Abstract

The development of a thresholdless laser operating above room temperature (RT) is key for the future replacement of electronics with photonic integrated circuits, enabling an increase of several orders of magnitude in computing speeds. Recently, thresholdless lasing characteristics at low temperature (4 K) have been demonstrated. However, for practical applications, RT laser emission becomes necessary. Here we report experimental evidence that is compatible with a laser based on InAsSb quantum dots embedded in a photonic-crystal microcavity that exhibits an ultralow-power threshold (860 nW) and high efficiency (β=0.85), thus operating in the near-thresholdless regime at RT in the 1.3 μm spectral window. The results open up a wide range of opportunities for RT applications of ultralow threshold lasers, such as integrated photonic circuitry or high sensitivity biosensors.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Room temperature continuous wave operation in a photonic crystal microcavity laser with a single layer of InAs/InP self-assembled quantum wires

Luis Javier Martínez, Benito Alén, Ivan Prieto, David Fuster, Luisa González, Yolanda González, María Luisa Dotor, and Pablo Aitor Postigo
Opt. Express 17(17) 14993-15000 (2009)

Room-temperature InAs/InP Quantum Dots laser operation based on heterogeneous “2.5 D” Photonic Crystal

B. Ben Bakir, Ch. Seassal, X. Letartre, Ph. Regreny, M. Gendry, P. Viktorovitch, M. Zussy, L. Di Cioccio, and J. M. Fedeli
Opt. Express 14(20) 9269-9276 (2006)

Room temperature continuous-wave lasing in photonic crystal nanocavity

Masahiro Nomura, Satoshi Iwamoto, Katsuyuki Watanabe, Naoto Kumagai, Yoshiaki Nakata, Satomi Ishida, and Yasuhiko Arakawa
Opt. Express 14(13) 6308-6315 (2006)

References

  • View by:
  • |
  • |
  • |

  1. O. Painter, J. Vučković, A. Scherer, “Defect modes of a two–dimensional photonic crystal in an optically thin dielectric slab,” J. Opt. Soc. Am. B 16, 275–285 (1999).
    [Crossref]
  2. S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, S. Toru, T. Sato, Y. Kawaguchi, M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13  fJ of energy consumed per bit transmitted,” Nat. Photonics 4, 648–654 (2010).
    [Crossref]
  3. S. Noda, “Seeking the ultimate nanolaser,” Science 314, 260–261 (2006).
    [Crossref]
  4. M. Asada, Y. Miyamoto, Y. Suematsu, “Gain and the threshold of three-dimensional quantum-box lasers,” IEEE J. Quantum Electron. 22, 1915–1921 (1986).
    [Crossref]
  5. Y. Arakawa, H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett. 40, 939–941 (1982).
    [Crossref]
  6. G. Björk, A. Karlsson, Y. Yamamoto, “Definition of a laser threshold,” Phys. Rev. A 50, 1675–1680 (1994).
    [Crossref]
  7. F. D. Martini, G. R. Jacobovitz, “Anomalous spontaneous stimulated decay phase transition and zero-threshold laser action in a microscopic cavity,” Phys. Rev. Lett. 60, 1711–1714 (1988).
    [Crossref]
  8. I. Protsenko, P. Domokos, V. Lefèvre-Seguin, J. Hare, J. M. Raimond, L. Davidovich, “Quantum theory of a thresholdless laser,” Phys. Rev. A 59, 1667–1682 (1999).
    [Crossref]
  9. D. A. B. Miller, “Are optical transistors the logical next step?” Nat. Photonics 4, 3–5 (2010).
    [Crossref]
  10. G. Shambat, S. R. Kothapalli, J. Provine, T. Sarmiento, J. Harris, S. S. Gambhir, J. Vučković, “Single-cell photonic nanocavity probes,” Nano Lett. 13, 4999–5005 (2013).
  11. T. Yoshie, O. B. Shchekin, H. Chen, D. G. Deppe, A. Scherer, “Quantum dot photonic crystal lasers,” Electron. Lett. 38, 967–968 (2002).
    [Crossref]
  12. S. Strauf, K. Hennessy, M. T. Rakher, Y. S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96, 127404 (2006).
    [Crossref]
  13. M. Nomura, S. Iwamoto, K. Watanabe, N. Kumagai, Y. Nakata, S. Ishida, Y. Arakawa, “Room temperature continuous-wave lasing in photonic crystal nanocavity,” Opt. Express 14, 6308–6315 (2006).
    [Crossref]
  14. Y. Gong, B. Ellis, G. Shambat, T. Sarmiento, J. S. Harris, J. Vučković, “Nanobeam photonic crystal cavity quantum dot laser,” Opt. Express 18, 8781–8789 (2010).
    [Crossref]
  15. M. Nomura, Y. Ota, N. Kumagai, S. Iwamoto, Y. Arakawa, “Zero-cell photonic crystal nanocavity laser with quantum dot gain,” Appl. Phys. Lett. 97, 191108 (2010).
    [Crossref]
  16. M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, Y. Arakawa, “Laser oscillation in a strongly coupled single–quantum–dot–nanocavity system,” Nat. Phys. 6, 279–283 (2010).
    [Crossref]
  17. M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482, 204–207 (2012).
    [Crossref]
  18. S. H. Kim, G. H. Kim, S. K. Kim, H. G. Park, Y. H. Lee, S. B. Kim, “Characteristics of a stick waveguide resonator in a two-dimensional photonic crystal slab,” J. Appl. Phys. 95, 411–416 (2004).
    [Crossref]
  19. I. Prieto, L. E. Muñoz-Camúñez, A. G. Taboada, C. Robles, J. M. Ripalda, P. A. Postigo, “Fabrication of high quality factor GaAs/InAsSb photonic crystal microcavities by inductively coupled plasma etching and fast wet etching,” J. Vac. Sci. Technol. B 32, 011204 (2013).
  20. M. Geller, A. Marent, T. Nowozin, D. Bimberg, N. Akçay, N. Öncan, “A write time of 6  ns for quantum dot based memory structures,” Appl. Phys. Lett. 92, 092108 (2008).
    [Crossref]
  21. A. G. Taboada, A. M. Sánchez, A. M. Beltrán, M. Bozkurt, D. Alonso-Álvarez, B. Alén, A. Rivera, J. M. Ripalda, J. M. Llorens, J. Martín-Sánchez, Y. González, J. M. Ulloa, J. M. García, S. I. Molina, P. M. Koenraad, “Structural and optical changes induced by incorporation of antimony into InAs/GaAs(001) quantum dots,” Phys. Rev. B 82, 235316 (2010).
  22. J. M. Ripalda, D. Alonso-Álvarez, B. Alén, A. G. Taboada, J. M. García, Y. González, L. González, “Enhancement of the room temperature luminescence of InAs quantum dots by GaSb capping,” Appl. Phys. Lett. 91, 012111 (2007).
    [Crossref]
  23. W. Lei, M. Offer, A. Lorke, C. Notthoff, C. Meier, O. Wibbelhoff, A. D. Wieck, “Probing the band structure of InAs–GaAs quantum dots by capacitance–voltage and photoluminescence spectroscopy,” Appl. Phys. Lett. 92, 193111 (2008).
    [Crossref]
  24. A. G. Taboada, J. M. Llorens, D. Alonso-Álvarez, B. Alén, A. Rivera, Y. González, J. M. Ripalda, “Effect of Sb incorporation on the electronic structure of InAs quantum dots,” Phys. Rev. B 88, 085308 (2013).
  25. Y. T. Dai, J. C. Fan, Y. F. Chen, R. M. Lin, S. C. Lee, H. H. Lin, “Temperature dependence of photoluminescence spectra in InAs/GaAs quantum dot superlattices with large thicknesses,” J. Appl. Phys. 82, 4489–4492 (1997).
    [Crossref]
  26. S. Sanguinetti, M. Henini, M. G. Alessi, M. Capizzi, P. Frigeri, S. Franchi, “Carrier thermal escape and retrapping in self-assembled quantum dots,” Phys. Rev. B 60, 8276–8283 (1999).
  27. J. Canet-Ferrer, I. Prieto, G. Muñoz-Matutano, L. J. Martínez, L. E. Muñoz-Camúñez, J. M. Llorens, D. Fuster, B. Alén, Y. González, L. González, P. A. Postigo, J. P. Martínez-Pastor, “Excitation power dependence of the Purcell effect in photonic crystal microcavity lasers with quantum wires,” Appl. Phys. Lett. 102, 201105 (2013).
    [Crossref]
  28. K. A. Atlasov, M. Calic, K. F. Karlsson, P. Gallo, A. Rudra, B. Dwir, E. Kapon, “Photonic-crystal microcavity laser with site–controlled quantum-wire active medium,” Opt. Express 17, 18178–18183 (2009).
    [Crossref]
  29. G. Björk, A. Karlsson, Y. Yamamoto, “On the linewidth of microcavity lasers,” Appl. Phys. Lett. 60, 304–306 (1992).
    [Crossref]
  30. J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81, 1110–1113 (1998).
    [Crossref]
  31. J. Canet-Ferrer, L. J. Martínez, I. Prieto, B. Alén, G. Muñoz-Matutano, D. Fuster, Y. González, M. L. Dotor, L. González, P. A. Postigo, J. P. Martínez-Pastor, “Purcell effect in photonic crystal microcavities embedding InAs/InP quantum wires,” Opt. Express 20, 7901–7914 (2012).
    [Crossref]
  32. H. Y. Ryu, M. Notomi, “Enhancement of spontaneous emission from the resonant modes of a photonic crystal slab single–defect cavity,” Opt. Lett. 28, 2390–2392 (2003).
    [Crossref]
  33. M. Bayer, A. Forchel, “Temperature dependence of the exciton homogeneous linewidth in In0.60Ga0.40As/GaAs self–assembled quantum dots,” Phys. Rev. B 65, 041308 (2002).
  34. W. W. Chow, F. Jahnke, C. Gies, “Emission properties of nanolasers during the transition to lasing,” Light Sci. Appl. 3, e201 (2014).
  35. J. S. T. Smalley, Y. Fainman, “Temperature dependence of the spontaneous emission factor in subwavelength semiconductor lasers,” IEEE J. Quantum Electron. 50, 175–185 (2014).
    [Crossref]
  36. J. Wiersig, C. Gies, F. Jahnke, M. Assmann, T. Berstermann, M. Bayer, C. Kistner, S. Reitzenstein, C. Schneider, S. Höfling, A. Forchel, C. Kruse, J. Kalden, D. Hommel, “Direct observation of correlations between individual photon emission events of a microcavity laser,” Nature 460, 245–249 (2009).
    [Crossref]
  37. D. Rivas, G. Muñoz-Matutano, J. Canet-Ferrer, R. García-Calzada, G. Trevisi, L. Seravalli, P. Frigeri, J. P. Martínez-Pastor, “Two-color single-photon emission from InAs quantum dots: toward logic information management using quantum light,” Nano Lett. 14, 456–463 (2014).
  38. D. Elvira, X. Hachair, V. B. Verma, R. Braive, G. Beaudoin, I. Robert-Philip, I. Sagnes, B. Baek, S. W. Nam, E. A. Dauler, I. Abram, M. J. Stevens, A. Beveratos, “Higher–order photon correlations in pulsed photonic crystal nanolasers,” Phys. Rev. A 84, 061802 (2011).
    [Crossref]
  39. R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photonics 3, 696–705 (2009).
    [Crossref]
  40. B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, J. Vučković, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photonics 5, 297–300 (2011).
    [Crossref]

2014 (3)

W. W. Chow, F. Jahnke, C. Gies, “Emission properties of nanolasers during the transition to lasing,” Light Sci. Appl. 3, e201 (2014).

