Abstract

Tracking the kinematics of fast-moving objects is an important diagnostic tool for science and engineering. Here, we demonstrate an approach to positional and directional sensing based on the concept of classical entanglement in vector beams of light [Found. Phys. 28, 361–374 (1998) [CrossRef]  ]. The measurement principle relies on the intrinsic correlations existing in such beams between transverse spatial modes and polarization. The latter can be determined from intensity measurements with only a few fast photodiodes, greatly outperforming the bandwidth of current CCD/CMOS devices. In this way, our setup enables two-dimensional real-time sensing with temporal resolution in the GHz range. We expect the concept to open up new directions in metrology and sensing.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Effect of geometry on the classical entanglement in a chaotic optical fiber

Sijo K. Joseph, Juan Sabuco, Lock Yue Chew, and Miguel A. F. Sanjuán
Opt. Express 23(25) 32191-32201 (2015)

Shifting the quantum-classical boundary: theory and experiment for statistically classical optical fields

Xiao-Feng Qian, Bethany Little, John C. Howell, and J. H. Eberly
Optica 2(7) 611-615 (2015)

High-dimensional encoding based on classical nonseparability

Pengyun Li, Bo Wang, and Xiangdong Zhang
Opt. Express 24(13) 15143-15159 (2016)

References

  • View by:
  • |
  • |
  • |

  1. Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photon. 1, 1–57 (2009).
    [Crossref]
  2. S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179, 1–7 (2000).
    [Crossref]
  3. R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003).
    [Crossref]
  4. M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys. A 86, 329–334 (2007).
    [Crossref]
  5. N. M. Mojarad and M. Agio, “Tailoring the excitation of localized surface plasmon-polariton resonances by focusing radially-polarized beams,” Opt. Express 17, 117–122 (2009).
    [Crossref]
  6. F. K. Fatemi, “Cylindrical vector beams for rapid polarization-dependent measurements in atomic systems,” Opt. Express 19, 25143–25150 (2011).
    [Crossref]
  7. Y. Kozawa and S. Sato, “Optical trapping of micrometer-sized dielectric particles by cylindrical vector beams,” Opt. Express 18, 10828–10833 (2010).
    [Crossref]
  8. J. Kindler (née Müller), P. Banzer, S. Quabis, U. Peschel, and G. Leuchs, “Waveguide properties of single subwavelength holes demonstrated with radially and azimuthally polarized light,” Appl. Phys. B 89, 517–520 (2007).
    [Crossref]
  9. M. Neugebauer, T. Bauer, P. Banzer, and G. Leuchs, “Polarization tailored light driven directional optical nanobeacon,” Nano Lett. 14, 2546–2551 (2014).
    [Crossref]
  10. P. Woźniak, P. Banzer, and G. Leuchs, “Selective switching of individual multipole resonances in single dielectric nanoparticles,” Laser Photon. Rev. 9, 231–240 (2015).
    [Crossref]
  11. A. Holleczek, A. Aiello, C. Gabriel, C. Marquardt, and G. Leuchs, “Poincaré sphere representation for classical inseparable Bell-like states of the electromagnetic field,” arXiv:1007.2528 (2010).
  12. C. V. S. Borges, M. Hor-Meyll, J. A. O. Huguenin, and A. Z. Khoury, “Bell-like inequality for the spin-orbit separability of a laser beam,” Phys. Rev. A 82, 033833 (2010).
    [Crossref]
  13. E. Karimi, J. Leach, S. Slussarenko, B. Piccirillo, L. Marrucci, L. Chen, W. She, S. Franke-Arnold, M. J. Padgett, and E. Santamato, “Spin-orbit hybrid entanglement of photons and quantum contextuality,” Phys. Rev. A 82, 022115 (2010).
    [Crossref]
  14. X.-F. Qian and J. H. Eberly, “Entanglement and classical polarization states,” Opt. Lett. 36, 4110–4112 (2011).
    [Crossref]
  15. K. H. Kagalwala, G. Di Giuseppe, A. F. Abouraddy, and B. E. A. Saleh, “Bell’s measure in classical optical coherence,” Nat. Photonics 7, 72–78 (2012).
    [Crossref]
  16. X.-F. Qian, B. Little, J. C. Howell, and J. H. Eberly, “Shifting the quantum-classical boundary: theory and experiment for statistically classical optical fields,” Optica 2, 611–615 (2015).
    [Crossref]
  17. R. J. Spreeuw, “A classical analogy of entanglement,” Found. Phys. 28, 361–374 (1998).
    [Crossref]
  18. R. Spreeuw, “Classical wave-optics analogy of quantum-information processing,” Phys. Rev. A 63, 062302 (2001).
    [Crossref]
  19. A. Luis, “Coherence, polarization, and entanglement for classical light fields,” Opt. Commun. 282, 3665–3670 (2009).
    [Crossref]
  20. A. Aiello, F. Töppel, C. Marquardt, E. Giacobino, and G. Leuchs, “Quantum-like nonseparable structures in optical beams,” New J. Phys. 17, 043024 (2015).
    [Crossref]
  21. C. Gabriel, A. Aiello, W. Zhong, T. G. Euser, N. Y. Joly, P. Banzer, M. Förtsch, D. Elser, U. L. Andersen, C. Marquardt, P. St.J. Russell, and G. Leuchs, “Entangling different degrees of freedom by quadrature squeezing cylindrically polarized modes,” Phys. Rev. Lett. 106, 060502 (2011).
    [Crossref]
  22. A. N. de Oliveira, S. P. Walborn, and C. H. Monken, “Implementing the Deutsch algorithm with polarization and transverse spatial modes,” J. Opt. B 7, 288–292 (2005).
    [Crossref]
  23. S. M. H. Rafsanjani, M. Mirhosseini, O. S. Magaña-Loaiza, and R. W. Boyd, “State transfer based on classical nonseparability,” Phys. Rev. A 92, 023827 (2015).
    [Crossref]
  24. S. K. Goyal, F. S. Roux, A. Forbes, and T. Konrad, “Implementing quantum walks using orbital angular momentum of classical light,” Phys. Rev. Lett. 110, 263602 (2013).
    [Crossref]
  25. F. Töppel, A. Aiello, C. Marquardt, E. Giacobino, and G. Leuchs, “Classical entanglement in polarization metrology,” New J. Phys. 16, 073019 (2014).
    [Crossref]
  26. A. Whybrew, “High-speed imaging,” in Handbook of Laser Technology and Applications, C. Webb and J. Jones, eds. (Institute of Physics, 2004), Chap. D2.7.
  27. A. Velten, R. Raskar, and M. Bawendi, “Picosecond camera for time-of-flight imaging,” in Imaging Systems and Applications (Optical Society of America, 2011), paper IMB4.
  28. C. Weitkamp, Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere, Springer Series in Optical Sciences (Springer, 2005).
  29. K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature 458, 1145–1149 (2009).
    [Crossref]
  30. K. Nakagawa, A. Iwasaki, Y. Oishi, R. Horisaki, A. Tsukamoto, A. Nakamura, K. Hirosawa, H. Liao, T. Ushida, K. Goda, F. Kannari, and I. Sakuma, “Sequentially timed all-optical mapping photography (STAMP),” Nat. Photonics 8, 695–700 (2014).
    [Crossref]
  31. A. M. Beckley, T. G. Brown, and M. A. Alonso, “Full Poincaré beams,” Opt. Express 18, 10777–10785 (2010).
    [Crossref]
  32. S. Kheifets, A. Simha, K. Melin, T. Li, and M. G. Raizen, “Observation of Brownian motion in liquids at short times: instantaneous velocity and memory loss,” Science 343, 1493–1496 (2014).
    [Crossref]
  33. J. Fade and M. Alouini, “Depolarization remote sensing by orthogonality breaking,” Phys. Rev. Lett. 109, 043901 (2012).
    [Crossref]

