Abstract

Integrated microwave photonics, an emerging technology combining radio frequency (RF) engineering and integrated photonics, has great potential to be adopted for wideband analog processing applications. However, it has been a challenge to provide photonic integrated circuits with equal levels of function flexibility as compared with their electronic counterparts. Here, we introduce a disruptive approach to tackle this need, which is analogous to an electronic field-programmable gate array. We use a grid of tunable Mach–Zehnder couplers interconnected in a two-dimensional mesh network, each working as a photonic processing unit. Such a device is able to be programmed into many different circuit topologies and thereby provide a diversity of functions. This paper provides, to the best of our knowledge, the first ever demonstration of this concept and shows that a programmable chip with a free spectral range of 14 GHz enables RF filters featuring continuous, over-two-octave frequency coverage, i.e., 1.6–6 GHz, and variable passband shaping ranging from a 55 dB extinction notch filter to a 1.6 GHz bandwidth flat-top filter.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Reconfigurable lattice mesh designs for programmable photonic processors

Daniel Pérez, Ivana Gasulla, José Capmany, and Richard A. Soref
Opt. Express 24(11) 12093-12106 (2016)

Photonic integrated circuit implementation of a sub-GHz-selectivity frequency comb filter for optical clock multiplication

Zihan Geng, Yiwei Xie, Leimeng Zhuang, Maurizio Burla, Marcel Hoekman, Chris G. H. Roeloffzen, and Arthur J. Lowery
Opt. Express 25(22) 27635-27645 (2017)

Ring resonator-based on-chip modulation transformer for high-performance phase-modulated microwave photonic links

Leimeng Zhuang, Caterina Taddei, Marcel Hoekman, Arne Leinse, René Heideman, Paulus van Dijk, and Chris Roeloffzen
Opt. Express 21(22) 25999-26013 (2013)

References

  • View by:
  • |
  • |
  • |

  1. K. L. Du and M. N. S. Swamy, Wireless Communication Systems: from RF Subsystems to 4G Enabling Technologies (Cambridge University, 2010).
  2. M. Golio, ed., RF and Microwave Applications and Systems (CRC Press, 2008).
  3. S. L. Dexheimer, ed., Terahertz Spectroscopy: Principles and Applications (CRC Press, 2008).
  4. A. Seeds, “Microwave photonics,” IEEE Trans. Microwave Theory Tech. 50, 877–887 (2002).
    [Crossref]
  5. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1, 319–330 (2007).
    [Crossref]
  6. S. Iezekiel, ed., Microwave Photonics: Device and Applications (Wiley, 2009).
  7. D. A. I. Marpaung, C. G. H. Roeloffzen, R. G. Heideman, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photon. Rev. 7, 506–538 (2013).
    [Crossref]
  8. S. M. Kuo, B. H. Lee, and W. Tian, Real-Time Digital Signal Processing: Implementations and Applications (Wiley, 2006).
  9. B. B. Guan, S. S. Djordjevic, N. K. Fontaine, L. Zhou, S. Ibrahim, R. P. Scott, D. J. Geisler, Z. Ding, and S. J. B. Yoo, “CMOS compatible reconfigurable silicon photonic lattice filters using cascaded unit cells for RF-photonic processing,” IEEE J. Sel. Top. Quantum Electron. 20, 8202110 (2014).
  10. H. W. Chen, A. W. Fang, J. D. Peters, Z. Wang, J. Bovington, D. Liang, and J. E. Bowers, “Integrated microwave photonic filter on a hybrid silicon platform,” IEEE Trans. Microwave Theory Tech. 58, 3213–3219 (2010).
    [Crossref]
  11. E. J. Norberg, R. S. Guzzon, J. S. Parker, L. A. Johansson, and L. A. Coldren, “Programmable photonic microwave filters monolithically integrated in InP–InGaAsP,” J. Lightwave Technol. 29, 1611–1619 (2011).
    [Crossref]
  12. J. Lloret, G. Morthier, F. Ramos, S. Sales, D. Van Thourhout, T. Spuesens, N. Olivier, J.-M. Fédéli, and J. Capmany, “Broadband microwave photonic fully tunable filter using a single heterogeneously integrated III–V/SOI-microdisk-based phase shifter using high-Q silicon microdisk resonators,” Opt. Express 20, 10796–10806 (2012).
    [Crossref]
  13. M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, and J. Azaña, “On-chip CMOS-compatible all-optical integrator,” Nat. Commun. 1, 1–5 (2010).
    [Crossref]
  14. F. Liu, T. Wang, L. Qiang, T. Ye, Z. Zhang, M. Qiu, and Y. Su, “Compact optical temporal differentiator based on silicon microring resonator,” Opt. Express 16, 15880–15886 (2008).
    [Crossref]
  15. J. Wang, H. Shen, L. Fan, R. Wu, B. Niu, L. T. Varghese, Y. Xuan, D. E. Leaird, X. Wang, F. Gan, A. M. Weiner, and M. Qi, “Reconfigurable radio-frequency arbitrary waveforms synthesized in a silicon chip,” Nat. Commun. 6, 5957 (2015).
  16. M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weinerm, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4, 117–122 (2010).
    [Crossref]
  17. J. S. Fandiño, J. D. Doménech, P. Muñoz, and J. Capmany, “Integrated InP frequency discriminator for phase-modulated microwave photonic links,” Opt. Express 21, 3726–3736 (2013).
    [Crossref]
  18. D. A. I. Marpaung, C. G. H. Roeloffzen, A. Leinse, and M. Hoekman, “A photonic chip based frequency discriminator for a high performance microwave photonic link,” Opt. Express 18, 27359–27370 (2010).
    [Crossref]
  19. J. Sancho, J. Bourderionnet, J. Lloret, S. Combrié, I. Gasulla, S. Xavier, S. Sales, P. Colman, G. Lehoucq, D. Dolfi, J. Campany, and A. De Rossi, “Integrable microwave filter based on a photonic crystal delay line,” Nat. Commun. 3, 1075 (2012).
    [Crossref]
  20. L. Zhuang, M. Hoekman, W. P. Beeker, A. Leinse, R. G. Heideman, P. W. L. Van Dijk, and C. G. H. Roeloffzen, “Novel low-loss waveguide delay lines using Vernier ring resonators for on-chip multi-λ microwave photonic signal processors,” Laser Photon. Rev. 7, 994–1002 (2013).
    [Crossref]
  21. A. Meijerink, C. G. H. Roeloffzen, R. Meijerink, L. Zhuang, D. A. I. Marpaung, M. J. Bentum, M. Burla, J. Verpoorte, P. Jorna, A. Hulzinga, and W. C. Van Etten, “Novel ring resonator-based integrated photonic beamformer for broadband phased-array antennas—Part I: design and performance analysis,” J. Lightwave Technol. 28, 3–18 (2010).
    [Crossref]
  22. L. Zhuang, C. G. H. Roeloffzen, A. Meijerink, M. Burla, D. A. I. Marpaung, A. Leinse, M. Hoekman, H. G. Heideman, and W. C. Van Etten, “Novel ring resonator-based integrated photonic beamformer for broadband phased-array antennas—Part II: experimental prototype,” J. Lightwave Technol. 28, 19–31 (2010).
    [Crossref]
  23. M. Smit, J. Van der Tol, and M. Hill, “Moore’s law in photonics,”Laser Photon. Rev. 6, 1–13 (2012).
    [Crossref]
  24. C. G. H. Roeloffzen, L. Zhuang, C. Taddei, A. Leinse, R. G. Heideman, P. W. L. Van Dijk, M. Oldenbeuving, D. A. I. Marpaung, M. Burla, and K.-J. Boller, “Silicon nitride microwave photonic circuits,” Opt. Express 21, 22937–22961 (2013).
    [Crossref]
  25. R. Soref, “The past, present and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12, 1678–1687 (2006).
    [Crossref]
  26. M. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19, 6100117 (2013).
    [Crossref]
  27. M. Burla, M. Li, L. R. Cortés, X. Wang, M. R. Fernández-Ruiz, L. Chrostowski, and J. Azaña, “Terahertz-bandwidth photonic fractional Hilbert transformer based on a phase-shifted waveguide Bragg grating on silicon,” Opt. Lett. 39, 6241–6244 (2014).
    [Crossref]
  28. J. Capmany, D. Domenéch, and P. Muñoz, “Graphene integrated microwave photonics,” J. Lightwave Technol. 32, 3785–3796 (2014).
    [Crossref]
  29. D. A. I. Marpaung, B. Morrison, M. Pagani, R. Pant, D. Y. Choi, B. Luther-Davies, S. J. Madden, and B. J. Eggleton, “Low-power, chip-based stimulated Brillouin scattering microwave photonic filter with ultrahigh selectivity,” Optica 2, 76–83 (2015).
    [Crossref]
  30. S. Trimberger, Field-Programmable Gate Array Technology (Springer, 1994).
  31. D. Pérez, I. Gasulla, and J. Capmany, “Software-defined reconfigurable microwave photonics processor,” Opt. Express 23, 14640–14654 (2015).
    [Crossref]
  32. C. K. Madsen and J. H. Zhao, Optical Filter Design and Analysis: a Signal Processing Approach (Wiley, 1999).
  33. K. Wörhoff, R. G. Heideman, A. Leinse, and M. Hoekman, “TriPleX: a versatile dielectric photonic platform,” Adv. Opt. Technol. 4, 189–207 (2015).
  34. W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonator,” Laser Photon. Rev. 6, 47–73 (2012).
    [Crossref]
  35. H. Shahoei, P. Dumais, and J. P. Yao, “Continuously tunable photonic fractional Hilbert transformer using a high-contrast germanium-doped silica-on-silicon microring resonator,” Opt. Lett. 39, 2778–2781 (2014).
    [Crossref]
  36. F. Morichetti, C. Ferrari, A. Canciamilla, and A. Melloni, “The first decade of coupled resonator optical waveguide: bringing slow light to applications,” Laser Photon. Rev. 6, 74–96 (2012).
    [Crossref]
  37. J. Cardenas, M. A. Foster, N. Sherwood-Droz, C. B. Poitras, L. Hugo, R. Lira, B. Zhang, A. L. Gaeta, J. B. Khurgin, P. Morton, and M. Lipson, “Wide-bandwidth continuously tunable optical delay line using silicon microring resonators,” Opt. Express 18, 26525–26534 (2010).
    [Crossref]
  38. C. H. Cox, Analog Optical Links (Cambridge University, 2004).
  39. J. Capmany, B. Ortega, and D. Pastor, “A tutorial on microwave photonic filters,” J. Lightwave Technol. 24, 201–229 (2006).
    [Crossref]
  40. W. Li, N. H. Zhu, L. X. Wang, J. S. Wang, J. G. Liu, Y. Liu, X. Q. Qi, L. Xie, W. Chen, X. Wang, and W. Han, “True-time delay line with separate carrier tuning using dual-parallel MZM and stimulated Brillouin scattering-induced slow light,” Opt. Express 19, 12312–12324 (2011).
    [Crossref]
  41. L. Zhuang, C. Zhu, B. Corcoran, and A. J. Lowery, “Photonic high-bandwidth RF splitter with arbitrary amplitude and phase offset,” Photon. Technol. Lett. 26, 2122–2125 (2014).
    [Crossref]
  42. A. Perentos, F. Cuesta-Soto, A. Canciamilla, B. Vidal, L. Pierno, N. S. Losilla, F. Lopez-Royo, A. Melloni, and S. Iezekiel, “Using Si3N4 ring resonator notch filter for optical carrier reduction and modulation depth enhancement in radio-over-fiber links,” IEEE Photon. J. 5, 5500110 (2013).
  43. J. Long, C. Li, W. Cui, J. Huangfu, and L. Ran, “A tunable microstrip band-pass filter with two independently adjustable transmission zeros,” IEEE Microwave Wireless Compon. Lett. 21, 74–76 (2011).
    [Crossref]
  44. A. Velez, F. Aznar, M. Durán-Sindreu, J. Bonache, and F. Martin, “Tunable coplanar waveguide band-stop and band-pass filters based on open split ring resonators and open complementary split ring resonators,” IEEE Microwaves Antennas Propag. 5, 277–281 (2011).
    [Crossref]
  45. V. Sekar, M. Armendariz, and K. Entesari, “A 1.2–1.6-GHz substrate-integrated-waveguide RF MEMS tunable filter,” IEEE Trans. Microwave Theory Tech. 59, 866–876 (2011).
    [Crossref]
  46. M. R. Rafique, T. Ohki, B. Banik, H. Engseth, P. Linner, and A. Herr, “Miniaturized superconducting microwave filters,” Supercond. Sci. Technol. 21, 075004 (2008).
    [Crossref]
  47. B. A. Fette, ed., Cognitive Radio Technology (Elsevier, 2009).
  48. N. Hosseini, R. Dekker, M. Hoekman, M. Dekkers, J. Bos, A. Leinse, and R. Heideman, “Stress-optic modulator in TriPleX platform using a piezoelectric lead zirconate titanate (PZT) thin film,” Opt. Express 23, 14018–14026 (2015).
    [Crossref]
  49. A. Willner, S. Khaleghi, M. R. Chitgarha, and O. F. Yilmaz, “All-optical signal processing,” J. Lightwave Technol. 32, 660–680 (2014).
    [Crossref]
  50. R. M. Oldenbeuving, E. J. Klein, H. L. Offerhaus, C. J. Lee, H. Song, and K.-J. Boller, “25  kHz narrow spectral bandwidth of a wavelength tunable diode laser with a short waveguide-based external cavity,” Laser Phys. Lett. 10, 015804 (2013).
    [Crossref]
  51. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
    [Crossref]
  52. E. I. Ackerman, G. Betts, W. K. Burns, J. C. Campbell, C. H. Cox, N. Duan, J. L. Prince, M. D. Regan, and H. V. Roussell, “Signal-to-noise performance of two analog photonic links using different noise reduction techniques,” in IEEE/MTT-S International Microwave Symposium (IEEE, 2007), pp. 51–54.

