Abstract

Carbon disulfide is the most popular material for applications of nonlinear optical (NLO) liquids, and is frequently used as a reference standard for NLO measurements. Although it has been the subject of many investigations, determination of the third-order optical nonlinearity of CS2 has been incomplete. This is in part because of several strong mechanisms for nonlinear refraction (NLR), leading to a complex pulse width dependence. We expand upon the recently developed beam deflection technique, which we apply, along with degenerate four-wave mixing and Z-scan, to quantitatively characterize (in detail) the NLO response of CS2, over a broad temporal range, spanning 6 orders of magnitude (32fs to 17 ns). The third-order response function, consisting of both nearly instantaneous bound-electronic and noninstantaneous nuclear contributions, along with the polarization and wavelength dependence from 390 to 1550 nm, is extracted from these measurements. This paper provides a self-consistent, quantitative picture of the third-order NLO response of liquid CS2, establishing it as an accurate reference material over this broad temporal and spectral range. These results allow prediction of the outcome of any NLR experiment on CS2.

© 2014 Optical Society of America

Full Article  |  PDF Article

Corrections

Matthew Reichert, Honghua Hu, Manuel R. Ferdinandus, Marcus Seidel, Peng Zhao, Trenton R. Ensley, Davorin Peceli, Jennifer M. Reed, Dmitry A. Fishman, Scott Webster, David J. Hagan, and Eric W. Van Stryland, "Temporal, spectral, and polarization dependence of the nonlinear optical response of carbon disulfide: erratum," Optica 3, 657-658 (2016)
https://www.osapublishing.org/optica/abstract.cfm?uri=optica-3-6-657

OSA Recommended Articles
Temporal and polarization dependence of the nonlinear optical response of solvents

Peng Zhao, Matthew Reichert, Sepehr Benis, David J. Hagan, and Eric W. Van Stryland
Optica 5(5) 583-594 (2018)

Beam deflection measurement of bound-electronic and rotational nonlinear refraction in molecular gases

Matthew Reichert, Peng Zhao, Jennifer M. Reed, Trenton R. Ensley, David J. Hagan, and Eric W. Van Stryland
Opt. Express 23(17) 22224-22237 (2015)

Nonlinear absorption and optical limiting properties of carbon disulfide in a short-wavelength region

Zhi-Bo Liu, Yong-Liang Liu, Bin Zhang, Wen-Yuan Zhou, Jian-Guo Tian, Wei-Ping Zang, and Chun-Ping Zhang
J. Opt. Soc. Am. B 24(5) 1101-1104 (2007)

References

  • View by:
  • |
  • |
  • |

  1. D. McMorrow, W. T. Lotshaw, G. A. Kenney-Wallace, “Femtosecond optical Kerr studies on the origin of the nonlinear responses in simple liquids,” IEEE J. Quantum Electron. 24, 443–454 (1988).
    [Crossref]
  2. P. P. Ho, R. R. Alfano, “Optical Kerr effect in liquids,” Physical Review A 20, 2170–2187 (1979).
    [Crossref]
  3. K. Kamada, “Mechanisms of ultrafast refractive index change in organic system,” Proc. SPIE 4797, 65–75 (2003).
  4. D. McMorrow, N. Thantu, V. Kleiman, J. S. Melinger, W. T. Lotshaw, “Analysis of intermolecular coordinate contributions to third-order ultrafast spectroscopy of liquids in the harmonic oscillator limit,” J. Phys. Chem. A 105, 7960–7972 (2001).
    [Crossref]
  5. T.-H. Huang, C.-C. Hsu, T.-H. Wei, S. Chang, S.-M. Yen, C.-P. Tsai, R.-T. Liu, C.-T. Kuo, W.-S. Tse, C. Chia, “The transient optical Kerr effect of simple liquids studied with an ultrashort laser with variable pulsewidth,” IEEE J. Sel. Top. Quantum Electron. 2, 756–768 (1996).
    [Crossref]
  6. S. Constantine, J. A. Gardecki, Y. Zhou, L. D. Ziegler, X. Ji, B. Space, “A novel technique for the measurement of polarization-specific ultrafast Raman responses,” J. Phys. Chem. A 105, 9851–9858 (2001).
    [Crossref]
  7. C. J. Fecko, J. D. Eaves, A. Tokmakoff, “Isotropic and anisotropic Raman scattering from molecular liquids measured by spatially masked optical Kerr effect spectroscopy,” J. Chem. Phys. 117, 1139–1154 (2002).
    [Crossref]
  8. N. T. Hunt, A. A. Jaye, S. R. Meech, “Polarisation-resolved ultrafast Raman responses of carbon disulfide in solution and microemulsion environments,” Chem. Phys. Lett. 371, 304–310 (2003).
    [Crossref]
  9. T. Steffen, K. Duppen, “Time resolved four- and six-wave mixing in liquids. II. Experiments,” J. Chem. Phys. 106, 3854–3864 (1997).
    [Crossref]
  10. Q.-H. Xu, Y.-Z. Ma, G. R. Fleming, “Heterodyne detected transient grating spectroscopy in resonant and non-resonant systems using a simplified diffractive optics method,” Chem. Phys. Lett. 338, 254–262 (2001).
    [Crossref]
  11. Y. Sato, R. Morita, M. Yamashita, “Study on ultrafast dynamic behaviors of different nonlinear refractive index components in CS2 using a femtosecond interferometer,” Jpn. J. Appl. Phys. 36, 2109–2115 (1997).
  12. S. L. Shapiro, H. P. Broida, “Light scattering from fluctuations in orientations of CS2 in liquids,” Phys. Rev. 154, 129–138 (1967).
    [Crossref]
  13. N. Bloembergen, P. Lallemand, “Complex intensity-dependent index of refraction, frequency broadening of stimulated Raman lines, and stimulated Rayleigh scattering,” Phys. Rev. Lett. 16, 81–84 (1966).
    [Crossref]
  14. J. S. Friedman, C. Y. She, “The effects of molecular geometry on the depolarized stimulated gain spectra of simple liquids,” J. Chem. Phys. 99, 4960–4969 (1993).
    [Crossref]
  15. I. Rau, F. Kajzar, J. Luc, B. Sahraoui, G. Boudebs, “Comparison of Z-scan and THG derived nonlinear index of refraction in selected organic solvents,” J. Opt. Soc. Am. B 25, 1738–1747 (2008).
    [Crossref]
  16. M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
    [Crossref]
  17. R. A. Ganeev, A. I. Ryasnyansky, M. Baba, M. Suzuki, N. Ishizawa, M. Turu, S. Sakakibara, H. Kuroda, “Nonlinear refraction in CS2,” Appl. Phys. B 78, 433–438 (2004).
    [Crossref]
  18. X.-Q. Yan, X.-L. Zhang, S. Shi, Z.-B. Liu, J.-G. Tian, “Third-order nonlinear susceptibility tensor elements of CS2 at femtosecond time scale,” Opt. Express 19, 5559–5564 (2011).
    [Crossref]
  19. M. Falconieri, G. Salvetti, “Simultaneous measurement of pure-optical and thermo-optical nonlinearities induced by high-repetition-rate, femtosecond laser pulses: application to CS2,” Appl. Phys. B 69, 133–136 (1999).
    [Crossref]
  20. S. Couris, M. Renard, O. Faucher, B. Lavorel, R. Chaux, E. Koudoumas, X. Michaut, “An experimental investigation of the nonlinear refractive index (n2) of carbon disulfide and toluene by spectral shearing interferometry and Z-scan techniques,” Chem. Phys. Lett. 369, 318–324 (2003).
    [Crossref]
  21. I. P. Nikolakakos, A. Major, J. S. Aitchison, P. W. E. Smith, “Broadband characterization of the nonlinear optical properties of common reference materials,” IEEE J. Sel. Top. Quantum Electron. 10, 1164–1170 (2004).
    [Crossref]
  22. K. Kieu, L. Schneebeli, R. A. Norwood, N. Peyghambarian, “Integrated liquid-core optical fibers for ultra-efficient nonlinear liquid photonics,” Opt. Express 20, 8148–8154 (2012).
    [Crossref]
  23. S. Pricking, M. Vieweg, H. Giessen, “Influence of the retarded response on an ultrafast nonlinear optofluidic fiber coupler,” Opt. Express 19, 21673–21679 (2011).
    [Crossref]
  24. E. L. Falcão-Filho, C. B. de Araújo, G. Boudebs, H. Leblond, V. Skarka, “Robust two-dimensional spatial solitons in liquid carbon disulfide,” Phys. Rev. Lett. 110, 013901 (2013).
    [Crossref]
  25. S. Pricking, H. Giessen, “Generalized retarded response of nonlinear media and its influence on soliton dynamics,” Opt. Express 19, 2895–2903 (2011).
    [Crossref]
  26. D. Churin, T. N. Nguyen, K. Kieu, R. A. Norwood, N. Peyghambarian, “Mid-IR supercontinuum generation in an integrated liquid-core optical fiber filled with CS2,” Opt. Mater. Express 3, 1358–1364 (2013).
    [Crossref]
  27. O. D. Herrera, L. Schneebeli, K. Kieu, R. A. Norwood, N. Peyghambarian, “Slow light based on stimulated Raman scattering in an integrated liquid-core optical fiber filled with CS2,” Opt. Express 21, 8821–8830 (2013).
    [Crossref]
  28. H. Purwar, S. Idlahcen, C. Rozé, D. Sedarsky, J.-B. Blaisot, “Collinear, two-color optical Kerr effect shutter for ultrafast time-resolved imaging,” Opt. Express 22, 15778–15790 (2014).
    [Crossref]
  29. S. Sahu, R. R. Pal, S. Dhar, “Nonlinear material based all-optical parallel subtraction scheme: an implementation,” Int. J. Optoelectron. 1, 7–11 (2011).
    [Crossref]
  30. M. Moran, S. Chiao-Yao, R. Carman, “Interferometric measurements of the nonlinear refractive-index coefficient relative to CS2 in laser-system-related materials,” IEEE J. Quantum Electron. 11, 259–263 (1975).
    [Crossref]
  31. M. R. Ferdinandus, M. Reichert, T. R. Ensley, H. Hu, D. A. Fishman, S. Webster, D. J. Hagan, E. W. Van Stryland, “Dual-arm Z-scan technique to extract dilute solute nonlinearities from solution measurements,” Opt. Mater. Express 2, 1776–1790 (2012).
    [Crossref]
  32. D. Kong, Q. Chang, Y. Gao, H. A. Ye, L. Zhang, G. Shi, X. Zhang, Y. Wang, K. Yang, Y. Song, “Nonlinear absorption of CS2 at the wavelength of 400 nm with femtosecond pulses,” Physica B 407, 1279–1281 (2012).
  33. D. C. Hutchings, M. Sheik-Bahae, D. J. Hagan, E. W. Stryland, “Kramers-Krönig relations in nonlinear optics,” Opt. Quantum. Electron. 24, 1–30 (1992).
  34. T. Steffen, N. A. C. M. Meinders, K. Duppen, “Microscopic origin of the optical Kerr effect response of CS2–pentane binary mixtures,” J. Phys. Chem. A 102, 4213–4221 (1998).
    [Crossref]
  35. M. R. Ferdinandus, H. Hu, M. Reichert, D. J. Hagan, E. W. Van Stryland, “Beam deflection measurement of time and polarization resolved ultrafast nonlinear refraction,” Opt. Lett. 38, 3518–3521 (2013).
    [Crossref]
  36. K. Kiyohara, K. Kamada, K. Ohta, “Orientational and collision-induced contribution to third-order nonlinear optical response of liquid CS2,” J. Chem. Phys. 112, 6338–6348 (2000).
    [Crossref]
  37. D. Kivelson, P. Madden, “Light scattering studies of molecular liquids,” Ann. Rev. Phys. Chem. 31, 523–558 (1980).
  38. R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic/Elsevier, 2008).
  39. P. Debye, Polar Molecules (Dover, 1929).
  40. C. Kalpouzos, D. McMorrow, W. T. Lotshaw, G. A. Kenney-Wallace, “Femtosecond laser-induced optical Kerr dynamics in CS2/alkane binary solutions,” Chem. Phys. Lett. 150, 138–146 (1988).
    [Crossref]
  41. J. A. Bucaro, T. A. Litovitz, “Rayleigh scattering: collisional motions in liquids,” J. Chem. Phys. 54, 3846–3853 (1971).
    [Crossref]
  42. B. I. Greene, P. A. Fleury, H. L. Carter, R. C. Farrow, “Microscopic dynamics in simple liquids by subpicosecond birefringences,” Phys. Rev. A 29, 271–274 (1984).
    [Crossref]
  43. M. Sheik-Bahae, J. Wang, R. DeSalvo, D. J. Hagan, E. W. Van Stryland, “Measurement of nondegenerate nonlinearities using a two-color Z scan,” Opt. Lett. 17, 258–260 (1992).
    [Crossref]
  44. J. K. Wahlstrand, J. H. Odhner, E. T. McCole, Y. H. Cheng, J. P. Palastro, R. J. Levis, H. M. Milchberg, “Effect of two-beam coupling in strong-field optical pump-probe experiments,” Phys. Rev. A 87, 053801 (2013).
    [Crossref]
  45. A. Dogariu, T. Xia, D. J. Hagan, A. A. Said, E. W. Van Stryland, N. Bloembergen, “Purely refractive transient energy transfer by stimulated Rayleigh-wing scattering,” J. Opt. Soc. Am. B 14, 796–803 (1997).
    [Crossref]
  46. A. Samoc, “Dispersion of refractive properties of solvents: chloroform, toluene, benzene, and carbon disulfide in ultraviolet, visible, and near-infrared,” J. Appl. Phys. 94, 6167–6174 (2003).
    [Crossref]
  47. R. A. Negres, J. M. Hales, A. Kobyakov, D. J. Hagan, E. W. Van Stryland, “Experiment and analysis of two-photon absorption spectroscopy using a white-light continuum probe,” IEEE J. Quantum Electron. 38, 1205–1216 (2002).
    [Crossref]
  48. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).
  49. E. W. Van Stryland, A. L. Smirl, T. F. Boggess, M. J. Soileau, B. S. Wherrett, F. A. Hopf, “Weak-wave retardation and phase-conjugate self-defousing in Si,” in Picosecond Phenomena III, K. B. Eisenthal, R. M. Hochstrasser, W. Kaiser, A. Laubereau, eds. (Springer, 1982), pp. 368–371.
  50. M. Ziólek, M. Lorenc, R. Naskrecki, “Determination of the temporal response function in femtosecond pump-probe systems,” Appl. Phys. B 72, 843–847 (2001).
    [Crossref]
  51. A. E. Kaplan, “‘External’ self-focusing of light by a nonlinear layer,” Radiophys. Quantum Electron. 12, 692–696 (1969).
    [Crossref]
  52. M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, E. W. Van Stryland, “Dispersion of bound electron nonlinear refraction in solids,” IEEE J. Quantum Electron. 27, 1296–1309 (1991).
    [Crossref]
  53. D. Milam, “Review and assessment of measured values of the nonlinear refractive-index coefficient of fused silica,” Appl. Opt. 37, 546–550 (1998).
    [Crossref]
  54. D. I. Kovsh, S. Yang, D. J. Hagan, E. W. Van Stryland, “Nonlinear optical beam propagation for optical limiting,” Appl. Opt. 38, 5168–5180 (1999).
    [Crossref]
  55. B. J. Orr, J. F. Ward, “Perturbation theory of the non-linear optical polarization of an isolated system,” Mol. Phys. 20, 513–526 (1971).
    [Crossref]
  56. M. G. Kuzyk, C. W. Dirk, “Effects of centrosymmetry on the nonresonant electronic third-order nonlinear optical susceptibility,” Phys. Rev. A 41, 5098–5109 (1990).
    [Crossref]
  57. H. Hu, “Third order nonlinearity of organic molecules,” Ph. D. dissertation (University of Central Florida, 2012).
  58. D. Kovsh, D. Hagan, E. Van Stryland, “Numerical modeling of thermal refraction in liquids in the transient regime,” Opt. Express 4, 315–327 (1999).
    [Crossref]