2015 (4)

P. Woźniak, P. Banzer, and G. Leuchs, “Selective switching of individual multipole resonances in single dielectric nanoparticles,” Laser Photon. Rev. 9, 231–240 (2015).
[Crossref]

A. Aiello, F. Töppel, C. Marquardt, E. Giacobino, and G. Leuchs, “Quantum-like nonseparable structures in optical beams,” New J. Phys. 17, 043024 (2015).
[Crossref]

S. M. H. Rafsanjani, M. Mirhosseini, O. S. Magaña-Loaiza, and R. W. Boyd, “State transfer based on classical nonseparability,” Phys. Rev. A 92, 023827 (2015).
[Crossref]

X.-F. Qian, B. Little, J. C. Howell, and J. H. Eberly, “Shifting the quantum-classical boundary: theory and experiment for statistically classical optical fields,” Optica 2, 611–615 (2015).
[Crossref]

2014 (4)

S. Kheifets, A. Simha, K. Melin, T. Li, and M. G. Raizen, “Observation of Brownian motion in liquids at short times: instantaneous velocity and memory loss,” Science 343, 1493–1496 (2014).
[Crossref]

K. Nakagawa, A. Iwasaki, Y. Oishi, R. Horisaki, A. Tsukamoto, A. Nakamura, K. Hirosawa, H. Liao, T. Ushida, K. Goda, F. Kannari, and I. Sakuma, “Sequentially timed all-optical mapping photography (STAMP),” Nat. Photonics 8, 695–700 (2014).
[Crossref]

F. Töppel, A. Aiello, C. Marquardt, E. Giacobino, and G. Leuchs, “Classical entanglement in polarization metrology,” New J. Phys. 16, 073019 (2014).
[Crossref]

M. Neugebauer, T. Bauer, P. Banzer, and G. Leuchs, “Polarization tailored light driven directional optical nanobeacon,” Nano Lett. 14, 2546–2551 (2014).
[Crossref]

2013 (1)

S. K. Goyal, F. S. Roux, A. Forbes, and T. Konrad, “Implementing quantum walks using orbital angular momentum of classical light,” Phys. Rev. Lett. 110, 263602 (2013).
[Crossref]

2012 (2)

K. H. Kagalwala, G. Di Giuseppe, A. F. Abouraddy, and B. E. A. Saleh, “Bell’s measure in classical optical coherence,” Nat. Photonics 7, 72–78 (2012).
[Crossref]

J. Fade and M. Alouini, “Depolarization remote sensing by orthogonality breaking,” Phys. Rev. Lett. 109, 043901 (2012).
[Crossref]

2011 (3)

X.-F. Qian and J. H. Eberly, “Entanglement and classical polarization states,” Opt. Lett. 36, 4110–4112 (2011).
[Crossref]

F. K. Fatemi, “Cylindrical vector beams for rapid polarization-dependent measurements in atomic systems,” Opt. Express 19, 25143–25150 (2011).
[Crossref]

C. Gabriel, A. Aiello, W. Zhong, T. G. Euser, N. Y. Joly, P. Banzer, M. Förtsch, D. Elser, U. L. Andersen, C. Marquardt, P. St.J. Russell, and G. Leuchs, “Entangling different degrees of freedom by quadrature squeezing cylindrically polarized modes,” Phys. Rev. Lett. 106, 060502 (2011).
[Crossref]

2010 (4)

C. V. S. Borges, M. Hor-Meyll, J. A. O. Huguenin, and A. Z. Khoury, “Bell-like inequality for the spin-orbit separability of a laser beam,” Phys. Rev. A 82, 033833 (2010).
[Crossref]

E. Karimi, J. Leach, S. Slussarenko, B. Piccirillo, L. Marrucci, L. Chen, W. She, S. Franke-Arnold, M. J. Padgett, and E. Santamato, “Spin-orbit hybrid entanglement of photons and quantum contextuality,” Phys. Rev. A 82, 022115 (2010).
[Crossref]

A. M. Beckley, T. G. Brown, and M. A. Alonso, “Full Poincaré beams,” Opt. Express 18, 10777–10785 (2010).
[Crossref]

Y. Kozawa and S. Sato, “Optical trapping of micrometer-sized dielectric particles by cylindrical vector beams,” Opt. Express 18, 10828–10833 (2010).
[Crossref]

2009 (4)

N. M. Mojarad and M. Agio, “Tailoring the excitation of localized surface plasmon-polariton resonances by focusing radially-polarized beams,” Opt. Express 17, 117–122 (2009).
[Crossref]

Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photon. 1, 1–57 (2009).
[Crossref]

A. Luis, “Coherence, polarization, and entanglement for classical light fields,” Opt. Commun. 282, 3665–3670 (2009).
[Crossref]

K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature 458, 1145–1149 (2009).
[Crossref]

2007 (2)

M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys. A 86, 329–334 (2007).
[Crossref]

J. Kindler (née Müller), P. Banzer, S. Quabis, U. Peschel, and G. Leuchs, “Waveguide properties of single subwavelength holes demonstrated with radially and azimuthally polarized light,” Appl. Phys. B 89, 517–520 (2007).
[Crossref]

2005 (1)

A. N. de Oliveira, S. P. Walborn, and C. H. Monken, “Implementing the Deutsch algorithm with polarization and transverse spatial modes,” J. Opt. B 7, 288–292 (2005).
[Crossref]

2003 (1)

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003).
[Crossref]

2001 (1)

R. Spreeuw, “Classical wave-optics analogy of quantum-information processing,” Phys. Rev. A 63, 062302 (2001).
[Crossref]

2000 (1)

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179, 1–7 (2000).
[Crossref]

1998 (1)

R. J. Spreeuw, “A classical analogy of entanglement,” Found. Phys. 28, 361–374 (1998).
[Crossref]

Abouraddy, A. F.

