Abstract

Destructive nonlinear processes have limited the useful input power to a few megawatts for supercontinuum generation in bulk material. Consequently, reliable high-power, high-pulse-energy supercontinuum in condensed media has not been realized. Here, we describe an intense femtosecond supercontinuum generated in a solid medium with pulse energy and mode quality that approach those generated in the gas phase while preserving the advantages of a condensed medium of being compact, simple to operate, and highly reproducible. This is achieved by strategically placing several thin solid plates at or near the focused waist of a high-power laser pulse. The thickness of each plate is such that the optical pulse exits the plate before undesirable effects begin to take hold of the pulse. With this approach, we have obtained pulses that have an octave-spanning spectrum that covers from 450 to 980 nm at the 20dB intensity level while converting as much as 54% of the input pulse energy to the continuum. The highest pulse energy obtained to date is 76 μJ, nearly two orders of magnitude greater than previously reported values. The transverse mode of the pulse has a M2 of 1.25. Frequency-resolved optical grating and spectral interferometric measurements indicate that the pulse is phase coherent and could be compressed to a few femtoseconds. Furthermore, the multiple-plates approach is shown to be extremely flexible and versatile. It is applicable for a broad range of input powers and materials. The generated continuum is stable and robust. Thus, multiple-plate generated femtosecond continuum could be a promising new light source in ultrafast science and extreme nonlinear optics applications.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Supercontinuum generation in a multi-plate medium

Yu-Chen Cheng, Chih-Hsuan Lu, Yuan-Yao Lin, and A. H. Kung
Opt. Express 24(7) 7224-7231 (2016)

Generation and characterization of ultrafast white-light continuum in condensed media

Chihiro Nagura, Akira Suda, Hiroyuki Kawano, Minoru Obara, and Katsumi Midorikawa
Appl. Opt. 41(18) 3735-3742 (2002)

Single-shot measurement of the complete temporal intensity and phase of supercontinuum

Tsz Chun Wong, Michelle Rhodes, and Rick Trebino
Optica 1(2) 119-124 (2014)