2014 (1)

2013 (5)

2012 (3)

2011 (4)

2008 (1)

2004 (2)

R. A. Ganeev, A. I. Ryasnyansky, M. Baba, M. Suzuki, N. Ishizawa, M. Turu, S. Sakakibara, H. Kuroda, “Nonlinear refraction in CS2,” Appl. Phys. B 78, 433–438 (2004).
[Crossref]

I. P. Nikolakakos, A. Major, J. S. Aitchison, P. W. E. Smith, “Broadband characterization of the nonlinear optical properties of common reference materials,” IEEE J. Sel. Top. Quantum Electron. 10, 1164–1170 (2004).
[Crossref]

2003 (4)

S. Couris, M. Renard, O. Faucher, B. Lavorel, R. Chaux, E. Koudoumas, X. Michaut, “An experimental investigation of the nonlinear refractive index (n2) of carbon disulfide and toluene by spectral shearing interferometry and Z-scan techniques,” Chem. Phys. Lett. 369, 318–324 (2003).
[Crossref]

K. Kamada, “Mechanisms of ultrafast refractive index change in organic system,” Proc. SPIE 4797, 65–75 (2003).

N. T. Hunt, A. A. Jaye, S. R. Meech, “Polarisation-resolved ultrafast Raman responses of carbon disulfide in solution and microemulsion environments,” Chem. Phys. Lett. 371, 304–310 (2003).
[Crossref]

A. Samoc, “Dispersion of refractive properties of solvents: chloroform, toluene, benzene, and carbon disulfide in ultraviolet, visible, and near-infrared,” J. Appl. Phys. 94, 6167–6174 (2003).
[Crossref]

2002 (2)

R. A. Negres, J. M. Hales, A. Kobyakov, D. J. Hagan, E. W. Van Stryland, “Experiment and analysis of two-photon absorption spectroscopy using a white-light continuum probe,” IEEE J. Quantum Electron. 38, 1205–1216 (2002).
[Crossref]

C. J. Fecko, J. D. Eaves, A. Tokmakoff, “Isotropic and anisotropic Raman scattering from molecular liquids measured by spatially masked optical Kerr effect spectroscopy,” J. Chem. Phys. 117, 1139–1154 (2002).
[Crossref]

2001 (4)

S. Constantine, J. A. Gardecki, Y. Zhou, L. D. Ziegler, X. Ji, B. Space, “A novel technique for the measurement of polarization-specific ultrafast Raman responses,” J. Phys. Chem. A 105, 9851–9858 (2001).
[Crossref]

D. McMorrow, N. Thantu, V. Kleiman, J. S. Melinger, W. T. Lotshaw, “Analysis of intermolecular coordinate contributions to third-order ultrafast spectroscopy of liquids in the harmonic oscillator limit,” J. Phys. Chem. A 105, 7960–7972 (2001).
[Crossref]

Q.-H. Xu, Y.-Z. Ma, G. R. Fleming, “Heterodyne detected transient grating spectroscopy in resonant and non-resonant systems using a simplified diffractive optics method,” Chem. Phys. Lett. 338, 254–262 (2001).
[Crossref]

M. Ziólek, M. Lorenc, R. Naskrecki, “Determination of the temporal response function in femtosecond pump-probe systems,” Appl. Phys. B 72, 843–847 (2001).
[Crossref]

2000 (1)

K. Kiyohara, K. Kamada, K. Ohta, “Orientational and collision-induced contribution to third-order nonlinear optical response of liquid CS2,” J. Chem. Phys. 112, 6338–6348 (2000).
[Crossref]

1999 (3)

M. Falconieri, G. Salvetti, “Simultaneous measurement of pure-optical and thermo-optical nonlinearities induced by high-repetition-rate, femtosecond laser pulses: application to CS2,” Appl. Phys. B 69, 133–136 (1999).
[Crossref]

D. I. Kovsh, S. Yang, D. J. Hagan, E. W. Van Stryland, “Nonlinear optical beam propagation for optical limiting,” Appl. Opt. 38, 5168–5180 (1999).
[Crossref]

D. Kovsh, D. Hagan, E. Van Stryland, “Numerical modeling of thermal refraction in liquids in the transient regime,” Opt. Express 4, 315–327 (1999).
[Crossref]

1998 (2)

D. Milam, “Review and assessment of measured values of the nonlinear refractive-index coefficient of fused silica,” Appl. Opt. 37, 546–550 (1998).
[Crossref]

T. Steffen, N. A. C. M. Meinders, K. Duppen, “Microscopic origin of the optical Kerr effect response of CS2–pentane binary mixtures,” J. Phys. Chem. A 102, 4213–4221 (1998).
[Crossref]

1997 (3)

A. Dogariu, T. Xia, D. J. Hagan, A. A. Said, E. W. Van Stryland, N. Bloembergen, “Purely refractive transient energy transfer by stimulated Rayleigh-wing scattering,” J. Opt. Soc. Am. B 14, 796–803 (1997).
[Crossref]

Y. Sato, R. Morita, M. Yamashita, “Study on ultrafast dynamic behaviors of different nonlinear refractive index components in CS2 using a femtosecond interferometer,” Jpn. J. Appl. Phys. 36, 2109–2115 (1997).