2015 (5)

2014 (6)

2013 (7)

R. M. Oldenbeuving, E. J. Klein, H. L. Offerhaus, C. J. Lee, H. Song, and K.-J. Boller, “25  kHz narrow spectral bandwidth of a wavelength tunable diode laser with a short waveguide-based external cavity,” Laser Phys. Lett. 10, 015804 (2013).
[Crossref]

M. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19, 6100117 (2013).
[Crossref]

D. A. I. Marpaung, C. G. H. Roeloffzen, R. G. Heideman, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photon. Rev. 7, 506–538 (2013).
[Crossref]

A. Perentos, F. Cuesta-Soto, A. Canciamilla, B. Vidal, L. Pierno, N. S. Losilla, F. Lopez-Royo, A. Melloni, and S. Iezekiel, “Using Si3N4 ring resonator notch filter for optical carrier reduction and modulation depth enhancement in radio-over-fiber links,” IEEE Photon. J. 5, 5500110 (2013).

L. Zhuang, M. Hoekman, W. P. Beeker, A. Leinse, R. G. Heideman, P. W. L. Van Dijk, and C. G. H. Roeloffzen, “Novel low-loss waveguide delay lines using Vernier ring resonators for on-chip multi-λ microwave photonic signal processors,” Laser Photon. Rev. 7, 994–1002 (2013).
[Crossref]

J. S. Fandiño, J. D. Doménech, P. Muñoz, and J. Capmany, “Integrated InP frequency discriminator for phase-modulated microwave photonic links,” Opt. Express 21, 3726–3736 (2013).
[Crossref]

C. G. H. Roeloffzen, L. Zhuang, C. Taddei, A. Leinse, R. G. Heideman, P. W. L. Van Dijk, M. Oldenbeuving, D. A. I. Marpaung, M. Burla, and K.-J. Boller, “Silicon nitride microwave photonic circuits,” Opt. Express 21, 22937–22961 (2013).
[Crossref]

2012 (5)

M. Smit, J. Van der Tol, and M. Hill, “Moore’s law in photonics,”Laser Photon. Rev. 6, 1–13 (2012).
[Crossref]

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonator,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

F. Morichetti, C. Ferrari, A. Canciamilla, and A. Melloni, “The first decade of coupled resonator optical waveguide: bringing slow light to applications,” Laser Photon. Rev. 6, 74–96 (2012).
[Crossref]

J. Sancho, J. Bourderionnet, J. Lloret, S. Combrié, I. Gasulla, S. Xavier, S. Sales, P. Colman, G. Lehoucq, D. Dolfi, J. Campany, and A. De Rossi, “Integrable microwave filter based on a photonic crystal delay line,” Nat. Commun. 3, 1075 (2012).
[Crossref]

J. Lloret, G. Morthier, F. Ramos, S. Sales, D. Van Thourhout, T. Spuesens, N. Olivier, J.-M. Fédéli, and J. Capmany, “Broadband microwave photonic fully tunable filter using a single heterogeneously integrated III–V/SOI-microdisk-based phase shifter using high-Q silicon microdisk resonators,” Opt. Express 20, 10796–10806 (2012).
[Crossref]

2011 (5)

W. Li, N. H. Zhu, L. X. Wang, J. S. Wang, J. G. Liu, Y. Liu, X. Q. Qi, L. Xie, W. Chen, X. Wang, and W. Han, “True-time delay line with separate carrier tuning using dual-parallel MZM and stimulated Brillouin scattering-induced slow light,” Opt. Express 19, 12312–12324 (2011).
[Crossref]

E. J. Norberg, R. S. Guzzon, J. S. Parker, L. A. Johansson, and L. A. Coldren, “Programmable photonic microwave filters monolithically integrated in InP–InGaAsP,” J. Lightwave Technol. 29, 1611–1619 (2011).
[Crossref]

J. Long, C. Li, W. Cui, J. Huangfu, and L. Ran, “A tunable microstrip band-pass filter with two independently adjustable transmission zeros,” IEEE Microwave Wireless Compon. Lett. 21, 74–76 (2011).
[Crossref]

A. Velez, F. Aznar, M. Durán-Sindreu, J. Bonache, and F. Martin, “Tunable coplanar waveguide band-stop and band-pass filters based on open split ring resonators and open complementary split ring resonators,” IEEE Microwaves Antennas Propag. 5, 277–281 (2011).
[Crossref]

V. Sekar, M. Armendariz, and K. Entesari, “A 1.2–1.6-GHz substrate-integrated-waveguide RF MEMS tunable filter,” IEEE Trans. Microwave Theory Tech. 59, 866–876 (2011).
[Crossref]

2010 (7)

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weinerm, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4, 117–122 (2010).
[Crossref]

H. W. Chen, A. W. Fang, J. D. Peters, Z. Wang, J. Bovington, D. Liang, and J. E. Bowers, “Integrated microwave photonic filter on a hybrid silicon platform,” IEEE Trans. Microwave Theory Tech. 58, 3213–3219 (2010).
[Crossref]

M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, and J. Azaña, “On-chip CMOS-compatible all-optical integrator,” Nat. Commun. 1, 1–5 (2010).
[Crossref]

L. Zhuang, C. G. H. Roeloffzen, A. Meijerink, M. Burla, D. A. I. Marpaung, A. Leinse, M. Hoekman, H. G. Heideman, and W. C. Van Etten, “Novel ring resonator-based integrated photonic beamformer for broadband phased-array antennas—Part II: experimental prototype,” J. Lightwave Technol. 28, 19–31 (2010).
[Crossref]