References

  • View by:
  • |
  • |
  • |

  1. R. R. Alfano, ed., The Supercontinuum Laser Source (Springer-Verlag, 1989).
  2. C. P. Hauri, W. Kornelis, F. W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, U. Keller, “Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,” Appl. Phys. B 79, 673–677 (2004).
    [Crossref]
  3. A. Wirth, M. Th. Hassan, I. Grguraš, J. Gagnon, A. Moulet, T. T. Luu, S. Pabst, R. Santra, Z. A. Alahmed, A. M. Azzeer, V. S. Yakovlev, V. Pervak, F. Krausz, E. Goulielmakis, “Synthesized light transients,” Science 334, 195–200 (2011).
    [Crossref]
  4. T. Brabec, F. Krausz, “Intense few-cycle laser fields: frontiers of nonlinear optics,” Rev. Mod. Phys. 72, 545–591 (2000).
    [Crossref]
  5. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
    [Crossref]
  6. A. Apolonski, A. Poppe, G. Tempea, Ch. Spielmann, Th. Udem, R. Holzwarth, T. W. Hänsch, F. Krausz, “Controlling the phase evolution of few-cycle light pulses,” Phys. Rev. Lett. 85, 740–743 (2000).
    [Crossref]
  7. T. Udem, R. Holzwarth, T. W. Hansch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
    [Crossref]
  8. D. Wildanger, E. Rittweger, L. Kastrup, S. W. Hell, “STED microscopy with a supercontinuum laser source,” Opt. Express 16, 9614–9621 (2008).
    [Crossref]
  9. G. Humbert, W. Wadsworth, S. Leon-Saval, J. Knight, T. Birks, P. St. J. Russell, M. Lederer, D. Kopf, K. Wiesauer, E. Breuer, D. Stifter, “Supercontinuum generation system for optical coherence tomography based on tapered photonic crystal fibre,” Opt. Express 14, 1596–1603 (2006).
    [Crossref]
  10. A. L. Gaeta, “Catastrophic collapse of ultrashort pulses,” Phys. Rev. Lett. 84, 3582–3585 (2000).
    [Crossref]
  11. A. Couairon, A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441, 47–189 (2007).
    [Crossref]
  12. S. L. Chin, Femtosecond Laser Filamentation, Vol. 55 of Springer Series on Atomic, Optical, and Plasma Physics (Springer, 2010).
  13. A. Brodeur, S. L. Chin, “Band-gap dependence of the ultrafast white-light continuum,” Phys. Rev. Lett. 80, 4406–4409 (1998).
    [Crossref]
  14. W. Liu, S. Petit, A. Becker, N. Aközbek, C. M. Bowden, S. L. Chin, “Intensity clamping of a femtosecond laser pulse in condensed matter,” Opt. Commun. 202, 189–197 (2002).
    [Crossref]
  15. L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89, 186601 (2002).
    [Crossref]
  16. A. Couairon, L. Sudrie, M. Franco, B. Prade, A. Mysyrowicz, “Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses,” Phys. Rev. B 71, 125435 (2005).
  17. N. T. Nguyen, A. Saliminia, W. Liu, S. L. Chin, R. Vallée, “Optical breakdown versus filamentation in fused silica by use of femtosecond infrared laser pulses,” Opt. Lett. 28, 1591–1593 (2003).
    [Crossref]
  18. F. Silva, D. R. Austin, A. Thai, M. Baudisch, M. Hemmer, D. Faccio, A. Couairon, J. Biegert, “Multi-octave supercontinuum generation from mid-infrared filamentation in a bulk crystal,” Nat. Commun. 3, 807 (2012).
    [Crossref]
  19. M. Kretschmar, C. Brée, T. Nagy, A. Demircan, H. G. Kurz, U. Morgner, M. Kovacev, “Direct observation of pulse dynamics and self-compression along a femtosecond filament,” Opt. Express 22, 22905–22916 (2014).
    [Crossref]
  20. L. Bergé, S. Skupin, G. Steinmeyer, “Temporal self-restoration of compressed optical filaments,” Phys. Rev. Lett. 101, 213901 (2008).
    [Crossref]
  21. S. Bohman, A. Suda, T. Kanai, S. Yamaguchi, K. Midorikawa, “Generation of 5.0  fs, 5.0  mJ pulses at 1  kHz using hollow-fiber pulse compression,” Opt. Lett. 35, 1887–1889 (2010).
    [Crossref]
  22. M. Li, S. Menon, J. P. Nibarger, G. N. Gibson, “Ultrafast electron dynamics in femtosecond optical breakdown of dielectrics,” Phys. Rev. Lett. 82, 2394–2397 (1999).
    [Crossref]
  23. A. Q. Wu, I. H. Chowdhury, X. Xu, “Femtosecond laser absorption in fused silica: numerical and experimental investigation,” Phys. Rev. B 72, 085128 (2005).
  24. R. Trebino, Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses (Kluwer, 2002).
  25. M. Bellini, T. W. Hansch, “Phase-locked white-light continuum pulses: toward a universal optical frequency-comb synthesizer,” Opt. Lett. 25, 1049–1051 (2000).
    [Crossref]
  26. X. Gu, M. Kimmel, A. Shreenath, R. Trebino, J. Dudley, S. Coen, R. Windeler, “Experimental studies of the coherence of microstructure-fiber supercontinuum,” Opt. Express 11, 2697–2703 (2003).
    [Crossref]
  27. M. Rhodes, G. Steinmeyer, J. Ratner, R. Trebino, “Pulse-shape instabilities and their measurement,” Laser Photon. Rev. 7, 557–565 (2013).
  28. T. C. Wong, M. Rhodes, R. Trebino, “Single-shot measurement of the complete temporal intensity and phase of supercontinuum,” Optica 1, 119–125 (2014).
    [Crossref]

2014 (2)

2013 (1)

M. Rhodes, G. Steinmeyer, J. Ratner, R. Trebino, “Pulse-shape instabilities and their measurement,” Laser Photon. Rev. 7, 557–565 (2013).

2012 (1)

F. Silva, D. R. Austin, A. Thai, M. Baudisch, M. Hemmer, D. Faccio, A. Couairon, J. Biegert, “Multi-octave supercontinuum generation from mid-infrared filamentation in a bulk crystal,” Nat. Commun. 3, 807 (2012).
[Crossref]

2011 (1)

A. Wirth, M. Th. Hassan, I. Grguraš, J. Gagnon, A. Moulet, T. T. Luu, S. Pabst, R. Santra, Z. A. Alahmed, A. M. Azzeer, V. S. Yakovlev, V. Pervak, F. Krausz, E. Goulielmakis, “Synthesized light transients,” Science 334, 195–200 (2011).
[Crossref]

2010 (1)

2008 (2)

D. Wildanger, E. Rittweger, L. Kastrup, S. W. Hell, “STED microscopy with a supercontinuum laser source,” Opt. Express 16, 9614–9621 (2008).
[Crossref]

L. Bergé, S. Skupin, G. Steinmeyer, “Temporal self-restoration of compressed optical filaments,” Phys. Rev. Lett. 101, 213901 (2008).
[Crossref]

2007 (1)

A. Couairon, A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441, 47–189 (2007).
[Crossref]

2006 (1)

2005 (2)

A. Couairon, L. Sudrie, M. Franco, B. Prade, A. Mysyrowicz, “Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses,” Phys. Rev. B 71, 125435 (2005).