T. Steffen, K. Duppen, “Time resolved four- and six-wave mixing in liquids. II. Experiments,” J. Chem. Phys. 106, 3854–3864 (1997).
[Crossref]

1996 (1)

T.-H. Huang, C.-C. Hsu, T.-H. Wei, S. Chang, S.-M. Yen, C.-P. Tsai, R.-T. Liu, C.-T. Kuo, W.-S. Tse, C. Chia, “The transient optical Kerr effect of simple liquids studied with an ultrashort laser with variable pulsewidth,” IEEE J. Sel. Top. Quantum Electron. 2, 756–768 (1996).
[Crossref]

1993 (1)

J. S. Friedman, C. Y. She, “The effects of molecular geometry on the depolarized stimulated gain spectra of simple liquids,” J. Chem. Phys. 99, 4960–4969 (1993).
[Crossref]

1992 (2)

D. C. Hutchings, M. Sheik-Bahae, D. J. Hagan, E. W. Stryland, “Kramers-Krönig relations in nonlinear optics,” Opt. Quantum. Electron. 24, 1–30 (1992).

M. Sheik-Bahae, J. Wang, R. DeSalvo, D. J. Hagan, E. W. Van Stryland, “Measurement of nondegenerate nonlinearities using a two-color Z scan,” Opt. Lett. 17, 258–260 (1992).
[Crossref]

1991 (1)

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, E. W. Van Stryland, “Dispersion of bound electron nonlinear refraction in solids,” IEEE J. Quantum Electron. 27, 1296–1309 (1991).
[Crossref]

1990 (2)

M. G. Kuzyk, C. W. Dirk, “Effects of centrosymmetry on the nonresonant electronic third-order nonlinear optical susceptibility,” Phys. Rev. A 41, 5098–5109 (1990).
[Crossref]

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[Crossref]

1988 (2)

D. McMorrow, W. T. Lotshaw, G. A. Kenney-Wallace, “Femtosecond optical Kerr studies on the origin of the nonlinear responses in simple liquids,” IEEE J. Quantum Electron. 24, 443–454 (1988).
[Crossref]

C. Kalpouzos, D. McMorrow, W. T. Lotshaw, G. A. Kenney-Wallace, “Femtosecond laser-induced optical Kerr dynamics in CS2/alkane binary solutions,” Chem. Phys. Lett. 150, 138–146 (1988).
[Crossref]

1984 (1)

B. I. Greene, P. A. Fleury, H. L. Carter, R. C. Farrow, “Microscopic dynamics in simple liquids by subpicosecond birefringences,” Phys. Rev. A 29, 271–274 (1984).
[Crossref]

1980 (1)

D. Kivelson, P. Madden, “Light scattering studies of molecular liquids,” Ann. Rev. Phys. Chem. 31, 523–558 (1980).

1979 (1)

P. P. Ho, R. R. Alfano, “Optical Kerr effect in liquids,” Physical Review A 20, 2170–2187 (1979).
[Crossref]

1975 (1)

M. Moran, S. Chiao-Yao, R. Carman, “Interferometric measurements of the nonlinear refractive-index coefficient relative to CS2 in laser-system-related materials,” IEEE J. Quantum Electron. 11, 259–263 (1975).
[Crossref]

1971 (2)

J. A. Bucaro, T. A. Litovitz, “Rayleigh scattering: collisional motions in liquids,” J. Chem. Phys. 54, 3846–3853 (1971).
[Crossref]

B. J. Orr, J. F. Ward, “Perturbation theory of the non-linear optical polarization of an isolated system,” Mol. Phys. 20, 513–526 (1971).
[Crossref]

1969 (1)

A. E. Kaplan, “‘External’ self-focusing of light by a nonlinear layer,” Radiophys. Quantum Electron. 12, 692–696 (1969).
[Crossref]

1967 (1)

S. L. Shapiro, H. P. Broida, “Light scattering from fluctuations in orientations of CS2 in liquids,” Phys. Rev. 154, 129–138 (1967).
[Crossref]

1966 (1)

N. Bloembergen, P. Lallemand, “Complex intensity-dependent index of refraction, frequency broadening of stimulated Raman lines, and stimulated Rayleigh scattering,” Phys. Rev. Lett. 16, 81–84 (1966).
[Crossref]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).

Aitchison, J. S.

I. P. Nikolakakos, A. Major, J. S. Aitchison, P. W. E. Smith, “Broadband characterization of the nonlinear optical properties of common reference materials,” IEEE J. Sel. Top. Quantum Electron. 10, 1164–1170 (2004).
[Crossref]

Alfano, R. R.

P. P. Ho, R. R. Alfano, “Optical Kerr effect in liquids,” Physical Review A 20, 2170–2187 (1979).
[Crossref]

Baba, M.

R. A. Ganeev, A. I. Ryasnyansky, M. Baba, M. Suzuki, N. Ishizawa, M. Turu, S. Sakakibara, H. Kuroda, “Nonlinear refraction in CS2,” Appl. Phys. B 78, 433–438 (2004).
[Crossref]

Blaisot, J.-B.

Bloembergen, N.

A. Dogariu, T. Xia, D. J. Hagan, A. A. Said, E. W. Van Stryland, N. Bloembergen, “Purely refractive transient energy transfer by stimulated Rayleigh-wing scattering,” J. Opt. Soc. Am. B 14, 796–803 (1997).
[Crossref]

N. Bloembergen, P. Lallemand, “Complex intensity-dependent index of refraction, frequency broadening of stimulated Raman lines, and stimulated Rayleigh scattering,” Phys. Rev. Lett. 16, 81–84 (1966).
[Crossref]

Boggess, T. F.

E. W. Van Stryland, A. L. Smirl, T. F. Boggess, M. J. Soileau, B. S. Wherrett, F. A. Hopf, “Weak-wave retardation and phase-conjugate self-defousing in Si,” in Picosecond Phenomena III, K. B. Eisenthal, R. M. Hochstrasser, W. Kaiser, A. Laubereau, eds. (Springer, 1982), pp. 368–371.

Boudebs, G.

E. L. Falcão-Filho, C. B. de Araújo, G. Boudebs, H. Leblond, V. Skarka, “Robust two-dimensional spatial solitons in liquid carbon disulfide,” Phys. Rev. Lett. 110, 013901 (2013).
[Crossref]

I. Rau, F. Kajzar, J. Luc, B. Sahraoui, G. Boudebs, “Comparison of Z-scan and THG derived nonlinear index of refraction in selected organic solvents,” J. Opt. Soc. Am. B 25, 1738–1747 (2008).
[Crossref]

Boyd, R. W.

R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic/Elsevier, 2008).

Broida, H. P.

S. L. Shapiro, H. P. Broida, “Light scattering from fluctuations in orientations of CS2 in liquids,” Phys. Rev. 154, 129–138 (1967).
[Crossref]

Bucaro, J. A.

J. A. Bucaro, T. A. Litovitz, “Rayleigh scattering: collisional motions in liquids,” J. Chem. Phys. 54, 3846–3853 (1971).
[Crossref]

Carman, R.

M. Moran, S. Chiao-Yao, R. Carman, “Interferometric measurements of the nonlinear refractive-index coefficient relative to CS2 in laser-system-related materials,” IEEE J. Quantum Electron. 11, 259–263 (1975).
[Crossref]

Carter, H. L.

B. I. Greene, P. A. Fleury, H. L. Carter, R. C. Farrow, “Microscopic dynamics in simple liquids by subpicosecond birefringences,” Phys. Rev. A 29, 271–274 (1984).
[Crossref]

Chang, Q.

D. Kong, Q. Chang, Y. Gao, H. A. Ye, L. Zhang, G. Shi, X. Zhang, Y. Wang, K. Yang, Y. Song, “Nonlinear absorption of CS2 at the wavelength of 400 nm with femtosecond pulses,” Physica B 407, 1279–1281 (2012).

Chang, S.

T.-H. Huang, C.-C. Hsu, T.-H. Wei, S. Chang, S.-M. Yen, C.-P. Tsai, R.-T. Liu, C.-T. Kuo, W.-S. Tse, C. Chia, “The transient optical Kerr effect of simple liquids studied with an ultrashort laser with variable pulsewidth,” IEEE J. Sel. Top. Quantum Electron. 2, 756–768 (1996).
[Crossref]

Chaux, R.

S. Couris, M. Renard, O. Faucher, B. Lavorel, R. Chaux, E. Koudoumas, X. Michaut, “An experimental investigation of the nonlinear refractive index (n2) of carbon disulfide and toluene by spectral shearing interferometry and Z-scan techniques,” Chem. Phys. Lett. 369, 318–324 (2003).
[Crossref]

Cheng, Y. H.

J. K. Wahlstrand, J. H. Odhner, E. T. McCole, Y. H. Cheng, J. P. Palastro, R. J. Levis, H. M. Milchberg, “Effect of two-beam coupling in strong-field optical pump-probe experiments,” Phys. Rev. A 87, 053801 (2013).
[Crossref]

Chia, C.

T.-H. Huang, C.-C. Hsu, T.-H. Wei, S. Chang, S.-M. Yen, C.-P. Tsai, R.-T. Liu, C.-T. Kuo, W.-S. Tse, C. Chia, “The transient optical Kerr effect of simple liquids studied with an ultrashort laser with variable pulsewidth,” IEEE J. Sel. Top. Quantum Electron. 2, 756–768 (1996).
[Crossref]

Chiao-Yao, S.

M. Moran, S. Chiao-Yao, R. Carman, “Interferometric measurements of the nonlinear refractive-index coefficient relative to CS2 in laser-system-related materials,” IEEE J. Quantum Electron. 11, 259–263 (1975).
[Crossref]

Churin, D.

Constantine, S.

S. Constantine, J. A. Gardecki, Y. Zhou, L. D. Ziegler, X. Ji, B. Space, “A novel technique for the measurement of polarization-specific ultrafast Raman responses,” J. Phys. Chem. A 105, 9851–9858 (2001).
[Crossref]

Couris, S.

S. Couris, M. Renard, O. Faucher, B. Lavorel, R. Chaux, E. Koudoumas, X. Michaut, “An experimental investigation of the nonlinear refractive index (n2) of carbon disulfide and toluene by spectral shearing interferometry and Z-scan techniques,” Chem. Phys. Lett. 369, 318–324 (2003).
[Crossref]

de Araújo, C. B.

E. L. Falcão-Filho, C. B. de Araújo, G. Boudebs, H. Leblond, V. Skarka, “Robust two-dimensional spatial solitons in liquid carbon disulfide,” Phys. Rev. Lett. 110, 013901 (2013).
[Crossref]

Debye, P.

P. Debye, Polar Molecules (Dover, 1929).

DeSalvo, R.

Dhar, S.

S. Sahu, R. R. Pal, S. Dhar, “Nonlinear material based all-optical parallel subtraction scheme: an implementation,” Int. J. Optoelectron. 1, 7–11 (2011).
[Crossref]

Dirk, C. W.

M. G. Kuzyk, C. W. Dirk, “Effects of centrosymmetry on the nonresonant electronic third-order nonlinear optical susceptibility,” Phys. Rev. A 41, 5098–5109 (1990).
[Crossref]

Dogariu, A.