K. H. Kagalwala, G. Di Giuseppe, A. F. Abouraddy, and B. E. A. Saleh, “Bell’s measure in classical optical coherence,” Nat. Photonics 7, 72–78 (2012).
[Crossref]

Agio, M.

Aiello, A.

A. Aiello, F. Töppel, C. Marquardt, E. Giacobino, and G. Leuchs, “Quantum-like nonseparable structures in optical beams,” New J. Phys. 17, 043024 (2015).
[Crossref]

F. Töppel, A. Aiello, C. Marquardt, E. Giacobino, and G. Leuchs, “Classical entanglement in polarization metrology,” New J. Phys. 16, 073019 (2014).
[Crossref]

C. Gabriel, A. Aiello, W. Zhong, T. G. Euser, N. Y. Joly, P. Banzer, M. Förtsch, D. Elser, U. L. Andersen, C. Marquardt, P. St.J. Russell, and G. Leuchs, “Entangling different degrees of freedom by quadrature squeezing cylindrically polarized modes,” Phys. Rev. Lett. 106, 060502 (2011).
[Crossref]

A. Holleczek, A. Aiello, C. Gabriel, C. Marquardt, and G. Leuchs, “Poincaré sphere representation for classical inseparable Bell-like states of the electromagnetic field,” arXiv:1007.2528 (2010).

Alonso, M. A.

Alouini, M.

J. Fade and M. Alouini, “Depolarization remote sensing by orthogonality breaking,” Phys. Rev. Lett. 109, 043901 (2012).
[Crossref]

Andersen, U. L.

C. Gabriel, A. Aiello, W. Zhong, T. G. Euser, N. Y. Joly, P. Banzer, M. Förtsch, D. Elser, U. L. Andersen, C. Marquardt, P. St.J. Russell, and G. Leuchs, “Entangling different degrees of freedom by quadrature squeezing cylindrically polarized modes,” Phys. Rev. Lett. 106, 060502 (2011).
[Crossref]

Banzer, P.

P. Woźniak, P. Banzer, and G. Leuchs, “Selective switching of individual multipole resonances in single dielectric nanoparticles,” Laser Photon. Rev. 9, 231–240 (2015).
[Crossref]

M. Neugebauer, T. Bauer, P. Banzer, and G. Leuchs, “Polarization tailored light driven directional optical nanobeacon,” Nano Lett. 14, 2546–2551 (2014).
[Crossref]

C. Gabriel, A. Aiello, W. Zhong, T. G. Euser, N. Y. Joly, P. Banzer, M. Förtsch, D. Elser, U. L. Andersen, C. Marquardt, P. St.J. Russell, and G. Leuchs, “Entangling different degrees of freedom by quadrature squeezing cylindrically polarized modes,” Phys. Rev. Lett. 106, 060502 (2011).
[Crossref]

J. Kindler (née Müller), P. Banzer, S. Quabis, U. Peschel, and G. Leuchs, “Waveguide properties of single subwavelength holes demonstrated with radially and azimuthally polarized light,” Appl. Phys. B 89, 517–520 (2007).
[Crossref]

Bauer, T.

M. Neugebauer, T. Bauer, P. Banzer, and G. Leuchs, “Polarization tailored light driven directional optical nanobeacon,” Nano Lett. 14, 2546–2551 (2014).
[Crossref]

Bawendi, M.

A. Velten, R. Raskar, and M. Bawendi, “Picosecond camera for time-of-flight imaging,” in Imaging Systems and Applications (Optical Society of America, 2011), paper IMB4.

Beckley, A. M.

Borges, C. V. S.

C. V. S. Borges, M. Hor-Meyll, J. A. O. Huguenin, and A. Z. Khoury, “Bell-like inequality for the spin-orbit separability of a laser beam,” Phys. Rev. A 82, 033833 (2010).
[Crossref]

Boyd, R. W.

S. M. H. Rafsanjani, M. Mirhosseini, O. S. Magaña-Loaiza, and R. W. Boyd, “State transfer based on classical nonseparability,” Phys. Rev. A 92, 023827 (2015).
[Crossref]

Brown, T. G.

Chen, L.

E. Karimi, J. Leach, S. Slussarenko, B. Piccirillo, L. Marrucci, L. Chen, W. She, S. Franke-Arnold, M. J. Padgett, and E. Santamato, “Spin-orbit hybrid entanglement of photons and quantum contextuality,” Phys. Rev. A 82, 022115 (2010).
[Crossref]

de Oliveira, A. N.

A. N. de Oliveira, S. P. Walborn, and C. H. Monken, “Implementing the Deutsch algorithm with polarization and transverse spatial modes,” J. Opt. B 7, 288–292 (2005).
[Crossref]

Di Giuseppe, G.

K. H. Kagalwala, G. Di Giuseppe, A. F. Abouraddy, and B. E. A. Saleh, “Bell’s measure in classical optical coherence,” Nat. Photonics 7, 72–78 (2012).
[Crossref]

Dorn, R.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003).
[Crossref]

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179, 1–7 (2000).
[Crossref]

Eberler, M.

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179, 1–7 (2000).
[Crossref]

Eberly, J. H.

Elser, D.

C. Gabriel, A. Aiello, W. Zhong, T. G. Euser, N. Y. Joly, P. Banzer, M. Förtsch, D. Elser, U. L. Andersen, C. Marquardt, P. St.J. Russell, and G. Leuchs, “Entangling different degrees of freedom by quadrature squeezing cylindrically polarized modes,” Phys. Rev. Lett. 106, 060502 (2011).
[Crossref]

Euser, T. G.