J. S. T. Smalley, Y. Fainman, “Temperature dependence of the spontaneous emission factor in subwavelength semiconductor lasers,” IEEE J. Quantum Electron. 50, 175–185 (2014).
[Crossref]

D. Rivas, G. Muñoz-Matutano, J. Canet-Ferrer, R. García-Calzada, G. Trevisi, L. Seravalli, P. Frigeri, J. P. Martínez-Pastor, “Two-color single-photon emission from InAs quantum dots: toward logic information management using quantum light,” Nano Lett. 14, 456–463 (2014).

2013 (4)

J. Canet-Ferrer, I. Prieto, G. Muñoz-Matutano, L. J. Martínez, L. E. Muñoz-Camúñez, J. M. Llorens, D. Fuster, B. Alén, Y. González, L. González, P. A. Postigo, J. P. Martínez-Pastor, “Excitation power dependence of the Purcell effect in photonic crystal microcavity lasers with quantum wires,” Appl. Phys. Lett. 102, 201105 (2013).
[Crossref]

I. Prieto, L. E. Muñoz-Camúñez, A. G. Taboada, C. Robles, J. M. Ripalda, P. A. Postigo, “Fabrication of high quality factor GaAs/InAsSb photonic crystal microcavities by inductively coupled plasma etching and fast wet etching,” J. Vac. Sci. Technol. B 32, 011204 (2013).

A. G. Taboada, J. M. Llorens, D. Alonso-Álvarez, B. Alén, A. Rivera, Y. González, J. M. Ripalda, “Effect of Sb incorporation on the electronic structure of InAs quantum dots,” Phys. Rev. B 88, 085308 (2013).

G. Shambat, S. R. Kothapalli, J. Provine, T. Sarmiento, J. Harris, S. S. Gambhir, J. Vučković, “Single-cell photonic nanocavity probes,” Nano Lett. 13, 4999–5005 (2013).

2012 (2)

2011 (2)

D. Elvira, X. Hachair, V. B. Verma, R. Braive, G. Beaudoin, I. Robert-Philip, I. Sagnes, B. Baek, S. W. Nam, E. A. Dauler, I. Abram, M. J. Stevens, A. Beveratos, “Higher–order photon correlations in pulsed photonic crystal nanolasers,” Phys. Rev. A 84, 061802 (2011).
[Crossref]

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, J. Vučković, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photonics 5, 297–300 (2011).
[Crossref]

2010 (6)

D. A. B. Miller, “Are optical transistors the logical next step?” Nat. Photonics 4, 3–5 (2010).
[Crossref]

A. G. Taboada, A. M. Sánchez, A. M. Beltrán, M. Bozkurt, D. Alonso-Álvarez, B. Alén, A. Rivera, J. M. Ripalda, J. M. Llorens, J. Martín-Sánchez, Y. González, J. M. Ulloa, J. M. García, S. I. Molina, P. M. Koenraad, “Structural and optical changes induced by incorporation of antimony into InAs/GaAs(001) quantum dots,” Phys. Rev. B 82, 235316 (2010).

Y. Gong, B. Ellis, G. Shambat, T. Sarmiento, J. S. Harris, J. Vučković, “Nanobeam photonic crystal cavity quantum dot laser,” Opt. Express 18, 8781–8789 (2010).
[Crossref]

M. Nomura, Y. Ota, N. Kumagai, S. Iwamoto, Y. Arakawa, “Zero-cell photonic crystal nanocavity laser with quantum dot gain,” Appl. Phys. Lett. 97, 191108 (2010).
[Crossref]

M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, Y. Arakawa, “Laser oscillation in a strongly coupled single–quantum–dot–nanocavity system,” Nat. Phys. 6, 279–283 (2010).
[Crossref]

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, S. Toru, T. Sato, Y. Kawaguchi, M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13  fJ of energy consumed per bit transmitted,” Nat. Photonics 4, 648–654 (2010).
[Crossref]

2009 (3)

J. Wiersig, C. Gies, F. Jahnke, M. Assmann, T. Berstermann, M. Bayer, C. Kistner, S. Reitzenstein, C. Schneider, S. Höfling, A. Forchel, C. Kruse, J. Kalden, D. Hommel, “Direct observation of correlations between individual photon emission events of a microcavity laser,” Nature 460, 245–249 (2009).
[Crossref]

K. A. Atlasov, M. Calic, K. F. Karlsson, P. Gallo, A. Rudra, B. Dwir, E. Kapon, “Photonic-crystal microcavity laser with site–controlled quantum-wire active medium,” Opt. Express 17, 18178–18183 (2009).
[Crossref]

R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photonics 3, 696–705 (2009).
[Crossref]

2008 (2)

M. Geller, A. Marent, T. Nowozin, D. Bimberg, N. Akçay, N. Öncan, “A write time of 6  ns for quantum dot based memory structures,” Appl. Phys. Lett. 92, 092108 (2008).
[Crossref]

W. Lei, M. Offer, A. Lorke, C. Notthoff, C. Meier, O. Wibbelhoff, A. D. Wieck, “Probing the band structure of InAs–GaAs quantum dots by capacitance–voltage and photoluminescence spectroscopy,” Appl. Phys. Lett. 92, 193111 (2008).
[Crossref]

2007 (1)

J. M. Ripalda, D. Alonso-Álvarez, B. Alén, A. G. Taboada, J. M. García, Y. González, L. González, “Enhancement of the room temperature luminescence of InAs quantum dots by GaSb capping,” Appl. Phys. Lett. 91, 012111 (2007).
[Crossref]

2006 (3)

S. Noda, “Seeking the ultimate nanolaser,” Science 314, 260–261 (2006).
[Crossref]

S. Strauf, K. Hennessy, M. T. Rakher, Y. S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96, 127404 (2006).
[Crossref]

M. Nomura, S. Iwamoto, K. Watanabe, N. Kumagai, Y. Nakata, S. Ishida, Y. Arakawa, “Room temperature continuous-wave lasing in photonic crystal nanocavity,” Opt. Express 14, 6308–6315 (2006).
[Crossref]

2004 (1)

S. H. Kim, G. H. Kim, S. K. Kim, H. G. Park, Y. H. Lee, S. B. Kim, “Characteristics of a stick waveguide resonator in a two-dimensional photonic crystal slab,” J. Appl. Phys. 95, 411–416 (2004).
[Crossref]

2003 (1)

2002 (2)

M. Bayer, A. Forchel, “Temperature dependence of the exciton homogeneous linewidth in In0.60Ga0.40As/GaAs self–assembled quantum dots,” Phys. Rev. B 65, 041308 (2002).

T. Yoshie, O. B. Shchekin, H. Chen, D. G. Deppe, A. Scherer, “Quantum dot photonic crystal lasers,” Electron. Lett. 38, 967–968 (2002).
[Crossref]

1999 (3)

O. Painter, J. Vučković, A. Scherer, “Defect modes of a two–dimensional photonic crystal in an optically thin dielectric slab,” J. Opt. Soc. Am. B 16, 275–285 (1999).
[Crossref]

I. Protsenko, P. Domokos, V. Lefèvre-Seguin, J. Hare, J. M. Raimond, L. Davidovich, “Quantum theory of a thresholdless laser,” Phys. Rev. A 59, 1667–1682 (1999).
[Crossref]

S. Sanguinetti, M. Henini, M. G. Alessi, M. Capizzi, P. Frigeri, S. Franchi, “Carrier thermal escape and retrapping in self-assembled quantum dots,” Phys. Rev. B 60, 8276–8283 (1999).

1998 (1)

J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81, 1110–1113 (1998).
[Crossref]

1997 (1)

Y. T. Dai, J. C. Fan, Y. F. Chen, R. M. Lin, S. C. Lee, H. H. Lin, “Temperature dependence of photoluminescence spectra in InAs/GaAs quantum dot superlattices with large thicknesses,” J. Appl. Phys. 82, 4489–4492 (1997).
[Crossref]

1994 (1)

G. Björk, A. Karlsson, Y. Yamamoto, “Definition of a laser threshold,” Phys. Rev. A 50, 1675–1680 (1994).
[Crossref]

1992 (1)

G. Björk, A. Karlsson, Y. Yamamoto, “On the linewidth of microcavity lasers,” Appl. Phys. Lett. 60, 304–306 (1992).
[Crossref]

1988 (1)

F. D. Martini, G. R. Jacobovitz, “Anomalous spontaneous stimulated decay phase transition and zero-threshold laser action in a microscopic cavity,” Phys. Rev. Lett. 60, 1711–1714 (1988).
[Crossref]

1986 (1)

M. Asada, Y. Miyamoto, Y. Suematsu, “Gain and the threshold of three-dimensional quantum-box lasers,” IEEE J. Quantum Electron. 22, 1915–1921 (1986).
[Crossref]

1982 (1)

Y. Arakawa, H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett. 40, 939–941 (1982).
[Crossref]

Abram, I.

D. Elvira, X. Hachair, V. B. Verma, R. Braive, G. Beaudoin, I. Robert-Philip, I. Sagnes, B. Baek, S. W. Nam, E. A. Dauler, I. Abram, M. J. Stevens, A. Beveratos, “Higher–order photon correlations in pulsed photonic crystal nanolasers,” Phys. Rev. A 84, 061802 (2011).
[Crossref]

Akçay, N.

M. Geller, A. Marent, T. Nowozin, D. Bimberg, N. Akçay, N. Öncan, “A write time of 6  ns for quantum dot based memory structures,” Appl. Phys. Lett. 92, 092108 (2008).
[Crossref]

Alén, B.

A. G. Taboada, J. M. Llorens, D. Alonso-Álvarez, B. Alén, A. Rivera, Y. González, J. M. Ripalda, “Effect of Sb incorporation on the electronic structure of InAs quantum dots,” Phys. Rev. B 88, 085308 (2013).

J. Canet-Ferrer, I. Prieto, G. Muñoz-Matutano, L. J. Martínez, L. E. Muñoz-Camúñez, J. M. Llorens, D. Fuster, B. Alén, Y. González, L. González, P. A. Postigo, J. P. Martínez-Pastor, “Excitation power dependence of the Purcell effect in photonic crystal microcavity lasers with quantum wires,” Appl. Phys. Lett. 102, 201105 (2013).
[Crossref]

J. Canet-Ferrer, L. J. Martínez, I. Prieto, B. Alén, G. Muñoz-Matutano, D. Fuster, Y. González, M. L. Dotor, L. González, P. A. Postigo, J. P. Martínez-Pastor, “Purcell effect in photonic crystal microcavities embedding InAs/InP quantum wires,” Opt. Express 20, 7901–7914 (2012).
[Crossref]

A. G. Taboada, A. M. Sánchez, A. M. Beltrán, M. Bozkurt, D. Alonso-Álvarez, B. Alén, A. Rivera, J. M. Ripalda, J. M. Llorens, J. Martín-Sánchez, Y. González, J. M. Ulloa, J. M. García, S. I. Molina, P. M. Koenraad, “Structural and optical changes induced by incorporation of antimony into InAs/GaAs(001) quantum dots,” Phys. Rev. B 82, 235316 (2010).

J. M. Ripalda, D. Alonso-Álvarez, B. Alén, A. G. Taboada, J. M. García, Y. González, L. González, “Enhancement of the room temperature luminescence of InAs quantum dots by GaSb capping,” Appl. Phys. Lett. 91, 012111 (2007).
[Crossref]

Alessi, M. G.

S. Sanguinetti, M. Henini, M. G. Alessi, M. Capizzi, P. Frigeri, S. Franchi, “Carrier thermal escape and retrapping in self-assembled quantum dots,” Phys. Rev. B 60, 8276–8283 (1999).

Alonso-Álvarez, D.

A. G. Taboada, J. M. Llorens, D. Alonso-Álvarez, B. Alén, A. Rivera, Y. González, J. M. Ripalda, “Effect of Sb incorporation on the electronic structure of InAs quantum dots,” Phys. Rev. B 88, 085308 (2013).