Duppen, K.

T. Steffen, N. A. C. M. Meinders, K. Duppen, “Microscopic origin of the optical Kerr effect response of CS2–pentane binary mixtures,” J. Phys. Chem. A 102, 4213–4221 (1998).
[Crossref]

T. Steffen, K. Duppen, “Time resolved four- and six-wave mixing in liquids. II. Experiments,” J. Chem. Phys. 106, 3854–3864 (1997).
[Crossref]

Eaves, J. D.

C. J. Fecko, J. D. Eaves, A. Tokmakoff, “Isotropic and anisotropic Raman scattering from molecular liquids measured by spatially masked optical Kerr effect spectroscopy,” J. Chem. Phys. 117, 1139–1154 (2002).
[Crossref]

Ensley, T. R.

Falcão-Filho, E. L.

E. L. Falcão-Filho, C. B. de Araújo, G. Boudebs, H. Leblond, V. Skarka, “Robust two-dimensional spatial solitons in liquid carbon disulfide,” Phys. Rev. Lett. 110, 013901 (2013).
[Crossref]

Falconieri, M.

M. Falconieri, G. Salvetti, “Simultaneous measurement of pure-optical and thermo-optical nonlinearities induced by high-repetition-rate, femtosecond laser pulses: application to CS2,” Appl. Phys. B 69, 133–136 (1999).
[Crossref]

Farrow, R. C.

B. I. Greene, P. A. Fleury, H. L. Carter, R. C. Farrow, “Microscopic dynamics in simple liquids by subpicosecond birefringences,” Phys. Rev. A 29, 271–274 (1984).
[Crossref]

Faucher, O.

S. Couris, M. Renard, O. Faucher, B. Lavorel, R. Chaux, E. Koudoumas, X. Michaut, “An experimental investigation of the nonlinear refractive index (n2) of carbon disulfide and toluene by spectral shearing interferometry and Z-scan techniques,” Chem. Phys. Lett. 369, 318–324 (2003).
[Crossref]

Fecko, C. J.

C. J. Fecko, J. D. Eaves, A. Tokmakoff, “Isotropic and anisotropic Raman scattering from molecular liquids measured by spatially masked optical Kerr effect spectroscopy,” J. Chem. Phys. 117, 1139–1154 (2002).
[Crossref]

Ferdinandus, M. R.

Fishman, D. A.

Fleming, G. R.

Q.-H. Xu, Y.-Z. Ma, G. R. Fleming, “Heterodyne detected transient grating spectroscopy in resonant and non-resonant systems using a simplified diffractive optics method,” Chem. Phys. Lett. 338, 254–262 (2001).
[Crossref]

Fleury, P. A.

B. I. Greene, P. A. Fleury, H. L. Carter, R. C. Farrow, “Microscopic dynamics in simple liquids by subpicosecond birefringences,” Phys. Rev. A 29, 271–274 (1984).
[Crossref]

Friedman, J. S.

J. S. Friedman, C. Y. She, “The effects of molecular geometry on the depolarized stimulated gain spectra of simple liquids,” J. Chem. Phys. 99, 4960–4969 (1993).
[Crossref]

Ganeev, R. A.

R. A. Ganeev, A. I. Ryasnyansky, M. Baba, M. Suzuki, N. Ishizawa, M. Turu, S. Sakakibara, H. Kuroda, “Nonlinear refraction in CS2,” Appl. Phys. B 78, 433–438 (2004).
[Crossref]

Gao, Y.

D. Kong, Q. Chang, Y. Gao, H. A. Ye, L. Zhang, G. Shi, X. Zhang, Y. Wang, K. Yang, Y. Song, “Nonlinear absorption of CS2 at the wavelength of 400 nm with femtosecond pulses,” Physica B 407, 1279–1281 (2012).

Gardecki, J. A.

S. Constantine, J. A. Gardecki, Y. Zhou, L. D. Ziegler, X. Ji, B. Space, “A novel technique for the measurement of polarization-specific ultrafast Raman responses,” J. Phys. Chem. A 105, 9851–9858 (2001).
[Crossref]

Giessen, H.

Greene, B. I.

B. I. Greene, P. A. Fleury, H. L. Carter, R. C. Farrow, “Microscopic dynamics in simple liquids by subpicosecond birefringences,” Phys. Rev. A 29, 271–274 (1984).
[Crossref]

Hagan, D.

Hagan, D. J.

M. R. Ferdinandus, H. Hu, M. Reichert, D. J. Hagan, E. W. Van Stryland, “Beam deflection measurement of time and polarization resolved ultrafast nonlinear refraction,” Opt. Lett. 38, 3518–3521 (2013).
[Crossref]

M. R. Ferdinandus, M. Reichert, T. R. Ensley, H. Hu, D. A. Fishman, S. Webster, D. J. Hagan, E. W. Van Stryland, “Dual-arm Z-scan technique to extract dilute solute nonlinearities from solution measurements,” Opt. Mater. Express 2, 1776–1790 (2012).
[Crossref]

R. A. Negres, J. M. Hales, A. Kobyakov, D. J. Hagan, E. W. Van Stryland, “Experiment and analysis of two-photon absorption spectroscopy using a white-light continuum probe,” IEEE J. Quantum Electron. 38, 1205–1216 (2002).
[Crossref]

D. I. Kovsh, S. Yang, D. J. Hagan, E. W. Van Stryland, “Nonlinear optical beam propagation for optical limiting,” Appl. Opt. 38, 5168–5180 (1999).
[Crossref]

A. Dogariu, T. Xia, D. J. Hagan, A. A. Said, E. W. Van Stryland, N. Bloembergen, “Purely refractive transient energy transfer by stimulated Rayleigh-wing scattering,” J. Opt. Soc. Am. B 14, 796–803 (1997).
[Crossref]

M. Sheik-Bahae, J. Wang, R. DeSalvo, D. J. Hagan, E. W. Van Stryland, “Measurement of nondegenerate nonlinearities using a two-color Z scan,” Opt. Lett. 17, 258–260 (1992).
[Crossref]

D. C. Hutchings, M. Sheik-Bahae, D. J. Hagan, E. W. Stryland, “Kramers-Krönig relations in nonlinear optics,” Opt. Quantum. Electron. 24, 1–30 (1992).

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, E. W. Van Stryland, “Dispersion of bound electron nonlinear refraction in solids,” IEEE J. Quantum Electron. 27, 1296–1309 (1991).
[Crossref]

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[Crossref]

Hales, J. M.

R. A. Negres, J. M. Hales, A. Kobyakov, D. J. Hagan, E. W. Van Stryland, “Experiment and analysis of two-photon absorption spectroscopy using a white-light continuum probe,” IEEE J. Quantum Electron. 38, 1205–1216 (2002).
[Crossref]

Herrera, O. D.

Ho, P. P.

P. P. Ho, R. R. Alfano, “Optical Kerr effect in liquids,” Physical Review A 20, 2170–2187 (1979).
[Crossref]

Hopf, F. A.

E. W. Van Stryland, A. L. Smirl, T. F. Boggess, M. J. Soileau, B. S. Wherrett, F. A. Hopf, “Weak-wave retardation and phase-conjugate self-defousing in Si,” in Picosecond Phenomena III, K. B. Eisenthal, R. M. Hochstrasser, W. Kaiser, A. Laubereau, eds. (Springer, 1982), pp. 368–371.

Hsu, C.-C.

T.-H. Huang, C.-C. Hsu, T.-H. Wei, S. Chang, S.-M. Yen, C.-P. Tsai, R.-T. Liu, C.-T. Kuo, W.-S. Tse, C. Chia, “The transient optical Kerr effect of simple liquids studied with an ultrashort laser with variable pulsewidth,” IEEE J. Sel. Top. Quantum Electron. 2, 756–768 (1996).
[Crossref]

Hu, H.

Huang, T.-H.

T.-H. Huang, C.-C. Hsu, T.-H. Wei, S. Chang, S.-M. Yen, C.-P. Tsai, R.-T. Liu, C.-T. Kuo, W.-S. Tse, C. Chia, “The transient optical Kerr effect of simple liquids studied with an ultrashort laser with variable pulsewidth,” IEEE J. Sel. Top. Quantum Electron. 2, 756–768 (1996).
[Crossref]

Hunt, N. T.

N. T. Hunt, A. A. Jaye, S. R. Meech, “Polarisation-resolved ultrafast Raman responses of carbon disulfide in solution and microemulsion environments,” Chem. Phys. Lett. 371, 304–310 (2003).
[Crossref]

Hutchings, D. C.

D. C. Hutchings, M. Sheik-Bahae, D. J. Hagan, E. W. Stryland, “Kramers-Krönig relations in nonlinear optics,” Opt. Quantum. Electron. 24, 1–30 (1992).

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, E. W. Van Stryland, “Dispersion of bound electron nonlinear refraction in solids,” IEEE J. Quantum Electron. 27, 1296–1309 (1991).
[Crossref]

Idlahcen, S.

Ishizawa, N.

R. A. Ganeev, A. I. Ryasnyansky, M. Baba, M. Suzuki, N. Ishizawa, M. Turu, S. Sakakibara, H. Kuroda, “Nonlinear refraction in CS2,” Appl. Phys. B 78, 433–438 (2004).
[Crossref]

Jaye, A. A.

N. T. Hunt, A. A. Jaye, S. R. Meech, “Polarisation-resolved ultrafast Raman responses of carbon disulfide in solution and microemulsion environments,” Chem. Phys. Lett. 371, 304–310 (2003).
[Crossref]

Ji, X.

S. Constantine, J. A. Gardecki, Y. Zhou, L. D. Ziegler, X. Ji, B. Space, “A novel technique for the measurement of polarization-specific ultrafast Raman responses,” J. Phys. Chem. A 105, 9851–9858 (2001).
[Crossref]

Kajzar, F.

Kalpouzos, C.

C. Kalpouzos, D. McMorrow, W. T. Lotshaw, G. A. Kenney-Wallace, “Femtosecond laser-induced optical Kerr dynamics in CS2/alkane binary solutions,” Chem. Phys. Lett. 150, 138–146 (1988).
[Crossref]

Kamada, K.

K. Kamada, “Mechanisms of ultrafast refractive index change in organic system,” Proc. SPIE 4797, 65–75 (2003).

K. Kiyohara, K. Kamada, K. Ohta, “Orientational and collision-induced contribution to third-order nonlinear optical response of liquid CS2,” J. Chem. Phys. 112, 6338–6348 (2000).
[Crossref]

Kaplan, A. E.

A. E. Kaplan, “‘External’ self-focusing of light by a nonlinear layer,” Radiophys. Quantum Electron. 12, 692–696 (1969).
[Crossref]

Kenney-Wallace, G. A.