C. Gabriel, A. Aiello, W. Zhong, T. G. Euser, N. Y. Joly, P. Banzer, M. Förtsch, D. Elser, U. L. Andersen, C. Marquardt, P. St.J. Russell, and G. Leuchs, “Entangling different degrees of freedom by quadrature squeezing cylindrically polarized modes,” Phys. Rev. Lett. 106, 060502 (2011).
[Crossref]

Fade, J.

J. Fade and M. Alouini, “Depolarization remote sensing by orthogonality breaking,” Phys. Rev. Lett. 109, 043901 (2012).
[Crossref]

Fatemi, F. K.

Feurer, T.

M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys. A 86, 329–334 (2007).
[Crossref]

Forbes, A.

S. K. Goyal, F. S. Roux, A. Forbes, and T. Konrad, “Implementing quantum walks using orbital angular momentum of classical light,” Phys. Rev. Lett. 110, 263602 (2013).
[Crossref]

Förtsch, M.

C. Gabriel, A. Aiello, W. Zhong, T. G. Euser, N. Y. Joly, P. Banzer, M. Förtsch, D. Elser, U. L. Andersen, C. Marquardt, P. St.J. Russell, and G. Leuchs, “Entangling different degrees of freedom by quadrature squeezing cylindrically polarized modes,” Phys. Rev. Lett. 106, 060502 (2011).
[Crossref]

Franke-Arnold, S.

E. Karimi, J. Leach, S. Slussarenko, B. Piccirillo, L. Marrucci, L. Chen, W. She, S. Franke-Arnold, M. J. Padgett, and E. Santamato, “Spin-orbit hybrid entanglement of photons and quantum contextuality,” Phys. Rev. A 82, 022115 (2010).
[Crossref]

Gabriel, C.

C. Gabriel, A. Aiello, W. Zhong, T. G. Euser, N. Y. Joly, P. Banzer, M. Förtsch, D. Elser, U. L. Andersen, C. Marquardt, P. St.J. Russell, and G. Leuchs, “Entangling different degrees of freedom by quadrature squeezing cylindrically polarized modes,” Phys. Rev. Lett. 106, 060502 (2011).
[Crossref]

A. Holleczek, A. Aiello, C. Gabriel, C. Marquardt, and G. Leuchs, “Poincaré sphere representation for classical inseparable Bell-like states of the electromagnetic field,” arXiv:1007.2528 (2010).

Giacobino, E.

A. Aiello, F. Töppel, C. Marquardt, E. Giacobino, and G. Leuchs, “Quantum-like nonseparable structures in optical beams,” New J. Phys. 17, 043024 (2015).
[Crossref]

F. Töppel, A. Aiello, C. Marquardt, E. Giacobino, and G. Leuchs, “Classical entanglement in polarization metrology,” New J. Phys. 16, 073019 (2014).
[Crossref]

Glöckl, O.

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179, 1–7 (2000).
[Crossref]

Goda, K.

K. Nakagawa, A. Iwasaki, Y. Oishi, R. Horisaki, A. Tsukamoto, A. Nakamura, K. Hirosawa, H. Liao, T. Ushida, K. Goda, F. Kannari, and I. Sakuma, “Sequentially timed all-optical mapping photography (STAMP),” Nat. Photonics 8, 695–700 (2014).
[Crossref]

K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature 458, 1145–1149 (2009).
[Crossref]

Goyal, S. K.

S. K. Goyal, F. S. Roux, A. Forbes, and T. Konrad, “Implementing quantum walks using orbital angular momentum of classical light,” Phys. Rev. Lett. 110, 263602 (2013).
[Crossref]

Hirosawa, K.

K. Nakagawa, A. Iwasaki, Y. Oishi, R. Horisaki, A. Tsukamoto, A. Nakamura, K. Hirosawa, H. Liao, T. Ushida, K. Goda, F. Kannari, and I. Sakuma, “Sequentially timed all-optical mapping photography (STAMP),” Nat. Photonics 8, 695–700 (2014).
[Crossref]

Holleczek, A.

A. Holleczek, A. Aiello, C. Gabriel, C. Marquardt, and G. Leuchs, “Poincaré sphere representation for classical inseparable Bell-like states of the electromagnetic field,” arXiv:1007.2528 (2010).

Horisaki, R.

K. Nakagawa, A. Iwasaki, Y. Oishi, R. Horisaki, A. Tsukamoto, A. Nakamura, K. Hirosawa, H. Liao, T. Ushida, K. Goda, F. Kannari, and I. Sakuma, “Sequentially timed all-optical mapping photography (STAMP),” Nat. Photonics 8, 695–700 (2014).
[Crossref]

Hor-Meyll, M.

C. V. S. Borges, M. Hor-Meyll, J. A. O. Huguenin, and A. Z. Khoury, “Bell-like inequality for the spin-orbit separability of a laser beam,” Phys. Rev. A 82, 033833 (2010).
[Crossref]

Howell, J. C.

Huguenin, J. A. O.

C. V. S. Borges, M. Hor-Meyll, J. A. O. Huguenin, and A. Z. Khoury, “Bell-like inequality for the spin-orbit separability of a laser beam,” Phys. Rev. A 82, 033833 (2010).
[Crossref]

Iwasaki, A.

K. Nakagawa, A. Iwasaki, Y. Oishi, R. Horisaki, A. Tsukamoto, A. Nakamura, K. Hirosawa, H. Liao, T. Ushida, K. Goda, F. Kannari, and I. Sakuma, “Sequentially timed all-optical mapping photography (STAMP),” Nat. Photonics 8, 695–700 (2014).
[Crossref]

Jalali, B.

K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature 458, 1145–1149 (2009).
[Crossref]

Joly, N. Y.

C. Gabriel, A. Aiello, W. Zhong, T. G. Euser, N. Y. Joly, P. Banzer, M. Förtsch, D. Elser, U. L. Andersen, C. Marquardt, P. St.J. Russell, and G. Leuchs, “Entangling different degrees of freedom by quadrature squeezing cylindrically polarized modes,” Phys. Rev. Lett. 106, 060502 (2011).
[Crossref]

Kagalwala, K. H.

K. H. Kagalwala, G. Di Giuseppe, A. F. Abouraddy, and B. E. A. Saleh, “Bell’s measure in classical optical coherence,” Nat. Photonics 7, 72–78 (2012).
[Crossref]

Kannari, F.

K. Nakagawa, A. Iwasaki, Y. Oishi, R. Horisaki, A. Tsukamoto, A. Nakamura, K. Hirosawa, H. Liao, T. Ushida, K. Goda, F. Kannari, and I. Sakuma, “Sequentially timed all-optical mapping photography (STAMP),” Nat. Photonics 8, 695–700 (2014).
[Crossref]

Karimi, E.