A. G. Taboada, A. M. Sánchez, A. M. Beltrán, M. Bozkurt, D. Alonso-Álvarez, B. Alén, A. Rivera, J. M. Ripalda, J. M. Llorens, J. Martín-Sánchez, Y. González, J. M. Ulloa, J. M. García, S. I. Molina, P. M. Koenraad, “Structural and optical changes induced by incorporation of antimony into InAs/GaAs(001) quantum dots,” Phys. Rev. B 82, 235316 (2010).

J. M. Ripalda, D. Alonso-Álvarez, B. Alén, A. G. Taboada, J. M. García, Y. González, L. González, “Enhancement of the room temperature luminescence of InAs quantum dots by GaSb capping,” Appl. Phys. Lett. 91, 012111 (2007).
[Crossref]

Andreani, L. C.

S. Strauf, K. Hennessy, M. T. Rakher, Y. S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96, 127404 (2006).
[Crossref]

Arakawa, Y.

M. Nomura, Y. Ota, N. Kumagai, S. Iwamoto, Y. Arakawa, “Zero-cell photonic crystal nanocavity laser with quantum dot gain,” Appl. Phys. Lett. 97, 191108 (2010).
[Crossref]

M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, Y. Arakawa, “Laser oscillation in a strongly coupled single–quantum–dot–nanocavity system,” Nat. Phys. 6, 279–283 (2010).
[Crossref]

M. Nomura, S. Iwamoto, K. Watanabe, N. Kumagai, Y. Nakata, S. Ishida, Y. Arakawa, “Room temperature continuous-wave lasing in photonic crystal nanocavity,” Opt. Express 14, 6308–6315 (2006).
[Crossref]

Y. Arakawa, H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett. 40, 939–941 (1982).
[Crossref]

Asada, M.

M. Asada, Y. Miyamoto, Y. Suematsu, “Gain and the threshold of three-dimensional quantum-box lasers,” IEEE J. Quantum Electron. 22, 1915–1921 (1986).
[Crossref]

Assmann, M.

J. Wiersig, C. Gies, F. Jahnke, M. Assmann, T. Berstermann, M. Bayer, C. Kistner, S. Reitzenstein, C. Schneider, S. Höfling, A. Forchel, C. Kruse, J. Kalden, D. Hommel, “Direct observation of correlations between individual photon emission events of a microcavity laser,” Nature 460, 245–249 (2009).
[Crossref]

Atlasov, K. A.

Badolato, A.

S. Strauf, K. Hennessy, M. T. Rakher, Y. S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96, 127404 (2006).
[Crossref]

Baek, B.

D. Elvira, X. Hachair, V. B. Verma, R. Braive, G. Beaudoin, I. Robert-Philip, I. Sagnes, B. Baek, S. W. Nam, E. A. Dauler, I. Abram, M. J. Stevens, A. Beveratos, “Higher–order photon correlations in pulsed photonic crystal nanolasers,” Phys. Rev. A 84, 061802 (2011).
[Crossref]

Bayer, M.

J. Wiersig, C. Gies, F. Jahnke, M. Assmann, T. Berstermann, M. Bayer, C. Kistner, S. Reitzenstein, C. Schneider, S. Höfling, A. Forchel, C. Kruse, J. Kalden, D. Hommel, “Direct observation of correlations between individual photon emission events of a microcavity laser,” Nature 460, 245–249 (2009).
[Crossref]

M. Bayer, A. Forchel, “Temperature dependence of the exciton homogeneous linewidth in In0.60Ga0.40As/GaAs self–assembled quantum dots,” Phys. Rev. B 65, 041308 (2002).

Beaudoin, G.

D. Elvira, X. Hachair, V. B. Verma, R. Braive, G. Beaudoin, I. Robert-Philip, I. Sagnes, B. Baek, S. W. Nam, E. A. Dauler, I. Abram, M. J. Stevens, A. Beveratos, “Higher–order photon correlations in pulsed photonic crystal nanolasers,” Phys. Rev. A 84, 061802 (2011).
[Crossref]

Beltrán, A. M.

A. G. Taboada, A. M. Sánchez, A. M. Beltrán, M. Bozkurt, D. Alonso-Álvarez, B. Alén, A. Rivera, J. M. Ripalda, J. M. Llorens, J. Martín-Sánchez, Y. González, J. M. Ulloa, J. M. García, S. I. Molina, P. M. Koenraad, “Structural and optical changes induced by incorporation of antimony into InAs/GaAs(001) quantum dots,” Phys. Rev. B 82, 235316 (2010).

Berstermann, T.

J. Wiersig, C. Gies, F. Jahnke, M. Assmann, T. Berstermann, M. Bayer, C. Kistner, S. Reitzenstein, C. Schneider, S. Höfling, A. Forchel, C. Kruse, J. Kalden, D. Hommel, “Direct observation of correlations between individual photon emission events of a microcavity laser,” Nature 460, 245–249 (2009).
[Crossref]

Beveratos, A.

D. Elvira, X. Hachair, V. B. Verma, R. Braive, G. Beaudoin, I. Robert-Philip, I. Sagnes, B. Baek, S. W. Nam, E. A. Dauler, I. Abram, M. J. Stevens, A. Beveratos, “Higher–order photon correlations in pulsed photonic crystal nanolasers,” Phys. Rev. A 84, 061802 (2011).
[Crossref]

Bimberg, D.

M. Geller, A. Marent, T. Nowozin, D. Bimberg, N. Akçay, N. Öncan, “A write time of 6  ns for quantum dot based memory structures,” Appl. Phys. Lett. 92, 092108 (2008).
[Crossref]

Björk, G.

G. Björk, A. Karlsson, Y. Yamamoto, “Definition of a laser threshold,” Phys. Rev. A 50, 1675–1680 (1994).
[Crossref]

G. Björk, A. Karlsson, Y. Yamamoto, “On the linewidth of microcavity lasers,” Appl. Phys. Lett. 60, 304–306 (1992).
[Crossref]

Bouwmeester, D.

S. Strauf, K. Hennessy, M. T. Rakher, Y. S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96, 127404 (2006).
[Crossref]

Bozkurt, M.

A. G. Taboada, A. M. Sánchez, A. M. Beltrán, M. Bozkurt, D. Alonso-Álvarez, B. Alén, A. Rivera, J. M. Ripalda, J. M. Llorens, J. Martín-Sánchez, Y. González, J. M. Ulloa, J. M. García, S. I. Molina, P. M. Koenraad, “Structural and optical changes induced by incorporation of antimony into InAs/GaAs(001) quantum dots,” Phys. Rev. B 82, 235316 (2010).

Braive, R.

D. Elvira, X. Hachair, V. B. Verma, R. Braive, G. Beaudoin, I. Robert-Philip, I. Sagnes, B. Baek, S. W. Nam, E. A. Dauler, I. Abram, M. J. Stevens, A. Beveratos, “Higher–order photon correlations in pulsed photonic crystal nanolasers,” Phys. Rev. A 84, 061802 (2011).
[Crossref]

Calic, M.

Canet-Ferrer, J.

D. Rivas, G. Muñoz-Matutano, J. Canet-Ferrer, R. García-Calzada, G. Trevisi, L. Seravalli, P. Frigeri, J. P. Martínez-Pastor, “Two-color single-photon emission from InAs quantum dots: toward logic information management using quantum light,” Nano Lett. 14, 456–463 (2014).

J. Canet-Ferrer, I. Prieto, G. Muñoz-Matutano, L. J. Martínez, L. E. Muñoz-Camúñez, J. M. Llorens, D. Fuster, B. Alén, Y. González, L. González, P. A. Postigo, J. P. Martínez-Pastor, “Excitation power dependence of the Purcell effect in photonic crystal microcavity lasers with quantum wires,” Appl. Phys. Lett. 102, 201105 (2013).
[Crossref]

J. Canet-Ferrer, L. J. Martínez, I. Prieto, B. Alén, G. Muñoz-Matutano, D. Fuster, Y. González, M. L. Dotor, L. González, P. A. Postigo, J. P. Martínez-Pastor, “Purcell effect in photonic crystal microcavities embedding InAs/InP quantum wires,” Opt. Express 20, 7901–7914 (2012).
[Crossref]

Capizzi, M.

S. Sanguinetti, M. Henini, M. G. Alessi, M. Capizzi, P. Frigeri, S. Franchi, “Carrier thermal escape and retrapping in self-assembled quantum dots,” Phys. Rev. B 60, 8276–8283 (1999).

Chen, H.

T. Yoshie, O. B. Shchekin, H. Chen, D. G. Deppe, A. Scherer, “Quantum dot photonic crystal lasers,” Electron. Lett. 38, 967–968 (2002).
[Crossref]

Chen, Y. F.

Y. T. Dai, J. C. Fan, Y. F. Chen, R. M. Lin, S. C. Lee, H. H. Lin, “Temperature dependence of photoluminescence spectra in InAs/GaAs quantum dot superlattices with large thicknesses,” J. Appl. Phys. 82, 4489–4492 (1997).
[Crossref]

Choi, Y. S.

S. Strauf, K. Hennessy, M. T. Rakher, Y. S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96, 127404 (2006).
[Crossref]

Chow, W. W.

W. W. Chow, F. Jahnke, C. Gies, “Emission properties of nanolasers during the transition to lasing,” Light Sci. Appl. 3, e201 (2014).

Costard, E.

J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81, 1110–1113 (1998).
[Crossref]

Dai, Y. T.

Y. T. Dai, J. C. Fan, Y. F. Chen, R. M. Lin, S. C. Lee, H. H. Lin, “Temperature dependence of photoluminescence spectra in InAs/GaAs quantum dot superlattices with large thicknesses,” J. Appl. Phys. 82, 4489–4492 (1997).
[Crossref]

Dauler, E. A.

D. Elvira, X. Hachair, V. B. Verma, R. Braive, G. Beaudoin, I. Robert-Philip, I. Sagnes, B. Baek, S. W. Nam, E. A. Dauler, I. Abram, M. J. Stevens, A. Beveratos, “Higher–order photon correlations in pulsed photonic crystal nanolasers,” Phys. Rev. A 84, 061802 (2011).
[Crossref]

Davidovich, L.

I. Protsenko, P. Domokos, V. Lefèvre-Seguin, J. Hare, J. M. Raimond, L. Davidovich, “Quantum theory of a thresholdless laser,” Phys. Rev. A 59, 1667–1682 (1999).
[Crossref]

Deppe, D. G.

T. Yoshie, O. B. Shchekin, H. Chen, D. G. Deppe, A. Scherer, “Quantum dot photonic crystal lasers,” Electron. Lett. 38, 967–968 (2002).
[Crossref]

Domokos, P.

I. Protsenko, P. Domokos, V. Lefèvre-Seguin, J. Hare, J. M. Raimond, L. Davidovich, “Quantum theory of a thresholdless laser,” Phys. Rev. A 59, 1667–1682 (1999).
[Crossref]

Dotor, M. L.

Dwir, B.

Ellis, B.

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, J. Vučković, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photonics 5, 297–300 (2011).
[Crossref]

Y. Gong, B. Ellis, G. Shambat, T. Sarmiento, J. S. Harris, J. Vučković, “Nanobeam photonic crystal cavity quantum dot laser,” Opt. Express 18, 8781–8789 (2010).
[Crossref]

Elvira, D.

D. Elvira, X. Hachair, V. B. Verma, R. Braive, G. Beaudoin, I. Robert-Philip, I. Sagnes, B. Baek, S. W. Nam, E. A. Dauler, I. Abram, M. J. Stevens, A. Beveratos, “Higher–order photon correlations in pulsed photonic crystal nanolasers,” Phys. Rev. A 84, 061802 (2011).
[Crossref]

Fainman, Y.

