Abstract

When photons in an optical cavity couple to a sharp electronic resonance, new states appear that are mixed states of photons and excitons, known as polaritons. The polaritons can be viewed as photons with an effective mass and with repulsive interactions. In the studies reported here, we have resonantly injected polaritons into a cavity and tracked them in time and space over millimeter distances as they experience a force due to a gradient of cavity width. Their motion is well described by the equations of motion for a moving mass under a constant force, that is, a parabolic trajectory. This can be called “slow reflection,” as the photons gradually decelerate, turn around, and go back the other direction. From these measurements we can accurately measure the lifetime of the polaritons in our samples to be 180±10ps, over 1 order of magnitude longer than previous works. This corresponds to a cavity leakage time of 135 ps and a cavity Q of 320,000. Additionally, we have shown the same effect with polaritons generated by direct two-photon excitation of the polariton states, allowing the possibility of modulation of two-photon absorption by a polariton condensate.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Enhanced coherence between condensates formed resonantly at different times.

Alex Hayat, Christoph Lange, Lee A. Rozema, Rockson Chang, Shreyas Potnis, Henry M. van Driel, Aephraim M. Steinberg, Mark Steger, David W. Snoke, Loren N. Pfeiffer, and Kenneth W. West
Opt. Express 22(25) 30559-30570 (2014)

Time-resolved two-photon excitation of long-lifetime polaritons

Chitra Gautham, Mark Steger, David Snoke, Ken West, and Loren Pfeiffer
Optica 4(1) 118-123 (2017)

Damping Effects on the Polariton and Plasmariton Dispersion Curves in n-GaAs

R. R. ALFANO
J. Opt. Soc. Am. 60(1) 66-69 (1970)

References

  • View by:
  • |
  • |
  • |

  1. C. Weisbuch, M. Nishioka, A. Ishikawa, Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69, 3314–3317 (1992).
    [Crossref]
  2. J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, L. S. Dang, “Bose–Einstein condensation of exciton polaritons,” Nature 443, 409–414 (2006).
    [Crossref]
  3. R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, K. West, “Bose-Einstein condensation of microcavity polaritons in a trap,” Science 316, 1007–1010 (2007).
    [Crossref]
  4. K. G. Lagoudakis, F. Manni, B. Pietka, M. Wouters, T. C. H. Liew, V. Savona, A. V. Kavokin, R. André, B. Deveaud-Plédran, “Probing the dynamics of spontaneous quantum vortices in polariton superfluids,” Phys. Rev. Lett. 106, 115301 (2011).
    [Crossref]
  5. A. Amo, S. Pigeon, D. Sanvitto, V. G. Sala, R. Hivet, I. Carusotto, F. Pisanello, G. Lemenager, R. Houdre, E. Giacobino, C. Ciuti, A. Bramati, “Polariton superfluids reveal quantum hydrodynamic solitons,” Science 332, 1167–1170 (2011).
    [Crossref]
  6. B. Nelsen, G. Liu, M. Steger, D. W. Snoke, R. Balili, K. West, L. Pfeiffer, “Dissipationless flow and sharp threshold of a polariton condensate with long lifetime,” Phys. Rev. X 3, 041015 (2013).
    [Crossref]
  7. M. Steger, G. Liu, B. Nelsen, C. Gautham, D. W. Snoke, R. Balili, L. Pfeiffer, K. West, “Long-range ballistic motion and coherent flow of long-lifetime polaritons,” Phys. Rev. B 88, 235314 (2013).
    [Crossref]
  8. A. V. Kavokin, J. J. Baumberg, G. Malpuech, F. P. Laussy, Microcavities (Oxford University, 2007).
  9. F. Tassone, Y. Yamamoto, “Lasing and squeezing of composite bosons in a semiconductor microcavity,” Phys. Rev. A 62, 063809 (2000).
    [Crossref]
  10. H. Deng, G. Weihs, D. Snoke, J. Bloch, Y. Yamamoto, “Polariton lasing vs. photon lasing in a semiconductor microcavity,” Proc. Natl. Acad. Sci. USA 100, 15318–15323 (2003).
    [Crossref]
  11. G. Tosi, G. Christmann, N. G. Berloff, P. Tsotsis, T. Gao, Z. Hatzopoulos, P. G. Savvidis, J. J. Baumberg, “Sculpting oscillators with light within a nonlinear quantum fluid,” Nat. Phys. 8, 190–194 (2012).
    [Crossref]
  12. E. Wertz, L. Ferrier, D. Solnyshkov, R. Johne, D. Sanvitto, A. Lemaître, I. Sagnes, R. Grousson, A. V. Kavokin, P. Senellart, G. Malpuech, J. Bloch, “Spontaneous formation and optical manipulation of extended polariton condensates,” Nat. Phys. 6, 860–864 (2010).
    [Crossref]
  13. V. Pellegrini, R. Colombelli, I. Carusotto, F. Beltram, S. Rubini, R. Lantier, A. Franciosi, C. Vinegoni, L. Pavesi, “Resonant second harmonic generation in ZnSe bulk microcavity,” Appl. Phys. Lett. 74, 1945–1947 (1999).
    [Crossref]
  14. S. Lei, Y. Yao, Z. Li, T. Yu, Z. Zou, “Design and theoretical analysis of resonant cavity for second-harmonic generation with high efficiency,” Appl. Phys. Lett. 98, 031102 (2011).
    [Crossref]
  15. D. Ballarini, M. De Giorgi, E. Cancellieri, R. Houdré, E. Giacobino, R. Cingolani, A. Bramati, G. Gigli, D. Sanvitto, “All-optical polariton transistor,” Nat. Commun. 4, 1778 (2013).
    [Crossref]

2013 (3)

B. Nelsen, G. Liu, M. Steger, D. W. Snoke, R. Balili, K. West, L. Pfeiffer, “Dissipationless flow and sharp threshold of a polariton condensate with long lifetime,” Phys. Rev. X 3, 041015 (2013).
[Crossref]

M. Steger, G. Liu, B. Nelsen, C. Gautham, D. W. Snoke, R. Balili, L. Pfeiffer, K. West, “Long-range ballistic motion and coherent flow of long-lifetime polaritons,” Phys. Rev. B 88, 235314 (2013).
[Crossref]