A. Q. Wu, I. H. Chowdhury, X. Xu, “Femtosecond laser absorption in fused silica: numerical and experimental investigation,” Phys. Rev. B 72, 085128 (2005).

2004 (1)

C. P. Hauri, W. Kornelis, F. W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, U. Keller, “Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,” Appl. Phys. B 79, 673–677 (2004).
[Crossref]

2003 (2)

2002 (3)

W. Liu, S. Petit, A. Becker, N. Aközbek, C. M. Bowden, S. L. Chin, “Intensity clamping of a femtosecond laser pulse in condensed matter,” Opt. Commun. 202, 189–197 (2002).
[Crossref]

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89, 186601 (2002).
[Crossref]

T. Udem, R. Holzwarth, T. W. Hansch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[Crossref]

2000 (5)

A. L. Gaeta, “Catastrophic collapse of ultrashort pulses,” Phys. Rev. Lett. 84, 3582–3585 (2000).
[Crossref]

T. Brabec, F. Krausz, “Intense few-cycle laser fields: frontiers of nonlinear optics,” Rev. Mod. Phys. 72, 545–591 (2000).
[Crossref]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[Crossref]

A. Apolonski, A. Poppe, G. Tempea, Ch. Spielmann, Th. Udem, R. Holzwarth, T. W. Hänsch, F. Krausz, “Controlling the phase evolution of few-cycle light pulses,” Phys. Rev. Lett. 85, 740–743 (2000).
[Crossref]

M. Bellini, T. W. Hansch, “Phase-locked white-light continuum pulses: toward a universal optical frequency-comb synthesizer,” Opt. Lett. 25, 1049–1051 (2000).
[Crossref]

1999 (1)

M. Li, S. Menon, J. P. Nibarger, G. N. Gibson, “Ultrafast electron dynamics in femtosecond optical breakdown of dielectrics,” Phys. Rev. Lett. 82, 2394–2397 (1999).
[Crossref]

1998 (1)

A. Brodeur, S. L. Chin, “Band-gap dependence of the ultrafast white-light continuum,” Phys. Rev. Lett. 80, 4406–4409 (1998).
[Crossref]

Aközbek, N.

W. Liu, S. Petit, A. Becker, N. Aközbek, C. M. Bowden, S. L. Chin, “Intensity clamping of a femtosecond laser pulse in condensed matter,” Opt. Commun. 202, 189–197 (2002).
[Crossref]

Alahmed, Z. A.

A. Wirth, M. Th. Hassan, I. Grguraš, J. Gagnon, A. Moulet, T. T. Luu, S. Pabst, R. Santra, Z. A. Alahmed, A. M. Azzeer, V. S. Yakovlev, V. Pervak, F. Krausz, E. Goulielmakis, “Synthesized light transients,” Science 334, 195–200 (2011).
[Crossref]

Apolonski, A.

A. Apolonski, A. Poppe, G. Tempea, Ch. Spielmann, Th. Udem, R. Holzwarth, T. W. Hänsch, F. Krausz, “Controlling the phase evolution of few-cycle light pulses,” Phys. Rev. Lett. 85, 740–743 (2000).
[Crossref]

Austin, D. R.

F. Silva, D. R. Austin, A. Thai, M. Baudisch, M. Hemmer, D. Faccio, A. Couairon, J. Biegert, “Multi-octave supercontinuum generation from mid-infrared filamentation in a bulk crystal,” Nat. Commun. 3, 807 (2012).
[Crossref]

Azzeer, A. M.

A. Wirth, M. Th. Hassan, I. Grguraš, J. Gagnon, A. Moulet, T. T. Luu, S. Pabst, R. Santra, Z. A. Alahmed, A. M. Azzeer, V. S. Yakovlev, V. Pervak, F. Krausz, E. Goulielmakis, “Synthesized light transients,” Science 334, 195–200 (2011).
[Crossref]

Baudisch, M.

F. Silva, D. R. Austin, A. Thai, M. Baudisch, M. Hemmer, D. Faccio, A. Couairon, J. Biegert, “Multi-octave supercontinuum generation from mid-infrared filamentation in a bulk crystal,” Nat. Commun. 3, 807 (2012).
[Crossref]

Becker, A.