J. S. T. Smalley, Y. Fainman, “Temperature dependence of the spontaneous emission factor in subwavelength semiconductor lasers,” IEEE J. Quantum Electron. 50, 175–185 (2014).
[Crossref]

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482, 204–207 (2012).
[Crossref]

Fan, J. C.

Y. T. Dai, J. C. Fan, Y. F. Chen, R. M. Lin, S. C. Lee, H. H. Lin, “Temperature dependence of photoluminescence spectra in InAs/GaAs quantum dot superlattices with large thicknesses,” J. Appl. Phys. 82, 4489–4492 (1997).
[Crossref]

Forchel, A.

J. Wiersig, C. Gies, F. Jahnke, M. Assmann, T. Berstermann, M. Bayer, C. Kistner, S. Reitzenstein, C. Schneider, S. Höfling, A. Forchel, C. Kruse, J. Kalden, D. Hommel, “Direct observation of correlations between individual photon emission events of a microcavity laser,” Nature 460, 245–249 (2009).
[Crossref]

M. Bayer, A. Forchel, “Temperature dependence of the exciton homogeneous linewidth in In0.60Ga0.40As/GaAs self–assembled quantum dots,” Phys. Rev. B 65, 041308 (2002).

Franchi, S.

S. Sanguinetti, M. Henini, M. G. Alessi, M. Capizzi, P. Frigeri, S. Franchi, “Carrier thermal escape and retrapping in self-assembled quantum dots,” Phys. Rev. B 60, 8276–8283 (1999).

Frigeri, P.

D. Rivas, G. Muñoz-Matutano, J. Canet-Ferrer, R. García-Calzada, G. Trevisi, L. Seravalli, P. Frigeri, J. P. Martínez-Pastor, “Two-color single-photon emission from InAs quantum dots: toward logic information management using quantum light,” Nano Lett. 14, 456–463 (2014).

S. Sanguinetti, M. Henini, M. G. Alessi, M. Capizzi, P. Frigeri, S. Franchi, “Carrier thermal escape and retrapping in self-assembled quantum dots,” Phys. Rev. B 60, 8276–8283 (1999).

Fuster, D.

J. Canet-Ferrer, I. Prieto, G. Muñoz-Matutano, L. J. Martínez, L. E. Muñoz-Camúñez, J. M. Llorens, D. Fuster, B. Alén, Y. González, L. González, P. A. Postigo, J. P. Martínez-Pastor, “Excitation power dependence of the Purcell effect in photonic crystal microcavity lasers with quantum wires,” Appl. Phys. Lett. 102, 201105 (2013).
[Crossref]

J. Canet-Ferrer, L. J. Martínez, I. Prieto, B. Alén, G. Muñoz-Matutano, D. Fuster, Y. González, M. L. Dotor, L. González, P. A. Postigo, J. P. Martínez-Pastor, “Purcell effect in photonic crystal microcavities embedding InAs/InP quantum wires,” Opt. Express 20, 7901–7914 (2012).
[Crossref]

Gallo, P.

Gambhir, S. S.

G. Shambat, S. R. Kothapalli, J. Provine, T. Sarmiento, J. Harris, S. S. Gambhir, J. Vučković, “Single-cell photonic nanocavity probes,” Nano Lett. 13, 4999–5005 (2013).

García, J. M.

A. G. Taboada, A. M. Sánchez, A. M. Beltrán, M. Bozkurt, D. Alonso-Álvarez, B. Alén, A. Rivera, J. M. Ripalda, J. M. Llorens, J. Martín-Sánchez, Y. González, J. M. Ulloa, J. M. García, S. I. Molina, P. M. Koenraad, “Structural and optical changes induced by incorporation of antimony into InAs/GaAs(001) quantum dots,” Phys. Rev. B 82, 235316 (2010).

J. M. Ripalda, D. Alonso-Álvarez, B. Alén, A. G. Taboada, J. M. García, Y. González, L. González, “Enhancement of the room temperature luminescence of InAs quantum dots by GaSb capping,” Appl. Phys. Lett. 91, 012111 (2007).
[Crossref]

García-Calzada, R.

D. Rivas, G. Muñoz-Matutano, J. Canet-Ferrer, R. García-Calzada, G. Trevisi, L. Seravalli, P. Frigeri, J. P. Martínez-Pastor, “Two-color single-photon emission from InAs quantum dots: toward logic information management using quantum light,” Nano Lett. 14, 456–463 (2014).

Gayral, B.

J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81, 1110–1113 (1998).
[Crossref]

Geller, M.

M. Geller, A. Marent, T. Nowozin, D. Bimberg, N. Akçay, N. Öncan, “A write time of 6  ns for quantum dot based memory structures,” Appl. Phys. Lett. 92, 092108 (2008).
[Crossref]

Gérard, J. M.

J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81, 1110–1113 (1998).
[Crossref]

Gies, C.

W. W. Chow, F. Jahnke, C. Gies, “Emission properties of nanolasers during the transition to lasing,” Light Sci. Appl. 3, e201 (2014).

J. Wiersig, C. Gies, F. Jahnke, M. Assmann, T. Berstermann, M. Bayer, C. Kistner, S. Reitzenstein, C. Schneider, S. Höfling, A. Forchel, C. Kruse, J. Kalden, D. Hommel, “Direct observation of correlations between individual photon emission events of a microcavity laser,” Nature 460, 245–249 (2009).
[Crossref]

Gong, Y.

González, L.

J. Canet-Ferrer, I. Prieto, G. Muñoz-Matutano, L. J. Martínez, L. E. Muñoz-Camúñez, J. M. Llorens, D. Fuster, B. Alén, Y. González, L. González, P. A. Postigo, J. P. Martínez-Pastor, “Excitation power dependence of the Purcell effect in photonic crystal microcavity lasers with quantum wires,” Appl. Phys. Lett. 102, 201105 (2013).
[Crossref]

J. Canet-Ferrer, L. J. Martínez, I. Prieto, B. Alén, G. Muñoz-Matutano, D. Fuster, Y. González, M. L. Dotor, L. González, P. A. Postigo, J. P. Martínez-Pastor, “Purcell effect in photonic crystal microcavities embedding InAs/InP quantum wires,” Opt. Express 20, 7901–7914 (2012).
[Crossref]

J. M. Ripalda, D. Alonso-Álvarez, B. Alén, A. G. Taboada, J. M. García, Y. González, L. González, “Enhancement of the room temperature luminescence of InAs quantum dots by GaSb capping,” Appl. Phys. Lett. 91, 012111 (2007).
[Crossref]

González, Y.

A. G. Taboada, J. M. Llorens, D. Alonso-Álvarez, B. Alén, A. Rivera, Y. González, J. M. Ripalda, “Effect of Sb incorporation on the electronic structure of InAs quantum dots,” Phys. Rev. B 88, 085308 (2013).

J. Canet-Ferrer, I. Prieto, G. Muñoz-Matutano, L. J. Martínez, L. E. Muñoz-Camúñez, J. M. Llorens, D. Fuster, B. Alén, Y. González, L. González, P. A. Postigo, J. P. Martínez-Pastor, “Excitation power dependence of the Purcell effect in photonic crystal microcavity lasers with quantum wires,” Appl. Phys. Lett. 102, 201105 (2013).
[Crossref]

J. Canet-Ferrer, L. J. Martínez, I. Prieto, B. Alén, G. Muñoz-Matutano, D. Fuster, Y. González, M. L. Dotor, L. González, P. A. Postigo, J. P. Martínez-Pastor, “Purcell effect in photonic crystal microcavities embedding InAs/InP quantum wires,” Opt. Express 20, 7901–7914 (2012).
[Crossref]

A. G. Taboada, A. M. Sánchez, A. M. Beltrán, M. Bozkurt, D. Alonso-Álvarez, B. Alén, A. Rivera, J. M. Ripalda, J. M. Llorens, J. Martín-Sánchez, Y. González, J. M. Ulloa, J. M. García, S. I. Molina, P. M. Koenraad, “Structural and optical changes induced by incorporation of antimony into InAs/GaAs(001) quantum dots,” Phys. Rev. B 82, 235316 (2010).

J. M. Ripalda, D. Alonso-Álvarez, B. Alén, A. G. Taboada, J. M. García, Y. González, L. González, “Enhancement of the room temperature luminescence of InAs quantum dots by GaSb capping,” Appl. Phys. Lett. 91, 012111 (2007).
[Crossref]

Hachair, X.

D. Elvira, X. Hachair, V. B. Verma, R. Braive, G. Beaudoin, I. Robert-Philip, I. Sagnes, B. Baek, S. W. Nam, E. A. Dauler, I. Abram, M. J. Stevens, A. Beveratos, “Higher–order photon correlations in pulsed photonic crystal nanolasers,” Phys. Rev. A 84, 061802 (2011).
[Crossref]

Hadfield, R. H.

R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photonics 3, 696–705 (2009).
[Crossref]

Haller, E. E.

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, J. Vučković, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photonics 5, 297–300 (2011).
[Crossref]

Hare, J.

I. Protsenko, P. Domokos, V. Lefèvre-Seguin, J. Hare, J. M. Raimond, L. Davidovich, “Quantum theory of a thresholdless laser,” Phys. Rev. A 59, 1667–1682 (1999).
[Crossref]

Harris, J.

G. Shambat, S. R. Kothapalli, J. Provine, T. Sarmiento, J. Harris, S. S. Gambhir, J. Vučković, “Single-cell photonic nanocavity probes,” Nano Lett. 13, 4999–5005 (2013).

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, J. Vučković, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photonics 5, 297–300 (2011).
[Crossref]

Harris, J. S.

Henini, M.

S. Sanguinetti, M. Henini, M. G. Alessi, M. Capizzi, P. Frigeri, S. Franchi, “Carrier thermal escape and retrapping in self-assembled quantum dots,” Phys. Rev. B 60, 8276–8283 (1999).

Hennessy, K.

S. Strauf, K. Hennessy, M. T. Rakher, Y. S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96, 127404 (2006).
[Crossref]

Höfling, S.

J. Wiersig, C. Gies, F. Jahnke, M. Assmann, T. Berstermann, M. Bayer, C. Kistner, S. Reitzenstein, C. Schneider, S. Höfling, A. Forchel, C. Kruse, J. Kalden, D. Hommel, “Direct observation of correlations between individual photon emission events of a microcavity laser,” Nature 460, 245–249 (2009).
[Crossref]

Hommel, D.

J. Wiersig, C. Gies, F. Jahnke, M. Assmann, T. Berstermann, M. Bayer, C. Kistner, S. Reitzenstein, C. Schneider, S. Höfling, A. Forchel, C. Kruse, J. Kalden, D. Hommel, “Direct observation of correlations between individual photon emission events of a microcavity laser,” Nature 460, 245–249 (2009).
[Crossref]

Hu, E. L.

S. Strauf, K. Hennessy, M. T. Rakher, Y. S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96, 127404 (2006).
[Crossref]

Ishida, S.

Iwamoto, S.

M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, Y. Arakawa, “Laser oscillation in a strongly coupled single–quantum–dot–nanocavity system,” Nat. Phys. 6, 279–283 (2010).
[Crossref]

M. Nomura, Y. Ota, N. Kumagai, S. Iwamoto, Y. Arakawa, “Zero-cell photonic crystal nanocavity laser with quantum dot gain,” Appl. Phys. Lett. 97, 191108 (2010).
[Crossref]

M. Nomura, S. Iwamoto, K. Watanabe, N. Kumagai, Y. Nakata, S. Ishida, Y. Arakawa, “Room temperature continuous-wave lasing in photonic crystal nanocavity,” Opt. Express 14, 6308–6315 (2006).
[Crossref]

Jacobovitz, G. R.