D. Ballarini, M. De Giorgi, E. Cancellieri, R. Houdré, E. Giacobino, R. Cingolani, A. Bramati, G. Gigli, D. Sanvitto, “All-optical polariton transistor,” Nat. Commun. 4, 1778 (2013).
[Crossref]

2012 (1)

G. Tosi, G. Christmann, N. G. Berloff, P. Tsotsis, T. Gao, Z. Hatzopoulos, P. G. Savvidis, J. J. Baumberg, “Sculpting oscillators with light within a nonlinear quantum fluid,” Nat. Phys. 8, 190–194 (2012).
[Crossref]

2011 (3)

S. Lei, Y. Yao, Z. Li, T. Yu, Z. Zou, “Design and theoretical analysis of resonant cavity for second-harmonic generation with high efficiency,” Appl. Phys. Lett. 98, 031102 (2011).
[Crossref]

K. G. Lagoudakis, F. Manni, B. Pietka, M. Wouters, T. C. H. Liew, V. Savona, A. V. Kavokin, R. André, B. Deveaud-Plédran, “Probing the dynamics of spontaneous quantum vortices in polariton superfluids,” Phys. Rev. Lett. 106, 115301 (2011).
[Crossref]

A. Amo, S. Pigeon, D. Sanvitto, V. G. Sala, R. Hivet, I. Carusotto, F. Pisanello, G. Lemenager, R. Houdre, E. Giacobino, C. Ciuti, A. Bramati, “Polariton superfluids reveal quantum hydrodynamic solitons,” Science 332, 1167–1170 (2011).
[Crossref]

2010 (1)

E. Wertz, L. Ferrier, D. Solnyshkov, R. Johne, D. Sanvitto, A. Lemaître, I. Sagnes, R. Grousson, A. V. Kavokin, P. Senellart, G. Malpuech, J. Bloch, “Spontaneous formation and optical manipulation of extended polariton condensates,” Nat. Phys. 6, 860–864 (2010).
[Crossref]

2007 (1)

R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, K. West, “Bose-Einstein condensation of microcavity polaritons in a trap,” Science 316, 1007–1010 (2007).
[Crossref]

2006 (1)

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, L. S. Dang, “Bose–Einstein condensation of exciton polaritons,” Nature 443, 409–414 (2006).
[Crossref]

2003 (1)

H. Deng, G. Weihs, D. Snoke, J. Bloch, Y. Yamamoto, “Polariton lasing vs. photon lasing in a semiconductor microcavity,” Proc. Natl. Acad. Sci. USA 100, 15318–15323 (2003).
[Crossref]

2000 (1)

F. Tassone, Y. Yamamoto, “Lasing and squeezing of composite bosons in a semiconductor microcavity,” Phys. Rev. A 62, 063809 (2000).
[Crossref]

1999 (1)

V. Pellegrini, R. Colombelli, I. Carusotto, F. Beltram, S. Rubini, R. Lantier, A. Franciosi, C. Vinegoni, L. Pavesi, “Resonant second harmonic generation in ZnSe bulk microcavity,” Appl. Phys. Lett. 74, 1945–1947 (1999).
[Crossref]

1992 (1)

C. Weisbuch, M. Nishioka, A. Ishikawa, Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69, 3314–3317 (1992).
[Crossref]

Amo, A.

A. Amo, S. Pigeon, D. Sanvitto, V. G. Sala, R. Hivet, I. Carusotto, F. Pisanello, G. Lemenager, R. Houdre, E. Giacobino, C. Ciuti, A. Bramati, “Polariton superfluids reveal quantum hydrodynamic solitons,” Science 332, 1167–1170 (2011).
[Crossref]

André, R.

K. G. Lagoudakis, F. Manni, B. Pietka, M. Wouters, T. C. H. Liew, V. Savona, A. V. Kavokin, R. André, B. Deveaud-Plédran, “Probing the dynamics of spontaneous quantum vortices in polariton superfluids,” Phys. Rev. Lett. 106, 115301 (2011).
[Crossref]

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, L. S. Dang, “Bose–Einstein condensation of exciton polaritons,” Nature 443, 409–414 (2006).
[Crossref]

Arakawa, Y.

C. Weisbuch, M. Nishioka, A. Ishikawa, Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69, 3314–3317 (1992).
[Crossref]

Baas, A.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, L. S. Dang, “Bose–Einstein condensation of exciton polaritons,” Nature 443, 409–414 (2006).
[Crossref]

Balili, R.

B. Nelsen, G. Liu, M. Steger, D. W. Snoke, R. Balili, K. West, L. Pfeiffer, “Dissipationless flow and sharp threshold of a polariton condensate with long lifetime,” Phys. Rev. X 3, 041015 (2013).
[Crossref]

M. Steger, G. Liu, B. Nelsen, C. Gautham, D. W. Snoke, R. Balili, L. Pfeiffer, K. West, “Long-range ballistic motion and coherent flow of long-lifetime polaritons,” Phys. Rev. B 88, 235314 (2013).
[Crossref]

R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, K. West, “Bose-Einstein condensation of microcavity polaritons in a trap,” Science 316, 1007–1010 (2007).
[Crossref]

Ballarini, D.

D. Ballarini, M. De Giorgi, E. Cancellieri, R. Houdré, E. Giacobino, R. Cingolani, A. Bramati, G. Gigli, D. Sanvitto, “All-optical polariton transistor,” Nat. Commun. 4, 1778 (2013).
[Crossref]

Baumberg, J. J.

G. Tosi, G. Christmann, N. G. Berloff, P. Tsotsis, T. Gao, Z. Hatzopoulos, P. G. Savvidis, J. J. Baumberg, “Sculpting oscillators with light within a nonlinear quantum fluid,” Nat. Phys. 8, 190–194 (2012).
[Crossref]

A. V. Kavokin, J. J. Baumberg, G. Malpuech, F. P. Laussy, Microcavities (Oxford University, 2007).

Beltram, F.