W. Liu, S. Petit, A. Becker, N. Aközbek, C. M. Bowden, S. L. Chin, “Intensity clamping of a femtosecond laser pulse in condensed matter,” Opt. Commun. 202, 189–197 (2002).
[Crossref]

Bellini, M.

Bergé, L.

L. Bergé, S. Skupin, G. Steinmeyer, “Temporal self-restoration of compressed optical filaments,” Phys. Rev. Lett. 101, 213901 (2008).
[Crossref]

Biegert, J.

F. Silva, D. R. Austin, A. Thai, M. Baudisch, M. Hemmer, D. Faccio, A. Couairon, J. Biegert, “Multi-octave supercontinuum generation from mid-infrared filamentation in a bulk crystal,” Nat. Commun. 3, 807 (2012).
[Crossref]

C. P. Hauri, W. Kornelis, F. W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, U. Keller, “Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,” Appl. Phys. B 79, 673–677 (2004).
[Crossref]

Birks, T.

Bohman, S.

Bowden, C. M.

W. Liu, S. Petit, A. Becker, N. Aközbek, C. M. Bowden, S. L. Chin, “Intensity clamping of a femtosecond laser pulse in condensed matter,” Opt. Commun. 202, 189–197 (2002).
[Crossref]

Brabec, T.

T. Brabec, F. Krausz, “Intense few-cycle laser fields: frontiers of nonlinear optics,” Rev. Mod. Phys. 72, 545–591 (2000).
[Crossref]

Brée, C.

Breuer, E.

Brodeur, A.

A. Brodeur, S. L. Chin, “Band-gap dependence of the ultrafast white-light continuum,” Phys. Rev. Lett. 80, 4406–4409 (1998).
[Crossref]

Chin, S. L.

N. T. Nguyen, A. Saliminia, W. Liu, S. L. Chin, R. Vallée, “Optical breakdown versus filamentation in fused silica by use of femtosecond infrared laser pulses,” Opt. Lett. 28, 1591–1593 (2003).
[Crossref]

W. Liu, S. Petit, A. Becker, N. Aközbek, C. M. Bowden, S. L. Chin, “Intensity clamping of a femtosecond laser pulse in condensed matter,” Opt. Commun. 202, 189–197 (2002).
[Crossref]

A. Brodeur, S. L. Chin, “Band-gap dependence of the ultrafast white-light continuum,” Phys. Rev. Lett. 80, 4406–4409 (1998).
[Crossref]

S. L. Chin, Femtosecond Laser Filamentation, Vol. 55 of Springer Series on Atomic, Optical, and Plasma Physics (Springer, 2010).

Chowdhury, I. H.

A. Q. Wu, I. H. Chowdhury, X. Xu, “Femtosecond laser absorption in fused silica: numerical and experimental investigation,” Phys. Rev. B 72, 085128 (2005).

Coen, S.

Couairon, A.

F. Silva, D. R. Austin, A. Thai, M. Baudisch, M. Hemmer, D. Faccio, A. Couairon, J. Biegert, “Multi-octave supercontinuum generation from mid-infrared filamentation in a bulk crystal,” Nat. Commun. 3, 807 (2012).
[Crossref]

A. Couairon, A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441, 47–189 (2007).
[Crossref]

A. Couairon, L. Sudrie, M. Franco, B. Prade, A. Mysyrowicz, “Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses,” Phys. Rev. B 71, 125435 (2005).

C. P. Hauri, W. Kornelis, F. W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, U. Keller, “Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,” Appl. Phys. B 79, 673–677 (2004).
[Crossref]

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89, 186601 (2002).
[Crossref]

Cundiff, S. T.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[Crossref]

Demircan, A.

Diddams, S. A.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[Crossref]

Dudley, J.

Faccio, D.

F. Silva, D. R. Austin, A. Thai, M. Baudisch, M. Hemmer, D. Faccio, A. Couairon, J. Biegert, “Multi-octave supercontinuum generation from mid-infrared filamentation in a bulk crystal,” Nat. Commun. 3, 807 (2012).
[Crossref]

Franco, M.

A. Couairon, L. Sudrie, M. Franco, B. Prade, A. Mysyrowicz, “Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses,” Phys. Rev. B 71, 125435 (2005).

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89, 186601 (2002).
[Crossref]

Gaeta, A. L.

A. L. Gaeta, “Catastrophic collapse of ultrashort pulses,” Phys. Rev. Lett. 84, 3582–3585 (2000).
[Crossref]

Gagnon, J.