F. D. Martini, G. R. Jacobovitz, “Anomalous spontaneous stimulated decay phase transition and zero-threshold laser action in a microscopic cavity,” Phys. Rev. Lett. 60, 1711–1714 (1988).
[Crossref]

Jahnke, F.

W. W. Chow, F. Jahnke, C. Gies, “Emission properties of nanolasers during the transition to lasing,” Light Sci. Appl. 3, e201 (2014).

J. Wiersig, C. Gies, F. Jahnke, M. Assmann, T. Berstermann, M. Bayer, C. Kistner, S. Reitzenstein, C. Schneider, S. Höfling, A. Forchel, C. Kruse, J. Kalden, D. Hommel, “Direct observation of correlations between individual photon emission events of a microcavity laser,” Nature 460, 245–249 (2009).
[Crossref]

Kakitsuka, T.

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, S. Toru, T. Sato, Y. Kawaguchi, M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13  fJ of energy consumed per bit transmitted,” Nat. Photonics 4, 648–654 (2010).
[Crossref]

Kalden, J.

J. Wiersig, C. Gies, F. Jahnke, M. Assmann, T. Berstermann, M. Bayer, C. Kistner, S. Reitzenstein, C. Schneider, S. Höfling, A. Forchel, C. Kruse, J. Kalden, D. Hommel, “Direct observation of correlations between individual photon emission events of a microcavity laser,” Nature 460, 245–249 (2009).
[Crossref]

Kapon, E.

Karlsson, A.

G. Björk, A. Karlsson, Y. Yamamoto, “Definition of a laser threshold,” Phys. Rev. A 50, 1675–1680 (1994).
[Crossref]

G. Björk, A. Karlsson, Y. Yamamoto, “On the linewidth of microcavity lasers,” Appl. Phys. Lett. 60, 304–306 (1992).
[Crossref]

Karlsson, K. F.

Katz, M.

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482, 204–207 (2012).
[Crossref]

Kawaguchi, Y.

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, S. Toru, T. Sato, Y. Kawaguchi, M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13  fJ of energy consumed per bit transmitted,” Nat. Photonics 4, 648–654 (2010).
[Crossref]

Khajavikhan, M.

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482, 204–207 (2012).
[Crossref]

Kim, G. H.

S. H. Kim, G. H. Kim, S. K. Kim, H. G. Park, Y. H. Lee, S. B. Kim, “Characteristics of a stick waveguide resonator in a two-dimensional photonic crystal slab,” J. Appl. Phys. 95, 411–416 (2004).
[Crossref]

Kim, S. B.

S. H. Kim, G. H. Kim, S. K. Kim, H. G. Park, Y. H. Lee, S. B. Kim, “Characteristics of a stick waveguide resonator in a two-dimensional photonic crystal slab,” J. Appl. Phys. 95, 411–416 (2004).
[Crossref]

Kim, S. H.

S. H. Kim, G. H. Kim, S. K. Kim, H. G. Park, Y. H. Lee, S. B. Kim, “Characteristics of a stick waveguide resonator in a two-dimensional photonic crystal slab,” J. Appl. Phys. 95, 411–416 (2004).
[Crossref]

Kim, S. K.

S. H. Kim, G. H. Kim, S. K. Kim, H. G. Park, Y. H. Lee, S. B. Kim, “Characteristics of a stick waveguide resonator in a two-dimensional photonic crystal slab,” J. Appl. Phys. 95, 411–416 (2004).
[Crossref]

Kistner, C.

J. Wiersig, C. Gies, F. Jahnke, M. Assmann, T. Berstermann, M. Bayer, C. Kistner, S. Reitzenstein, C. Schneider, S. Höfling, A. Forchel, C. Kruse, J. Kalden, D. Hommel, “Direct observation of correlations between individual photon emission events of a microcavity laser,” Nature 460, 245–249 (2009).
[Crossref]

Koenraad, P. M.

A. G. Taboada, A. M. Sánchez, A. M. Beltrán, M. Bozkurt, D. Alonso-Álvarez, B. Alén, A. Rivera, J. M. Ripalda, J. M. Llorens, J. Martín-Sánchez, Y. González, J. M. Ulloa, J. M. García, S. I. Molina, P. M. Koenraad, “Structural and optical changes induced by incorporation of antimony into InAs/GaAs(001) quantum dots,” Phys. Rev. B 82, 235316 (2010).

Kothapalli, S. R.

G. Shambat, S. R. Kothapalli, J. Provine, T. Sarmiento, J. Harris, S. S. Gambhir, J. Vučković, “Single-cell photonic nanocavity probes,” Nano Lett. 13, 4999–5005 (2013).

Kruse, C.

J. Wiersig, C. Gies, F. Jahnke, M. Assmann, T. Berstermann, M. Bayer, C. Kistner, S. Reitzenstein, C. Schneider, S. Höfling, A. Forchel, C. Kruse, J. Kalden, D. Hommel, “Direct observation of correlations between individual photon emission events of a microcavity laser,” Nature 460, 245–249 (2009).
[Crossref]

Kumagai, N.

M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, Y. Arakawa, “Laser oscillation in a strongly coupled single–quantum–dot–nanocavity system,” Nat. Phys. 6, 279–283 (2010).
[Crossref]

M. Nomura, Y. Ota, N. Kumagai, S. Iwamoto, Y. Arakawa, “Zero-cell photonic crystal nanocavity laser with quantum dot gain,” Appl. Phys. Lett. 97, 191108 (2010).
[Crossref]

M. Nomura, S. Iwamoto, K. Watanabe, N. Kumagai, Y. Nakata, S. Ishida, Y. Arakawa, “Room temperature continuous-wave lasing in photonic crystal nanocavity,” Opt. Express 14, 6308–6315 (2006).
[Crossref]

Lee, J. H.

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482, 204–207 (2012).
[Crossref]

Lee, S. C.

Y. T. Dai, J. C. Fan, Y. F. Chen, R. M. Lin, S. C. Lee, H. H. Lin, “Temperature dependence of photoluminescence spectra in InAs/GaAs quantum dot superlattices with large thicknesses,” J. Appl. Phys. 82, 4489–4492 (1997).
[Crossref]

Lee, Y. H.

S. H. Kim, G. H. Kim, S. K. Kim, H. G. Park, Y. H. Lee, S. B. Kim, “Characteristics of a stick waveguide resonator in a two-dimensional photonic crystal slab,” J. Appl. Phys. 95, 411–416 (2004).
[Crossref]

Lefèvre-Seguin, V.

I. Protsenko, P. Domokos, V. Lefèvre-Seguin, J. Hare, J. M. Raimond, L. Davidovich, “Quantum theory of a thresholdless laser,” Phys. Rev. A 59, 1667–1682 (1999).
[Crossref]

Legrand, B.

J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81, 1110–1113 (1998).
[Crossref]

Lei, W.

W. Lei, M. Offer, A. Lorke, C. Notthoff, C. Meier, O. Wibbelhoff, A. D. Wieck, “Probing the band structure of InAs–GaAs quantum dots by capacitance–voltage and photoluminescence spectroscopy,” Appl. Phys. Lett. 92, 193111 (2008).
[Crossref]

Lin, H. H.

Y. T. Dai, J. C. Fan, Y. F. Chen, R. M. Lin, S. C. Lee, H. H. Lin, “Temperature dependence of photoluminescence spectra in InAs/GaAs quantum dot superlattices with large thicknesses,” J. Appl. Phys. 82, 4489–4492 (1997).
[Crossref]

Lin, R. M.

Y. T. Dai, J. C. Fan, Y. F. Chen, R. M. Lin, S. C. Lee, H. H. Lin, “Temperature dependence of photoluminescence spectra in InAs/GaAs quantum dot superlattices with large thicknesses,” J. Appl. Phys. 82, 4489–4492 (1997).
[Crossref]

Llorens, J. M.

J. Canet-Ferrer, I. Prieto, G. Muñoz-Matutano, L. J. Martínez, L. E. Muñoz-Camúñez, J. M. Llorens, D. Fuster, B. Alén, Y. González, L. González, P. A. Postigo, J. P. Martínez-Pastor, “Excitation power dependence of the Purcell effect in photonic crystal microcavity lasers with quantum wires,” Appl. Phys. Lett. 102, 201105 (2013).
[Crossref]

A. G. Taboada, J. M. Llorens, D. Alonso-Álvarez, B. Alén, A. Rivera, Y. González, J. M. Ripalda, “Effect of Sb incorporation on the electronic structure of InAs quantum dots,” Phys. Rev. B 88, 085308 (2013).

A. G. Taboada, A. M. Sánchez, A. M. Beltrán, M. Bozkurt, D. Alonso-Álvarez, B. Alén, A. Rivera, J. M. Ripalda, J. M. Llorens, J. Martín-Sánchez, Y. González, J. M. Ulloa, J. M. García, S. I. Molina, P. M. Koenraad, “Structural and optical changes induced by incorporation of antimony into InAs/GaAs(001) quantum dots,” Phys. Rev. B 82, 235316 (2010).

Lomakin, V.

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482, 204–207 (2012).
[Crossref]

Lorke, A.

W. Lei, M. Offer, A. Lorke, C. Notthoff, C. Meier, O. Wibbelhoff, A. D. Wieck, “Probing the band structure of InAs–GaAs quantum dots by capacitance–voltage and photoluminescence spectroscopy,” Appl. Phys. Lett. 92, 193111 (2008).
[Crossref]

Marent, A.

M. Geller, A. Marent, T. Nowozin, D. Bimberg, N. Akçay, N. Öncan, “A write time of 6  ns for quantum dot based memory structures,” Appl. Phys. Lett. 92, 092108 (2008).
[Crossref]

Martínez, L. J.

J. Canet-Ferrer, I. Prieto, G. Muñoz-Matutano, L. J. Martínez, L. E. Muñoz-Camúñez, J. M. Llorens, D. Fuster, B. Alén, Y. González, L. González, P. A. Postigo, J. P. Martínez-Pastor, “Excitation power dependence of the Purcell effect in photonic crystal microcavity lasers with quantum wires,” Appl. Phys. Lett. 102, 201105 (2013).
[Crossref]

J. Canet-Ferrer, L. J. Martínez, I. Prieto, B. Alén, G. Muñoz-Matutano, D. Fuster, Y. González, M. L. Dotor, L. González, P. A. Postigo, J. P. Martínez-Pastor, “Purcell effect in photonic crystal microcavities embedding InAs/InP quantum wires,” Opt. Express 20, 7901–7914 (2012).
[Crossref]

Martínez-Pastor, J. P.

D. Rivas, G. Muñoz-Matutano, J. Canet-Ferrer, R. García-Calzada, G. Trevisi, L. Seravalli, P. Frigeri, J. P. Martínez-Pastor, “Two-color single-photon emission from InAs quantum dots: toward logic information management using quantum light,” Nano Lett. 14, 456–463 (2014).

J. Canet-Ferrer, I. Prieto, G. Muñoz-Matutano, L. J. Martínez, L. E. Muñoz-Camúñez, J. M. Llorens, D. Fuster, B. Alén, Y. González, L. González, P. A. Postigo, J. P. Martínez-Pastor, “Excitation power dependence of the Purcell effect in photonic crystal microcavity lasers with quantum wires,” Appl. Phys. Lett. 102, 201105 (2013).
[Crossref]

J. Canet-Ferrer, L. J. Martínez, I. Prieto, B. Alén, G. Muñoz-Matutano, D. Fuster, Y. González, M. L. Dotor, L. González, P. A. Postigo, J. P. Martínez-Pastor, “Purcell effect in photonic crystal microcavities embedding InAs/InP quantum wires,” Opt. Express 20, 7901–7914 (2012).
[Crossref]

Martini, F. D.

F. D. Martini, G. R. Jacobovitz, “Anomalous spontaneous stimulated decay phase transition and zero-threshold laser action in a microscopic cavity,” Phys. Rev. Lett. 60, 1711–1714 (1988).
[Crossref]

Martín-Sánchez, J.