V. Pellegrini, R. Colombelli, I. Carusotto, F. Beltram, S. Rubini, R. Lantier, A. Franciosi, C. Vinegoni, L. Pavesi, “Resonant second harmonic generation in ZnSe bulk microcavity,” Appl. Phys. Lett. 74, 1945–1947 (1999).
[Crossref]

Berloff, N. G.

G. Tosi, G. Christmann, N. G. Berloff, P. Tsotsis, T. Gao, Z. Hatzopoulos, P. G. Savvidis, J. J. Baumberg, “Sculpting oscillators with light within a nonlinear quantum fluid,” Nat. Phys. 8, 190–194 (2012).
[Crossref]

Bloch, J.

E. Wertz, L. Ferrier, D. Solnyshkov, R. Johne, D. Sanvitto, A. Lemaître, I. Sagnes, R. Grousson, A. V. Kavokin, P. Senellart, G. Malpuech, J. Bloch, “Spontaneous formation and optical manipulation of extended polariton condensates,” Nat. Phys. 6, 860–864 (2010).
[Crossref]

H. Deng, G. Weihs, D. Snoke, J. Bloch, Y. Yamamoto, “Polariton lasing vs. photon lasing in a semiconductor microcavity,” Proc. Natl. Acad. Sci. USA 100, 15318–15323 (2003).
[Crossref]

Bramati, A.

D. Ballarini, M. De Giorgi, E. Cancellieri, R. Houdré, E. Giacobino, R. Cingolani, A. Bramati, G. Gigli, D. Sanvitto, “All-optical polariton transistor,” Nat. Commun. 4, 1778 (2013).
[Crossref]

A. Amo, S. Pigeon, D. Sanvitto, V. G. Sala, R. Hivet, I. Carusotto, F. Pisanello, G. Lemenager, R. Houdre, E. Giacobino, C. Ciuti, A. Bramati, “Polariton superfluids reveal quantum hydrodynamic solitons,” Science 332, 1167–1170 (2011).
[Crossref]

Cancellieri, E.

D. Ballarini, M. De Giorgi, E. Cancellieri, R. Houdré, E. Giacobino, R. Cingolani, A. Bramati, G. Gigli, D. Sanvitto, “All-optical polariton transistor,” Nat. Commun. 4, 1778 (2013).
[Crossref]

Carusotto, I.

A. Amo, S. Pigeon, D. Sanvitto, V. G. Sala, R. Hivet, I. Carusotto, F. Pisanello, G. Lemenager, R. Houdre, E. Giacobino, C. Ciuti, A. Bramati, “Polariton superfluids reveal quantum hydrodynamic solitons,” Science 332, 1167–1170 (2011).
[Crossref]

V. Pellegrini, R. Colombelli, I. Carusotto, F. Beltram, S. Rubini, R. Lantier, A. Franciosi, C. Vinegoni, L. Pavesi, “Resonant second harmonic generation in ZnSe bulk microcavity,” Appl. Phys. Lett. 74, 1945–1947 (1999).
[Crossref]

Christmann, G.

G. Tosi, G. Christmann, N. G. Berloff, P. Tsotsis, T. Gao, Z. Hatzopoulos, P. G. Savvidis, J. J. Baumberg, “Sculpting oscillators with light within a nonlinear quantum fluid,” Nat. Phys. 8, 190–194 (2012).
[Crossref]

Cingolani, R.

D. Ballarini, M. De Giorgi, E. Cancellieri, R. Houdré, E. Giacobino, R. Cingolani, A. Bramati, G. Gigli, D. Sanvitto, “All-optical polariton transistor,” Nat. Commun. 4, 1778 (2013).
[Crossref]

Ciuti, C.

A. Amo, S. Pigeon, D. Sanvitto, V. G. Sala, R. Hivet, I. Carusotto, F. Pisanello, G. Lemenager, R. Houdre, E. Giacobino, C. Ciuti, A. Bramati, “Polariton superfluids reveal quantum hydrodynamic solitons,” Science 332, 1167–1170 (2011).
[Crossref]

Colombelli, R.

V. Pellegrini, R. Colombelli, I. Carusotto, F. Beltram, S. Rubini, R. Lantier, A. Franciosi, C. Vinegoni, L. Pavesi, “Resonant second harmonic generation in ZnSe bulk microcavity,” Appl. Phys. Lett. 74, 1945–1947 (1999).
[Crossref]

Dang, L. S.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, L. S. Dang, “Bose–Einstein condensation of exciton polaritons,” Nature 443, 409–414 (2006).
[Crossref]

De Giorgi, M.

D. Ballarini, M. De Giorgi, E. Cancellieri, R. Houdré, E. Giacobino, R. Cingolani, A. Bramati, G. Gigli, D. Sanvitto, “All-optical polariton transistor,” Nat. Commun. 4, 1778 (2013).
[Crossref]

Deng, H.

H. Deng, G. Weihs, D. Snoke, J. Bloch, Y. Yamamoto, “Polariton lasing vs. photon lasing in a semiconductor microcavity,” Proc. Natl. Acad. Sci. USA 100, 15318–15323 (2003).
[Crossref]

Deveaud, B.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, L. S. Dang, “Bose–Einstein condensation of exciton polaritons,” Nature 443, 409–414 (2006).
[Crossref]

Deveaud-Plédran, B.

K. G. Lagoudakis, F. Manni, B. Pietka, M. Wouters, T. C. H. Liew, V. Savona, A. V. Kavokin, R. André, B. Deveaud-Plédran, “Probing the dynamics of spontaneous quantum vortices in polariton superfluids,” Phys. Rev. Lett. 106, 115301 (2011).
[Crossref]

Ferrier, L.

E. Wertz, L. Ferrier, D. Solnyshkov, R. Johne, D. Sanvitto, A. Lemaître, I. Sagnes, R. Grousson, A. V. Kavokin, P. Senellart, G. Malpuech, J. Bloch, “Spontaneous formation and optical manipulation of extended polariton condensates,” Nat. Phys. 6, 860–864 (2010).
[Crossref]

Franciosi, A.

