, B. J.

M. J. Burek, N. P. De Leon, B. J. Shields, B. J. M. Hausmann, Y. Chu, Q. Quan, A. S. Zibrov, H. Park, M. D. Lukin, and M. Lončar, “Free-standing mechanical and photonic nanostructures in single-crystal diamond,” Nano Lett. 12, 6084–6089 (2012).
[Crossref]

Shortoff, K. E.

Sih, V.

H. Rong, S. Xu, O. Cohen, O. Raday, M. Lee, V. Sih, and M. Paniccia, “A cascaded silicon Raman laser,” Nat. Photonics 2, 170–174 (2008).
[Crossref]

Soref, R.

R. Soref, “Group IV photonics: enabling 2  μm communications,” Nat. Photonics 9, 358–359 (2015).
[Crossref]

Spence, D. J.

Spillane, S. M.

T. J. Kippenberg, S. M. Spillane, D. K. Armani, and K. J. Vahala, “Ultralow-threshold microcavity Raman laser on a microelectronic chip,” Opt. Lett. 29, 1224–1226 (2004).
[Crossref]

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415, 621–623 (2002).
[Crossref]

Takahashi, Y.

Y. Takahashi, Y. Inui, M. Chihara, T. Asano, R. Terawaki, and S. Noda, “A micrometre-scale Raman silicon laser with a microwatt threshold,” Nature 498, 470–474 (2013).
[Crossref]

Terawaki, R.

Y. Takahashi, Y. Inui, M. Chihara, T. Asano, R. Terawaki, and S. Noda, “A micrometre-scale Raman silicon laser with a microwatt threshold,” Nature 498, 470–474 (2013).
[Crossref]

Twitchen, D. J.

B. J. M. Hausmann, I. B. Bulu, P. B. Deotare, M. McCutcheon, V. Venkataraman, M. L. Markham, D. J. Twitchen, and M. Lončar, “Integrated high-quality factor optical resonators in diamond,” Nano Lett. 13, 1898–1902 (2013).
[Crossref]

I. Friel, S. L. Geoghegan, D. J. Twitchen, and G. A. Scarsbrook, “Development of high quality single crystal diamond for novel laser applications,” Proc. SPIE 7838, 783819 (2010).
[Crossref]

Vahala, K. J.

T. J. Kippenberg, S. M. Spillane, D. K. Armani, and K. J. Vahala, “Ultralow-threshold microcavity Raman laser on a microelectronic chip,” Opt. Lett. 29, 1224–1226 (2004).
[Crossref]

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415, 621–623 (2002).
[Crossref]

Venkataraman, V.

B. J. M. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Lončar, “Diamond nonlinear photonics,” Nat. Photonics 8, 369–374 (2014).
[Crossref]

B. J. M. Hausmann, I. B. Bulu, P. B. Deotare, M. McCutcheon, V. Venkataraman, M. L. Markham, D. J. Twitchen, and M. Lončar, “Integrated high-quality factor optical resonators in diamond,” Nano Lett. 13, 1898–1902 (2013).
[Crossref]

Williams, R. J.

Xu, S.

H. Rong, S. Xu, O. Cohen, O. Raday, M. Lee, V. Sih, and M. Paniccia, “A cascaded silicon Raman laser,” Nat. Photonics 2, 170–174 (2008).
[Crossref]

H. Rong, Y.-H. Kuo, S. Xu, A. Liu, R. Jones, M. Paniccia, O. Cohen, and O. Raday, “Monolithic integrated Raman silicon laser,” Opt. Express 14, 6705–6712 (2006).
[Crossref]

Yacoby, A.

B. J. M. Hausmann, B. Shields, Q. Quan, P. Maletinsky, M. McCutcheon, J. T. Choy, T. M. Babinec, A. Kubanek, A. Yacoby, M. D. Lukin, and M. Lončar, “Integrated diamond networks for quantum nanophotonics,” Nano Lett. 12, 1578–1582 (2012).
[Crossref]

Yang, K.

Zibrov, A. S.