A. Wirth, M. Th. Hassan, I. Grguraš, J. Gagnon, A. Moulet, T. T. Luu, S. Pabst, R. Santra, Z. A. Alahmed, A. M. Azzeer, V. S. Yakovlev, V. Pervak, F. Krausz, E. Goulielmakis, “Synthesized light transients,” Science 334, 195–200 (2011).
[Crossref]

Gibson, G. N.

M. Li, S. Menon, J. P. Nibarger, G. N. Gibson, “Ultrafast electron dynamics in femtosecond optical breakdown of dielectrics,” Phys. Rev. Lett. 82, 2394–2397 (1999).
[Crossref]

Goulielmakis, E.

A. Wirth, M. Th. Hassan, I. Grguraš, J. Gagnon, A. Moulet, T. T. Luu, S. Pabst, R. Santra, Z. A. Alahmed, A. M. Azzeer, V. S. Yakovlev, V. Pervak, F. Krausz, E. Goulielmakis, “Synthesized light transients,” Science 334, 195–200 (2011).
[Crossref]

Grguraš, I.

A. Wirth, M. Th. Hassan, I. Grguraš, J. Gagnon, A. Moulet, T. T. Luu, S. Pabst, R. Santra, Z. A. Alahmed, A. M. Azzeer, V. S. Yakovlev, V. Pervak, F. Krausz, E. Goulielmakis, “Synthesized light transients,” Science 334, 195–200 (2011).
[Crossref]

Gu, X.

Hall, J. L.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[Crossref]

Hansch, T. W.

Hänsch, T. W.

A. Apolonski, A. Poppe, G. Tempea, Ch. Spielmann, Th. Udem, R. Holzwarth, T. W. Hänsch, F. Krausz, “Controlling the phase evolution of few-cycle light pulses,” Phys. Rev. Lett. 85, 740–743 (2000).
[Crossref]

Hassan, M. Th.

A. Wirth, M. Th. Hassan, I. Grguraš, J. Gagnon, A. Moulet, T. T. Luu, S. Pabst, R. Santra, Z. A. Alahmed, A. M. Azzeer, V. S. Yakovlev, V. Pervak, F. Krausz, E. Goulielmakis, “Synthesized light transients,” Science 334, 195–200 (2011).
[Crossref]

Hauri, C. P.

C. P. Hauri, W. Kornelis, F. W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, U. Keller, “Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,” Appl. Phys. B 79, 673–677 (2004).
[Crossref]

Heinrich, A.

C. P. Hauri, W. Kornelis, F. W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, U. Keller, “Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,” Appl. Phys. B 79, 673–677 (2004).
[Crossref]

Helbing, F. W.

C. P. Hauri, W. Kornelis, F. W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, U. Keller, “Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,” Appl. Phys. B 79, 673–677 (2004).
[Crossref]

Hell, S. W.

Hemmer, M.

F. Silva, D. R. Austin, A. Thai, M. Baudisch, M. Hemmer, D. Faccio, A. Couairon, J. Biegert, “Multi-octave supercontinuum generation from mid-infrared filamentation in a bulk crystal,” Nat. Commun. 3, 807 (2012).
[Crossref]

Holzwarth, R.

T. Udem, R. Holzwarth, T. W. Hansch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[Crossref]

A. Apolonski, A. Poppe, G. Tempea, Ch. Spielmann, Th. Udem, R. Holzwarth, T. W. Hänsch, F. Krausz, “Controlling the phase evolution of few-cycle light pulses,” Phys. Rev. Lett. 85, 740–743 (2000).
[Crossref]

Humbert, G.

Jones, D. J.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[Crossref]

Kanai, T.

Kastrup, L.

Keller, U.

C. P. Hauri, W. Kornelis, F. W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, U. Keller, “Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,” Appl. Phys. B 79, 673–677 (2004).
[Crossref]

Kimmel, M.

Knight, J.

Kopf, D.

Kornelis, W.

C. P. Hauri, W. Kornelis, F. W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, U. Keller, “Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,” Appl. Phys. B 79, 673–677 (2004).
[Crossref]

Kovacev, M.

Krausz, F.

A. Wirth, M. Th. Hassan, I. Grguraš, J. Gagnon, A. Moulet, T. T. Luu, S. Pabst, R. Santra, Z. A. Alahmed, A. M. Azzeer, V. S. Yakovlev, V. Pervak, F. Krausz, E. Goulielmakis, “Synthesized light transients,” Science 334, 195–200 (2011).
[Crossref]

T. Brabec, F. Krausz, “Intense few-cycle laser fields: frontiers of nonlinear optics,” Rev. Mod. Phys. 72, 545–591 (2000).
[Crossref]

A. Apolonski, A. Poppe, G. Tempea, Ch. Spielmann, Th. Udem, R. Holzwarth, T. W. Hänsch, F. Krausz, “Controlling the phase evolution of few-cycle light pulses,” Phys. Rev. Lett. 85, 740–743 (2000).
[Crossref]

Kretschmar, M.