A. Meijerink, C. G. H. Roeloffzen, R. Meijerink, L. Zhuang, D. A. I. Marpaung, M. J. Bentum, M. Burla, J. Verpoorte, P. Jorna, A. Hulzinga, and W. C. Van Etten, “Novel ring resonator-based integrated photonic beamformer for broadband phased-array antennas—Part I: design and performance analysis,” J. Lightwave Technol. 28, 3–18 (2010).
[Crossref]

J. Cardenas, M. A. Foster, N. Sherwood-Droz, C. B. Poitras, L. Hugo, R. Lira, B. Zhang, A. L. Gaeta, J. B. Khurgin, P. Morton, and M. Lipson, “Wide-bandwidth continuously tunable optical delay line using silicon microring resonators,” Opt. Express 18, 26525–26534 (2010).
[Crossref]

D. A. I. Marpaung, C. G. H. Roeloffzen, A. Leinse, and M. Hoekman, “A photonic chip based frequency discriminator for a high performance microwave photonic link,” Opt. Express 18, 27359–27370 (2010).
[Crossref]

2008 (2)

F. Liu, T. Wang, L. Qiang, T. Ye, Z. Zhang, M. Qiu, and Y. Su, “Compact optical temporal differentiator based on silicon microring resonator,” Opt. Express 16, 15880–15886 (2008).
[Crossref]

M. R. Rafique, T. Ohki, B. Banik, H. Engseth, P. Linner, and A. Herr, “Miniaturized superconducting microwave filters,” Supercond. Sci. Technol. 21, 075004 (2008).
[Crossref]

2007 (1)

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1, 319–330 (2007).
[Crossref]

2006 (2)

R. Soref, “The past, present and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12, 1678–1687 (2006).
[Crossref]

J. Capmany, B. Ortega, and D. Pastor, “A tutorial on microwave photonic filters,” J. Lightwave Technol. 24, 201–229 (2006).
[Crossref]

2005 (1)

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
[Crossref]

2002 (1)

A. Seeds, “Microwave photonics,” IEEE Trans. Microwave Theory Tech. 50, 877–887 (2002).
[Crossref]

Ackerman, E. I.

E. I. Ackerman, G. Betts, W. K. Burns, J. C. Campbell, C. H. Cox, N. Duan, J. L. Prince, M. D. Regan, and H. V. Roussell, “Signal-to-noise performance of two analog photonic links using different noise reduction techniques,” in IEEE/MTT-S International Microwave Symposium (IEEE, 2007), pp. 51–54.

Armendariz, M.

V. Sekar, M. Armendariz, and K. Entesari, “A 1.2–1.6-GHz substrate-integrated-waveguide RF MEMS tunable filter,” IEEE Trans. Microwave Theory Tech. 59, 866–876 (2011).
[Crossref]

Azaña, J.

M. Burla, M. Li, L. R. Cortés, X. Wang, M. R. Fernández-Ruiz, L. Chrostowski, and J. Azaña, “Terahertz-bandwidth photonic fractional Hilbert transformer based on a phase-shifted waveguide Bragg grating on silicon,” Opt. Lett. 39, 6241–6244 (2014).
[Crossref]

M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, and J. Azaña, “On-chip CMOS-compatible all-optical integrator,” Nat. Commun. 1, 1–5 (2010).
[Crossref]

Aznar, F.

A. Velez, F. Aznar, M. Durán-Sindreu, J. Bonache, and F. Martin, “Tunable coplanar waveguide band-stop and band-pass filters based on open split ring resonators and open complementary split ring resonators,” IEEE Microwaves Antennas Propag. 5, 277–281 (2011).
[Crossref]

Baets, R.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonator,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Banik, B.

M. R. Rafique, T. Ohki, B. Banik, H. Engseth, P. Linner, and A. Herr, “Miniaturized superconducting microwave filters,” Supercond. Sci. Technol. 21, 075004 (2008).
[Crossref]

Bauters, J. F.

M. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19, 6100117 (2013).
[Crossref]

Beeker, W. P.

L. Zhuang, M. Hoekman, W. P. Beeker, A. Leinse, R. G. Heideman, P. W. L. Van Dijk, and C. G. H. Roeloffzen, “Novel low-loss waveguide delay lines using Vernier ring resonators for on-chip multi-λ microwave photonic signal processors,” Laser Photon. Rev. 7, 994–1002 (2013).
[Crossref]

Bentum, M. J.

Betts, G.

E. I. Ackerman, G. Betts, W. K. Burns, J. C. Campbell, C. H. Cox, N. Duan, J. L. Prince, M. D. Regan, and H. V. Roussell, “Signal-to-noise performance of two analog photonic links using different noise reduction techniques,” in IEEE/MTT-S International Microwave Symposium (IEEE, 2007), pp. 51–54.

Bienstman, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonator,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Bogaerts, W.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonator,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Boller, K.-J.

R. M. Oldenbeuving, E. J. Klein, H. L. Offerhaus, C. J. Lee, H. Song, and K.-J. Boller, “25  kHz narrow spectral bandwidth of a wavelength tunable diode laser with a short waveguide-based external cavity,” Laser Phys. Lett. 10, 015804 (2013).
[Crossref]

C. G. H. Roeloffzen, L. Zhuang, C. Taddei, A. Leinse, R. G. Heideman, P. W. L. Van Dijk, M. Oldenbeuving, D. A. I. Marpaung, M. Burla, and K.-J. Boller, “Silicon nitride microwave photonic circuits,” Opt. Express 21, 22937–22961 (2013).
[Crossref]

Bonache, J.

A. Velez, F. Aznar, M. Durán-Sindreu, J. Bonache, and F. Martin, “Tunable coplanar waveguide band-stop and band-pass filters based on open split ring resonators and open complementary split ring resonators,” IEEE Microwaves Antennas Propag. 5, 277–281 (2011).
[Crossref]

Bos, J.

Bourderionnet, J.

J. Sancho, J. Bourderionnet, J. Lloret, S. Combrié, I. Gasulla, S. Xavier, S. Sales, P. Colman, G. Lehoucq, D. Dolfi, J. Campany, and A. De Rossi, “Integrable microwave filter based on a photonic crystal delay line,” Nat. Commun. 3, 1075 (2012).
[Crossref]

Bovington, J.

H. W. Chen, A. W. Fang, J. D. Peters, Z. Wang, J. Bovington, D. Liang, and J. E. Bowers, “Integrated microwave photonic filter on a hybrid silicon platform,” IEEE Trans. Microwave Theory Tech. 58, 3213–3219 (2010).
[Crossref]

Bowers, J. E.

M. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19, 6100117 (2013).
[Crossref]

H. W. Chen, A. W. Fang, J. D. Peters, Z. Wang, J. Bovington, D. Liang, and J. E. Bowers, “Integrated microwave photonic filter on a hybrid silicon platform,” IEEE Trans. Microwave Theory Tech. 58, 3213–3219 (2010).
[Crossref]

Burla, M.

Burns, W. K.

E. I. Ackerman, G. Betts, W. K. Burns, J. C. Campbell, C. H. Cox, N. Duan, J. L. Prince, M. D. Regan, and H. V. Roussell, “Signal-to-noise performance of two analog photonic links using different noise reduction techniques,” in IEEE/MTT-S International Microwave Symposium (IEEE, 2007), pp. 51–54.

Campany, J.

J. Sancho, J. Bourderionnet, J. Lloret, S. Combrié, I. Gasulla, S. Xavier, S. Sales, P. Colman, G. Lehoucq, D. Dolfi, J. Campany, and A. De Rossi, “Integrable microwave filter based on a photonic crystal delay line,” Nat. Commun. 3, 1075 (2012).
[Crossref]

Campbell, J. C.

E. I. Ackerman, G. Betts, W. K. Burns, J. C. Campbell, C. H. Cox, N. Duan, J. L. Prince, M. D. Regan, and H. V. Roussell, “Signal-to-noise performance of two analog photonic links using different noise reduction techniques,” in IEEE/MTT-S International Microwave Symposium (IEEE, 2007), pp. 51–54.

Canciamilla, A.

A. Perentos, F. Cuesta-Soto, A. Canciamilla, B. Vidal, L. Pierno, N. S. Losilla, F. Lopez-Royo, A. Melloni, and S. Iezekiel, “Using Si3N4 ring resonator notch filter for optical carrier reduction and modulation depth enhancement in radio-over-fiber links,” IEEE Photon. J. 5, 5500110 (2013).

F. Morichetti, C. Ferrari, A. Canciamilla, and A. Melloni, “The first decade of coupled resonator optical waveguide: bringing slow light to applications,” Laser Photon. Rev. 6, 74–96 (2012).
[Crossref]

Capmany, J.

Cardenas, J.

Chen, H. W.

H. W. Chen, A. W. Fang, J. D. Peters, Z. Wang, J. Bovington, D. Liang, and J. E. Bowers, “Integrated microwave photonic filter on a hybrid silicon platform,” IEEE Trans. Microwave Theory Tech. 58, 3213–3219 (2010).
[Crossref]

Chen, W.

Chitgarha, M. R.

Choi, D. Y.

Chrostowski, L.

Chu, S. T.

M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, and J. Azaña, “On-chip CMOS-compatible all-optical integrator,” Nat. Commun. 1, 1–5 (2010).
[Crossref]

Claes, T.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonator,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Coldren, L. A.

Colman, P.

J. Sancho, J. Bourderionnet, J. Lloret, S. Combrié, I. Gasulla, S. Xavier, S. Sales, P. Colman, G. Lehoucq, D. Dolfi, J. Campany, and A. De Rossi, “Integrable microwave filter based on a photonic crystal delay line,” Nat. Commun. 3, 1075 (2012).
[Crossref]

Combrié, S.

J. Sancho, J. Bourderionnet, J. Lloret, S. Combrié, I. Gasulla, S. Xavier, S. Sales, P. Colman, G. Lehoucq, D. Dolfi, J. Campany, and A. De Rossi, “Integrable microwave filter based on a photonic crystal delay line,” Nat. Commun. 3, 1075 (2012).
[Crossref]

Corcoran, B.