M. J. Burek, N. P. De Leon, B. J. Shields, B. J. M. Hausmann, Y. Chu, Q. Quan, A. S. Zibrov, H. Park, M. D. Lukin, and M. Lončar, “Free-standing mechanical and photonic nanostructures in single-crystal diamond,” Nano Lett. 12, 6084–6089 (2012).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

D. C. Parrotta, A. J. Kemp, M. D. Dawson, and J. E. Hastie, “Multiwatt, continuous-wave, tunable diamond Raman laser with intracavity frequency-doubling to the visible region,” IEEE J. Sel. Top. Quantum Electron. 19, 1400108 (2013).
[Crossref]

J. A. Piper and H. M. Pask, “Crystalline Raman lasers,” IEEE J. Sel. Top. Quantum Electron. 13, 692–704 (2007).
[Crossref]

Laser Phys. Lett. (1)

A. A. Kaminskii, V. G. Ralchenko, and V. I. Konov, “CVD-diamond—a novel χ3-nonlinear active crystalline material for SRS generation in very wide spectral range,” Laser Phys. Lett. 3, 171–177 (2006).
[Crossref]

Nano Lett. (3)

B. J. M. Hausmann, B. Shields, Q. Quan, P. Maletinsky, M. McCutcheon, J. T. Choy, T. M. Babinec, A. Kubanek, A. Yacoby, M. D. Lukin, and M. Lončar, “Integrated diamond networks for quantum nanophotonics,” Nano Lett. 12, 1578–1582 (2012).
[Crossref]

B. J. M. Hausmann, I. B. Bulu, P. B. Deotare, M. McCutcheon, V. Venkataraman, M. L. Markham, D. J. Twitchen, and M. Lončar, “Integrated high-quality factor optical resonators in diamond,” Nano Lett. 13, 1898–1902 (2013).
[Crossref]

M. J. Burek, N. P. De Leon, B. J. Shields, B. J. M. Hausmann, Y. Chu, Q. Quan, A. S. Zibrov, H. Park, M. D. Lukin, and M. Lončar, “Free-standing mechanical and photonic nanostructures in single-crystal diamond,” Nano Lett. 12, 6084–6089 (2012).
[Crossref]

Nat. Commun. (1)

M. J. Burek, Y. Chu, M. S. Z. Liddy, P. Patel, J. Rochman, S. Meesala, W. Hong, Q. Quan, M. D. Lukin, and M. Lončar, “High quality-factor optical nanocavities in bulk single-crystal diamond,” Nat. Commun. 5, 5718 (2014).

Nat. Photonics (4)

H. Rong, S. Xu, O. Cohen, O. Raday, M. Lee, V. Sih, and M. Paniccia, “A cascaded silicon Raman laser,” Nat. Photonics 2, 170–174 (2008).
[Crossref]

R. Soref, “Group IV photonics: enabling 2  μm communications,” Nat. Photonics 9, 358–359 (2015).
[Crossref]

A. Faraon, P. E. Barclay, C. Santori, K.-M. C. Fu, and R. G. Beausoleil, “Resonant enhancement of the zero-phonon emission from a color center in a diamond cavity,” Nat. Photonics 5, 301–305 (2011).
[Crossref]

B. J. M. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Lončar, “Diamond nonlinear photonics,” Nat. Photonics 8, 369–374 (2014).
[Crossref]

Nature (3)

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725–728 (2005).
[Crossref]

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415, 621–623 (2002).
[Crossref]

Y. Takahashi, Y. Inui, M. Chihara, T. Asano, R. Terawaki, and S. Noda, “A micrometre-scale Raman silicon laser with a microwatt threshold,” Nature 498, 470–474 (2013).
[Crossref]

Opt. Express (7)

Opt. Lett. (8)

Proc. SPIE (1)

I. Friel, S. L. Geoghegan, D. J. Twitchen, and G. A. Scarsbrook, “Development of high quality single crystal diamond for novel laser applications,” Proc. SPIE 7838, 783819 (2010).
[Crossref]

Sensors (1)

V. M. N. Passaro and F. de Leonardis, “Investigation of SOI Raman lasers for mid-infrared gas sensing,” Sensors 9, 7814–7836 (2009).
[Crossref]

Other (1)