Kurz, H. G.

Lamouroux, B.

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89, 186601 (2002).
[Crossref]

Lederer, M.

Leon-Saval, S.

Li, M.

M. Li, S. Menon, J. P. Nibarger, G. N. Gibson, “Ultrafast electron dynamics in femtosecond optical breakdown of dielectrics,” Phys. Rev. Lett. 82, 2394–2397 (1999).
[Crossref]

Liu, W.

N. T. Nguyen, A. Saliminia, W. Liu, S. L. Chin, R. Vallée, “Optical breakdown versus filamentation in fused silica by use of femtosecond infrared laser pulses,” Opt. Lett. 28, 1591–1593 (2003).
[Crossref]

W. Liu, S. Petit, A. Becker, N. Aközbek, C. M. Bowden, S. L. Chin, “Intensity clamping of a femtosecond laser pulse in condensed matter,” Opt. Commun. 202, 189–197 (2002).
[Crossref]

Luu, T. T.

A. Wirth, M. Th. Hassan, I. Grguraš, J. Gagnon, A. Moulet, T. T. Luu, S. Pabst, R. Santra, Z. A. Alahmed, A. M. Azzeer, V. S. Yakovlev, V. Pervak, F. Krausz, E. Goulielmakis, “Synthesized light transients,” Science 334, 195–200 (2011).
[Crossref]

Menon, S.

M. Li, S. Menon, J. P. Nibarger, G. N. Gibson, “Ultrafast electron dynamics in femtosecond optical breakdown of dielectrics,” Phys. Rev. Lett. 82, 2394–2397 (1999).
[Crossref]

Midorikawa, K.

Morgner, U.

Moulet, A.

A. Wirth, M. Th. Hassan, I. Grguraš, J. Gagnon, A. Moulet, T. T. Luu, S. Pabst, R. Santra, Z. A. Alahmed, A. M. Azzeer, V. S. Yakovlev, V. Pervak, F. Krausz, E. Goulielmakis, “Synthesized light transients,” Science 334, 195–200 (2011).
[Crossref]

Mysyrowicz, A.

A. Couairon, A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441, 47–189 (2007).
[Crossref]

A. Couairon, L. Sudrie, M. Franco, B. Prade, A. Mysyrowicz, “Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses,” Phys. Rev. B 71, 125435 (2005).

C. P. Hauri, W. Kornelis, F. W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, U. Keller, “Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,” Appl. Phys. B 79, 673–677 (2004).
[Crossref]

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89, 186601 (2002).
[Crossref]

Nagy, T.

Nguyen, N. T.

Nibarger, J. P.

M. Li, S. Menon, J. P. Nibarger, G. N. Gibson, “Ultrafast electron dynamics in femtosecond optical breakdown of dielectrics,” Phys. Rev. Lett. 82, 2394–2397 (1999).
[Crossref]

Pabst, S.

A. Wirth, M. Th. Hassan, I. Grguraš, J. Gagnon, A. Moulet, T. T. Luu, S. Pabst, R. Santra, Z. A. Alahmed, A. M. Azzeer, V. S. Yakovlev, V. Pervak, F. Krausz, E. Goulielmakis, “Synthesized light transients,” Science 334, 195–200 (2011).
[Crossref]

Pervak, V.

A. Wirth, M. Th. Hassan, I. Grguraš, J. Gagnon, A. Moulet, T. T. Luu, S. Pabst, R. Santra, Z. A. Alahmed, A. M. Azzeer, V. S. Yakovlev, V. Pervak, F. Krausz, E. Goulielmakis, “Synthesized light transients,” Science 334, 195–200 (2011).
[Crossref]

Petit, S.

W. Liu, S. Petit, A. Becker, N. Aközbek, C. M. Bowden, S. L. Chin, “Intensity clamping of a femtosecond laser pulse in condensed matter,” Opt. Commun. 202, 189–197 (2002).
[Crossref]

Poppe, A.

A. Apolonski, A. Poppe, G. Tempea, Ch. Spielmann, Th. Udem, R. Holzwarth, T. W. Hänsch, F. Krausz, “Controlling the phase evolution of few-cycle light pulses,” Phys. Rev. Lett. 85, 740–743 (2000).
[Crossref]

Prade, B.

A. Couairon, L. Sudrie, M. Franco, B. Prade, A. Mysyrowicz, “Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses,” Phys. Rev. B 71, 125435 (2005).