L. Zhuang, C. Zhu, B. Corcoran, and A. J. Lowery, “Photonic high-bandwidth RF splitter with arbitrary amplitude and phase offset,” Photon. Technol. Lett. 26, 2122–2125 (2014).
[Crossref]

Cortés, L. R.

Cox, C. H.

E. I. Ackerman, G. Betts, W. K. Burns, J. C. Campbell, C. H. Cox, N. Duan, J. L. Prince, M. D. Regan, and H. V. Roussell, “Signal-to-noise performance of two analog photonic links using different noise reduction techniques,” in IEEE/MTT-S International Microwave Symposium (IEEE, 2007), pp. 51–54.

C. H. Cox, Analog Optical Links (Cambridge University, 2004).

Cuesta-Soto, F.

A. Perentos, F. Cuesta-Soto, A. Canciamilla, B. Vidal, L. Pierno, N. S. Losilla, F. Lopez-Royo, A. Melloni, and S. Iezekiel, “Using Si3N4 ring resonator notch filter for optical carrier reduction and modulation depth enhancement in radio-over-fiber links,” IEEE Photon. J. 5, 5500110 (2013).

Cui, W.

J. Long, C. Li, W. Cui, J. Huangfu, and L. Ran, “A tunable microstrip band-pass filter with two independently adjustable transmission zeros,” IEEE Microwave Wireless Compon. Lett. 21, 74–76 (2011).
[Crossref]

Davenport, M. L.

M. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19, 6100117 (2013).
[Crossref]

De Heyn, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonator,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

De Rossi, A.

J. Sancho, J. Bourderionnet, J. Lloret, S. Combrié, I. Gasulla, S. Xavier, S. Sales, P. Colman, G. Lehoucq, D. Dolfi, J. Campany, and A. De Rossi, “Integrable microwave filter based on a photonic crystal delay line,” Nat. Commun. 3, 1075 (2012).
[Crossref]

De Vos, K.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonator,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Dekker, R.

Dekkers, M.

Ding, Z.

B. B. Guan, S. S. Djordjevic, N. K. Fontaine, L. Zhou, S. Ibrahim, R. P. Scott, D. J. Geisler, Z. Ding, and S. J. B. Yoo, “CMOS compatible reconfigurable silicon photonic lattice filters using cascaded unit cells for RF-photonic processing,” IEEE J. Sel. Top. Quantum Electron. 20, 8202110 (2014).

Djordjevic, S. S.

B. B. Guan, S. S. Djordjevic, N. K. Fontaine, L. Zhou, S. Ibrahim, R. P. Scott, D. J. Geisler, Z. Ding, and S. J. B. Yoo, “CMOS compatible reconfigurable silicon photonic lattice filters using cascaded unit cells for RF-photonic processing,” IEEE J. Sel. Top. Quantum Electron. 20, 8202110 (2014).

Dolfi, D.

J. Sancho, J. Bourderionnet, J. Lloret, S. Combrié, I. Gasulla, S. Xavier, S. Sales, P. Colman, G. Lehoucq, D. Dolfi, J. Campany, and A. De Rossi, “Integrable microwave filter based on a photonic crystal delay line,” Nat. Commun. 3, 1075 (2012).
[Crossref]

Domenéch, D.

Doménech, J. D.

Doylend, J. K.

M. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19, 6100117 (2013).
[Crossref]

Du, K. L.

K. L. Du and M. N. S. Swamy, Wireless Communication Systems: from RF Subsystems to 4G Enabling Technologies (Cambridge University, 2010).

Duan, N.

E. I. Ackerman, G. Betts, W. K. Burns, J. C. Campbell, C. H. Cox, N. Duan, J. L. Prince, M. D. Regan, and H. V. Roussell, “Signal-to-noise performance of two analog photonic links using different noise reduction techniques,” in IEEE/MTT-S International Microwave Symposium (IEEE, 2007), pp. 51–54.

Dumais, P.

Dumon, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonator,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Durán-Sindreu, M.

A. Velez, F. Aznar, M. Durán-Sindreu, J. Bonache, and F. Martin, “Tunable coplanar waveguide band-stop and band-pass filters based on open split ring resonators and open complementary split ring resonators,” IEEE Microwaves Antennas Propag. 5, 277–281 (2011).
[Crossref]

Eggleton, B. J.

Engseth, H.

M. R. Rafique, T. Ohki, B. Banik, H. Engseth, P. Linner, and A. Herr, “Miniaturized superconducting microwave filters,” Supercond. Sci. Technol. 21, 075004 (2008).
[Crossref]

Entesari, K.

V. Sekar, M. Armendariz, and K. Entesari, “A 1.2–1.6-GHz substrate-integrated-waveguide RF MEMS tunable filter,” IEEE Trans. Microwave Theory Tech. 59, 866–876 (2011).
[Crossref]

Fan, L.

J. Wang, H. Shen, L. Fan, R. Wu, B. Niu, L. T. Varghese, Y. Xuan, D. E. Leaird, X. Wang, F. Gan, A. M. Weiner, and M. Qi, “Reconfigurable radio-frequency arbitrary waveforms synthesized in a silicon chip,” Nat. Commun. 6, 5957 (2015).

Fandiño, J. S.

Fang, A. W.

H. W. Chen, A. W. Fang, J. D. Peters, Z. Wang, J. Bovington, D. Liang, and J. E. Bowers, “Integrated microwave photonic filter on a hybrid silicon platform,” IEEE Trans. Microwave Theory Tech. 58, 3213–3219 (2010).
[Crossref]

Fédéli, J.-M.

Fernández-Ruiz, M. R.

Ferrari, C.

F. Morichetti, C. Ferrari, A. Canciamilla, and A. Melloni, “The first decade of coupled resonator optical waveguide: bringing slow light to applications,” Laser Photon. Rev. 6, 74–96 (2012).
[Crossref]

Ferrera, M.

M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, and J. Azaña, “On-chip CMOS-compatible all-optical integrator,” Nat. Commun. 1, 1–5 (2010).
[Crossref]

Fontaine, N. K.

B. B. Guan, S. S. Djordjevic, N. K. Fontaine, L. Zhou, S. Ibrahim, R. P. Scott, D. J. Geisler, Z. Ding, and S. J. B. Yoo, “CMOS compatible reconfigurable silicon photonic lattice filters using cascaded unit cells for RF-photonic processing,” IEEE J. Sel. Top. Quantum Electron. 20, 8202110 (2014).

Foster, M. A.

Gaeta, A. L.

Gan, F.

J. Wang, H. Shen, L. Fan, R. Wu, B. Niu, L. T. Varghese, Y. Xuan, D. E. Leaird, X. Wang, F. Gan, A. M. Weiner, and M. Qi, “Reconfigurable radio-frequency arbitrary waveforms synthesized in a silicon chip,” Nat. Commun. 6, 5957 (2015).

Gasulla, I.

D. Pérez, I. Gasulla, and J. Capmany, “Software-defined reconfigurable microwave photonics processor,” Opt. Express 23, 14640–14654 (2015).
[Crossref]

J. Sancho, J. Bourderionnet, J. Lloret, S. Combrié, I. Gasulla, S. Xavier, S. Sales, P. Colman, G. Lehoucq, D. Dolfi, J. Campany, and A. De Rossi, “Integrable microwave filter based on a photonic crystal delay line,” Nat. Commun. 3, 1075 (2012).
[Crossref]

Geisler, D. J.

B. B. Guan, S. S. Djordjevic, N. K. Fontaine, L. Zhou, S. Ibrahim, R. P. Scott, D. J. Geisler, Z. Ding, and S. J. B. Yoo, “CMOS compatible reconfigurable silicon photonic lattice filters using cascaded unit cells for RF-photonic processing,” IEEE J. Sel. Top. Quantum Electron. 20, 8202110 (2014).

Guan, B. B.

B. B. Guan, S. S. Djordjevic, N. K. Fontaine, L. Zhou, S. Ibrahim, R. P. Scott, D. J. Geisler, Z. Ding, and S. J. B. Yoo, “CMOS compatible reconfigurable silicon photonic lattice filters using cascaded unit cells for RF-photonic processing,” IEEE J. Sel. Top. Quantum Electron. 20, 8202110 (2014).

Guzzon, R. S.

Han, W.

Heck, M. R.

M. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19, 6100117 (2013).
[Crossref]

Heideman, H. G.

Heideman, R.

Heideman, R. G.

K. Wörhoff, R. G. Heideman, A. Leinse, and M. Hoekman, “TriPleX: a versatile dielectric photonic platform,” Adv. Opt. Technol. 4, 189–207 (2015).

D. A. I. Marpaung, C. G. H. Roeloffzen, R. G. Heideman, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photon. Rev. 7, 506–538 (2013).
[Crossref]

L. Zhuang, M. Hoekman, W. P. Beeker, A. Leinse, R. G. Heideman, P. W. L. Van Dijk, and C. G. H. Roeloffzen, “Novel low-loss waveguide delay lines using Vernier ring resonators for on-chip multi-λ microwave photonic signal processors,” Laser Photon. Rev. 7, 994–1002 (2013).
[Crossref]

C. G. H. Roeloffzen, L. Zhuang, C. Taddei, A. Leinse, R. G. Heideman, P. W. L. Van Dijk, M. Oldenbeuving, D. A. I. Marpaung, M. Burla, and K.-J. Boller, “Silicon nitride microwave photonic circuits,” Opt. Express 21, 22937–22961 (2013).
[Crossref]

Herr, A.

M. R. Rafique, T. Ohki, B. Banik, H. Engseth, P. Linner, and A. Herr, “Miniaturized superconducting microwave filters,” Supercond. Sci. Technol. 21, 075004 (2008).
[Crossref]

Hill, M.