C. Kalpouzos, D. McMorrow, W. T. Lotshaw, G. A. Kenney-Wallace, “Femtosecond laser-induced optical Kerr dynamics in CS2/alkane binary solutions,” Chem. Phys. Lett. 150, 138–146 (1988).
[Crossref]

D. McMorrow, W. T. Lotshaw, G. A. Kenney-Wallace, “Femtosecond optical Kerr studies on the origin of the nonlinear responses in simple liquids,” IEEE J. Quantum Electron. 24, 443–454 (1988).
[Crossref]

Kieu, K.

Kivelson, D.

D. Kivelson, P. Madden, “Light scattering studies of molecular liquids,” Ann. Rev. Phys. Chem. 31, 523–558 (1980).

Kiyohara, K.

K. Kiyohara, K. Kamada, K. Ohta, “Orientational and collision-induced contribution to third-order nonlinear optical response of liquid CS2,” J. Chem. Phys. 112, 6338–6348 (2000).
[Crossref]

Kleiman, V.

D. McMorrow, N. Thantu, V. Kleiman, J. S. Melinger, W. T. Lotshaw, “Analysis of intermolecular coordinate contributions to third-order ultrafast spectroscopy of liquids in the harmonic oscillator limit,” J. Phys. Chem. A 105, 7960–7972 (2001).
[Crossref]

Kobyakov, A.

R. A. Negres, J. M. Hales, A. Kobyakov, D. J. Hagan, E. W. Van Stryland, “Experiment and analysis of two-photon absorption spectroscopy using a white-light continuum probe,” IEEE J. Quantum Electron. 38, 1205–1216 (2002).
[Crossref]

Kong, D.

D. Kong, Q. Chang, Y. Gao, H. A. Ye, L. Zhang, G. Shi, X. Zhang, Y. Wang, K. Yang, Y. Song, “Nonlinear absorption of CS2 at the wavelength of 400 nm with femtosecond pulses,” Physica B 407, 1279–1281 (2012).

Koudoumas, E.

S. Couris, M. Renard, O. Faucher, B. Lavorel, R. Chaux, E. Koudoumas, X. Michaut, “An experimental investigation of the nonlinear refractive index (n2) of carbon disulfide and toluene by spectral shearing interferometry and Z-scan techniques,” Chem. Phys. Lett. 369, 318–324 (2003).
[Crossref]

Kovsh, D.

Kovsh, D. I.

Kuo, C.-T.

T.-H. Huang, C.-C. Hsu, T.-H. Wei, S. Chang, S.-M. Yen, C.-P. Tsai, R.-T. Liu, C.-T. Kuo, W.-S. Tse, C. Chia, “The transient optical Kerr effect of simple liquids studied with an ultrashort laser with variable pulsewidth,” IEEE J. Sel. Top. Quantum Electron. 2, 756–768 (1996).
[Crossref]

Kuroda, H.

R. A. Ganeev, A. I. Ryasnyansky, M. Baba, M. Suzuki, N. Ishizawa, M. Turu, S. Sakakibara, H. Kuroda, “Nonlinear refraction in CS2,” Appl. Phys. B 78, 433–438 (2004).
[Crossref]

Kuzyk, M. G.

M. G. Kuzyk, C. W. Dirk, “Effects of centrosymmetry on the nonresonant electronic third-order nonlinear optical susceptibility,” Phys. Rev. A 41, 5098–5109 (1990).
[Crossref]

Lallemand, P.

N. Bloembergen, P. Lallemand, “Complex intensity-dependent index of refraction, frequency broadening of stimulated Raman lines, and stimulated Rayleigh scattering,” Phys. Rev. Lett. 16, 81–84 (1966).
[Crossref]

Lavorel, B.

S. Couris, M. Renard, O. Faucher, B. Lavorel, R. Chaux, E. Koudoumas, X. Michaut, “An experimental investigation of the nonlinear refractive index (n2) of carbon disulfide and toluene by spectral shearing interferometry and Z-scan techniques,” Chem. Phys. Lett. 369, 318–324 (2003).
[Crossref]

Leblond, H.

E. L. Falcão-Filho, C. B. de Araújo, G. Boudebs, H. Leblond, V. Skarka, “Robust two-dimensional spatial solitons in liquid carbon disulfide,” Phys. Rev. Lett. 110, 013901 (2013).
[Crossref]

Levis, R. J.

J. K. Wahlstrand, J. H. Odhner, E. T. McCole, Y. H. Cheng, J. P. Palastro, R. J. Levis, H. M. Milchberg, “Effect of two-beam coupling in strong-field optical pump-probe experiments,” Phys. Rev. A 87, 053801 (2013).
[Crossref]

Litovitz, T. A.

J. A. Bucaro, T. A. Litovitz, “Rayleigh scattering: collisional motions in liquids,” J. Chem. Phys. 54, 3846–3853 (1971).
[Crossref]

Liu, R.-T.

T.-H. Huang, C.-C. Hsu, T.-H. Wei, S. Chang, S.-M. Yen, C.-P. Tsai, R.-T. Liu, C.-T. Kuo, W.-S. Tse, C. Chia, “The transient optical Kerr effect of simple liquids studied with an ultrashort laser with variable pulsewidth,” IEEE J. Sel. Top. Quantum Electron. 2, 756–768 (1996).
[Crossref]

Liu, Z.-B.

Lorenc, M.

M. Ziólek, M. Lorenc, R. Naskrecki, “Determination of the temporal response function in femtosecond pump-probe systems,” Appl. Phys. B 72, 843–847 (2001).
[Crossref]

Lotshaw, W. T.

D. McMorrow, N. Thantu, V. Kleiman, J. S. Melinger, W. T. Lotshaw, “Analysis of intermolecular coordinate contributions to third-order ultrafast spectroscopy of liquids in the harmonic oscillator limit,” J. Phys. Chem. A 105, 7960–7972 (2001).
[Crossref]

D. McMorrow, W. T. Lotshaw, G. A. Kenney-Wallace, “Femtosecond optical Kerr studies on the origin of the nonlinear responses in simple liquids,” IEEE J. Quantum Electron. 24, 443–454 (1988).
[Crossref]

C. Kalpouzos, D. McMorrow, W. T. Lotshaw, G. A. Kenney-Wallace, “Femtosecond laser-induced optical Kerr dynamics in CS2/alkane binary solutions,” Chem. Phys. Lett. 150, 138–146 (1988).
[Crossref]

Luc, J.

Ma, Y.-Z.

Q.-H. Xu, Y.-Z. Ma, G. R. Fleming, “Heterodyne detected transient grating spectroscopy in resonant and non-resonant systems using a simplified diffractive optics method,” Chem. Phys. Lett. 338, 254–262 (2001).
[Crossref]

Madden, P.

D. Kivelson, P. Madden, “Light scattering studies of molecular liquids,” Ann. Rev. Phys. Chem. 31, 523–558 (1980).

Major, A.

I. P. Nikolakakos, A. Major, J. S. Aitchison, P. W. E. Smith, “Broadband characterization of the nonlinear optical properties of common reference materials,” IEEE J. Sel. Top. Quantum Electron. 10, 1164–1170 (2004).
[Crossref]

McCole, E. T.

J. K. Wahlstrand, J. H. Odhner, E. T. McCole, Y. H. Cheng, J. P. Palastro, R. J. Levis, H. M. Milchberg, “Effect of two-beam coupling in strong-field optical pump-probe experiments,” Phys. Rev. A 87, 053801 (2013).
[Crossref]

McMorrow, D.

D. McMorrow, N. Thantu, V. Kleiman, J. S. Melinger, W. T. Lotshaw, “Analysis of intermolecular coordinate contributions to third-order ultrafast spectroscopy of liquids in the harmonic oscillator limit,” J. Phys. Chem. A 105, 7960–7972 (2001).
[Crossref]

D. McMorrow, W. T. Lotshaw, G. A. Kenney-Wallace, “Femtosecond optical Kerr studies on the origin of the nonlinear responses in simple liquids,” IEEE J. Quantum Electron. 24, 443–454 (1988).
[Crossref]

C. Kalpouzos, D. McMorrow, W. T. Lotshaw, G. A. Kenney-Wallace, “Femtosecond laser-induced optical Kerr dynamics in CS2/alkane binary solutions,” Chem. Phys. Lett. 150, 138–146 (1988).
[Crossref]

Meech, S. R.

N. T. Hunt, A. A. Jaye, S. R. Meech, “Polarisation-resolved ultrafast Raman responses of carbon disulfide in solution and microemulsion environments,” Chem. Phys. Lett. 371, 304–310 (2003).
[Crossref]

Meinders, N. A. C. M.

T. Steffen, N. A. C. M. Meinders, K. Duppen, “Microscopic origin of the optical Kerr effect response of CS2–pentane binary mixtures,” J. Phys. Chem. A 102, 4213–4221 (1998).
[Crossref]

Melinger, J. S.

D. McMorrow, N. Thantu, V. Kleiman, J. S. Melinger, W. T. Lotshaw, “Analysis of intermolecular coordinate contributions to third-order ultrafast spectroscopy of liquids in the harmonic oscillator limit,” J. Phys. Chem. A 105, 7960–7972 (2001).
[Crossref]

Michaut, X.

S. Couris, M. Renard, O. Faucher, B. Lavorel, R. Chaux, E. Koudoumas, X. Michaut, “An experimental investigation of the nonlinear refractive index (n2) of carbon disulfide and toluene by spectral shearing interferometry and Z-scan techniques,” Chem. Phys. Lett. 369, 318–324 (2003).
[Crossref]

Milam, D.

Milchberg, H. M.

J. K. Wahlstrand, J. H. Odhner, E. T. McCole, Y. H. Cheng, J. P. Palastro, R. J. Levis, H. M. Milchberg, “Effect of two-beam coupling in strong-field optical pump-probe experiments,” Phys. Rev. A 87, 053801 (2013).
[Crossref]

Moran, M.

M. Moran, S. Chiao-Yao, R. Carman, “Interferometric measurements of the nonlinear refractive-index coefficient relative to CS2 in laser-system-related materials,” IEEE J. Quantum Electron. 11, 259–263 (1975).
[Crossref]

Morita, R.

Y. Sato, R. Morita, M. Yamashita, “Study on ultrafast dynamic behaviors of different nonlinear refractive index components in CS2 using a femtosecond interferometer,” Jpn. J. Appl. Phys. 36, 2109–2115 (1997).

Naskrecki, R.

M. Ziólek, M. Lorenc, R. Naskrecki, “Determination of the temporal response function in femtosecond pump-probe systems,” Appl. Phys. B 72, 843–847 (2001).
[Crossref]

Negres, R. A.

R. A. Negres, J. M. Hales, A. Kobyakov, D. J. Hagan, E. W. Van Stryland, “Experiment and analysis of two-photon absorption spectroscopy using a white-light continuum probe,” IEEE J. Quantum Electron. 38, 1205–1216 (2002).
[Crossref]

Nguyen, T. N.

Nikolakakos, I. P.