V. Pellegrini, R. Colombelli, I. Carusotto, F. Beltram, S. Rubini, R. Lantier, A. Franciosi, C. Vinegoni, L. Pavesi, “Resonant second harmonic generation in ZnSe bulk microcavity,” Appl. Phys. Lett. 74, 1945–1947 (1999).
[Crossref]

Gao, T.

G. Tosi, G. Christmann, N. G. Berloff, P. Tsotsis, T. Gao, Z. Hatzopoulos, P. G. Savvidis, J. J. Baumberg, “Sculpting oscillators with light within a nonlinear quantum fluid,” Nat. Phys. 8, 190–194 (2012).
[Crossref]

Gautham, C.

M. Steger, G. Liu, B. Nelsen, C. Gautham, D. W. Snoke, R. Balili, L. Pfeiffer, K. West, “Long-range ballistic motion and coherent flow of long-lifetime polaritons,” Phys. Rev. B 88, 235314 (2013).
[Crossref]

Giacobino, E.

D. Ballarini, M. De Giorgi, E. Cancellieri, R. Houdré, E. Giacobino, R. Cingolani, A. Bramati, G. Gigli, D. Sanvitto, “All-optical polariton transistor,” Nat. Commun. 4, 1778 (2013).
[Crossref]

A. Amo, S. Pigeon, D. Sanvitto, V. G. Sala, R. Hivet, I. Carusotto, F. Pisanello, G. Lemenager, R. Houdre, E. Giacobino, C. Ciuti, A. Bramati, “Polariton superfluids reveal quantum hydrodynamic solitons,” Science 332, 1167–1170 (2011).
[Crossref]

Gigli, G.

D. Ballarini, M. De Giorgi, E. Cancellieri, R. Houdré, E. Giacobino, R. Cingolani, A. Bramati, G. Gigli, D. Sanvitto, “All-optical polariton transistor,” Nat. Commun. 4, 1778 (2013).
[Crossref]

Grousson, R.

E. Wertz, L. Ferrier, D. Solnyshkov, R. Johne, D. Sanvitto, A. Lemaître, I. Sagnes, R. Grousson, A. V. Kavokin, P. Senellart, G. Malpuech, J. Bloch, “Spontaneous formation and optical manipulation of extended polariton condensates,” Nat. Phys. 6, 860–864 (2010).
[Crossref]

Hartwell, V.

R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, K. West, “Bose-Einstein condensation of microcavity polaritons in a trap,” Science 316, 1007–1010 (2007).
[Crossref]

Hatzopoulos, Z.

G. Tosi, G. Christmann, N. G. Berloff, P. Tsotsis, T. Gao, Z. Hatzopoulos, P. G. Savvidis, J. J. Baumberg, “Sculpting oscillators with light within a nonlinear quantum fluid,” Nat. Phys. 8, 190–194 (2012).
[Crossref]

Hivet, R.

A. Amo, S. Pigeon, D. Sanvitto, V. G. Sala, R. Hivet, I. Carusotto, F. Pisanello, G. Lemenager, R. Houdre, E. Giacobino, C. Ciuti, A. Bramati, “Polariton superfluids reveal quantum hydrodynamic solitons,” Science 332, 1167–1170 (2011).
[Crossref]

Houdre, R.

A. Amo, S. Pigeon, D. Sanvitto, V. G. Sala, R. Hivet, I. Carusotto, F. Pisanello, G. Lemenager, R. Houdre, E. Giacobino, C. Ciuti, A. Bramati, “Polariton superfluids reveal quantum hydrodynamic solitons,” Science 332, 1167–1170 (2011).
[Crossref]

Houdré, R.

D. Ballarini, M. De Giorgi, E. Cancellieri, R. Houdré, E. Giacobino, R. Cingolani, A. Bramati, G. Gigli, D. Sanvitto, “All-optical polariton transistor,” Nat. Commun. 4, 1778 (2013).
[Crossref]

Ishikawa, A.

C. Weisbuch, M. Nishioka, A. Ishikawa, Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69, 3314–3317 (1992).
[Crossref]

Jeambrun, P.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, L. S. Dang, “Bose–Einstein condensation of exciton polaritons,” Nature 443, 409–414 (2006).
[Crossref]

Johne, R.

E. Wertz, L. Ferrier, D. Solnyshkov, R. Johne, D. Sanvitto, A. Lemaître, I. Sagnes, R. Grousson, A. V. Kavokin, P. Senellart, G. Malpuech, J. Bloch, “Spontaneous formation and optical manipulation of extended polariton condensates,” Nat. Phys. 6, 860–864 (2010).
[Crossref]

Kasprzak, J.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, L. S. Dang, “Bose–Einstein condensation of exciton polaritons,” Nature 443, 409–414 (2006).
[Crossref]

Kavokin, A. V.

K. G. Lagoudakis, F. Manni, B. Pietka, M. Wouters, T. C. H. Liew, V. Savona, A. V. Kavokin, R. André, B. Deveaud-Plédran, “Probing the dynamics of spontaneous quantum vortices in polariton superfluids,” Phys. Rev. Lett. 106, 115301 (2011).
[Crossref]

E. Wertz, L. Ferrier, D. Solnyshkov, R. Johne, D. Sanvitto, A. Lemaître, I. Sagnes, R. Grousson, A. V. Kavokin, P. Senellart, G. Malpuech, J. Bloch, “Spontaneous formation and optical manipulation of extended polariton condensates,” Nat. Phys. 6, 860–864 (2010).
[Crossref]

A. V. Kavokin, J. J. Baumberg, G. Malpuech, F. P. Laussy, Microcavities (Oxford University, 2007).

Keeling, J. M. J.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, L. S. Dang, “Bose–Einstein condensation of exciton polaritons,” Nature 443, 409–414 (2006).
[Crossref]

Kundermann, S.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, L. S. Dang, “Bose–Einstein condensation of exciton polaritons,” Nature 443, 409–414 (2006).
[Crossref]

Lagoudakis, K. G.

K. G. Lagoudakis, F. Manni, B. Pietka, M. Wouters, T. C. H. Liew, V. Savona, A. V. Kavokin, R. André, B. Deveaud-Plédran, “Probing the dynamics of spontaneous quantum vortices in polariton superfluids,” Phys. Rev. Lett. 106, 115301 (2011).
[Crossref]

Lantier, R.