M. Smit, J. Van der Tol, and M. Hill, “Moore’s law in photonics,”Laser Photon. Rev. 6, 1–13 (2012).
[Crossref]

Hoekman, M.

Hosseini, N.

Huangfu, J.

J. Long, C. Li, W. Cui, J. Huangfu, and L. Ran, “A tunable microstrip band-pass filter with two independently adjustable transmission zeros,” IEEE Microwave Wireless Compon. Lett. 21, 74–76 (2011).
[Crossref]

Hugo, L.

Hulzinga, A.

Ibrahim, S.

B. B. Guan, S. S. Djordjevic, N. K. Fontaine, L. Zhou, S. Ibrahim, R. P. Scott, D. J. Geisler, Z. Ding, and S. J. B. Yoo, “CMOS compatible reconfigurable silicon photonic lattice filters using cascaded unit cells for RF-photonic processing,” IEEE J. Sel. Top. Quantum Electron. 20, 8202110 (2014).

Iezekiel, S.

A. Perentos, F. Cuesta-Soto, A. Canciamilla, B. Vidal, L. Pierno, N. S. Losilla, F. Lopez-Royo, A. Melloni, and S. Iezekiel, “Using Si3N4 ring resonator notch filter for optical carrier reduction and modulation depth enhancement in radio-over-fiber links,” IEEE Photon. J. 5, 5500110 (2013).

Jain, S.

M. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19, 6100117 (2013).
[Crossref]

Johansson, L. A.

Jorna, P.

Khaleghi, S.

Khan, M. H.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weinerm, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4, 117–122 (2010).
[Crossref]

Khurgin, J. B.

Klein, E. J.

R. M. Oldenbeuving, E. J. Klein, H. L. Offerhaus, C. J. Lee, H. Song, and K.-J. Boller, “25  kHz narrow spectral bandwidth of a wavelength tunable diode laser with a short waveguide-based external cavity,” Laser Phys. Lett. 10, 015804 (2013).
[Crossref]

Kumar Selvaraja, S.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonator,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Kuo, S. M.

S. M. Kuo, B. H. Lee, and W. Tian, Real-Time Digital Signal Processing: Implementations and Applications (Wiley, 2006).

Kurczveil, G.

M. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19, 6100117 (2013).
[Crossref]

Leaird, D. E.

J. Wang, H. Shen, L. Fan, R. Wu, B. Niu, L. T. Varghese, Y. Xuan, D. E. Leaird, X. Wang, F. Gan, A. M. Weiner, and M. Qi, “Reconfigurable radio-frequency arbitrary waveforms synthesized in a silicon chip,” Nat. Commun. 6, 5957 (2015).

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weinerm, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4, 117–122 (2010).
[Crossref]

Lee, B. H.

S. M. Kuo, B. H. Lee, and W. Tian, Real-Time Digital Signal Processing: Implementations and Applications (Wiley, 2006).

Lee, C. J.

R. M. Oldenbeuving, E. J. Klein, H. L. Offerhaus, C. J. Lee, H. Song, and K.-J. Boller, “25  kHz narrow spectral bandwidth of a wavelength tunable diode laser with a short waveguide-based external cavity,” Laser Phys. Lett. 10, 015804 (2013).
[Crossref]

Lehoucq, G.

J. Sancho, J. Bourderionnet, J. Lloret, S. Combrié, I. Gasulla, S. Xavier, S. Sales, P. Colman, G. Lehoucq, D. Dolfi, J. Campany, and A. De Rossi, “Integrable microwave filter based on a photonic crystal delay line,” Nat. Commun. 3, 1075 (2012).
[Crossref]

Leinse, A.

Li, C.

J. Long, C. Li, W. Cui, J. Huangfu, and L. Ran, “A tunable microstrip band-pass filter with two independently adjustable transmission zeros,” IEEE Microwave Wireless Compon. Lett. 21, 74–76 (2011).
[Crossref]

Li, M.

Li, W.

Liang, D.

H. W. Chen, A. W. Fang, J. D. Peters, Z. Wang, J. Bovington, D. Liang, and J. E. Bowers, “Integrated microwave photonic filter on a hybrid silicon platform,” IEEE Trans. Microwave Theory Tech. 58, 3213–3219 (2010).
[Crossref]

Linner, P.

M. R. Rafique, T. Ohki, B. Banik, H. Engseth, P. Linner, and A. Herr, “Miniaturized superconducting microwave filters,” Supercond. Sci. Technol. 21, 075004 (2008).
[Crossref]

Lipson, M.

Lira, R.

Little, B. E.

M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, and J. Azaña, “On-chip CMOS-compatible all-optical integrator,” Nat. Commun. 1, 1–5 (2010).
[Crossref]

Liu, F.

Liu, J. G.

Liu, Y.

Lloret, J.

J. Lloret, G. Morthier, F. Ramos, S. Sales, D. Van Thourhout, T. Spuesens, N. Olivier, J.-M. Fédéli, and J. Capmany, “Broadband microwave photonic fully tunable filter using a single heterogeneously integrated III–V/SOI-microdisk-based phase shifter using high-Q silicon microdisk resonators,” Opt. Express 20, 10796–10806 (2012).
[Crossref]

J. Sancho, J. Bourderionnet, J. Lloret, S. Combrié, I. Gasulla, S. Xavier, S. Sales, P. Colman, G. Lehoucq, D. Dolfi, J. Campany, and A. De Rossi, “Integrable microwave filter based on a photonic crystal delay line,” Nat. Commun. 3, 1075 (2012).
[Crossref]

Long, J.

J. Long, C. Li, W. Cui, J. Huangfu, and L. Ran, “A tunable microstrip band-pass filter with two independently adjustable transmission zeros,” IEEE Microwave Wireless Compon. Lett. 21, 74–76 (2011).
[Crossref]

Lopez-Royo, F.

A. Perentos, F. Cuesta-Soto, A. Canciamilla, B. Vidal, L. Pierno, N. S. Losilla, F. Lopez-Royo, A. Melloni, and S. Iezekiel, “Using Si3N4 ring resonator notch filter for optical carrier reduction and modulation depth enhancement in radio-over-fiber links,” IEEE Photon. J. 5, 5500110 (2013).

Losilla, N. S.

A. Perentos, F. Cuesta-Soto, A. Canciamilla, B. Vidal, L. Pierno, N. S. Losilla, F. Lopez-Royo, A. Melloni, and S. Iezekiel, “Using Si3N4 ring resonator notch filter for optical carrier reduction and modulation depth enhancement in radio-over-fiber links,” IEEE Photon. J. 5, 5500110 (2013).

Lowery, A. J.

L. Zhuang, C. Zhu, B. Corcoran, and A. J. Lowery, “Photonic high-bandwidth RF splitter with arbitrary amplitude and phase offset,” Photon. Technol. Lett. 26, 2122–2125 (2014).
[Crossref]

Luther-Davies, B.

Madden, S. J.

Madsen, C. K.

C. K. Madsen and J. H. Zhao, Optical Filter Design and Analysis: a Signal Processing Approach (Wiley, 1999).

Marpaung, D. A. I.

D. A. I. Marpaung, B. Morrison, M. Pagani, R. Pant, D. Y. Choi, B. Luther-Davies, S. J. Madden, and B. J. Eggleton, “Low-power, chip-based stimulated Brillouin scattering microwave photonic filter with ultrahigh selectivity,” Optica 2, 76–83 (2015).
[Crossref]

C. G. H. Roeloffzen, L. Zhuang, C. Taddei, A. Leinse, R. G. Heideman, P. W. L. Van Dijk, M. Oldenbeuving, D. A. I. Marpaung, M. Burla, and K.-J. Boller, “Silicon nitride microwave photonic circuits,” Opt. Express 21, 22937–22961 (2013).
[Crossref]

D. A. I. Marpaung, C. G. H. Roeloffzen, R. G. Heideman, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photon. Rev. 7, 506–538 (2013).
[Crossref]

D. A. I. Marpaung, C. G. H. Roeloffzen, A. Leinse, and M. Hoekman, “A photonic chip based frequency discriminator for a high performance microwave photonic link,” Opt. Express 18, 27359–27370 (2010).
[Crossref]

A. Meijerink, C. G. H. Roeloffzen, R. Meijerink, L. Zhuang, D. A. I. Marpaung, M. J. Bentum, M. Burla, J. Verpoorte, P. Jorna, A. Hulzinga, and W. C. Van Etten, “Novel ring resonator-based integrated photonic beamformer for broadband phased-array antennas—Part I: design and performance analysis,” J. Lightwave Technol. 28, 3–18 (2010).
[Crossref]

L. Zhuang, C. G. H. Roeloffzen, A. Meijerink, M. Burla, D. A. I. Marpaung, A. Leinse, M. Hoekman, H. G. Heideman, and W. C. Van Etten, “Novel ring resonator-based integrated photonic beamformer for broadband phased-array antennas—Part II: experimental prototype,” J. Lightwave Technol. 28, 19–31 (2010).
[Crossref]

Martin, F.

A. Velez, F. Aznar, M. Durán-Sindreu, J. Bonache, and F. Martin, “Tunable coplanar waveguide band-stop and band-pass filters based on open split ring resonators and open complementary split ring resonators,” IEEE Microwaves Antennas Propag. 5, 277–281 (2011).
[Crossref]

Meijerink, A.

Meijerink, R.

Melloni, A.

A. Perentos, F. Cuesta-Soto, A. Canciamilla, B. Vidal, L. Pierno, N. S. Losilla, F. Lopez-Royo, A. Melloni, and S. Iezekiel, “Using Si3N4 ring resonator notch filter for optical carrier reduction and modulation depth enhancement in radio-over-fiber links,” IEEE Photon. J. 5, 5500110 (2013).

F. Morichetti, C. Ferrari, A. Canciamilla, and A. Melloni, “The first decade of coupled resonator optical waveguide: bringing slow light to applications,” Laser Photon. Rev. 6, 74–96 (2012).
[Crossref]

Morandotti, R.