I. P. Nikolakakos, A. Major, J. S. Aitchison, P. W. E. Smith, “Broadband characterization of the nonlinear optical properties of common reference materials,” IEEE J. Sel. Top. Quantum Electron. 10, 1164–1170 (2004).
[Crossref]

Norwood, R. A.

Odhner, J. H.

J. K. Wahlstrand, J. H. Odhner, E. T. McCole, Y. H. Cheng, J. P. Palastro, R. J. Levis, H. M. Milchberg, “Effect of two-beam coupling in strong-field optical pump-probe experiments,” Phys. Rev. A 87, 053801 (2013).
[Crossref]

Ohta, K.

K. Kiyohara, K. Kamada, K. Ohta, “Orientational and collision-induced contribution to third-order nonlinear optical response of liquid CS2,” J. Chem. Phys. 112, 6338–6348 (2000).
[Crossref]

Orr, B. J.

B. J. Orr, J. F. Ward, “Perturbation theory of the non-linear optical polarization of an isolated system,” Mol. Phys. 20, 513–526 (1971).
[Crossref]

Pal, R. R.

S. Sahu, R. R. Pal, S. Dhar, “Nonlinear material based all-optical parallel subtraction scheme: an implementation,” Int. J. Optoelectron. 1, 7–11 (2011).
[Crossref]

Palastro, J. P.

J. K. Wahlstrand, J. H. Odhner, E. T. McCole, Y. H. Cheng, J. P. Palastro, R. J. Levis, H. M. Milchberg, “Effect of two-beam coupling in strong-field optical pump-probe experiments,” Phys. Rev. A 87, 053801 (2013).
[Crossref]

Peyghambarian, N.

Pricking, S.

Purwar, H.

Rau, I.

Reichert, M.

Renard, M.

S. Couris, M. Renard, O. Faucher, B. Lavorel, R. Chaux, E. Koudoumas, X. Michaut, “An experimental investigation of the nonlinear refractive index (n2) of carbon disulfide and toluene by spectral shearing interferometry and Z-scan techniques,” Chem. Phys. Lett. 369, 318–324 (2003).
[Crossref]

Rozé, C.

Ryasnyansky, A. I.

R. A. Ganeev, A. I. Ryasnyansky, M. Baba, M. Suzuki, N. Ishizawa, M. Turu, S. Sakakibara, H. Kuroda, “Nonlinear refraction in CS2,” Appl. Phys. B 78, 433–438 (2004).
[Crossref]

Sahraoui, B.

Sahu, S.

S. Sahu, R. R. Pal, S. Dhar, “Nonlinear material based all-optical parallel subtraction scheme: an implementation,” Int. J. Optoelectron. 1, 7–11 (2011).
[Crossref]

Said, A. A.

A. Dogariu, T. Xia, D. J. Hagan, A. A. Said, E. W. Van Stryland, N. Bloembergen, “Purely refractive transient energy transfer by stimulated Rayleigh-wing scattering,” J. Opt. Soc. Am. B 14, 796–803 (1997).
[Crossref]

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[Crossref]

Sakakibara, S.

R. A. Ganeev, A. I. Ryasnyansky, M. Baba, M. Suzuki, N. Ishizawa, M. Turu, S. Sakakibara, H. Kuroda, “Nonlinear refraction in CS2,” Appl. Phys. B 78, 433–438 (2004).
[Crossref]

Salvetti, G.

M. Falconieri, G. Salvetti, “Simultaneous measurement of pure-optical and thermo-optical nonlinearities induced by high-repetition-rate, femtosecond laser pulses: application to CS2,” Appl. Phys. B 69, 133–136 (1999).
[Crossref]

Samoc, A.

A. Samoc, “Dispersion of refractive properties of solvents: chloroform, toluene, benzene, and carbon disulfide in ultraviolet, visible, and near-infrared,” J. Appl. Phys. 94, 6167–6174 (2003).
[Crossref]

Sato, Y.

Y. Sato, R. Morita, M. Yamashita, “Study on ultrafast dynamic behaviors of different nonlinear refractive index components in CS2 using a femtosecond interferometer,” Jpn. J. Appl. Phys. 36, 2109–2115 (1997).

Schneebeli, L.

Sedarsky, D.

Shapiro, S. L.

S. L. Shapiro, H. P. Broida, “Light scattering from fluctuations in orientations of CS2 in liquids,” Phys. Rev. 154, 129–138 (1967).
[Crossref]

She, C. Y.

J. S. Friedman, C. Y. She, “The effects of molecular geometry on the depolarized stimulated gain spectra of simple liquids,” J. Chem. Phys. 99, 4960–4969 (1993).
[Crossref]

Sheik-Bahae, M.

D. C. Hutchings, M. Sheik-Bahae, D. J. Hagan, E. W. Stryland, “Kramers-Krönig relations in nonlinear optics,” Opt. Quantum. Electron. 24, 1–30 (1992).

M. Sheik-Bahae, J. Wang, R. DeSalvo, D. J. Hagan, E. W. Van Stryland, “Measurement of nondegenerate nonlinearities using a two-color Z scan,” Opt. Lett. 17, 258–260 (1992).
[Crossref]

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, E. W. Van Stryland, “Dispersion of bound electron nonlinear refraction in solids,” IEEE J. Quantum Electron. 27, 1296–1309 (1991).
[Crossref]

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[Crossref]

Shi, G.

D. Kong, Q. Chang, Y. Gao, H. A. Ye, L. Zhang, G. Shi, X. Zhang, Y. Wang, K. Yang, Y. Song, “Nonlinear absorption of CS2 at the wavelength of 400 nm with femtosecond pulses,” Physica B 407, 1279–1281 (2012).

Shi, S.

Skarka, V.

E. L. Falcão-Filho, C. B. de Araújo, G. Boudebs, H. Leblond, V. Skarka, “Robust two-dimensional spatial solitons in liquid carbon disulfide,” Phys. Rev. Lett. 110, 013901 (2013).
[Crossref]

Smirl, A. L.

E. W. Van Stryland, A. L. Smirl, T. F. Boggess, M. J. Soileau, B. S. Wherrett, F. A. Hopf, “Weak-wave retardation and phase-conjugate self-defousing in Si,” in Picosecond Phenomena III, K. B. Eisenthal, R. M. Hochstrasser, W. Kaiser, A. Laubereau, eds. (Springer, 1982), pp. 368–371.

Smith, P. W. E.

I. P. Nikolakakos, A. Major, J. S. Aitchison, P. W. E. Smith, “Broadband characterization of the nonlinear optical properties of common reference materials,” IEEE J. Sel. Top. Quantum Electron. 10, 1164–1170 (2004).
[Crossref]

Soileau, M. J.

E. W. Van Stryland, A. L. Smirl, T. F. Boggess, M. J. Soileau, B. S. Wherrett, F. A. Hopf, “Weak-wave retardation and phase-conjugate self-defousing in Si,” in Picosecond Phenomena III, K. B. Eisenthal, R. M. Hochstrasser, W. Kaiser, A. Laubereau, eds. (Springer, 1982), pp. 368–371.

Song, Y.

D. Kong, Q. Chang, Y. Gao, H. A. Ye, L. Zhang, G. Shi, X. Zhang, Y. Wang, K. Yang, Y. Song, “Nonlinear absorption of CS2 at the wavelength of 400 nm with femtosecond pulses,” Physica B 407, 1279–1281 (2012).

Space, B.

S. Constantine, J. A. Gardecki, Y. Zhou, L. D. Ziegler, X. Ji, B. Space, “A novel technique for the measurement of polarization-specific ultrafast Raman responses,” J. Phys. Chem. A 105, 9851–9858 (2001).
[Crossref]

Steffen, T.

T. Steffen, N. A. C. M. Meinders, K. Duppen, “Microscopic origin of the optical Kerr effect response of CS2–pentane binary mixtures,” J. Phys. Chem. A 102, 4213–4221 (1998).
[Crossref]

T. Steffen, K. Duppen, “Time resolved four- and six-wave mixing in liquids. II. Experiments,” J. Chem. Phys. 106, 3854–3864 (1997).
[Crossref]

Stryland, E. W.

D. C. Hutchings, M. Sheik-Bahae, D. J. Hagan, E. W. Stryland, “Kramers-Krönig relations in nonlinear optics,” Opt. Quantum. Electron. 24, 1–30 (1992).

Suzuki, M.

R. A. Ganeev, A. I. Ryasnyansky, M. Baba, M. Suzuki, N. Ishizawa, M. Turu, S. Sakakibara, H. Kuroda, “Nonlinear refraction in CS2,” Appl. Phys. B 78, 433–438 (2004).
[Crossref]

Thantu, N.

D. McMorrow, N. Thantu, V. Kleiman, J. S. Melinger, W. T. Lotshaw, “Analysis of intermolecular coordinate contributions to third-order ultrafast spectroscopy of liquids in the harmonic oscillator limit,” J. Phys. Chem. A 105, 7960–7972 (2001).
[Crossref]

Tian, J.-G.

Tokmakoff, A.

C. J. Fecko, J. D. Eaves, A. Tokmakoff, “Isotropic and anisotropic Raman scattering from molecular liquids measured by spatially masked optical Kerr effect spectroscopy,” J. Chem. Phys. 117, 1139–1154 (2002).
[Crossref]

Tsai, C.-P.

T.-H. Huang, C.-C. Hsu, T.-H. Wei, S. Chang, S.-M. Yen, C.-P. Tsai, R.-T. Liu, C.-T. Kuo, W.-S. Tse, C. Chia, “The transient optical Kerr effect of simple liquids studied with an ultrashort laser with variable pulsewidth,” IEEE J. Sel. Top. Quantum Electron. 2, 756–768 (1996).
[Crossref]

Tse, W.-S.

T.-H. Huang, C.-C. Hsu, T.-H. Wei, S. Chang, S.-M. Yen, C.-P. Tsai, R.-T. Liu, C.-T. Kuo, W.-S. Tse, C. Chia, “The transient optical Kerr effect of simple liquids studied with an ultrashort laser with variable pulsewidth,” IEEE J. Sel. Top. Quantum Electron. 2, 756–768 (1996).
[Crossref]

Turu, M.

R. A. Ganeev, A. I. Ryasnyansky, M. Baba, M. Suzuki, N. Ishizawa, M. Turu, S. Sakakibara, H. Kuroda, “Nonlinear refraction in CS2,” Appl. Phys. B 78, 433–438 (2004).
[Crossref]

Van Stryland, E.

Van Stryland, E. W.