E. Karimi, J. Leach, S. Slussarenko, B. Piccirillo, L. Marrucci, L. Chen, W. She, S. Franke-Arnold, M. J. Padgett, and E. Santamato, “Spin-orbit hybrid entanglement of photons and quantum contextuality,” Phys. Rev. A 82, 022115 (2010).
[Crossref]

Kheifets, S.

S. Kheifets, A. Simha, K. Melin, T. Li, and M. G. Raizen, “Observation of Brownian motion in liquids at short times: instantaneous velocity and memory loss,” Science 343, 1493–1496 (2014).
[Crossref]

Khoury, A. Z.

C. V. S. Borges, M. Hor-Meyll, J. A. O. Huguenin, and A. Z. Khoury, “Bell-like inequality for the spin-orbit separability of a laser beam,” Phys. Rev. A 82, 033833 (2010).
[Crossref]

Kindler (née Müller), J.

J. Kindler (née Müller), P. Banzer, S. Quabis, U. Peschel, and G. Leuchs, “Waveguide properties of single subwavelength holes demonstrated with radially and azimuthally polarized light,” Appl. Phys. B 89, 517–520 (2007).
[Crossref]

Konrad, T.

S. K. Goyal, F. S. Roux, A. Forbes, and T. Konrad, “Implementing quantum walks using orbital angular momentum of classical light,” Phys. Rev. Lett. 110, 263602 (2013).
[Crossref]

Kozawa, Y.

Leach, J.

E. Karimi, J. Leach, S. Slussarenko, B. Piccirillo, L. Marrucci, L. Chen, W. She, S. Franke-Arnold, M. J. Padgett, and E. Santamato, “Spin-orbit hybrid entanglement of photons and quantum contextuality,” Phys. Rev. A 82, 022115 (2010).
[Crossref]

Leuchs, G.

P. Woźniak, P. Banzer, and G. Leuchs, “Selective switching of individual multipole resonances in single dielectric nanoparticles,” Laser Photon. Rev. 9, 231–240 (2015).
[Crossref]

A. Aiello, F. Töppel, C. Marquardt, E. Giacobino, and G. Leuchs, “Quantum-like nonseparable structures in optical beams,” New J. Phys. 17, 043024 (2015).
[Crossref]

M. Neugebauer, T. Bauer, P. Banzer, and G. Leuchs, “Polarization tailored light driven directional optical nanobeacon,” Nano Lett. 14, 2546–2551 (2014).
[Crossref]

F. Töppel, A. Aiello, C. Marquardt, E. Giacobino, and G. Leuchs, “Classical entanglement in polarization metrology,” New J. Phys. 16, 073019 (2014).
[Crossref]

C. Gabriel, A. Aiello, W. Zhong, T. G. Euser, N. Y. Joly, P. Banzer, M. Förtsch, D. Elser, U. L. Andersen, C. Marquardt, P. St.J. Russell, and G. Leuchs, “Entangling different degrees of freedom by quadrature squeezing cylindrically polarized modes,” Phys. Rev. Lett. 106, 060502 (2011).
[Crossref]

J. Kindler (née Müller), P. Banzer, S. Quabis, U. Peschel, and G. Leuchs, “Waveguide properties of single subwavelength holes demonstrated with radially and azimuthally polarized light,” Appl. Phys. B 89, 517–520 (2007).
[Crossref]

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003).
[Crossref]

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179, 1–7 (2000).
[Crossref]

A. Holleczek, A. Aiello, C. Gabriel, C. Marquardt, and G. Leuchs, “Poincaré sphere representation for classical inseparable Bell-like states of the electromagnetic field,” arXiv:1007.2528 (2010).

Li, T.

S. Kheifets, A. Simha, K. Melin, T. Li, and M. G. Raizen, “Observation of Brownian motion in liquids at short times: instantaneous velocity and memory loss,” Science 343, 1493–1496 (2014).
[Crossref]

Liao, H.

K. Nakagawa, A. Iwasaki, Y. Oishi, R. Horisaki, A. Tsukamoto, A. Nakamura, K. Hirosawa, H. Liao, T. Ushida, K. Goda, F. Kannari, and I. Sakuma, “Sequentially timed all-optical mapping photography (STAMP),” Nat. Photonics 8, 695–700 (2014).
[Crossref]

Little, B.

Luis, A.

A. Luis, “Coherence, polarization, and entanglement for classical light fields,” Opt. Commun. 282, 3665–3670 (2009).
[Crossref]

Magaña-Loaiza, O. S.

S. M. H. Rafsanjani, M. Mirhosseini, O. S. Magaña-Loaiza, and R. W. Boyd, “State transfer based on classical nonseparability,” Phys. Rev. A 92, 023827 (2015).
[Crossref]

Marquardt, C.

A. Aiello, F. Töppel, C. Marquardt, E. Giacobino, and G. Leuchs, “Quantum-like nonseparable structures in optical beams,” New J. Phys. 17, 043024 (2015).
[Crossref]

F. Töppel, A. Aiello, C. Marquardt, E. Giacobino, and G. Leuchs, “Classical entanglement in polarization metrology,” New J. Phys. 16, 073019 (2014).
[Crossref]

C. Gabriel, A. Aiello, W. Zhong, T. G. Euser, N. Y. Joly, P. Banzer, M. Förtsch, D. Elser, U. L. Andersen, C. Marquardt, P. St.J. Russell, and G. Leuchs, “Entangling different degrees of freedom by quadrature squeezing cylindrically polarized modes,” Phys. Rev. Lett. 106, 060502 (2011).
[Crossref]

A. Holleczek, A. Aiello, C. Gabriel, C. Marquardt, and G. Leuchs, “Poincaré sphere representation for classical inseparable Bell-like states of the electromagnetic field,” arXiv:1007.2528 (2010).

Marrucci, L.

E. Karimi, J. Leach, S. Slussarenko, B. Piccirillo, L. Marrucci, L. Chen, W. She, S. Franke-Arnold, M. J. Padgett, and E. Santamato, “Spin-orbit hybrid entanglement of photons and quantum contextuality,” Phys. Rev. A 82, 022115 (2010).
[Crossref]

Meier, M.

M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys. A 86, 329–334 (2007).
[Crossref]

Melin, K.

S. Kheifets, A. Simha, K. Melin, T. Li, and M. G. Raizen, “Observation of Brownian motion in liquids at short times: instantaneous velocity and memory loss,” Science 343, 1493–1496 (2014).
[Crossref]

Mirhosseini, M.