M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, and J. Azaña, “On-chip CMOS-compatible all-optical integrator,” Nat. Commun. 1, 1–5 (2010).
[Crossref]

Morichetti, F.

F. Morichetti, C. Ferrari, A. Canciamilla, and A. Melloni, “The first decade of coupled resonator optical waveguide: bringing slow light to applications,” Laser Photon. Rev. 6, 74–96 (2012).
[Crossref]

Morrison, B.

Morthier, G.

Morton, P.

Moss, D. J.

M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, and J. Azaña, “On-chip CMOS-compatible all-optical integrator,” Nat. Commun. 1, 1–5 (2010).
[Crossref]

Muñoz, P.

Niu, B.

J. Wang, H. Shen, L. Fan, R. Wu, B. Niu, L. T. Varghese, Y. Xuan, D. E. Leaird, X. Wang, F. Gan, A. M. Weiner, and M. Qi, “Reconfigurable radio-frequency arbitrary waveforms synthesized in a silicon chip,” Nat. Commun. 6, 5957 (2015).

Norberg, E. J.

Novak, D.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1, 319–330 (2007).
[Crossref]

Offerhaus, H. L.

R. M. Oldenbeuving, E. J. Klein, H. L. Offerhaus, C. J. Lee, H. Song, and K.-J. Boller, “25  kHz narrow spectral bandwidth of a wavelength tunable diode laser with a short waveguide-based external cavity,” Laser Phys. Lett. 10, 015804 (2013).
[Crossref]

Ohki, T.

M. R. Rafique, T. Ohki, B. Banik, H. Engseth, P. Linner, and A. Herr, “Miniaturized superconducting microwave filters,” Supercond. Sci. Technol. 21, 075004 (2008).
[Crossref]

Oldenbeuving, M.

Oldenbeuving, R. M.

R. M. Oldenbeuving, E. J. Klein, H. L. Offerhaus, C. J. Lee, H. Song, and K.-J. Boller, “25  kHz narrow spectral bandwidth of a wavelength tunable diode laser with a short waveguide-based external cavity,” Laser Phys. Lett. 10, 015804 (2013).
[Crossref]

Olivier, N.

Ortega, B.

Pagani, M.

Pant, R.

Park, Y.

M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, and J. Azaña, “On-chip CMOS-compatible all-optical integrator,” Nat. Commun. 1, 1–5 (2010).
[Crossref]

Parker, J. S.

Pastor, D.

Perentos, A.

A. Perentos, F. Cuesta-Soto, A. Canciamilla, B. Vidal, L. Pierno, N. S. Losilla, F. Lopez-Royo, A. Melloni, and S. Iezekiel, “Using Si3N4 ring resonator notch filter for optical carrier reduction and modulation depth enhancement in radio-over-fiber links,” IEEE Photon. J. 5, 5500110 (2013).

Pérez, D.

Peters, J. D.

H. W. Chen, A. W. Fang, J. D. Peters, Z. Wang, J. Bovington, D. Liang, and J. E. Bowers, “Integrated microwave photonic filter on a hybrid silicon platform,” IEEE Trans. Microwave Theory Tech. 58, 3213–3219 (2010).
[Crossref]

Pierno, L.

A. Perentos, F. Cuesta-Soto, A. Canciamilla, B. Vidal, L. Pierno, N. S. Losilla, F. Lopez-Royo, A. Melloni, and S. Iezekiel, “Using Si3N4 ring resonator notch filter for optical carrier reduction and modulation depth enhancement in radio-over-fiber links,” IEEE Photon. J. 5, 5500110 (2013).

Poitras, C. B.

Pradhan, S.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
[Crossref]

Prince, J. L.

E. I. Ackerman, G. Betts, W. K. Burns, J. C. Campbell, C. H. Cox, N. Duan, J. L. Prince, M. D. Regan, and H. V. Roussell, “Signal-to-noise performance of two analog photonic links using different noise reduction techniques,” in IEEE/MTT-S International Microwave Symposium (IEEE, 2007), pp. 51–54.

Qi, M.

J. Wang, H. Shen, L. Fan, R. Wu, B. Niu, L. T. Varghese, Y. Xuan, D. E. Leaird, X. Wang, F. Gan, A. M. Weiner, and M. Qi, “Reconfigurable radio-frequency arbitrary waveforms synthesized in a silicon chip,” Nat. Commun. 6, 5957 (2015).

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weinerm, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4, 117–122 (2010).
[Crossref]

Qi, X. Q.

Qiang, L.

Qiu, M.

Rafique, M. R.

M. R. Rafique, T. Ohki, B. Banik, H. Engseth, P. Linner, and A. Herr, “Miniaturized superconducting microwave filters,” Supercond. Sci. Technol. 21, 075004 (2008).
[Crossref]

Ramos, F.

Ran, L.

J. Long, C. Li, W. Cui, J. Huangfu, and L. Ran, “A tunable microstrip band-pass filter with two independently adjustable transmission zeros,” IEEE Microwave Wireless Compon. Lett. 21, 74–76 (2011).
[Crossref]

Razzari, L.

M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, and J. Azaña, “On-chip CMOS-compatible all-optical integrator,” Nat. Commun. 1, 1–5 (2010).
[Crossref]

Regan, M. D.

E. I. Ackerman, G. Betts, W. K. Burns, J. C. Campbell, C. H. Cox, N. Duan, J. L. Prince, M. D. Regan, and H. V. Roussell, “Signal-to-noise performance of two analog photonic links using different noise reduction techniques,” in IEEE/MTT-S International Microwave Symposium (IEEE, 2007), pp. 51–54.

Roeloffzen, C. G. H.

C. G. H. Roeloffzen, L. Zhuang, C. Taddei, A. Leinse, R. G. Heideman, P. W. L. Van Dijk, M. Oldenbeuving, D. A. I. Marpaung, M. Burla, and K.-J. Boller, “Silicon nitride microwave photonic circuits,” Opt. Express 21, 22937–22961 (2013).
[Crossref]

L. Zhuang, M. Hoekman, W. P. Beeker, A. Leinse, R. G. Heideman, P. W. L. Van Dijk, and C. G. H. Roeloffzen, “Novel low-loss waveguide delay lines using Vernier ring resonators for on-chip multi-λ microwave photonic signal processors,” Laser Photon. Rev. 7, 994–1002 (2013).
[Crossref]

D. A. I. Marpaung, C. G. H. Roeloffzen, R. G. Heideman, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photon. Rev. 7, 506–538 (2013).
[Crossref]

L. Zhuang, C. G. H. Roeloffzen, A. Meijerink, M. Burla, D. A. I. Marpaung, A. Leinse, M. Hoekman, H. G. Heideman, and W. C. Van Etten, “Novel ring resonator-based integrated photonic beamformer for broadband phased-array antennas—Part II: experimental prototype,” J. Lightwave Technol. 28, 19–31 (2010).
[Crossref]

D. A. I. Marpaung, C. G. H. Roeloffzen, A. Leinse, and M. Hoekman, “A photonic chip based frequency discriminator for a high performance microwave photonic link,” Opt. Express 18, 27359–27370 (2010).
[Crossref]

A. Meijerink, C. G. H. Roeloffzen, R. Meijerink, L. Zhuang, D. A. I. Marpaung, M. J. Bentum, M. Burla, J. Verpoorte, P. Jorna, A. Hulzinga, and W. C. Van Etten, “Novel ring resonator-based integrated photonic beamformer for broadband phased-array antennas—Part I: design and performance analysis,” J. Lightwave Technol. 28, 3–18 (2010).
[Crossref]

Roussell, H. V.

E. I. Ackerman, G. Betts, W. K. Burns, J. C. Campbell, C. H. Cox, N. Duan, J. L. Prince, M. D. Regan, and H. V. Roussell, “Signal-to-noise performance of two analog photonic links using different noise reduction techniques,” in IEEE/MTT-S International Microwave Symposium (IEEE, 2007), pp. 51–54.

Sales, S.

D. A. I. Marpaung, C. G. H. Roeloffzen, R. G. Heideman, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photon. Rev. 7, 506–538 (2013).
[Crossref]

J. Sancho, J. Bourderionnet, J. Lloret, S. Combrié, I. Gasulla, S. Xavier, S. Sales, P. Colman, G. Lehoucq, D. Dolfi, J. Campany, and A. De Rossi, “Integrable microwave filter based on a photonic crystal delay line,” Nat. Commun. 3, 1075 (2012).
[Crossref]

J. Lloret, G. Morthier, F. Ramos, S. Sales, D. Van Thourhout, T. Spuesens, N. Olivier, J.-M. Fédéli, and J. Capmany, “Broadband microwave photonic fully tunable filter using a single heterogeneously integrated III–V/SOI-microdisk-based phase shifter using high-Q silicon microdisk resonators,” Opt. Express 20, 10796–10806 (2012).
[Crossref]

Sancho, J.

J. Sancho, J. Bourderionnet, J. Lloret, S. Combrié, I. Gasulla, S. Xavier, S. Sales, P. Colman, G. Lehoucq, D. Dolfi, J. Campany, and A. De Rossi, “Integrable microwave filter based on a photonic crystal delay line,” Nat. Commun. 3, 1075 (2012).
[Crossref]

Schmidt, B.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
[Crossref]

Scott, R. P.

B. B. Guan, S. S. Djordjevic, N. K. Fontaine, L. Zhou, S. Ibrahim, R. P. Scott, D. J. Geisler, Z. Ding, and S. J. B. Yoo, “CMOS compatible reconfigurable silicon photonic lattice filters using cascaded unit cells for RF-photonic processing,” IEEE J. Sel. Top. Quantum Electron. 20, 8202110 (2014).

Seeds, A.

A. Seeds, “Microwave photonics,” IEEE Trans. Microwave Theory Tech. 50, 877–887 (2002).
[Crossref]

Sekar, V.