V. Pellegrini, R. Colombelli, I. Carusotto, F. Beltram, S. Rubini, R. Lantier, A. Franciosi, C. Vinegoni, L. Pavesi, “Resonant second harmonic generation in ZnSe bulk microcavity,” Appl. Phys. Lett. 74, 1945–1947 (1999).
[Crossref]

Laussy, F. P.

A. V. Kavokin, J. J. Baumberg, G. Malpuech, F. P. Laussy, Microcavities (Oxford University, 2007).

Lei, S.

S. Lei, Y. Yao, Z. Li, T. Yu, Z. Zou, “Design and theoretical analysis of resonant cavity for second-harmonic generation with high efficiency,” Appl. Phys. Lett. 98, 031102 (2011).
[Crossref]

Lemaître, A.

E. Wertz, L. Ferrier, D. Solnyshkov, R. Johne, D. Sanvitto, A. Lemaître, I. Sagnes, R. Grousson, A. V. Kavokin, P. Senellart, G. Malpuech, J. Bloch, “Spontaneous formation and optical manipulation of extended polariton condensates,” Nat. Phys. 6, 860–864 (2010).
[Crossref]

Lemenager, G.

A. Amo, S. Pigeon, D. Sanvitto, V. G. Sala, R. Hivet, I. Carusotto, F. Pisanello, G. Lemenager, R. Houdre, E. Giacobino, C. Ciuti, A. Bramati, “Polariton superfluids reveal quantum hydrodynamic solitons,” Science 332, 1167–1170 (2011).
[Crossref]

Li, Z.

S. Lei, Y. Yao, Z. Li, T. Yu, Z. Zou, “Design and theoretical analysis of resonant cavity for second-harmonic generation with high efficiency,” Appl. Phys. Lett. 98, 031102 (2011).
[Crossref]

Liew, T. C. H.

K. G. Lagoudakis, F. Manni, B. Pietka, M. Wouters, T. C. H. Liew, V. Savona, A. V. Kavokin, R. André, B. Deveaud-Plédran, “Probing the dynamics of spontaneous quantum vortices in polariton superfluids,” Phys. Rev. Lett. 106, 115301 (2011).
[Crossref]

Littlewood, P. B.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, L. S. Dang, “Bose–Einstein condensation of exciton polaritons,” Nature 443, 409–414 (2006).
[Crossref]

Liu, G.

B. Nelsen, G. Liu, M. Steger, D. W. Snoke, R. Balili, K. West, L. Pfeiffer, “Dissipationless flow and sharp threshold of a polariton condensate with long lifetime,” Phys. Rev. X 3, 041015 (2013).
[Crossref]

M. Steger, G. Liu, B. Nelsen, C. Gautham, D. W. Snoke, R. Balili, L. Pfeiffer, K. West, “Long-range ballistic motion and coherent flow of long-lifetime polaritons,” Phys. Rev. B 88, 235314 (2013).
[Crossref]

Malpuech, G.

E. Wertz, L. Ferrier, D. Solnyshkov, R. Johne, D. Sanvitto, A. Lemaître, I. Sagnes, R. Grousson, A. V. Kavokin, P. Senellart, G. Malpuech, J. Bloch, “Spontaneous formation and optical manipulation of extended polariton condensates,” Nat. Phys. 6, 860–864 (2010).
[Crossref]

A. V. Kavokin, J. J. Baumberg, G. Malpuech, F. P. Laussy, Microcavities (Oxford University, 2007).

Manni, F.

K. G. Lagoudakis, F. Manni, B. Pietka, M. Wouters, T. C. H. Liew, V. Savona, A. V. Kavokin, R. André, B. Deveaud-Plédran, “Probing the dynamics of spontaneous quantum vortices in polariton superfluids,” Phys. Rev. Lett. 106, 115301 (2011).
[Crossref]

Marchetti, F. M.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, L. S. Dang, “Bose–Einstein condensation of exciton polaritons,” Nature 443, 409–414 (2006).
[Crossref]

Nelsen, B.

M. Steger, G. Liu, B. Nelsen, C. Gautham, D. W. Snoke, R. Balili, L. Pfeiffer, K. West, “Long-range ballistic motion and coherent flow of long-lifetime polaritons,” Phys. Rev. B 88, 235314 (2013).
[Crossref]

B. Nelsen, G. Liu, M. Steger, D. W. Snoke, R. Balili, K. West, L. Pfeiffer, “Dissipationless flow and sharp threshold of a polariton condensate with long lifetime,” Phys. Rev. X 3, 041015 (2013).
[Crossref]

Nishioka, M.

C. Weisbuch, M. Nishioka, A. Ishikawa, Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69, 3314–3317 (1992).
[Crossref]

Pavesi, L.

V. Pellegrini, R. Colombelli, I. Carusotto, F. Beltram, S. Rubini, R. Lantier, A. Franciosi, C. Vinegoni, L. Pavesi, “Resonant second harmonic generation in ZnSe bulk microcavity,” Appl. Phys. Lett. 74, 1945–1947 (1999).
[Crossref]

Pellegrini, V.

V. Pellegrini, R. Colombelli, I. Carusotto, F. Beltram, S. Rubini, R. Lantier, A. Franciosi, C. Vinegoni, L. Pavesi, “Resonant second harmonic generation in ZnSe bulk microcavity,” Appl. Phys. Lett. 74, 1945–1947 (1999).
[Crossref]

Pfeiffer, L.

B. Nelsen, G. Liu, M. Steger, D. W. Snoke, R. Balili, K. West, L. Pfeiffer, “Dissipationless flow and sharp threshold of a polariton condensate with long lifetime,” Phys. Rev. X 3, 041015 (2013).
[Crossref]

M. Steger, G. Liu, B. Nelsen, C. Gautham, D. W. Snoke, R. Balili, L. Pfeiffer, K. West, “Long-range ballistic motion and coherent flow of long-lifetime polaritons,” Phys. Rev. B 88, 235314 (2013).
[Crossref]

R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, K. West, “Bose-Einstein condensation of microcavity polaritons in a trap,” Science 316, 1007–1010 (2007).
[Crossref]

Pietka, B.