S. M. H. Rafsanjani, M. Mirhosseini, O. S. Magaña-Loaiza, and R. W. Boyd, “State transfer based on classical nonseparability,” Phys. Rev. A 92, 023827 (2015).
[Crossref]

Mojarad, N. M.

Monken, C. H.

A. N. de Oliveira, S. P. Walborn, and C. H. Monken, “Implementing the Deutsch algorithm with polarization and transverse spatial modes,” J. Opt. B 7, 288–292 (2005).
[Crossref]

Nakagawa, K.

K. Nakagawa, A. Iwasaki, Y. Oishi, R. Horisaki, A. Tsukamoto, A. Nakamura, K. Hirosawa, H. Liao, T. Ushida, K. Goda, F. Kannari, and I. Sakuma, “Sequentially timed all-optical mapping photography (STAMP),” Nat. Photonics 8, 695–700 (2014).
[Crossref]

Nakamura, A.

K. Nakagawa, A. Iwasaki, Y. Oishi, R. Horisaki, A. Tsukamoto, A. Nakamura, K. Hirosawa, H. Liao, T. Ushida, K. Goda, F. Kannari, and I. Sakuma, “Sequentially timed all-optical mapping photography (STAMP),” Nat. Photonics 8, 695–700 (2014).
[Crossref]

Neugebauer, M.

M. Neugebauer, T. Bauer, P. Banzer, and G. Leuchs, “Polarization tailored light driven directional optical nanobeacon,” Nano Lett. 14, 2546–2551 (2014).
[Crossref]

Oishi, Y.

K. Nakagawa, A. Iwasaki, Y. Oishi, R. Horisaki, A. Tsukamoto, A. Nakamura, K. Hirosawa, H. Liao, T. Ushida, K. Goda, F. Kannari, and I. Sakuma, “Sequentially timed all-optical mapping photography (STAMP),” Nat. Photonics 8, 695–700 (2014).
[Crossref]

Padgett, M. J.

E. Karimi, J. Leach, S. Slussarenko, B. Piccirillo, L. Marrucci, L. Chen, W. She, S. Franke-Arnold, M. J. Padgett, and E. Santamato, “Spin-orbit hybrid entanglement of photons and quantum contextuality,” Phys. Rev. A 82, 022115 (2010).
[Crossref]

Peschel, U.

J. Kindler (née Müller), P. Banzer, S. Quabis, U. Peschel, and G. Leuchs, “Waveguide properties of single subwavelength holes demonstrated with radially and azimuthally polarized light,” Appl. Phys. B 89, 517–520 (2007).
[Crossref]

Piccirillo, B.

E. Karimi, J. Leach, S. Slussarenko, B. Piccirillo, L. Marrucci, L. Chen, W. She, S. Franke-Arnold, M. J. Padgett, and E. Santamato, “Spin-orbit hybrid entanglement of photons and quantum contextuality,” Phys. Rev. A 82, 022115 (2010).
[Crossref]

Qian, X.-F.

Quabis, S.

J. Kindler (née Müller), P. Banzer, S. Quabis, U. Peschel, and G. Leuchs, “Waveguide properties of single subwavelength holes demonstrated with radially and azimuthally polarized light,” Appl. Phys. B 89, 517–520 (2007).
[Crossref]

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003).
[Crossref]

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179, 1–7 (2000).
[Crossref]

Rafsanjani, S. M. H.

S. M. H. Rafsanjani, M. Mirhosseini, O. S. Magaña-Loaiza, and R. W. Boyd, “State transfer based on classical nonseparability,” Phys. Rev. A 92, 023827 (2015).
[Crossref]

Raizen, M. G.

S. Kheifets, A. Simha, K. Melin, T. Li, and M. G. Raizen, “Observation of Brownian motion in liquids at short times: instantaneous velocity and memory loss,” Science 343, 1493–1496 (2014).
[Crossref]

Raskar, R.

A. Velten, R. Raskar, and M. Bawendi, “Picosecond camera for time-of-flight imaging,” in Imaging Systems and Applications (Optical Society of America, 2011), paper IMB4.

Romano, V.

M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys. A 86, 329–334 (2007).
[Crossref]

Roux, F. S.

S. K. Goyal, F. S. Roux, A. Forbes, and T. Konrad, “Implementing quantum walks using orbital angular momentum of classical light,” Phys. Rev. Lett. 110, 263602 (2013).
[Crossref]

Russell, P. St.J.

C. Gabriel, A. Aiello, W. Zhong, T. G. Euser, N. Y. Joly, P. Banzer, M. Förtsch, D. Elser, U. L. Andersen, C. Marquardt, P. St.J. Russell, and G. Leuchs, “Entangling different degrees of freedom by quadrature squeezing cylindrically polarized modes,” Phys. Rev. Lett. 106, 060502 (2011).
[Crossref]

Sakuma, I.

K. Nakagawa, A. Iwasaki, Y. Oishi, R. Horisaki, A. Tsukamoto, A. Nakamura, K. Hirosawa, H. Liao, T. Ushida, K. Goda, F. Kannari, and I. Sakuma, “Sequentially timed all-optical mapping photography (STAMP),” Nat. Photonics 8, 695–700 (2014).
[Crossref]

Saleh, B. E. A.

K. H. Kagalwala, G. Di Giuseppe, A. F. Abouraddy, and B. E. A. Saleh, “Bell’s measure in classical optical coherence,” Nat. Photonics 7, 72–78 (2012).
[Crossref]

Santamato, E.

E. Karimi, J. Leach, S. Slussarenko, B. Piccirillo, L. Marrucci, L. Chen, W. She, S. Franke-Arnold, M. J. Padgett, and E. Santamato, “Spin-orbit hybrid entanglement of photons and quantum contextuality,” Phys. Rev. A 82, 022115 (2010).
[Crossref]

Sato, S.

She, W.

E. Karimi, J. Leach, S. Slussarenko, B. Piccirillo, L. Marrucci, L. Chen, W. She, S. Franke-Arnold, M. J. Padgett, and E. Santamato, “Spin-orbit hybrid entanglement of photons and quantum contextuality,” Phys. Rev. A 82, 022115 (2010).
[Crossref]

Simha, A.

S. Kheifets, A. Simha, K. Melin, T. Li, and M. G. Raizen, “Observation of Brownian motion in liquids at short times: instantaneous velocity and memory loss,” Science 343, 1493–1496 (2014).
[Crossref]

Slussarenko, S.