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89, 186601 (2002).
[Crossref]

Ranka, J. K.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[Crossref]

Ratner, J.

M. Rhodes, G. Steinmeyer, J. Ratner, R. Trebino, “Pulse-shape instabilities and their measurement,” Laser Photon. Rev. 7, 557–565 (2013).

Rhodes, M.

T. C. Wong, M. Rhodes, R. Trebino, “Single-shot measurement of the complete temporal intensity and phase of supercontinuum,” Optica 1, 119–125 (2014).
[Crossref]

M. Rhodes, G. Steinmeyer, J. Ratner, R. Trebino, “Pulse-shape instabilities and their measurement,” Laser Photon. Rev. 7, 557–565 (2013).

Rittweger, E.

Russell, P. St. J.

Saliminia, A.

Santra, R.

A. Wirth, M. Th. Hassan, I. Grguraš, J. Gagnon, A. Moulet, T. T. Luu, S. Pabst, R. Santra, Z. A. Alahmed, A. M. Azzeer, V. S. Yakovlev, V. Pervak, F. Krausz, E. Goulielmakis, “Synthesized light transients,” Science 334, 195–200 (2011).
[Crossref]

Shreenath, A.

Silva, F.

F. Silva, D. R. Austin, A. Thai, M. Baudisch, M. Hemmer, D. Faccio, A. Couairon, J. Biegert, “Multi-octave supercontinuum generation from mid-infrared filamentation in a bulk crystal,” Nat. Commun. 3, 807 (2012).
[Crossref]

Skupin, S.

L. Bergé, S. Skupin, G. Steinmeyer, “Temporal self-restoration of compressed optical filaments,” Phys. Rev. Lett. 101, 213901 (2008).
[Crossref]

Spielmann, Ch.

A. Apolonski, A. Poppe, G. Tempea, Ch. Spielmann, Th. Udem, R. Holzwarth, T. W. Hänsch, F. Krausz, “Controlling the phase evolution of few-cycle light pulses,” Phys. Rev. Lett. 85, 740–743 (2000).
[Crossref]

Steinmeyer, G.

M. Rhodes, G. Steinmeyer, J. Ratner, R. Trebino, “Pulse-shape instabilities and their measurement,” Laser Photon. Rev. 7, 557–565 (2013).

L. Bergé, S. Skupin, G. Steinmeyer, “Temporal self-restoration of compressed optical filaments,” Phys. Rev. Lett. 101, 213901 (2008).
[Crossref]

Stentz, A.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[Crossref]

Stifter, D.

Suda, A.

Sudrie, L.

A. Couairon, L. Sudrie, M. Franco, B. Prade, A. Mysyrowicz, “Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses,” Phys. Rev. B 71, 125435 (2005).

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89, 186601 (2002).
[Crossref]

Tempea, G.

A. Apolonski, A. Poppe, G. Tempea, Ch. Spielmann, Th. Udem, R. Holzwarth, T. W. Hänsch, F. Krausz, “Controlling the phase evolution of few-cycle light pulses,” Phys. Rev. Lett. 85, 740–743 (2000).
[Crossref]

Thai, A.

F. Silva, D. R. Austin, A. Thai, M. Baudisch, M. Hemmer, D. Faccio, A. Couairon, J. Biegert, “Multi-octave supercontinuum generation from mid-infrared filamentation in a bulk crystal,” Nat. Commun. 3, 807 (2012).
[Crossref]

Trebino, R.

T. C. Wong, M. Rhodes, R. Trebino, “Single-shot measurement of the complete temporal intensity and phase of supercontinuum,” Optica 1, 119–125 (2014).
[Crossref]

M. Rhodes, G. Steinmeyer, J. Ratner, R. Trebino, “Pulse-shape instabilities and their measurement,” Laser Photon. Rev. 7, 557–565 (2013).

X. Gu, M. Kimmel, A. Shreenath, R. Trebino, J. Dudley, S. Coen, R. Windeler, “Experimental studies of the coherence of microstructure-fiber supercontinuum,” Opt. Express 11, 2697–2703 (2003).
[Crossref]

R. Trebino, Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses (Kluwer, 2002).

Tzortzakis, S.

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89, 186601 (2002).
[Crossref]

Udem, T.

T. Udem, R. Holzwarth, T. W. Hansch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[Crossref]

Udem, Th.

A. Apolonski, A. Poppe, G. Tempea, Ch. Spielmann, Th. Udem, R. Holzwarth, T. W. Hänsch, F. Krausz, “Controlling the phase evolution of few-cycle light pulses,” Phys. Rev. Lett. 85, 740–743 (2000).
[Crossref]

Vallée, R.