K. G. Lagoudakis, F. Manni, B. Pietka, M. Wouters, T. C. H. Liew, V. Savona, A. V. Kavokin, R. André, B. Deveaud-Plédran, “Probing the dynamics of spontaneous quantum vortices in polariton superfluids,” Phys. Rev. Lett. 106, 115301 (2011).
[Crossref]

Pigeon, S.

A. Amo, S. Pigeon, D. Sanvitto, V. G. Sala, R. Hivet, I. Carusotto, F. Pisanello, G. Lemenager, R. Houdre, E. Giacobino, C. Ciuti, A. Bramati, “Polariton superfluids reveal quantum hydrodynamic solitons,” Science 332, 1167–1170 (2011).
[Crossref]

Pisanello, F.

A. Amo, S. Pigeon, D. Sanvitto, V. G. Sala, R. Hivet, I. Carusotto, F. Pisanello, G. Lemenager, R. Houdre, E. Giacobino, C. Ciuti, A. Bramati, “Polariton superfluids reveal quantum hydrodynamic solitons,” Science 332, 1167–1170 (2011).
[Crossref]

Richard, M.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, L. S. Dang, “Bose–Einstein condensation of exciton polaritons,” Nature 443, 409–414 (2006).
[Crossref]

Rubini, S.

V. Pellegrini, R. Colombelli, I. Carusotto, F. Beltram, S. Rubini, R. Lantier, A. Franciosi, C. Vinegoni, L. Pavesi, “Resonant second harmonic generation in ZnSe bulk microcavity,” Appl. Phys. Lett. 74, 1945–1947 (1999).
[Crossref]

Sagnes, I.

E. Wertz, L. Ferrier, D. Solnyshkov, R. Johne, D. Sanvitto, A. Lemaître, I. Sagnes, R. Grousson, A. V. Kavokin, P. Senellart, G. Malpuech, J. Bloch, “Spontaneous formation and optical manipulation of extended polariton condensates,” Nat. Phys. 6, 860–864 (2010).
[Crossref]

Sala, V. G.

A. Amo, S. Pigeon, D. Sanvitto, V. G. Sala, R. Hivet, I. Carusotto, F. Pisanello, G. Lemenager, R. Houdre, E. Giacobino, C. Ciuti, A. Bramati, “Polariton superfluids reveal quantum hydrodynamic solitons,” Science 332, 1167–1170 (2011).
[Crossref]

Sanvitto, D.

D. Ballarini, M. De Giorgi, E. Cancellieri, R. Houdré, E. Giacobino, R. Cingolani, A. Bramati, G. Gigli, D. Sanvitto, “All-optical polariton transistor,” Nat. Commun. 4, 1778 (2013).
[Crossref]

A. Amo, S. Pigeon, D. Sanvitto, V. G. Sala, R. Hivet, I. Carusotto, F. Pisanello, G. Lemenager, R. Houdre, E. Giacobino, C. Ciuti, A. Bramati, “Polariton superfluids reveal quantum hydrodynamic solitons,” Science 332, 1167–1170 (2011).
[Crossref]

E. Wertz, L. Ferrier, D. Solnyshkov, R. Johne, D. Sanvitto, A. Lemaître, I. Sagnes, R. Grousson, A. V. Kavokin, P. Senellart, G. Malpuech, J. Bloch, “Spontaneous formation and optical manipulation of extended polariton condensates,” Nat. Phys. 6, 860–864 (2010).
[Crossref]

Savona, V.

K. G. Lagoudakis, F. Manni, B. Pietka, M. Wouters, T. C. H. Liew, V. Savona, A. V. Kavokin, R. André, B. Deveaud-Plédran, “Probing the dynamics of spontaneous quantum vortices in polariton superfluids,” Phys. Rev. Lett. 106, 115301 (2011).
[Crossref]

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, L. S. Dang, “Bose–Einstein condensation of exciton polaritons,” Nature 443, 409–414 (2006).
[Crossref]

Savvidis, P. G.

G. Tosi, G. Christmann, N. G. Berloff, P. Tsotsis, T. Gao, Z. Hatzopoulos, P. G. Savvidis, J. J. Baumberg, “Sculpting oscillators with light within a nonlinear quantum fluid,” Nat. Phys. 8, 190–194 (2012).
[Crossref]

Senellart, P.

E. Wertz, L. Ferrier, D. Solnyshkov, R. Johne, D. Sanvitto, A. Lemaître, I. Sagnes, R. Grousson, A. V. Kavokin, P. Senellart, G. Malpuech, J. Bloch, “Spontaneous formation and optical manipulation of extended polariton condensates,” Nat. Phys. 6, 860–864 (2010).
[Crossref]

Snoke, D.

R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, K. West, “Bose-Einstein condensation of microcavity polaritons in a trap,” Science 316, 1007–1010 (2007).
[Crossref]

H. Deng, G. Weihs, D. Snoke, J. Bloch, Y. Yamamoto, “Polariton lasing vs. photon lasing in a semiconductor microcavity,” Proc. Natl. Acad. Sci. USA 100, 15318–15323 (2003).
[Crossref]

Snoke, D. W.

M. Steger, G. Liu, B. Nelsen, C. Gautham, D. W. Snoke, R. Balili, L. Pfeiffer, K. West, “Long-range ballistic motion and coherent flow of long-lifetime polaritons,” Phys. Rev. B 88, 235314 (2013).
[Crossref]

B. Nelsen, G. Liu, M. Steger, D. W. Snoke, R. Balili, K. West, L. Pfeiffer, “Dissipationless flow and sharp threshold of a polariton condensate with long lifetime,” Phys. Rev. X 3, 041015 (2013).
[Crossref]

Solnyshkov, D.

E. Wertz, L. Ferrier, D. Solnyshkov, R. Johne, D. Sanvitto, A. Lemaître, I. Sagnes, R. Grousson, A. V. Kavokin, P. Senellart, G. Malpuech, J. Bloch, “Spontaneous formation and optical manipulation of extended polariton condensates,” Nat. Phys. 6, 860–864 (2010).
[Crossref]

Staehli, J. L.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, L. S. Dang, “Bose–Einstein condensation of exciton polaritons,” Nature 443, 409–414 (2006).
[Crossref]

Steger, M.