A. G. Taboada, A. M. Sánchez, A. M. Beltrán, M. Bozkurt, D. Alonso-Álvarez, B. Alén, A. Rivera, J. M. Ripalda, J. M. Llorens, J. Martín-Sánchez, Y. González, J. M. Ulloa, J. M. García, S. I. Molina, P. M. Koenraad, “Structural and optical changes induced by incorporation of antimony into InAs/GaAs(001) quantum dots,” Phys. Rev. B 82, 235316 (2010).

Matsuo, S.

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, S. Toru, T. Sato, Y. Kawaguchi, M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13  fJ of energy consumed per bit transmitted,” Nat. Photonics 4, 648–654 (2010).
[Crossref]

Mayer, M. A.

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, J. Vučković, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photonics 5, 297–300 (2011).
[Crossref]

Meier, C.

W. Lei, M. Offer, A. Lorke, C. Notthoff, C. Meier, O. Wibbelhoff, A. D. Wieck, “Probing the band structure of InAs–GaAs quantum dots by capacitance–voltage and photoluminescence spectroscopy,” Appl. Phys. Lett. 92, 193111 (2008).
[Crossref]

Miller, D. A. B.

D. A. B. Miller, “Are optical transistors the logical next step?” Nat. Photonics 4, 3–5 (2010).
[Crossref]

Miyamoto, Y.

M. Asada, Y. Miyamoto, Y. Suematsu, “Gain and the threshold of three-dimensional quantum-box lasers,” IEEE J. Quantum Electron. 22, 1915–1921 (1986).
[Crossref]

Mizrahi, A.

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482, 204–207 (2012).
[Crossref]

Molina, S. I.

A. G. Taboada, A. M. Sánchez, A. M. Beltrán, M. Bozkurt, D. Alonso-Álvarez, B. Alén, A. Rivera, J. M. Ripalda, J. M. Llorens, J. Martín-Sánchez, Y. González, J. M. Ulloa, J. M. García, S. I. Molina, P. M. Koenraad, “Structural and optical changes induced by incorporation of antimony into InAs/GaAs(001) quantum dots,” Phys. Rev. B 82, 235316 (2010).

Muñoz-Camúñez, L. E.

I. Prieto, L. E. Muñoz-Camúñez, A. G. Taboada, C. Robles, J. M. Ripalda, P. A. Postigo, “Fabrication of high quality factor GaAs/InAsSb photonic crystal microcavities by inductively coupled plasma etching and fast wet etching,” J. Vac. Sci. Technol. B 32, 011204 (2013).

J. Canet-Ferrer, I. Prieto, G. Muñoz-Matutano, L. J. Martínez, L. E. Muñoz-Camúñez, J. M. Llorens, D. Fuster, B. Alén, Y. González, L. González, P. A. Postigo, J. P. Martínez-Pastor, “Excitation power dependence of the Purcell effect in photonic crystal microcavity lasers with quantum wires,” Appl. Phys. Lett. 102, 201105 (2013).
[Crossref]

Muñoz-Matutano, G.

D. Rivas, G. Muñoz-Matutano, J. Canet-Ferrer, R. García-Calzada, G. Trevisi, L. Seravalli, P. Frigeri, J. P. Martínez-Pastor, “Two-color single-photon emission from InAs quantum dots: toward logic information management using quantum light,” Nano Lett. 14, 456–463 (2014).

J. Canet-Ferrer, I. Prieto, G. Muñoz-Matutano, L. J. Martínez, L. E. Muñoz-Camúñez, J. M. Llorens, D. Fuster, B. Alén, Y. González, L. González, P. A. Postigo, J. P. Martínez-Pastor, “Excitation power dependence of the Purcell effect in photonic crystal microcavity lasers with quantum wires,” Appl. Phys. Lett. 102, 201105 (2013).
[Crossref]

J. Canet-Ferrer, L. J. Martínez, I. Prieto, B. Alén, G. Muñoz-Matutano, D. Fuster, Y. González, M. L. Dotor, L. González, P. A. Postigo, J. P. Martínez-Pastor, “Purcell effect in photonic crystal microcavities embedding InAs/InP quantum wires,” Opt. Express 20, 7901–7914 (2012).
[Crossref]

Nakata, Y.

Nam, S. W.

D. Elvira, X. Hachair, V. B. Verma, R. Braive, G. Beaudoin, I. Robert-Philip, I. Sagnes, B. Baek, S. W. Nam, E. A. Dauler, I. Abram, M. J. Stevens, A. Beveratos, “Higher–order photon correlations in pulsed photonic crystal nanolasers,” Phys. Rev. A 84, 061802 (2011).
[Crossref]

Noda, S.

S. Noda, “Seeking the ultimate nanolaser,” Science 314, 260–261 (2006).
[Crossref]

Nomura, M.

M. Nomura, Y. Ota, N. Kumagai, S. Iwamoto, Y. Arakawa, “Zero-cell photonic crystal nanocavity laser with quantum dot gain,” Appl. Phys. Lett. 97, 191108 (2010).
[Crossref]

M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, Y. Arakawa, “Laser oscillation in a strongly coupled single–quantum–dot–nanocavity system,” Nat. Phys. 6, 279–283 (2010).
[Crossref]

M. Nomura, S. Iwamoto, K. Watanabe, N. Kumagai, Y. Nakata, S. Ishida, Y. Arakawa, “Room temperature continuous-wave lasing in photonic crystal nanocavity,” Opt. Express 14, 6308–6315 (2006).
[Crossref]

Notomi, M.

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, S. Toru, T. Sato, Y. Kawaguchi, M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13  fJ of energy consumed per bit transmitted,” Nat. Photonics 4, 648–654 (2010).
[Crossref]

H. Y. Ryu, M. Notomi, “Enhancement of spontaneous emission from the resonant modes of a photonic crystal slab single–defect cavity,” Opt. Lett. 28, 2390–2392 (2003).
[Crossref]

Notthoff, C.

W. Lei, M. Offer, A. Lorke, C. Notthoff, C. Meier, O. Wibbelhoff, A. D. Wieck, “Probing the band structure of InAs–GaAs quantum dots by capacitance–voltage and photoluminescence spectroscopy,” Appl. Phys. Lett. 92, 193111 (2008).
[Crossref]

Nowozin, T.

M. Geller, A. Marent, T. Nowozin, D. Bimberg, N. Akçay, N. Öncan, “A write time of 6  ns for quantum dot based memory structures,” Appl. Phys. Lett. 92, 092108 (2008).
[Crossref]

Nozaki, K.

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, S. Toru, T. Sato, Y. Kawaguchi, M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13  fJ of energy consumed per bit transmitted,” Nat. Photonics 4, 648–654 (2010).
[Crossref]

Offer, M.

W. Lei, M. Offer, A. Lorke, C. Notthoff, C. Meier, O. Wibbelhoff, A. D. Wieck, “Probing the band structure of InAs–GaAs quantum dots by capacitance–voltage and photoluminescence spectroscopy,” Appl. Phys. Lett. 92, 193111 (2008).
[Crossref]

Öncan, N.

M. Geller, A. Marent, T. Nowozin, D. Bimberg, N. Akçay, N. Öncan, “A write time of 6  ns for quantum dot based memory structures,” Appl. Phys. Lett. 92, 092108 (2008).
[Crossref]

Ota, Y.

M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, Y. Arakawa, “Laser oscillation in a strongly coupled single–quantum–dot–nanocavity system,” Nat. Phys. 6, 279–283 (2010).
[Crossref]

M. Nomura, Y. Ota, N. Kumagai, S. Iwamoto, Y. Arakawa, “Zero-cell photonic crystal nanocavity laser with quantum dot gain,” Appl. Phys. Lett. 97, 191108 (2010).
[Crossref]

Painter, O.

Park, H. G.

S. H. Kim, G. H. Kim, S. K. Kim, H. G. Park, Y. H. Lee, S. B. Kim, “Characteristics of a stick waveguide resonator in a two-dimensional photonic crystal slab,” J. Appl. Phys. 95, 411–416 (2004).
[Crossref]

Petroff, P. M.

S. Strauf, K. Hennessy, M. T. Rakher, Y. S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96, 127404 (2006).
[Crossref]

Postigo, P. A.

J. Canet-Ferrer, I. Prieto, G. Muñoz-Matutano, L. J. Martínez, L. E. Muñoz-Camúñez, J. M. Llorens, D. Fuster, B. Alén, Y. González, L. González, P. A. Postigo, J. P. Martínez-Pastor, “Excitation power dependence of the Purcell effect in photonic crystal microcavity lasers with quantum wires,” Appl. Phys. Lett. 102, 201105 (2013).
[Crossref]

I. Prieto, L. E. Muñoz-Camúñez, A. G. Taboada, C. Robles, J. M. Ripalda, P. A. Postigo, “Fabrication of high quality factor GaAs/InAsSb photonic crystal microcavities by inductively coupled plasma etching and fast wet etching,” J. Vac. Sci. Technol. B 32, 011204 (2013).

J. Canet-Ferrer, L. J. Martínez, I. Prieto, B. Alén, G. Muñoz-Matutano, D. Fuster, Y. González, M. L. Dotor, L. González, P. A. Postigo, J. P. Martínez-Pastor, “Purcell effect in photonic crystal microcavities embedding InAs/InP quantum wires,” Opt. Express 20, 7901–7914 (2012).
[Crossref]

Prieto, I.

I. Prieto, L. E. Muñoz-Camúñez, A. G. Taboada, C. Robles, J. M. Ripalda, P. A. Postigo, “Fabrication of high quality factor GaAs/InAsSb photonic crystal microcavities by inductively coupled plasma etching and fast wet etching,” J. Vac. Sci. Technol. B 32, 011204 (2013).

J. Canet-Ferrer, I. Prieto, G. Muñoz-Matutano, L. J. Martínez, L. E. Muñoz-Camúñez, J. M. Llorens, D. Fuster, B. Alén, Y. González, L. González, P. A. Postigo, J. P. Martínez-Pastor, “Excitation power dependence of the Purcell effect in photonic crystal microcavity lasers with quantum wires,” Appl. Phys. Lett. 102, 201105 (2013).
[Crossref]

J. Canet-Ferrer, L. J. Martínez, I. Prieto, B. Alén, G. Muñoz-Matutano, D. Fuster, Y. González, M. L. Dotor, L. González, P. A. Postigo, J. P. Martínez-Pastor, “Purcell effect in photonic crystal microcavities embedding InAs/InP quantum wires,” Opt. Express 20, 7901–7914 (2012).
[Crossref]

Protsenko, I.

I. Protsenko, P. Domokos, V. Lefèvre-Seguin, J. Hare, J. M. Raimond, L. Davidovich, “Quantum theory of a thresholdless laser,” Phys. Rev. A 59, 1667–1682 (1999).
[Crossref]

Provine, J.

G. Shambat, S. R. Kothapalli, J. Provine, T. Sarmiento, J. Harris, S. S. Gambhir, J. Vučković, “Single-cell photonic nanocavity probes,” Nano Lett. 13, 4999–5005 (2013).

Raimond, J. M.

I. Protsenko, P. Domokos, V. Lefèvre-Seguin, J. Hare, J. M. Raimond, L. Davidovich, “Quantum theory of a thresholdless laser,” Phys. Rev. A 59, 1667–1682 (1999).
[Crossref]

Rakher, M. T.

S. Strauf, K. Hennessy, M. T. Rakher, Y. S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96, 127404 (2006).
[Crossref]

Reitzenstein, S.

J. Wiersig, C. Gies, F. Jahnke, M. Assmann, T. Berstermann, M. Bayer, C. Kistner, S. Reitzenstein, C. Schneider, S. Höfling, A. Forchel, C. Kruse, J. Kalden, D. Hommel, “Direct observation of correlations between individual photon emission events of a microcavity laser,” Nature 460, 245–249 (2009).
[Crossref]

Ripalda, J. M.