M. R. Ferdinandus, H. Hu, M. Reichert, D. J. Hagan, E. W. Van Stryland, “Beam deflection measurement of time and polarization resolved ultrafast nonlinear refraction,” Opt. Lett. 38, 3518–3521 (2013).
[Crossref]

M. R. Ferdinandus, M. Reichert, T. R. Ensley, H. Hu, D. A. Fishman, S. Webster, D. J. Hagan, E. W. Van Stryland, “Dual-arm Z-scan technique to extract dilute solute nonlinearities from solution measurements,” Opt. Mater. Express 2, 1776–1790 (2012).
[Crossref]

R. A. Negres, J. M. Hales, A. Kobyakov, D. J. Hagan, E. W. Van Stryland, “Experiment and analysis of two-photon absorption spectroscopy using a white-light continuum probe,” IEEE J. Quantum Electron. 38, 1205–1216 (2002).
[Crossref]

D. I. Kovsh, S. Yang, D. J. Hagan, E. W. Van Stryland, “Nonlinear optical beam propagation for optical limiting,” Appl. Opt. 38, 5168–5180 (1999).
[Crossref]

A. Dogariu, T. Xia, D. J. Hagan, A. A. Said, E. W. Van Stryland, N. Bloembergen, “Purely refractive transient energy transfer by stimulated Rayleigh-wing scattering,” J. Opt. Soc. Am. B 14, 796–803 (1997).
[Crossref]

M. Sheik-Bahae, J. Wang, R. DeSalvo, D. J. Hagan, E. W. Van Stryland, “Measurement of nondegenerate nonlinearities using a two-color Z scan,” Opt. Lett. 17, 258–260 (1992).
[Crossref]

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, E. W. Van Stryland, “Dispersion of bound electron nonlinear refraction in solids,” IEEE J. Quantum Electron. 27, 1296–1309 (1991).
[Crossref]

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[Crossref]

E. W. Van Stryland, A. L. Smirl, T. F. Boggess, M. J. Soileau, B. S. Wherrett, F. A. Hopf, “Weak-wave retardation and phase-conjugate self-defousing in Si,” in Picosecond Phenomena III, K. B. Eisenthal, R. M. Hochstrasser, W. Kaiser, A. Laubereau, eds. (Springer, 1982), pp. 368–371.

Vieweg, M.

Wahlstrand, J. K.

J. K. Wahlstrand, J. H. Odhner, E. T. McCole, Y. H. Cheng, J. P. Palastro, R. J. Levis, H. M. Milchberg, “Effect of two-beam coupling in strong-field optical pump-probe experiments,” Phys. Rev. A 87, 053801 (2013).
[Crossref]

Wang, J.

Wang, Y.

D. Kong, Q. Chang, Y. Gao, H. A. Ye, L. Zhang, G. Shi, X. Zhang, Y. Wang, K. Yang, Y. Song, “Nonlinear absorption of CS2 at the wavelength of 400 nm with femtosecond pulses,” Physica B 407, 1279–1281 (2012).

Ward, J. F.

B. J. Orr, J. F. Ward, “Perturbation theory of the non-linear optical polarization of an isolated system,” Mol. Phys. 20, 513–526 (1971).
[Crossref]

Webster, S.

Wei, T. H.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[Crossref]

Wei, T.-H.

T.-H. Huang, C.-C. Hsu, T.-H. Wei, S. Chang, S.-M. Yen, C.-P. Tsai, R.-T. Liu, C.-T. Kuo, W.-S. Tse, C. Chia, “The transient optical Kerr effect of simple liquids studied with an ultrashort laser with variable pulsewidth,” IEEE J. Sel. Top. Quantum Electron. 2, 756–768 (1996).
[Crossref]

Wherrett, B. S.

E. W. Van Stryland, A. L. Smirl, T. F. Boggess, M. J. Soileau, B. S. Wherrett, F. A. Hopf, “Weak-wave retardation and phase-conjugate self-defousing in Si,” in Picosecond Phenomena III, K. B. Eisenthal, R. M. Hochstrasser, W. Kaiser, A. Laubereau, eds. (Springer, 1982), pp. 368–371.

Xia, T.

Xu, Q.-H.

Q.-H. Xu, Y.-Z. Ma, G. R. Fleming, “Heterodyne detected transient grating spectroscopy in resonant and non-resonant systems using a simplified diffractive optics method,” Chem. Phys. Lett. 338, 254–262 (2001).
[Crossref]

Yamashita, M.

Y. Sato, R. Morita, M. Yamashita, “Study on ultrafast dynamic behaviors of different nonlinear refractive index components in CS2 using a femtosecond interferometer,” Jpn. J. Appl. Phys. 36, 2109–2115 (1997).

Yan, X.-Q.

Yang, K.

D. Kong, Q. Chang, Y. Gao, H. A. Ye, L. Zhang, G. Shi, X. Zhang, Y. Wang, K. Yang, Y. Song, “Nonlinear absorption of CS2 at the wavelength of 400 nm with femtosecond pulses,” Physica B 407, 1279–1281 (2012).

Yang, S.

Ye, H. A.

D. Kong, Q. Chang, Y. Gao, H. A. Ye, L. Zhang, G. Shi, X. Zhang, Y. Wang, K. Yang, Y. Song, “Nonlinear absorption of CS2 at the wavelength of 400 nm with femtosecond pulses,” Physica B 407, 1279–1281 (2012).

Yen, S.-M.

T.-H. Huang, C.-C. Hsu, T.-H. Wei, S. Chang, S.-M. Yen, C.-P. Tsai, R.-T. Liu, C.-T. Kuo, W.-S. Tse, C. Chia, “The transient optical Kerr effect of simple liquids studied with an ultrashort laser with variable pulsewidth,” IEEE J. Sel. Top. Quantum Electron. 2, 756–768 (1996).
[Crossref]

Zhang, L.

D. Kong, Q. Chang, Y. Gao, H. A. Ye, L. Zhang, G. Shi, X. Zhang, Y. Wang, K. Yang, Y. Song, “Nonlinear absorption of CS2 at the wavelength of 400 nm with femtosecond pulses,” Physica B 407, 1279–1281 (2012).

Zhang, X.

D. Kong, Q. Chang, Y. Gao, H. A. Ye, L. Zhang, G. Shi, X. Zhang, Y. Wang, K. Yang, Y. Song, “Nonlinear absorption of CS2 at the wavelength of 400 nm with femtosecond pulses,” Physica B 407, 1279–1281 (2012).

Zhang, X.-L.

Zhou, Y.

S. Constantine, J. A. Gardecki, Y. Zhou, L. D. Ziegler, X. Ji, B. Space, “A novel technique for the measurement of polarization-specific ultrafast Raman responses,” J. Phys. Chem. A 105, 9851–9858 (2001).
[Crossref]

Ziegler, L. D.

S. Constantine, J. A. Gardecki, Y. Zhou, L. D. Ziegler, X. Ji, B. Space, “A novel technique for the measurement of polarization-specific ultrafast Raman responses,” J. Phys. Chem. A 105, 9851–9858 (2001).
[Crossref]

Ziólek, M.

M. Ziólek, M. Lorenc, R. Naskrecki, “Determination of the temporal response function in femtosecond pump-probe systems,” Appl. Phys. B 72, 843–847 (2001).
[Crossref]

Ann. Rev. Phys. Chem. (1)

D. Kivelson, P. Madden, “Light scattering studies of molecular liquids,” Ann. Rev. Phys. Chem. 31, 523–558 (1980).

Appl. Opt. (2)

Appl. Phys. B (3)

M. Ziólek, M. Lorenc, R. Naskrecki, “Determination of the temporal response function in femtosecond pump-probe systems,” Appl. Phys. B 72, 843–847 (2001).
[Crossref]

R. A. Ganeev, A. I. Ryasnyansky, M. Baba, M. Suzuki, N. Ishizawa, M. Turu, S. Sakakibara, H. Kuroda, “Nonlinear refraction in CS2,” Appl. Phys. B 78, 433–438 (2004).
[Crossref]

M. Falconieri, G. Salvetti, “Simultaneous measurement of pure-optical and thermo-optical nonlinearities induced by high-repetition-rate, femtosecond laser pulses: application to CS2,” Appl. Phys. B 69, 133–136 (1999).
[Crossref]

Chem. Phys. Lett. (4)

S. Couris, M. Renard, O. Faucher, B. Lavorel, R. Chaux, E. Koudoumas, X. Michaut, “An experimental investigation of the nonlinear refractive index (n2) of carbon disulfide and toluene by spectral shearing interferometry and Z-scan techniques,” Chem. Phys. Lett. 369, 318–324 (2003).
[Crossref]

Q.-H. Xu, Y.-Z. Ma, G. R. Fleming, “Heterodyne detected transient grating spectroscopy in resonant and non-resonant systems using a simplified diffractive optics method,” Chem. Phys. Lett. 338, 254–262 (2001).
[Crossref]

N. T. Hunt, A. A. Jaye, S. R. Meech, “Polarisation-resolved ultrafast Raman responses of carbon disulfide in solution and microemulsion environments,” Chem. Phys. Lett. 371, 304–310 (2003).
[Crossref]

C. Kalpouzos, D. McMorrow, W. T. Lotshaw, G. A. Kenney-Wallace, “Femtosecond laser-induced optical Kerr dynamics in CS2/alkane binary solutions,” Chem. Phys. Lett. 150, 138–146 (1988).
[Crossref]

IEEE J. Quantum Electron. (5)

R. A. Negres, J. M. Hales, A. Kobyakov, D. J. Hagan, E. W. Van Stryland, “Experiment and analysis of two-photon absorption spectroscopy using a white-light continuum probe,” IEEE J. Quantum Electron. 38, 1205–1216 (2002).
[Crossref]

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, E. W. Van Stryland, “Dispersion of bound electron nonlinear refraction in solids,” IEEE J. Quantum Electron. 27, 1296–1309 (1991).
[Crossref]

D. McMorrow, W. T. Lotshaw, G. A. Kenney-Wallace, “Femtosecond optical Kerr studies on the origin of the nonlinear responses in simple liquids,” IEEE J. Quantum Electron. 24, 443–454 (1988).
[Crossref]

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[Crossref]

M. Moran, S. Chiao-Yao, R. Carman, “Interferometric measurements of the nonlinear refractive-index coefficient relative to CS2 in laser-system-related materials,” IEEE J. Quantum Electron. 11, 259–263 (1975).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

I. P. Nikolakakos, A. Major, J. S. Aitchison, P. W. E. Smith, “Broadband characterization of the nonlinear optical properties of common reference materials,” IEEE J. Sel. Top. Quantum Electron. 10, 1164–1170 (2004).
[Crossref]

T.-H. Huang, C.-C. Hsu, T.-H. Wei, S. Chang, S.-M. Yen, C.-P. Tsai, R.-T. Liu, C.-T. Kuo, W.-S. Tse, C. Chia, “The transient optical Kerr effect of simple liquids studied with an ultrashort laser with variable pulsewidth,” IEEE J. Sel. Top. Quantum Electron. 2, 756–768 (1996).
[Crossref]

Int. J. Optoelectron. (1)