E. Karimi, J. Leach, S. Slussarenko, B. Piccirillo, L. Marrucci, L. Chen, W. She, S. Franke-Arnold, M. J. Padgett, and E. Santamato, “Spin-orbit hybrid entanglement of photons and quantum contextuality,” Phys. Rev. A 82, 022115 (2010).
[Crossref]

Spreeuw, R.

R. Spreeuw, “Classical wave-optics analogy of quantum-information processing,” Phys. Rev. A 63, 062302 (2001).
[Crossref]

Spreeuw, R. J.

R. J. Spreeuw, “A classical analogy of entanglement,” Found. Phys. 28, 361–374 (1998).
[Crossref]

Töppel, F.

A. Aiello, F. Töppel, C. Marquardt, E. Giacobino, and G. Leuchs, “Quantum-like nonseparable structures in optical beams,” New J. Phys. 17, 043024 (2015).
[Crossref]

F. Töppel, A. Aiello, C. Marquardt, E. Giacobino, and G. Leuchs, “Classical entanglement in polarization metrology,” New J. Phys. 16, 073019 (2014).
[Crossref]

Tsia, K. K.

K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature 458, 1145–1149 (2009).
[Crossref]

Tsukamoto, A.

K. Nakagawa, A. Iwasaki, Y. Oishi, R. Horisaki, A. Tsukamoto, A. Nakamura, K. Hirosawa, H. Liao, T. Ushida, K. Goda, F. Kannari, and I. Sakuma, “Sequentially timed all-optical mapping photography (STAMP),” Nat. Photonics 8, 695–700 (2014).
[Crossref]

Ushida, T.

K. Nakagawa, A. Iwasaki, Y. Oishi, R. Horisaki, A. Tsukamoto, A. Nakamura, K. Hirosawa, H. Liao, T. Ushida, K. Goda, F. Kannari, and I. Sakuma, “Sequentially timed all-optical mapping photography (STAMP),” Nat. Photonics 8, 695–700 (2014).
[Crossref]

Velten, A.

A. Velten, R. Raskar, and M. Bawendi, “Picosecond camera for time-of-flight imaging,” in Imaging Systems and Applications (Optical Society of America, 2011), paper IMB4.

Walborn, S. P.

A. N. de Oliveira, S. P. Walborn, and C. H. Monken, “Implementing the Deutsch algorithm with polarization and transverse spatial modes,” J. Opt. B 7, 288–292 (2005).
[Crossref]

Weitkamp, C.

C. Weitkamp, Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere, Springer Series in Optical Sciences (Springer, 2005).

Whybrew, A.

A. Whybrew, “High-speed imaging,” in Handbook of Laser Technology and Applications, C. Webb and J. Jones, eds. (Institute of Physics, 2004), Chap. D2.7.

Wozniak, P.

P. Woźniak, P. Banzer, and G. Leuchs, “Selective switching of individual multipole resonances in single dielectric nanoparticles,” Laser Photon. Rev. 9, 231–240 (2015).
[Crossref]

Zhan, Q.

Zhong, W.

C. Gabriel, A. Aiello, W. Zhong, T. G. Euser, N. Y. Joly, P. Banzer, M. Förtsch, D. Elser, U. L. Andersen, C. Marquardt, P. St.J. Russell, and G. Leuchs, “Entangling different degrees of freedom by quadrature squeezing cylindrically polarized modes,” Phys. Rev. Lett. 106, 060502 (2011).
[Crossref]

Adv. Opt. Photon. (1)

Appl. Phys. A (1)

M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys. A 86, 329–334 (2007).
[Crossref]

Appl. Phys. B (1)

J. Kindler (née Müller), P. Banzer, S. Quabis, U. Peschel, and G. Leuchs, “Waveguide properties of single subwavelength holes demonstrated with radially and azimuthally polarized light,” Appl. Phys. B 89, 517–520 (2007).
[Crossref]

Found. Phys. (1)

R. J. Spreeuw, “A classical analogy of entanglement,” Found. Phys. 28, 361–374 (1998).
[Crossref]

J. Opt. B (1)

A. N. de Oliveira, S. P. Walborn, and C. H. Monken, “Implementing the Deutsch algorithm with polarization and transverse spatial modes,” J. Opt. B 7, 288–292 (2005).
[Crossref]

Laser Photon. Rev. (1)

P. Woźniak, P. Banzer, and G. Leuchs, “Selective switching of individual multipole resonances in single dielectric nanoparticles,” Laser Photon. Rev. 9, 231–240 (2015).
[Crossref]

Nano Lett. (1)

M. Neugebauer, T. Bauer, P. Banzer, and G. Leuchs, “Polarization tailored light driven directional optical nanobeacon,” Nano Lett. 14, 2546–2551 (2014).
[Crossref]

Nat. Photonics (2)

K. Nakagawa, A. Iwasaki, Y. Oishi, R. Horisaki, A. Tsukamoto, A. Nakamura, K. Hirosawa, H. Liao, T. Ushida, K. Goda, F. Kannari, and I. Sakuma, “Sequentially timed all-optical mapping photography (STAMP),” Nat. Photonics 8, 695–700 (2014).
[Crossref]

K. H. Kagalwala, G. Di Giuseppe, A. F. Abouraddy, and B. E. A. Saleh, “Bell’s measure in classical optical coherence,” Nat. Photonics 7, 72–78 (2012).
[Crossref]

Nature (1)

K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature 458, 1145–1149 (2009).
[Crossref]

New J. Phys. (2)

A. Aiello, F. Töppel, C. Marquardt, E. Giacobino, and G. Leuchs, “Quantum-like nonseparable structures in optical beams,” New J. Phys. 17, 043024 (2015).
[Crossref]

F. Töppel, A. Aiello, C. Marquardt, E. Giacobino, and G. Leuchs, “Classical entanglement in polarization metrology,” New J. Phys. 16, 073019 (2014).
[Crossref]

Opt. Commun. (2)

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179, 1–7 (2000).
[Crossref]

A. Luis, “Coherence, polarization, and entanglement for classical light fields,” Opt. Commun. 282, 3665–3670 (2009).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Optica (1)

Phys. Rev. A (4)

S. M. H. Rafsanjani, M. Mirhosseini, O. S. Magaña-Loaiza, and R. W. Boyd, “State transfer based on classical nonseparability,” Phys. Rev. A 92, 023827 (2015).
[Crossref]