R. Mildren and J. Rabeau, Optical Engineering of Diamond (Wiley, 2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Diamond-microresonator-based Raman laser design. (a) Energy level diagram of the Raman scattering process (left), wherein a high-energy pump photon with frequency ωP is scattered into a lower frequency Stokes photon, ωS, and an optical phonon, ΩR (40THz in diamond). We pump with telecom lasers (λP1.6μm) corresponding to ωP190THz, resulting in a Stokes output at ωS150THz, i.e., λS2μm. A schematic illustrating the device principle (right) shows a pump wave (green) entering a high-Q microcavity, where it enables Stokes lasing (orange) via stimulated Raman scattering. (b) Simulated TE mode profiles of diamond waveguides with width 800 nm and height 700 nm fully embedded in silica, at the pump (λP1.6μm, top) and Stokes (λS2μm, bottom) wavelengths, showing good overlap. (c) Scanning-electron-microscopy image of the nanofabricated diamond racetrack resonators on a SiO2-on-Si substrate before cladding with PECVD silica, showing the bus-waveguide-coupling region (gap 500nm) and transition to polymer (SU-8) waveguides for efficient coupling to lensed fibers. (d) Optical micrograph of a diamond racetrack microresonator with path length 600μm and bending radius 20μm, after a PECVD silica cladding layer is deposited on top.

Fig. 2.
Fig. 2.

High-Q modes at pump and Stokes wavelengths. (a) Transmission spectrum of the diamond racetrack resonator at telecom (pump) wavelengths taken by sweeping a continuous-wave laser reveals high-Q transverse-electric (TE) modes with 30%–40% extinction ratio (undercoupled resonances). The path length of the resonator is 600μm, corresponding to an FSR of 1.5nm (180GHz). Inset: a loaded Q of 440,000 is inferred from the Lorentzian fit to the mode at 1574.8nm. (b) Transmission spectrum of the diamond resonator at the Stokes wavelength range near 2μm (40THz red-shifted from the pump) taken using a broadband supercontinuum source again reveals high-Q TE modes with 30%–40% extinction ratio (undercoupled resonances). Inset: a loaded Q of 30,000 is inferred from the Lorentzian fit to the mode at 1966nm, although this may be limited by the resolution (0.056nm) of our optical spectrum analyzer.

Fig. 3.
Fig. 3.

Observation of Raman lasing and threshold measurement. (a) Optical spectrum analyzer (OSA) signal when the pump is tuned into a resonance near 1575nm with 100mW power shows the emergence of the Raman line at the Stokes wavelength of 1993nm, 40THz red-shifted from the pump. Inset: a high-resolution scan zooming into the Stokes output reveals >50dB sideband suppression ratio (>60dB on-chip after correcting for outcoupling losses). (b) Output Stokes power at 1993nm versus input pump power at 1575nm (both estimated in the bus waveguide), displaying a clear threshold for Raman lasing at 85mW pump power. The external conversion slope efficiency is 0.43%, corresponding to an internal quantum efficiency of 12%. Inset: a log–log plot of the output Stokes power versus input pump power reveals a 40dB jump above the noise floor in the output at threshold.

Fig. 4.
Fig. 4.

Discrete and continuous tuning of Raman laser output wavelength. (a) Discrete tuning of the Stokes wavelength over a range >100nm (7.5THz or 5% of the center frequency). The pump is tuned to 14 separate resonances, each spaced by 3× FSR (550GHz), and the Raman line is recorded with an OSA at each pump wavelength. (b) Stokes output of adjacent modes. Here the pump is tuned to neighboring resonances (one FSR apart) within the highlighted region of (a). The output modes are also spaced by an FSR or 180GHz. Thus, more than 40 individual longitudinal modes can be accessed over the entire demonstrated tuning range. (c) Mode-hop-free tuning of the Stokes wavelength over 0.1nm or 7.5GHz. The pump frequency is tuned within a thermally red-shifted resonance (“shark-fin” shape), thus tuning the output Stokes wavelength in a continuous fashion. The output power is normalized to the peak emission at each pump wavelength. The linewidth of the Stokes mode is limited by the minimum resolution of our OSA (0.05nm).

Metrics