V. Sekar, M. Armendariz, and K. Entesari, “A 1.2–1.6-GHz substrate-integrated-waveguide RF MEMS tunable filter,” IEEE Trans. Microwave Theory Tech. 59, 866–876 (2011).
[Crossref]

Shahoei, H.

Shen, H.

J. Wang, H. Shen, L. Fan, R. Wu, B. Niu, L. T. Varghese, Y. Xuan, D. E. Leaird, X. Wang, F. Gan, A. M. Weiner, and M. Qi, “Reconfigurable radio-frequency arbitrary waveforms synthesized in a silicon chip,” Nat. Commun. 6, 5957 (2015).

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weinerm, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4, 117–122 (2010).
[Crossref]

Sherwood-Droz, N.

Smit, M.

M. Smit, J. Van der Tol, and M. Hill, “Moore’s law in photonics,”Laser Photon. Rev. 6, 1–13 (2012).
[Crossref]

Song, H.

R. M. Oldenbeuving, E. J. Klein, H. L. Offerhaus, C. J. Lee, H. Song, and K.-J. Boller, “25  kHz narrow spectral bandwidth of a wavelength tunable diode laser with a short waveguide-based external cavity,” Laser Phys. Lett. 10, 015804 (2013).
[Crossref]

Soref, R.

R. Soref, “The past, present and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12, 1678–1687 (2006).
[Crossref]

Spuesens, T.

Srinivasan, S.

M. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19, 6100117 (2013).
[Crossref]

Su, Y.

Swamy, M. N. S.

K. L. Du and M. N. S. Swamy, Wireless Communication Systems: from RF Subsystems to 4G Enabling Technologies (Cambridge University, 2010).

Taddei, C.

Tang, Y.

M. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19, 6100117 (2013).
[Crossref]

Tian, W.

S. M. Kuo, B. H. Lee, and W. Tian, Real-Time Digital Signal Processing: Implementations and Applications (Wiley, 2006).

Trimberger, S.

S. Trimberger, Field-Programmable Gate Array Technology (Springer, 1994).

Van der Tol, J.

M. Smit, J. Van der Tol, and M. Hill, “Moore’s law in photonics,”Laser Photon. Rev. 6, 1–13 (2012).
[Crossref]

Van Dijk, P. W. L.

L. Zhuang, M. Hoekman, W. P. Beeker, A. Leinse, R. G. Heideman, P. W. L. Van Dijk, and C. G. H. Roeloffzen, “Novel low-loss waveguide delay lines using Vernier ring resonators for on-chip multi-λ microwave photonic signal processors,” Laser Photon. Rev. 7, 994–1002 (2013).
[Crossref]

C. G. H. Roeloffzen, L. Zhuang, C. Taddei, A. Leinse, R. G. Heideman, P. W. L. Van Dijk, M. Oldenbeuving, D. A. I. Marpaung, M. Burla, and K.-J. Boller, “Silicon nitride microwave photonic circuits,” Opt. Express 21, 22937–22961 (2013).
[Crossref]

Van Etten, W. C.

Van Thourhout, D.

Van Vaerenbergh, T.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonator,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Varghese, L. T.

J. Wang, H. Shen, L. Fan, R. Wu, B. Niu, L. T. Varghese, Y. Xuan, D. E. Leaird, X. Wang, F. Gan, A. M. Weiner, and M. Qi, “Reconfigurable radio-frequency arbitrary waveforms synthesized in a silicon chip,” Nat. Commun. 6, 5957 (2015).

Velez, A.

A. Velez, F. Aznar, M. Durán-Sindreu, J. Bonache, and F. Martin, “Tunable coplanar waveguide band-stop and band-pass filters based on open split ring resonators and open complementary split ring resonators,” IEEE Microwaves Antennas Propag. 5, 277–281 (2011).
[Crossref]

Verpoorte, J.

Vidal, B.

A. Perentos, F. Cuesta-Soto, A. Canciamilla, B. Vidal, L. Pierno, N. S. Losilla, F. Lopez-Royo, A. Melloni, and S. Iezekiel, “Using Si3N4 ring resonator notch filter for optical carrier reduction and modulation depth enhancement in radio-over-fiber links,” IEEE Photon. J. 5, 5500110 (2013).

Wang, J.

J. Wang, H. Shen, L. Fan, R. Wu, B. Niu, L. T. Varghese, Y. Xuan, D. E. Leaird, X. Wang, F. Gan, A. M. Weiner, and M. Qi, “Reconfigurable radio-frequency arbitrary waveforms synthesized in a silicon chip,” Nat. Commun. 6, 5957 (2015).

Wang, J. S.

Wang, L. X.

Wang, T.

Wang, X.

Wang, Z.

H. W. Chen, A. W. Fang, J. D. Peters, Z. Wang, J. Bovington, D. Liang, and J. E. Bowers, “Integrated microwave photonic filter on a hybrid silicon platform,” IEEE Trans. Microwave Theory Tech. 58, 3213–3219 (2010).
[Crossref]

Weiner, A. M.

J. Wang, H. Shen, L. Fan, R. Wu, B. Niu, L. T. Varghese, Y. Xuan, D. E. Leaird, X. Wang, F. Gan, A. M. Weiner, and M. Qi, “Reconfigurable radio-frequency arbitrary waveforms synthesized in a silicon chip,” Nat. Commun. 6, 5957 (2015).

Weinerm, A. M.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weinerm, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4, 117–122 (2010).
[Crossref]

Willner, A.

Wörhoff, K.

K. Wörhoff, R. G. Heideman, A. Leinse, and M. Hoekman, “TriPleX: a versatile dielectric photonic platform,” Adv. Opt. Technol. 4, 189–207 (2015).

Wu, R.

J. Wang, H. Shen, L. Fan, R. Wu, B. Niu, L. T. Varghese, Y. Xuan, D. E. Leaird, X. Wang, F. Gan, A. M. Weiner, and M. Qi, “Reconfigurable radio-frequency arbitrary waveforms synthesized in a silicon chip,” Nat. Commun. 6, 5957 (2015).

Xavier, S.

J. Sancho, J. Bourderionnet, J. Lloret, S. Combrié, I. Gasulla, S. Xavier, S. Sales, P. Colman, G. Lehoucq, D. Dolfi, J. Campany, and A. De Rossi, “Integrable microwave filter based on a photonic crystal delay line,” Nat. Commun. 3, 1075 (2012).
[Crossref]

Xiao, S.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weinerm, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4, 117–122 (2010).
[Crossref]

Xie, L.

Xu, Q.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
[Crossref]

Xuan, Y.

J. Wang, H. Shen, L. Fan, R. Wu, B. Niu, L. T. Varghese, Y. Xuan, D. E. Leaird, X. Wang, F. Gan, A. M. Weiner, and M. Qi, “Reconfigurable radio-frequency arbitrary waveforms synthesized in a silicon chip,” Nat. Commun. 6, 5957 (2015).

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weinerm, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4, 117–122 (2010).
[Crossref]

Yao, J. P.

Ye, T.

Yilmaz, O. F.

Yoo, S. J. B.

B. B. Guan, S. S. Djordjevic, N. K. Fontaine, L. Zhou, S. Ibrahim, R. P. Scott, D. J. Geisler, Z. Ding, and S. J. B. Yoo, “CMOS compatible reconfigurable silicon photonic lattice filters using cascaded unit cells for RF-photonic processing,” IEEE J. Sel. Top. Quantum Electron. 20, 8202110 (2014).

Zhang, B.

Zhang, Z.

Zhao, J. H.

C. K. Madsen and J. H. Zhao, Optical Filter Design and Analysis: a Signal Processing Approach (Wiley, 1999).

Zhao, L.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weinerm, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4, 117–122 (2010).
[Crossref]

Zhou, L.

B. B. Guan, S. S. Djordjevic, N. K. Fontaine, L. Zhou, S. Ibrahim, R. P. Scott, D. J. Geisler, Z. Ding, and S. J. B. Yoo, “CMOS compatible reconfigurable silicon photonic lattice filters using cascaded unit cells for RF-photonic processing,” IEEE J. Sel. Top. Quantum Electron. 20, 8202110 (2014).

Zhu, C.

L. Zhuang, C. Zhu, B. Corcoran, and A. J. Lowery, “Photonic high-bandwidth RF splitter with arbitrary amplitude and phase offset,” Photon. Technol. Lett. 26, 2122–2125 (2014).
[Crossref]

Zhu, N. H.

Zhuang, L.

Adv. Opt. Technol. (1)

K. Wörhoff, R. G. Heideman, A. Leinse, and M. Hoekman, “TriPleX: a versatile dielectric photonic platform,” Adv. Opt. Technol. 4, 189–207 (2015).

IEEE J. Sel. Top. Quantum Electron. (3)

B. B. Guan, S. S. Djordjevic, N. K. Fontaine, L. Zhou, S. Ibrahim, R. P. Scott, D. J. Geisler, Z. Ding, and S. J. B. Yoo, “CMOS compatible reconfigurable silicon photonic lattice filters using cascaded unit cells for RF-photonic processing,” IEEE J. Sel. Top. Quantum Electron. 20, 8202110 (2014).

R. Soref, “The past, present and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12, 1678–1687 (2006).
[Crossref]

M. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19, 6100117 (2013).
[Crossref]

IEEE Microwave Wireless Compon. Lett. (1)

J. Long, C. Li, W. Cui, J. Huangfu, and L. Ran, “A tunable microstrip band-pass filter with two independently adjustable transmission zeros,” IEEE Microwave Wireless Compon. Lett. 21, 74–76 (2011).
[Crossref]

IEEE Microwaves Antennas Propag. (1)

A. Velez, F. Aznar, M. Durán-Sindreu, J. Bonache, and F. Martin, “Tunable coplanar waveguide band-stop and band-pass filters based on open split ring resonators and open complementary split ring resonators,” IEEE Microwaves Antennas Propag. 5, 277–281 (2011).
[Crossref]

IEEE Photon. J. (1)

A. Perentos, F. Cuesta-Soto, A. Canciamilla, B. Vidal, L. Pierno, N. S. Losilla, F. Lopez-Royo, A. Melloni, and S. Iezekiel, “Using Si3N4 ring resonator notch filter for optical carrier reduction and modulation depth enhancement in radio-over-fiber links,” IEEE Photon. J. 5, 5500110 (2013).