B. Nelsen, G. Liu, M. Steger, D. W. Snoke, R. Balili, K. West, L. Pfeiffer, “Dissipationless flow and sharp threshold of a polariton condensate with long lifetime,” Phys. Rev. X 3, 041015 (2013).
[Crossref]

M. Steger, G. Liu, B. Nelsen, C. Gautham, D. W. Snoke, R. Balili, L. Pfeiffer, K. West, “Long-range ballistic motion and coherent flow of long-lifetime polaritons,” Phys. Rev. B 88, 235314 (2013).
[Crossref]

Szymanska, M. H.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, L. S. Dang, “Bose–Einstein condensation of exciton polaritons,” Nature 443, 409–414 (2006).
[Crossref]

Tassone, F.

F. Tassone, Y. Yamamoto, “Lasing and squeezing of composite bosons in a semiconductor microcavity,” Phys. Rev. A 62, 063809 (2000).
[Crossref]

Tosi, G.

G. Tosi, G. Christmann, N. G. Berloff, P. Tsotsis, T. Gao, Z. Hatzopoulos, P. G. Savvidis, J. J. Baumberg, “Sculpting oscillators with light within a nonlinear quantum fluid,” Nat. Phys. 8, 190–194 (2012).
[Crossref]

Tsotsis, P.

G. Tosi, G. Christmann, N. G. Berloff, P. Tsotsis, T. Gao, Z. Hatzopoulos, P. G. Savvidis, J. J. Baumberg, “Sculpting oscillators with light within a nonlinear quantum fluid,” Nat. Phys. 8, 190–194 (2012).
[Crossref]

Vinegoni, C.

V. Pellegrini, R. Colombelli, I. Carusotto, F. Beltram, S. Rubini, R. Lantier, A. Franciosi, C. Vinegoni, L. Pavesi, “Resonant second harmonic generation in ZnSe bulk microcavity,” Appl. Phys. Lett. 74, 1945–1947 (1999).
[Crossref]

Weihs, G.

H. Deng, G. Weihs, D. Snoke, J. Bloch, Y. Yamamoto, “Polariton lasing vs. photon lasing in a semiconductor microcavity,” Proc. Natl. Acad. Sci. USA 100, 15318–15323 (2003).
[Crossref]

Weisbuch, C.

C. Weisbuch, M. Nishioka, A. Ishikawa, Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69, 3314–3317 (1992).
[Crossref]

Wertz, E.

E. Wertz, L. Ferrier, D. Solnyshkov, R. Johne, D. Sanvitto, A. Lemaître, I. Sagnes, R. Grousson, A. V. Kavokin, P. Senellart, G. Malpuech, J. Bloch, “Spontaneous formation and optical manipulation of extended polariton condensates,” Nat. Phys. 6, 860–864 (2010).
[Crossref]

West, K.

M. Steger, G. Liu, B. Nelsen, C. Gautham, D. W. Snoke, R. Balili, L. Pfeiffer, K. West, “Long-range ballistic motion and coherent flow of long-lifetime polaritons,” Phys. Rev. B 88, 235314 (2013).
[Crossref]

B. Nelsen, G. Liu, M. Steger, D. W. Snoke, R. Balili, K. West, L. Pfeiffer, “Dissipationless flow and sharp threshold of a polariton condensate with long lifetime,” Phys. Rev. X 3, 041015 (2013).
[Crossref]

R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, K. West, “Bose-Einstein condensation of microcavity polaritons in a trap,” Science 316, 1007–1010 (2007).
[Crossref]

Wouters, M.

K. G. Lagoudakis, F. Manni, B. Pietka, M. Wouters, T. C. H. Liew, V. Savona, A. V. Kavokin, R. André, B. Deveaud-Plédran, “Probing the dynamics of spontaneous quantum vortices in polariton superfluids,” Phys. Rev. Lett. 106, 115301 (2011).
[Crossref]

Yamamoto, Y.

H. Deng, G. Weihs, D. Snoke, J. Bloch, Y. Yamamoto, “Polariton lasing vs. photon lasing in a semiconductor microcavity,” Proc. Natl. Acad. Sci. USA 100, 15318–15323 (2003).
[Crossref]

F. Tassone, Y. Yamamoto, “Lasing and squeezing of composite bosons in a semiconductor microcavity,” Phys. Rev. A 62, 063809 (2000).
[Crossref]

Yao, Y.

S. Lei, Y. Yao, Z. Li, T. Yu, Z. Zou, “Design and theoretical analysis of resonant cavity for second-harmonic generation with high efficiency,” Appl. Phys. Lett. 98, 031102 (2011).
[Crossref]

Yu, T.

S. Lei, Y. Yao, Z. Li, T. Yu, Z. Zou, “Design and theoretical analysis of resonant cavity for second-harmonic generation with high efficiency,” Appl. Phys. Lett. 98, 031102 (2011).
[Crossref]

Zou, Z.

S. Lei, Y. Yao, Z. Li, T. Yu, Z. Zou, “Design and theoretical analysis of resonant cavity for second-harmonic generation with high efficiency,” Appl. Phys. Lett. 98, 031102 (2011).
[Crossref]

Appl. Phys. Lett. (2)

V. Pellegrini, R. Colombelli, I. Carusotto, F. Beltram, S. Rubini, R. Lantier, A. Franciosi, C. Vinegoni, L. Pavesi, “Resonant second harmonic generation in ZnSe bulk microcavity,” Appl. Phys. Lett. 74, 1945–1947 (1999).
[Crossref]

S. Lei, Y. Yao, Z. Li, T. Yu, Z. Zou, “Design and theoretical analysis of resonant cavity for second-harmonic generation with high efficiency,” Appl. Phys. Lett. 98, 031102 (2011).
[Crossref]

Nat. Commun. (1)