S. Sahu, R. R. Pal, S. Dhar, “Nonlinear material based all-optical parallel subtraction scheme: an implementation,” Int. J. Optoelectron. 1, 7–11 (2011).
[Crossref]

J. Appl. Phys. (1)

A. Samoc, “Dispersion of refractive properties of solvents: chloroform, toluene, benzene, and carbon disulfide in ultraviolet, visible, and near-infrared,” J. Appl. Phys. 94, 6167–6174 (2003).
[Crossref]

J. Chem. Phys. (5)

J. A. Bucaro, T. A. Litovitz, “Rayleigh scattering: collisional motions in liquids,” J. Chem. Phys. 54, 3846–3853 (1971).
[Crossref]

K. Kiyohara, K. Kamada, K. Ohta, “Orientational and collision-induced contribution to third-order nonlinear optical response of liquid CS2,” J. Chem. Phys. 112, 6338–6348 (2000).
[Crossref]

T. Steffen, K. Duppen, “Time resolved four- and six-wave mixing in liquids. II. Experiments,” J. Chem. Phys. 106, 3854–3864 (1997).
[Crossref]

C. J. Fecko, J. D. Eaves, A. Tokmakoff, “Isotropic and anisotropic Raman scattering from molecular liquids measured by spatially masked optical Kerr effect spectroscopy,” J. Chem. Phys. 117, 1139–1154 (2002).
[Crossref]

J. S. Friedman, C. Y. She, “The effects of molecular geometry on the depolarized stimulated gain spectra of simple liquids,” J. Chem. Phys. 99, 4960–4969 (1993).
[Crossref]

J. Opt. Soc. Am. B (2)

J. Phys. Chem. A (3)

D. McMorrow, N. Thantu, V. Kleiman, J. S. Melinger, W. T. Lotshaw, “Analysis of intermolecular coordinate contributions to third-order ultrafast spectroscopy of liquids in the harmonic oscillator limit,” J. Phys. Chem. A 105, 7960–7972 (2001).
[Crossref]

S. Constantine, J. A. Gardecki, Y. Zhou, L. D. Ziegler, X. Ji, B. Space, “A novel technique for the measurement of polarization-specific ultrafast Raman responses,” J. Phys. Chem. A 105, 9851–9858 (2001).
[Crossref]

T. Steffen, N. A. C. M. Meinders, K. Duppen, “Microscopic origin of the optical Kerr effect response of CS2–pentane binary mixtures,” J. Phys. Chem. A 102, 4213–4221 (1998).
[Crossref]

Jpn. J. Appl. Phys. (1)

Y. Sato, R. Morita, M. Yamashita, “Study on ultrafast dynamic behaviors of different nonlinear refractive index components in CS2 using a femtosecond interferometer,” Jpn. J. Appl. Phys. 36, 2109–2115 (1997).

Mol. Phys. (1)

B. J. Orr, J. F. Ward, “Perturbation theory of the non-linear optical polarization of an isolated system,” Mol. Phys. 20, 513–526 (1971).
[Crossref]

Opt. Express (7)

Opt. Lett. (2)

Opt. Mater. Express (2)

Opt. Quantum. Electron. (1)

D. C. Hutchings, M. Sheik-Bahae, D. J. Hagan, E. W. Stryland, “Kramers-Krönig relations in nonlinear optics,” Opt. Quantum. Electron. 24, 1–30 (1992).

Phys. Rev. (1)

S. L. Shapiro, H. P. Broida, “Light scattering from fluctuations in orientations of CS2 in liquids,” Phys. Rev. 154, 129–138 (1967).
[Crossref]

Phys. Rev. A (3)

J. K. Wahlstrand, J. H. Odhner, E. T. McCole, Y. H. Cheng, J. P. Palastro, R. J. Levis, H. M. Milchberg, “Effect of two-beam coupling in strong-field optical pump-probe experiments,” Phys. Rev. A 87, 053801 (2013).
[Crossref]

B. I. Greene, P. A. Fleury, H. L. Carter, R. C. Farrow, “Microscopic dynamics in simple liquids by subpicosecond birefringences,” Phys. Rev. A 29, 271–274 (1984).
[Crossref]

M. G. Kuzyk, C. W. Dirk, “Effects of centrosymmetry on the nonresonant electronic third-order nonlinear optical susceptibility,” Phys. Rev. A 41, 5098–5109 (1990).
[Crossref]

Phys. Rev. Lett. (2)

N. Bloembergen, P. Lallemand, “Complex intensity-dependent index of refraction, frequency broadening of stimulated Raman lines, and stimulated Rayleigh scattering,” Phys. Rev. Lett. 16, 81–84 (1966).
[Crossref]

E. L. Falcão-Filho, C. B. de Araújo, G. Boudebs, H. Leblond, V. Skarka, “Robust two-dimensional spatial solitons in liquid carbon disulfide,” Phys. Rev. Lett. 110, 013901 (2013).
[Crossref]

Physica B (1)

D. Kong, Q. Chang, Y. Gao, H. A. Ye, L. Zhang, G. Shi, X. Zhang, Y. Wang, K. Yang, Y. Song, “Nonlinear absorption of CS2 at the wavelength of 400 nm with femtosecond pulses,” Physica B 407, 1279–1281 (2012).

Physical Review A (1)

P. P. Ho, R. R. Alfano, “Optical Kerr effect in liquids,” Physical Review A 20, 2170–2187 (1979).
[Crossref]

Proc. SPIE (1)

K. Kamada, “Mechanisms of ultrafast refractive index change in organic system,” Proc. SPIE 4797, 65–75 (2003).

Radiophys. Quantum Electron. (1)

A. E. Kaplan, “‘External’ self-focusing of light by a nonlinear layer,” Radiophys. Quantum Electron. 12, 692–696 (1969).
[Crossref]

Other (5)

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).

E. W. Van Stryland, A. L. Smirl, T. F. Boggess, M. J. Soileau, B. S. Wherrett, F. A. Hopf, “Weak-wave retardation and phase-conjugate self-defousing in Si,” in Picosecond Phenomena III, K. B. Eisenthal, R. M. Hochstrasser, W. Kaiser, A. Laubereau, eds. (Springer, 1982), pp. 368–371.

H. Hu, “Third order nonlinearity of organic molecules,” Ph. D. dissertation (University of Central Florida, 2012).

R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic/Elsevier, 2008).

P. Debye, Polar Molecules (Dover, 1929).

Supplementary Material (1)

» Supplement 1: PDF (748 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. (a) Schematic diagram of BD experiment [35]; (b) irradiance distribution of excitation (red), and probe (green) at sample plane; (c) zoom in of (a) at sample showing a profile of Δ n ; (d) probe beam on segmented detector without and with deflection.
Fig. 2.
Fig. 2. Measured (circles) and fit (curves) BD signals for parallel (black), magic angle (blue), and perpendicular (red) polarizations; inset shows the resultant noninstantaneous responses of collision (blue), diffusive reorientation (red), libration (green), and their sum (black).
Fig. 3.
Fig. 3. Normalized DFWM signal of CS 2 (circles), and calculation (curve) using the response function model values of Table 1; inset shows logarithmic scale.
Fig. 4.
Fig. 4. Comparison of Z-scan measurements (see Supplement 1) using the Ti:sapphire (closed) and Nd:YAG laser system (open), at both 700 nm (black) and 1064 nm (green), and calculation using Eq. (17), red curve, of n 2 , eff , of CS 2 versus pulse width; shaded region represents errors in the response function from Table 1.
Fig. 5.
Fig. 5. Comparison of n 2 , eff lin / n 2 , eff circ versus pulse width between Z-scan measurements with both Ti:sappire (closed circles) and Nd:YAG (open circle) laser systems at 700 nm and calculated (red curve); shaded region represents only relative errors that contribute to uncertainty.
Fig. 6.
Fig. 6. (a) Z-scan measurements of dispersion of n 2 , eff | long for (open circles) 13 to 20 ps and (closed squares) 2.5 to 17 ns, with the electrostriction contribution subtracted; (b) Z-scan measurements of NLR (black circles) for fs pulses with noninstantaneous component subtracted and α 2 (blue triangles); curves represent the SOS model fit for 2PA (blue) and n 2 , e l (black), which has been multiplied by a factor of 2.

Tables (2)

Tables Icon

Table 1. Fit Parameters of Third-Order Response of CS 2 a

Tables Icon

Table 2. Fit Parameters for SOS Model of n 2 , e l and α 2 of CS 2

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

Δ n ( t ) = n 2 , e l I ( t ) + R ( t t ) I ( t ) d t ,
n 2 , e l = 3 Re ( χ ( 3 ) ) 4 n 0 2 ε 0 c ,
R ( t ) = m n 2 , m r m ( t ) ,
r m ( t ) d t = 1 .
r d ( t ) = C d ( 1 e t τ r , d ) e t τ f , d Θ ( t ) ,
r l ( t ) = C l e t τ f , l Θ ( t ) 0 sin ( ω t ) ω g ( ω ) d ω ,
g ( ω ) = e ( ω ω 0 ) 2 2 σ 2 e ( ω + ω 0 ) 2 2 σ 2 ,
r c ( t ) = C c ( 1 e t τ r , c ) e t τ f , c Θ ( t ) ,
i ( z + 1 v t ) E + k 0 E ( 2 n 2 , e l I e ( t ) + R ( t t ) I e ( t ) d t ) = 0 ,
E ( r , T ) = E 0 ( r ) exp ( ( T + T d ρ ) 2 2 T 2 + i k 0 L ρ I e , 0 ( r ) · { 2 n 2 , e l [ erf ( T ) erf ( T ρ ) ] + T ρ T R ( T 2 T 1 ) e T 1 2 d T 1 d T 2 } ) ,
ρ = L τ e ( 1 v 1 v e ) = L τ e c ( n g n g , e ) ,
Δ n ( θ ) = Δ n cos 2 ( θ ) + Δ n sin 2 ( θ ) .
Δ n ( θ ) = Δ n iso ( cos 2 ( θ ) + 1 3 sin 2 ( θ ) ) + Δ n re ( cos 2 ( θ ) 1 2 sin 2 ( θ ) ) .
Δ n ( 0 ° ) = Δ n iso + Δ n re , Δ n ( 90 ° ) = 1 3 Δ n iso 1 2 Δ n re , Δ n ( 54.7 ° ) = 5 9 Δ n iso .
Δ n ( t ) = Δ n ( t ) I ( t ) d t I ( t ) d t .
Δ n ( t ) = n 2 , eff I 2 ( t ) d t I ( t ) d t .
n 2 , eff = n 2 , e l + I ( t ) R ( t t ) I ( t ) d t d t I 2 ( t ) d t .
n 2 , eff | long = m n 2 , m .
n 2 , eff lin n 2 , eff circ | long = n 2 , eff lin | long ( n 2 , e l + n 2 , c ) 1.5 + ( n 2 , l + n 2 , d ) 4 ,

Metrics