I. Prieto, L. E. Muñoz-Camúñez, A. G. Taboada, C. Robles, J. M. Ripalda, P. A. Postigo, “Fabrication of high quality factor GaAs/InAsSb photonic crystal microcavities by inductively coupled plasma etching and fast wet etching,” J. Vac. Sci. Technol. B 32, 011204 (2013).

A. G. Taboada, J. M. Llorens, D. Alonso-Álvarez, B. Alén, A. Rivera, Y. González, J. M. Ripalda, “Effect of Sb incorporation on the electronic structure of InAs quantum dots,” Phys. Rev. B 88, 085308 (2013).

A. G. Taboada, A. M. Sánchez, A. M. Beltrán, M. Bozkurt, D. Alonso-Álvarez, B. Alén, A. Rivera, J. M. Ripalda, J. M. Llorens, J. Martín-Sánchez, Y. González, J. M. Ulloa, J. M. García, S. I. Molina, P. M. Koenraad, “Structural and optical changes induced by incorporation of antimony into InAs/GaAs(001) quantum dots,” Phys. Rev. B 82, 235316 (2010).

J. M. Ripalda, D. Alonso-Álvarez, B. Alén, A. G. Taboada, J. M. García, Y. González, L. González, “Enhancement of the room temperature luminescence of InAs quantum dots by GaSb capping,” Appl. Phys. Lett. 91, 012111 (2007).
[Crossref]

Rivas, D.

D. Rivas, G. Muñoz-Matutano, J. Canet-Ferrer, R. García-Calzada, G. Trevisi, L. Seravalli, P. Frigeri, J. P. Martínez-Pastor, “Two-color single-photon emission from InAs quantum dots: toward logic information management using quantum light,” Nano Lett. 14, 456–463 (2014).

Rivera, A.

A. G. Taboada, J. M. Llorens, D. Alonso-Álvarez, B. Alén, A. Rivera, Y. González, J. M. Ripalda, “Effect of Sb incorporation on the electronic structure of InAs quantum dots,” Phys. Rev. B 88, 085308 (2013).

A. G. Taboada, A. M. Sánchez, A. M. Beltrán, M. Bozkurt, D. Alonso-Álvarez, B. Alén, A. Rivera, J. M. Ripalda, J. M. Llorens, J. Martín-Sánchez, Y. González, J. M. Ulloa, J. M. García, S. I. Molina, P. M. Koenraad, “Structural and optical changes induced by incorporation of antimony into InAs/GaAs(001) quantum dots,” Phys. Rev. B 82, 235316 (2010).

Robert-Philip, I.

D. Elvira, X. Hachair, V. B. Verma, R. Braive, G. Beaudoin, I. Robert-Philip, I. Sagnes, B. Baek, S. W. Nam, E. A. Dauler, I. Abram, M. J. Stevens, A. Beveratos, “Higher–order photon correlations in pulsed photonic crystal nanolasers,” Phys. Rev. A 84, 061802 (2011).
[Crossref]

Robles, C.

I. Prieto, L. E. Muñoz-Camúñez, A. G. Taboada, C. Robles, J. M. Ripalda, P. A. Postigo, “Fabrication of high quality factor GaAs/InAsSb photonic crystal microcavities by inductively coupled plasma etching and fast wet etching,” J. Vac. Sci. Technol. B 32, 011204 (2013).

Rudra, A.

Ryu, H. Y.

Sagnes, I.

D. Elvira, X. Hachair, V. B. Verma, R. Braive, G. Beaudoin, I. Robert-Philip, I. Sagnes, B. Baek, S. W. Nam, E. A. Dauler, I. Abram, M. J. Stevens, A. Beveratos, “Higher–order photon correlations in pulsed photonic crystal nanolasers,” Phys. Rev. A 84, 061802 (2011).
[Crossref]

Sakaki, H.

Y. Arakawa, H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett. 40, 939–941 (1982).
[Crossref]

Sánchez, A. M.

A. G. Taboada, A. M. Sánchez, A. M. Beltrán, M. Bozkurt, D. Alonso-Álvarez, B. Alén, A. Rivera, J. M. Ripalda, J. M. Llorens, J. Martín-Sánchez, Y. González, J. M. Ulloa, J. M. García, S. I. Molina, P. M. Koenraad, “Structural and optical changes induced by incorporation of antimony into InAs/GaAs(001) quantum dots,” Phys. Rev. B 82, 235316 (2010).

Sanguinetti, S.

S. Sanguinetti, M. Henini, M. G. Alessi, M. Capizzi, P. Frigeri, S. Franchi, “Carrier thermal escape and retrapping in self-assembled quantum dots,” Phys. Rev. B 60, 8276–8283 (1999).

Sarmiento, T.

G. Shambat, S. R. Kothapalli, J. Provine, T. Sarmiento, J. Harris, S. S. Gambhir, J. Vučković, “Single-cell photonic nanocavity probes,” Nano Lett. 13, 4999–5005 (2013).

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, J. Vučković, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photonics 5, 297–300 (2011).
[Crossref]

Y. Gong, B. Ellis, G. Shambat, T. Sarmiento, J. S. Harris, J. Vučković, “Nanobeam photonic crystal cavity quantum dot laser,” Opt. Express 18, 8781–8789 (2010).
[Crossref]

Sato, T.

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, S. Toru, T. Sato, Y. Kawaguchi, M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13  fJ of energy consumed per bit transmitted,” Nat. Photonics 4, 648–654 (2010).
[Crossref]

Scherer, A.

T. Yoshie, O. B. Shchekin, H. Chen, D. G. Deppe, A. Scherer, “Quantum dot photonic crystal lasers,” Electron. Lett. 38, 967–968 (2002).
[Crossref]

O. Painter, J. Vučković, A. Scherer, “Defect modes of a two–dimensional photonic crystal in an optically thin dielectric slab,” J. Opt. Soc. Am. B 16, 275–285 (1999).
[Crossref]

Schneider, C.

J. Wiersig, C. Gies, F. Jahnke, M. Assmann, T. Berstermann, M. Bayer, C. Kistner, S. Reitzenstein, C. Schneider, S. Höfling, A. Forchel, C. Kruse, J. Kalden, D. Hommel, “Direct observation of correlations between individual photon emission events of a microcavity laser,” Nature 460, 245–249 (2009).
[Crossref]

Seravalli, L.

D. Rivas, G. Muñoz-Matutano, J. Canet-Ferrer, R. García-Calzada, G. Trevisi, L. Seravalli, P. Frigeri, J. P. Martínez-Pastor, “Two-color single-photon emission from InAs quantum dots: toward logic information management using quantum light,” Nano Lett. 14, 456–463 (2014).

Sermage, B.

J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81, 1110–1113 (1998).
[Crossref]

Shambat, G.

G. Shambat, S. R. Kothapalli, J. Provine, T. Sarmiento, J. Harris, S. S. Gambhir, J. Vučković, “Single-cell photonic nanocavity probes,” Nano Lett. 13, 4999–5005 (2013).

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, J. Vučković, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photonics 5, 297–300 (2011).
[Crossref]

Y. Gong, B. Ellis, G. Shambat, T. Sarmiento, J. S. Harris, J. Vučković, “Nanobeam photonic crystal cavity quantum dot laser,” Opt. Express 18, 8781–8789 (2010).
[Crossref]

Shchekin, O. B.

T. Yoshie, O. B. Shchekin, H. Chen, D. G. Deppe, A. Scherer, “Quantum dot photonic crystal lasers,” Electron. Lett. 38, 967–968 (2002).
[Crossref]

Shinya, A.

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, S. Toru, T. Sato, Y. Kawaguchi, M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13  fJ of energy consumed per bit transmitted,” Nat. Photonics 4, 648–654 (2010).
[Crossref]

Simic, A.

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482, 204–207 (2012).
[Crossref]

Slutsky, B.

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482, 204–207 (2012).
[Crossref]

Smalley, J. S. T.

J. S. T. Smalley, Y. Fainman, “Temperature dependence of the spontaneous emission factor in subwavelength semiconductor lasers,” IEEE J. Quantum Electron. 50, 175–185 (2014).
[Crossref]

Stevens, M. J.

D. Elvira, X. Hachair, V. B. Verma, R. Braive, G. Beaudoin, I. Robert-Philip, I. Sagnes, B. Baek, S. W. Nam, E. A. Dauler, I. Abram, M. J. Stevens, A. Beveratos, “Higher–order photon correlations in pulsed photonic crystal nanolasers,” Phys. Rev. A 84, 061802 (2011).
[Crossref]

Strauf, S.

S. Strauf, K. Hennessy, M. T. Rakher, Y. S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96, 127404 (2006).
[Crossref]

Suematsu, Y.

M. Asada, Y. Miyamoto, Y. Suematsu, “Gain and the threshold of three-dimensional quantum-box lasers,” IEEE J. Quantum Electron. 22, 1915–1921 (1986).
[Crossref]

Taboada, A. G.

I. Prieto, L. E. Muñoz-Camúñez, A. G. Taboada, C. Robles, J. M. Ripalda, P. A. Postigo, “Fabrication of high quality factor GaAs/InAsSb photonic crystal microcavities by inductively coupled plasma etching and fast wet etching,” J. Vac. Sci. Technol. B 32, 011204 (2013).

A. G. Taboada, J. M. Llorens, D. Alonso-Álvarez, B. Alén, A. Rivera, Y. González, J. M. Ripalda, “Effect of Sb incorporation on the electronic structure of InAs quantum dots,” Phys. Rev. B 88, 085308 (2013).

A. G. Taboada, A. M. Sánchez, A. M. Beltrán, M. Bozkurt, D. Alonso-Álvarez, B. Alén, A. Rivera, J. M. Ripalda, J. M. Llorens, J. Martín-Sánchez, Y. González, J. M. Ulloa, J. M. García, S. I. Molina, P. M. Koenraad, “Structural and optical changes induced by incorporation of antimony into InAs/GaAs(001) quantum dots,” Phys. Rev. B 82, 235316 (2010).

J. M. Ripalda, D. Alonso-Álvarez, B. Alén, A. G. Taboada, J. M. García, Y. González, L. González, “Enhancement of the room temperature luminescence of InAs quantum dots by GaSb capping,” Appl. Phys. Lett. 91, 012111 (2007).
[Crossref]

Thierry-Mieg, V.

J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81, 1110–1113 (1998).
[Crossref]

Toru, S.

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, S. Toru, T. Sato, Y. Kawaguchi, M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13  fJ of energy consumed per bit transmitted,” Nat. Photonics 4, 648–654 (2010).
[Crossref]

Trevisi, G.

D. Rivas, G. Muñoz-Matutano, J. Canet-Ferrer, R. García-Calzada, G. Trevisi, L. Seravalli, P. Frigeri, J. P. Martínez-Pastor, “Two-color single-photon emission from InAs quantum dots: toward logic information management using quantum light,” Nano Lett. 14, 456–463 (2014).

Ulloa, J. M.

A. G. Taboada, A. M. Sánchez, A. M. Beltrán, M. Bozkurt, D. Alonso-Álvarez, B. Alén, A. Rivera, J. M. Ripalda, J. M. Llorens, J. Martín-Sánchez, Y. González, J. M. Ulloa, J. M. García, S. I. Molina, P. M. Koenraad, “Structural and optical changes induced by incorporation of antimony into InAs/GaAs(001) quantum dots,” Phys. Rev. B 82, 235316 (2010).

Verma, V. B.