IEEE Trans. Microwave Theory Tech. (3)

V. Sekar, M. Armendariz, and K. Entesari, “A 1.2–1.6-GHz substrate-integrated-waveguide RF MEMS tunable filter,” IEEE Trans. Microwave Theory Tech. 59, 866–876 (2011).
[Crossref]

H. W. Chen, A. W. Fang, J. D. Peters, Z. Wang, J. Bovington, D. Liang, and J. E. Bowers, “Integrated microwave photonic filter on a hybrid silicon platform,” IEEE Trans. Microwave Theory Tech. 58, 3213–3219 (2010).
[Crossref]

A. Seeds, “Microwave photonics,” IEEE Trans. Microwave Theory Tech. 50, 877–887 (2002).
[Crossref]

J. Lightwave Technol. (6)

Laser Photon. Rev. (5)

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonator,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

F. Morichetti, C. Ferrari, A. Canciamilla, and A. Melloni, “The first decade of coupled resonator optical waveguide: bringing slow light to applications,” Laser Photon. Rev. 6, 74–96 (2012).
[Crossref]

D. A. I. Marpaung, C. G. H. Roeloffzen, R. G. Heideman, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photon. Rev. 7, 506–538 (2013).
[Crossref]

L. Zhuang, M. Hoekman, W. P. Beeker, A. Leinse, R. G. Heideman, P. W. L. Van Dijk, and C. G. H. Roeloffzen, “Novel low-loss waveguide delay lines using Vernier ring resonators for on-chip multi-λ microwave photonic signal processors,” Laser Photon. Rev. 7, 994–1002 (2013).
[Crossref]

M. Smit, J. Van der Tol, and M. Hill, “Moore’s law in photonics,”Laser Photon. Rev. 6, 1–13 (2012).
[Crossref]

Laser Phys. Lett. (1)

R. M. Oldenbeuving, E. J. Klein, H. L. Offerhaus, C. J. Lee, H. Song, and K.-J. Boller, “25  kHz narrow spectral bandwidth of a wavelength tunable diode laser with a short waveguide-based external cavity,” Laser Phys. Lett. 10, 015804 (2013).
[Crossref]

Nat. Commun. (3)

J. Sancho, J. Bourderionnet, J. Lloret, S. Combrié, I. Gasulla, S. Xavier, S. Sales, P. Colman, G. Lehoucq, D. Dolfi, J. Campany, and A. De Rossi, “Integrable microwave filter based on a photonic crystal delay line,” Nat. Commun. 3, 1075 (2012).
[Crossref]

M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, and J. Azaña, “On-chip CMOS-compatible all-optical integrator,” Nat. Commun. 1, 1–5 (2010).
[Crossref]

J. Wang, H. Shen, L. Fan, R. Wu, B. Niu, L. T. Varghese, Y. Xuan, D. E. Leaird, X. Wang, F. Gan, A. M. Weiner, and M. Qi, “Reconfigurable radio-frequency arbitrary waveforms synthesized in a silicon chip,” Nat. Commun. 6, 5957 (2015).

Nat. Photonics (2)

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weinerm, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4, 117–122 (2010).
[Crossref]

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1, 319–330 (2007).
[Crossref]

Nature (1)

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
[Crossref]

Opt. Express (9)

J. Cardenas, M. A. Foster, N. Sherwood-Droz, C. B. Poitras, L. Hugo, R. Lira, B. Zhang, A. L. Gaeta, J. B. Khurgin, P. Morton, and M. Lipson, “Wide-bandwidth continuously tunable optical delay line using silicon microring resonators,” Opt. Express 18, 26525–26534 (2010).
[Crossref]

D. A. I. Marpaung, C. G. H. Roeloffzen, A. Leinse, and M. Hoekman, “A photonic chip based frequency discriminator for a high performance microwave photonic link,” Opt. Express 18, 27359–27370 (2010).
[Crossref]

W. Li, N. H. Zhu, L. X. Wang, J. S. Wang, J. G. Liu, Y. Liu, X. Q. Qi, L. Xie, W. Chen, X. Wang, and W. Han, “True-time delay line with separate carrier tuning using dual-parallel MZM and stimulated Brillouin scattering-induced slow light,” Opt. Express 19, 12312–12324 (2011).
[Crossref]

F. Liu, T. Wang, L. Qiang, T. Ye, Z. Zhang, M. Qiu, and Y. Su, “Compact optical temporal differentiator based on silicon microring resonator,” Opt. Express 16, 15880–15886 (2008).
[Crossref]

J. Lloret, G. Morthier, F. Ramos, S. Sales, D. Van Thourhout, T. Spuesens, N. Olivier, J.-M. Fédéli, and J. Capmany, “Broadband microwave photonic fully tunable filter using a single heterogeneously integrated III–V/SOI-microdisk-based phase shifter using high-Q silicon microdisk resonators,” Opt. Express 20, 10796–10806 (2012).
[Crossref]

J. S. Fandiño, J. D. Doménech, P. Muñoz, and J. Capmany, “Integrated InP frequency discriminator for phase-modulated microwave photonic links,” Opt. Express 21, 3726–3736 (2013).
[Crossref]

C. G. H. Roeloffzen, L. Zhuang, C. Taddei, A. Leinse, R. G. Heideman, P. W. L. Van Dijk, M. Oldenbeuving, D. A. I. Marpaung, M. Burla, and K.-J. Boller, “Silicon nitride microwave photonic circuits,” Opt. Express 21, 22937–22961 (2013).
[Crossref]

N. Hosseini, R. Dekker, M. Hoekman, M. Dekkers, J. Bos, A. Leinse, and R. Heideman, “Stress-optic modulator in TriPleX platform using a piezoelectric lead zirconate titanate (PZT) thin film,” Opt. Express 23, 14018–14026 (2015).
[Crossref]

D. Pérez, I. Gasulla, and J. Capmany, “Software-defined reconfigurable microwave photonics processor,” Opt. Express 23, 14640–14654 (2015).
[Crossref]

Opt. Lett. (2)

Optica (1)

Photon. Technol. Lett. (1)

L. Zhuang, C. Zhu, B. Corcoran, and A. J. Lowery, “Photonic high-bandwidth RF splitter with arbitrary amplitude and phase offset,” Photon. Technol. Lett. 26, 2122–2125 (2014).
[Crossref]

Supercond. Sci. Technol. (1)

M. R. Rafique, T. Ohki, B. Banik, H. Engseth, P. Linner, and A. Herr, “Miniaturized superconducting microwave filters,” Supercond. Sci. Technol. 21, 075004 (2008).
[Crossref]

Other (10)

B. A. Fette, ed., Cognitive Radio Technology (Elsevier, 2009).

C. H. Cox, Analog Optical Links (Cambridge University, 2004).

E. I. Ackerman, G. Betts, W. K. Burns, J. C. Campbell, C. H. Cox, N. Duan, J. L. Prince, M. D. Regan, and H. V. Roussell, “Signal-to-noise performance of two analog photonic links using different noise reduction techniques,” in IEEE/MTT-S International Microwave Symposium (IEEE, 2007), pp. 51–54.

S. Iezekiel, ed., Microwave Photonics: Device and Applications (Wiley, 2009).

K. L. Du and M. N. S. Swamy, Wireless Communication Systems: from RF Subsystems to 4G Enabling Technologies (Cambridge University, 2010).

M. Golio, ed., RF and Microwave Applications and Systems (CRC Press, 2008).

S. L. Dexheimer, ed., Terahertz Spectroscopy: Principles and Applications (CRC Press, 2008).

S. M. Kuo, B. H. Lee, and W. Tian, Real-Time Digital Signal Processing: Implementations and Applications (Wiley, 2006).

S. Trimberger, Field-Programmable Gate Array Technology (Springer, 1994).

C. K. Madsen and J. H. Zhao, Optical Filter Design and Analysis: a Signal Processing Approach (Wiley, 1999).

Supplementary Material (1)

NameDescription
» Supplement 1: PDF (1019 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Schematic of a general M×N waveguide mesh network with MZ couplers being the intercell pathways. (b)–(d) Examples of implementing various circuit topologies in such mesh networks.

Fig. 2.
Fig. 2.

(a) Schematic and a photo of the demonstrator chip fabricated using a commercial Si3N4 waveguide technology (TriPleX). (b) Four different circuit configurations created by programming the phase-tuning elements in the chip and the measurements of their corresponding frequency response shapes.

Fig. 3.
Fig. 3.

Schematic of the microwave photonic system and an illustration of the working principle to implement an RF filter (CW, continuous wave; LSB/USB, lower/upper sideband; OC, optical carrier; PD, photodetection).

Fig. 4.
Fig. 4.

(a, b) Measured band-stop and bandpass filter responses and fitted curves of the theoretical filter transfer function. (c, d) Demonstration of the continuous tuning of the filter center frequency.

Fig. 5.
Fig. 5.

(a), (b) RF filters with different widths and ripples by controlling only ϕ1 and ϕ2. (c) Flat-top filters with different bandwidths by controlling ϕ1, ϕ2, κ1, and κ2. (d) A flat-top filter with a passband–stopband extinction of 25 dB by setting κ1=κ2.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

c11=c22=jexp(jϕA)·sin(ϕD)·exp(j2πfΔτ)(bar port),
c12=c21=jexp(jϕA)·cos(ϕD)·exp(j2πfΔτ)(cross port),

Metrics