D. Ballarini, M. De Giorgi, E. Cancellieri, R. Houdré, E. Giacobino, R. Cingolani, A. Bramati, G. Gigli, D. Sanvitto, “All-optical polariton transistor,” Nat. Commun. 4, 1778 (2013).
[Crossref]

Nat. Phys. (2)

G. Tosi, G. Christmann, N. G. Berloff, P. Tsotsis, T. Gao, Z. Hatzopoulos, P. G. Savvidis, J. J. Baumberg, “Sculpting oscillators with light within a nonlinear quantum fluid,” Nat. Phys. 8, 190–194 (2012).
[Crossref]

E. Wertz, L. Ferrier, D. Solnyshkov, R. Johne, D. Sanvitto, A. Lemaître, I. Sagnes, R. Grousson, A. V. Kavokin, P. Senellart, G. Malpuech, J. Bloch, “Spontaneous formation and optical manipulation of extended polariton condensates,” Nat. Phys. 6, 860–864 (2010).
[Crossref]

Nature (1)

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, L. S. Dang, “Bose–Einstein condensation of exciton polaritons,” Nature 443, 409–414 (2006).
[Crossref]

Phys. Rev. A (1)

F. Tassone, Y. Yamamoto, “Lasing and squeezing of composite bosons in a semiconductor microcavity,” Phys. Rev. A 62, 063809 (2000).
[Crossref]

Phys. Rev. B (1)

M. Steger, G. Liu, B. Nelsen, C. Gautham, D. W. Snoke, R. Balili, L. Pfeiffer, K. West, “Long-range ballistic motion and coherent flow of long-lifetime polaritons,” Phys. Rev. B 88, 235314 (2013).
[Crossref]

Phys. Rev. Lett. (2)

C. Weisbuch, M. Nishioka, A. Ishikawa, Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69, 3314–3317 (1992).
[Crossref]

K. G. Lagoudakis, F. Manni, B. Pietka, M. Wouters, T. C. H. Liew, V. Savona, A. V. Kavokin, R. André, B. Deveaud-Plédran, “Probing the dynamics of spontaneous quantum vortices in polariton superfluids,” Phys. Rev. Lett. 106, 115301 (2011).
[Crossref]

Phys. Rev. X (1)

B. Nelsen, G. Liu, M. Steger, D. W. Snoke, R. Balili, K. West, L. Pfeiffer, “Dissipationless flow and sharp threshold of a polariton condensate with long lifetime,” Phys. Rev. X 3, 041015 (2013).
[Crossref]

Proc. Natl. Acad. Sci. USA (1)

H. Deng, G. Weihs, D. Snoke, J. Bloch, Y. Yamamoto, “Polariton lasing vs. photon lasing in a semiconductor microcavity,” Proc. Natl. Acad. Sci. USA 100, 15318–15323 (2003).
[Crossref]

Science (2)

A. Amo, S. Pigeon, D. Sanvitto, V. G. Sala, R. Hivet, I. Carusotto, F. Pisanello, G. Lemenager, R. Houdre, E. Giacobino, C. Ciuti, A. Bramati, “Polariton superfluids reveal quantum hydrodynamic solitons,” Science 332, 1167–1170 (2011).
[Crossref]

R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, K. West, “Bose-Einstein condensation of microcavity polaritons in a trap,” Science 316, 1007–1010 (2007).
[Crossref]

Other (1)

A. V. Kavokin, J. J. Baumberg, G. Malpuech, F. P. Laussy, Microcavities (Oxford University, 2007).

Supplementary Material (1)

» Media 1: PDF (498 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Diagram of the experimental setup. The sample is a microcavity polariton wafer consisting of an active GaAs/AlAs cavity layer sandwiched between distributed Bragg reflectors (DBRs) on the top and bottom. See Supplement 1 for full details of the structure. A picosecond pulse is focused onto the sample at a large angle far outside the field of view of the collection optics. The orientation and wavelength of the beam are selected such that resonantly created polaritons flow directly uphill against the gradient and just turn around in the field of view. Emission from returning polaritons is not shown. Image is not to scale.

Fig. 2.
Fig. 2.

Time-integrated observation of the passing polariton pulse. Coordinates are such that the point of injection is defined at ( x , y ) = ( 0 , 0 ) , and the gradient is approximately toward x . Polaritons approach this field of view from the left and turn around at x 2.2 mm before flowing back to x . The sharp cutoff at x = 1.7 mm is due to clipping in the spectrometer.

Fig. 3.
Fig. 3.

Time-resolved observation of passing polariton pulses in the region of 150 μm y 150 μm of Fig. 2. (a) Intensity versus x -distance versus time of the propagating polaritons. The dashed red line is a fit to the polariton motion as they feel a constant acceleration of 36 mm / ns 2 . This acceleration is in good agreement with the expected value based on the known cavity gradient and the effective mass. (b) The polariton intensity of (a) summed in the x -dimension to highlight the exponential decay of the population. The data are well fit by a single exponential decay with lifetime of 180 ± 10 ps .

Fig. 4.
Fig. 4.

Time-resolved polariton emission following two-photon excitation. In these data, a 200 fs pulse tuned to twice the wavelength of the lower polariton is used to generate a population of polaritons. (a) Time-resolved image for polaritons excited at a large angle far away from the observation point, just as in Fig. 3. Unlike the previous data where polaritons are created in a narrow bandwidth related to that of the resonantly exciting picosecond laser, this population exists in a spread of spectral states and thus follows a range of trajectories in x versus t . (b) Time-resolved image for polaritons injected by the femtosecond laser at normal incidence at the point of observation, directly through the microscope objective. The full NA of the objective is used, meaning that we can expect to see polaritons filling a range of momentum states according to the two-photon phase-matching condition of the absorption. The long-lived stationary population is substrate luminescence due to the pump penetrating through the microcavity structure. It should be noted that the point of injection is partially clipped in this figure to allow for imaging the entire turn-around. The inset (c) shows the same conditions as (b) except with the pump spot centered and unclipped.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

| P k = α k | γ k ± β k | e k ,
1 τ k = | α k | 2 τ cav + | β k | 2 τ nonrad .
H = 2 k 2 2 m eff F x .

Metrics