D. Elvira, X. Hachair, V. B. Verma, R. Braive, G. Beaudoin, I. Robert-Philip, I. Sagnes, B. Baek, S. W. Nam, E. A. Dauler, I. Abram, M. J. Stevens, A. Beveratos, “Higher–order photon correlations in pulsed photonic crystal nanolasers,” Phys. Rev. A 84, 061802 (2011).
[Crossref]

Vuckovic, J.

G. Shambat, S. R. Kothapalli, J. Provine, T. Sarmiento, J. Harris, S. S. Gambhir, J. Vučković, “Single-cell photonic nanocavity probes,” Nano Lett. 13, 4999–5005 (2013).

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, J. Vučković, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photonics 5, 297–300 (2011).
[Crossref]

Y. Gong, B. Ellis, G. Shambat, T. Sarmiento, J. S. Harris, J. Vučković, “Nanobeam photonic crystal cavity quantum dot laser,” Opt. Express 18, 8781–8789 (2010).
[Crossref]

O. Painter, J. Vučković, A. Scherer, “Defect modes of a two–dimensional photonic crystal in an optically thin dielectric slab,” J. Opt. Soc. Am. B 16, 275–285 (1999).
[Crossref]

Watanabe, K.

Wibbelhoff, O.

W. Lei, M. Offer, A. Lorke, C. Notthoff, C. Meier, O. Wibbelhoff, A. D. Wieck, “Probing the band structure of InAs–GaAs quantum dots by capacitance–voltage and photoluminescence spectroscopy,” Appl. Phys. Lett. 92, 193111 (2008).
[Crossref]

Wieck, A. D.

W. Lei, M. Offer, A. Lorke, C. Notthoff, C. Meier, O. Wibbelhoff, A. D. Wieck, “Probing the band structure of InAs–GaAs quantum dots by capacitance–voltage and photoluminescence spectroscopy,” Appl. Phys. Lett. 92, 193111 (2008).
[Crossref]

Wiersig, J.

J. Wiersig, C. Gies, F. Jahnke, M. Assmann, T. Berstermann, M. Bayer, C. Kistner, S. Reitzenstein, C. Schneider, S. Höfling, A. Forchel, C. Kruse, J. Kalden, D. Hommel, “Direct observation of correlations between individual photon emission events of a microcavity laser,” Nature 460, 245–249 (2009).
[Crossref]

Yamamoto, Y.

G. Björk, A. Karlsson, Y. Yamamoto, “Definition of a laser threshold,” Phys. Rev. A 50, 1675–1680 (1994).
[Crossref]

G. Björk, A. Karlsson, Y. Yamamoto, “On the linewidth of microcavity lasers,” Appl. Phys. Lett. 60, 304–306 (1992).
[Crossref]

Yoshie, T.

T. Yoshie, O. B. Shchekin, H. Chen, D. G. Deppe, A. Scherer, “Quantum dot photonic crystal lasers,” Electron. Lett. 38, 967–968 (2002).
[Crossref]

Appl. Phys. Lett. (7)

Y. Arakawa, H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett. 40, 939–941 (1982).
[Crossref]

M. Nomura, Y. Ota, N. Kumagai, S. Iwamoto, Y. Arakawa, “Zero-cell photonic crystal nanocavity laser with quantum dot gain,” Appl. Phys. Lett. 97, 191108 (2010).
[Crossref]

M. Geller, A. Marent, T. Nowozin, D. Bimberg, N. Akçay, N. Öncan, “A write time of 6  ns for quantum dot based memory structures,” Appl. Phys. Lett. 92, 092108 (2008).
[Crossref]

J. M. Ripalda, D. Alonso-Álvarez, B. Alén, A. G. Taboada, J. M. García, Y. González, L. González, “Enhancement of the room temperature luminescence of InAs quantum dots by GaSb capping,” Appl. Phys. Lett. 91, 012111 (2007).
[Crossref]

W. Lei, M. Offer, A. Lorke, C. Notthoff, C. Meier, O. Wibbelhoff, A. D. Wieck, “Probing the band structure of InAs–GaAs quantum dots by capacitance–voltage and photoluminescence spectroscopy,” Appl. Phys. Lett. 92, 193111 (2008).
[Crossref]

J. Canet-Ferrer, I. Prieto, G. Muñoz-Matutano, L. J. Martínez, L. E. Muñoz-Camúñez, J. M. Llorens, D. Fuster, B. Alén, Y. González, L. González, P. A. Postigo, J. P. Martínez-Pastor, “Excitation power dependence of the Purcell effect in photonic crystal microcavity lasers with quantum wires,” Appl. Phys. Lett. 102, 201105 (2013).
[Crossref]

G. Björk, A. Karlsson, Y. Yamamoto, “On the linewidth of microcavity lasers,” Appl. Phys. Lett. 60, 304–306 (1992).
[Crossref]

Electron. Lett. (1)

T. Yoshie, O. B. Shchekin, H. Chen, D. G. Deppe, A. Scherer, “Quantum dot photonic crystal lasers,” Electron. Lett. 38, 967–968 (2002).
[Crossref]

IEEE J. Quantum Electron. (2)

M. Asada, Y. Miyamoto, Y. Suematsu, “Gain and the threshold of three-dimensional quantum-box lasers,” IEEE J. Quantum Electron. 22, 1915–1921 (1986).
[Crossref]

J. S. T. Smalley, Y. Fainman, “Temperature dependence of the spontaneous emission factor in subwavelength semiconductor lasers,” IEEE J. Quantum Electron. 50, 175–185 (2014).
[Crossref]

J. Appl. Phys. (2)

Y. T. Dai, J. C. Fan, Y. F. Chen, R. M. Lin, S. C. Lee, H. H. Lin, “Temperature dependence of photoluminescence spectra in InAs/GaAs quantum dot superlattices with large thicknesses,” J. Appl. Phys. 82, 4489–4492 (1997).
[Crossref]

S. H. Kim, G. H. Kim, S. K. Kim, H. G. Park, Y. H. Lee, S. B. Kim, “Characteristics of a stick waveguide resonator in a two-dimensional photonic crystal slab,” J. Appl. Phys. 95, 411–416 (2004).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Vac. Sci. Technol. B (1)

I. Prieto, L. E. Muñoz-Camúñez, A. G. Taboada, C. Robles, J. M. Ripalda, P. A. Postigo, “Fabrication of high quality factor GaAs/InAsSb photonic crystal microcavities by inductively coupled plasma etching and fast wet etching,” J. Vac. Sci. Technol. B 32, 011204 (2013).

Light Sci. Appl. (1)

W. W. Chow, F. Jahnke, C. Gies, “Emission properties of nanolasers during the transition to lasing,” Light Sci. Appl. 3, e201 (2014).

Nano Lett. (2)

G. Shambat, S. R. Kothapalli, J. Provine, T. Sarmiento, J. Harris, S. S. Gambhir, J. Vučković, “Single-cell photonic nanocavity probes,” Nano Lett. 13, 4999–5005 (2013).

D. Rivas, G. Muñoz-Matutano, J. Canet-Ferrer, R. García-Calzada, G. Trevisi, L. Seravalli, P. Frigeri, J. P. Martínez-Pastor, “Two-color single-photon emission from InAs quantum dots: toward logic information management using quantum light,” Nano Lett. 14, 456–463 (2014).

Nat. Photonics (4)

D. A. B. Miller, “Are optical transistors the logical next step?” Nat. Photonics 4, 3–5 (2010).
[Crossref]

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, S. Toru, T. Sato, Y. Kawaguchi, M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13  fJ of energy consumed per bit transmitted,” Nat. Photonics 4, 648–654 (2010).
[Crossref]

R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photonics 3, 696–705 (2009).
[Crossref]

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, J. Vučković, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photonics 5, 297–300 (2011).
[Crossref]

Nat. Phys. (1)

M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, Y. Arakawa, “Laser oscillation in a strongly coupled single–quantum–dot–nanocavity system,” Nat. Phys. 6, 279–283 (2010).
[Crossref]

Nature (2)

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482, 204–207 (2012).
[Crossref]

J. Wiersig, C. Gies, F. Jahnke, M. Assmann, T. Berstermann, M. Bayer, C. Kistner, S. Reitzenstein, C. Schneider, S. Höfling, A. Forchel, C. Kruse, J. Kalden, D. Hommel, “Direct observation of correlations between individual photon emission events of a microcavity laser,” Nature 460, 245–249 (2009).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Phys. Rev. A (3)

D. Elvira, X. Hachair, V. B. Verma, R. Braive, G. Beaudoin, I. Robert-Philip, I. Sagnes, B. Baek, S. W. Nam, E. A. Dauler, I. Abram, M. J. Stevens, A. Beveratos, “Higher–order photon correlations in pulsed photonic crystal nanolasers,” Phys. Rev. A 84, 061802 (2011).
[Crossref]

G. Björk, A. Karlsson, Y. Yamamoto, “Definition of a laser threshold,” Phys. Rev. A 50, 1675–1680 (1994).
[Crossref]

I. Protsenko, P. Domokos, V. Lefèvre-Seguin, J. Hare, J. M. Raimond, L. Davidovich, “Quantum theory of a thresholdless laser,” Phys. Rev. A 59, 1667–1682 (1999).
[Crossref]

Phys. Rev. B (4)

M. Bayer, A. Forchel, “Temperature dependence of the exciton homogeneous linewidth in In0.60Ga0.40As/GaAs self–assembled quantum dots,” Phys. Rev. B 65, 041308 (2002).

S. Sanguinetti, M. Henini, M. G. Alessi, M. Capizzi, P. Frigeri, S. Franchi, “Carrier thermal escape and retrapping in self-assembled quantum dots,” Phys. Rev. B 60, 8276–8283 (1999).

A. G. Taboada, J. M. Llorens, D. Alonso-Álvarez, B. Alén, A. Rivera, Y. González, J. M. Ripalda, “Effect of Sb incorporation on the electronic structure of InAs quantum dots,” Phys. Rev. B 88, 085308 (2013).

A. G. Taboada, A. M. Sánchez, A. M. Beltrán, M. Bozkurt, D. Alonso-Álvarez, B. Alén, A. Rivera, J. M. Ripalda, J. M. Llorens, J. Martín-Sánchez, Y. González, J. M. Ulloa, J. M. García, S. I. Molina, P. M. Koenraad, “Structural and optical changes induced by incorporation of antimony into InAs/GaAs(001) quantum dots,” Phys. Rev. B 82, 235316 (2010).

Phys. Rev. Lett. (3)

J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81, 1110–1113 (1998).
[Crossref]

F. D. Martini, G. R. Jacobovitz, “Anomalous spontaneous stimulated decay phase transition and zero-threshold laser action in a microscopic cavity,” Phys. Rev. Lett. 60, 1711–1714 (1988).
[Crossref]

S. Strauf, K. Hennessy, M. T. Rakher, Y. S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96, 127404 (2006).
[Crossref]

Science (1)

S. Noda, “Seeking the ultimate nanolaser,” Science 314, 260–261 (2006).
[Crossref]

Supplementary Material (1)

» Supplement 1: PDF (1212 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1.
Fig. 1. (a) Calculation of the electric field distribution | E | 2 of the L9-PCM fundamental mode. (b) Scanning electron microscopy image of a L9-PCM. (c) PL of the ensemble of the QDs outside of the PCM (black line) and PL of a L9-PCM (filled gray) showing the mode structure. The inset shows a schematic diagram of the epitaxial material.
Fig. 2.
Fig. 2. (a) Light-in versus light-out (LL-curve) characteristics of the L9-PCM laser for different β values (gray lines) in logarithmic scale; the best fit (red line) is for β = 0.85 . (b) Evolution of the linewidth of the L9-PCM resonant mode with the excitation power. (c) Analysis of the differential efficiency calculated from the LL data (dots) and from the fit for β = 0.85 (line). Error bars in (b) are referred to the statistical deviation analysis. Gray region in (a) and (b) marks the ASE region.

Metrics