C. V. S. Borges, M. Hor-Meyll, J. A. O. Huguenin, and A. Z. Khoury, “Bell-like inequality for the spin-orbit separability of a laser beam,” Phys. Rev. A 82, 033833 (2010).
[Crossref]

E. Karimi, J. Leach, S. Slussarenko, B. Piccirillo, L. Marrucci, L. Chen, W. She, S. Franke-Arnold, M. J. Padgett, and E. Santamato, “Spin-orbit hybrid entanglement of photons and quantum contextuality,” Phys. Rev. A 82, 022115 (2010).
[Crossref]

R. Spreeuw, “Classical wave-optics analogy of quantum-information processing,” Phys. Rev. A 63, 062302 (2001).
[Crossref]

Phys. Rev. Lett. (4)

C. Gabriel, A. Aiello, W. Zhong, T. G. Euser, N. Y. Joly, P. Banzer, M. Förtsch, D. Elser, U. L. Andersen, C. Marquardt, P. St.J. Russell, and G. Leuchs, “Entangling different degrees of freedom by quadrature squeezing cylindrically polarized modes,” Phys. Rev. Lett. 106, 060502 (2011).
[Crossref]

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003).
[Crossref]

S. K. Goyal, F. S. Roux, A. Forbes, and T. Konrad, “Implementing quantum walks using orbital angular momentum of classical light,” Phys. Rev. Lett. 110, 263602 (2013).
[Crossref]

J. Fade and M. Alouini, “Depolarization remote sensing by orthogonality breaking,” Phys. Rev. Lett. 109, 043901 (2012).
[Crossref]

Science (1)

S. Kheifets, A. Simha, K. Melin, T. Li, and M. G. Raizen, “Observation of Brownian motion in liquids at short times: instantaneous velocity and memory loss,” Science 343, 1493–1496 (2014).
[Crossref]

Other (4)

A. Holleczek, A. Aiello, C. Gabriel, C. Marquardt, and G. Leuchs, “Poincaré sphere representation for classical inseparable Bell-like states of the electromagnetic field,” arXiv:1007.2528 (2010).

A. Whybrew, “High-speed imaging,” in Handbook of Laser Technology and Applications, C. Webb and J. Jones, eds. (Institute of Physics, 2004), Chap. D2.7.

A. Velten, R. Raskar, and M. Bawendi, “Picosecond camera for time-of-flight imaging,” in Imaging Systems and Applications (Optical Society of America, 2011), paper IMB4.

C. Weitkamp, Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere, Springer Series in Optical Sciences (Springer, 2005).

Supplementary Material (1)

NameDescription
» Supplement 1: PDF (1463 KB)      Supplemental document

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Classical entanglement. (a) (Top) Instantaneous transverse electric field distribution of a radially polarized beam of light. The orange density plot shows the beam’s doughnut-shaped intensity distribution, while black arrows indicate the position-dependent instantaneous local direction of the electric field vector. (Bottom) The beam’s global polarization state is shown in a Poincaré sphere representation. Initially, the light field is globally unpolarized, with the Poincaré vector located at the origin. (b) If an opaque obstacle is brought into the beam, the global polarization takes on nonzero values according to the obstacle’s position within the beam. This method allows the object’s kinematics to be inferred from a polarization measurement alone.

Fig. 2.
Fig. 2.

Experimental setup. (a) A continuous-wave laser beam is prepared in a radially polarized mode by a liquid crystal mode converter. (b) The beam impinges on an opaque object whose motion in space modulates the beam’s polarization Stokes parameters. (c) A polarization-independent beamsplitter (BS1) taps off 10% of the beam for inspection by a conventional camera. This allows for mode pattern characterization and independent verification measurements. (d) A polarization-independent 50/50 beamsplitter (BS2) divides the beam up for projection onto its linear polarization components via a pair of polarizing beamsplitters (PBS) and a half-wave plate (λ/2). The projections are simultaneously measured by four InGaAs detectors with 4 GHz bandwidth. By linear combination of the projection signals, the beam’s Stokes parameters are obtained. Knowledge of the Stokes parameters allows the object’s instantaneous trajectory to be reconstructed (see Fig. 3).

Fig. 3.
Fig. 3.

Rotation sensing and position tracking. (a) A metal rotor [width m=(0.79±0.01)mm] turns about the center of a radially polarized beam [width w1=(1.95±0.10)mm]. Due to the beam’s classically entangled structure, the rotation in space induces a sinusoidal oscillation of the beam’s Stokes parameters. Measurements of the s0, s1, and s2 Stokes parameters allow the instantaneous angle of rotation to be inferred. Each data point was obtained by integrating over 200 ns, so that electronic noise is averaged out to within the data point width. Dotted curves show the theoretically expected values under the assumption of an ideal mode function. (b) (Left) A metal sphere [diameter d=(1.00±0.01)mm] traverses a radially polarized light beam [width w2=(2.84±0.10)mm]. (Center) The Stokes parameters s0, s1, and s2 vary as a function of the sphere’s position. Solid lines show the expected Stokes parameters as obtained from simulation. (Right) The sphere’s trajectory is inferred from the measured Stokes parameters. The sphere is moved gradually in discrete steps of 50 μm, providing a calibrated, reproducible reference motion. To allow for a realistic comparison with a fast object, the acquisition time at each point is only 250 ps. The blue contours show the combined Bayesian 68% credible region R, while the gray shadow shows the sphere’s dimensions to scale. In both plots, s0 is normalized to its initial value, while s1 and s2 are normalized to the instantaneous value of s0. The theoretical model used to obtain the theory and simulation curves for (a) and (b), respectively, and the position-tracking algorithm are detailed in Supplement 1.

Fig. 4.
Fig. 4.

Real-time sensing. A metal knife edge of thickness (3±2)μm cuts across a focused radially polarized mode [theoretically estimated width w3=(2.0±0.5)μm] at (27±2)ms1. The plot shows a sequence of single-shot measurements of the beam’s s0, s1, and s2 Stokes parameters during the knife edge’s passage until the beam is fully covered (normalized to the initial power), with a total duration of 92 ns. The sampling resolution reaches up to 100 ps. From the measured traces, the knife edge’s direction of motion can be easily inferred up to 180° rotation.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

E(ρ,z)=e1f1(ρ,z)+e2f2(ρ,z),
s0=λ1+λ2,
s1=(λ1λ2)(|ax|2|ay|2),
s2=(λ1λ2)(axay*+ax*ay),
s3=i(λ1λ2)(axay*ax*ay),

Metrics