Wadsworth, W.

Wiesauer, K.

Wildanger, D.

Windeler, R.

Windeler, R. S.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[Crossref]

Wirth, A.

A. Wirth, M. Th. Hassan, I. Grguraš, J. Gagnon, A. Moulet, T. T. Luu, S. Pabst, R. Santra, Z. A. Alahmed, A. M. Azzeer, V. S. Yakovlev, V. Pervak, F. Krausz, E. Goulielmakis, “Synthesized light transients,” Science 334, 195–200 (2011).
[Crossref]

Wong, T. C.

Wu, A. Q.

A. Q. Wu, I. H. Chowdhury, X. Xu, “Femtosecond laser absorption in fused silica: numerical and experimental investigation,” Phys. Rev. B 72, 085128 (2005).

Xu, X.

A. Q. Wu, I. H. Chowdhury, X. Xu, “Femtosecond laser absorption in fused silica: numerical and experimental investigation,” Phys. Rev. B 72, 085128 (2005).

Yakovlev, V. S.

A. Wirth, M. Th. Hassan, I. Grguraš, J. Gagnon, A. Moulet, T. T. Luu, S. Pabst, R. Santra, Z. A. Alahmed, A. M. Azzeer, V. S. Yakovlev, V. Pervak, F. Krausz, E. Goulielmakis, “Synthesized light transients,” Science 334, 195–200 (2011).
[Crossref]

Yamaguchi, S.

Appl. Phys. B (1)

C. P. Hauri, W. Kornelis, F. W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, U. Keller, “Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,” Appl. Phys. B 79, 673–677 (2004).
[Crossref]

Laser Photon. Rev. (1)

M. Rhodes, G. Steinmeyer, J. Ratner, R. Trebino, “Pulse-shape instabilities and their measurement,” Laser Photon. Rev. 7, 557–565 (2013).

Nat. Commun. (1)

F. Silva, D. R. Austin, A. Thai, M. Baudisch, M. Hemmer, D. Faccio, A. Couairon, J. Biegert, “Multi-octave supercontinuum generation from mid-infrared filamentation in a bulk crystal,” Nat. Commun. 3, 807 (2012).
[Crossref]

Nature (1)

T. Udem, R. Holzwarth, T. W. Hansch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[Crossref]

Opt. Commun. (1)

W. Liu, S. Petit, A. Becker, N. Aközbek, C. M. Bowden, S. L. Chin, “Intensity clamping of a femtosecond laser pulse in condensed matter,” Opt. Commun. 202, 189–197 (2002).
[Crossref]

Opt. Express (4)

Opt. Lett. (3)

Optica (1)

Phys. Rep. (1)

A. Couairon, A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441, 47–189 (2007).
[Crossref]

Phys. Rev. B (2)

A. Couairon, L. Sudrie, M. Franco, B. Prade, A. Mysyrowicz, “Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses,” Phys. Rev. B 71, 125435 (2005).

A. Q. Wu, I. H. Chowdhury, X. Xu, “Femtosecond laser absorption in fused silica: numerical and experimental investigation,” Phys. Rev. B 72, 085128 (2005).

Phys. Rev. Lett. (6)

M. Li, S. Menon, J. P. Nibarger, G. N. Gibson, “Ultrafast electron dynamics in femtosecond optical breakdown of dielectrics,” Phys. Rev. Lett. 82, 2394–2397 (1999).
[Crossref]

L. Bergé, S. Skupin, G. Steinmeyer, “Temporal self-restoration of compressed optical filaments,” Phys. Rev. Lett. 101, 213901 (2008).
[Crossref]

A. Brodeur, S. L. Chin, “Band-gap dependence of the ultrafast white-light continuum,” Phys. Rev. Lett. 80, 4406–4409 (1998).
[Crossref]

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89, 186601 (2002).
[Crossref]

A. Apolonski, A. Poppe, G. Tempea, Ch. Spielmann, Th. Udem, R. Holzwarth, T. W. Hänsch, F. Krausz, “Controlling the phase evolution of few-cycle light pulses,” Phys. Rev. Lett. 85, 740–743 (2000).
[Crossref]

A. L. Gaeta, “Catastrophic collapse of ultrashort pulses,” Phys. Rev. Lett. 84, 3582–3585 (2000).
[Crossref]

Rev. Mod. Phys. (1)

T. Brabec, F. Krausz, “Intense few-cycle laser fields: frontiers of nonlinear optics,” Rev. Mod. Phys. 72, 545–591 (2000).
[Crossref]

Science (2)

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[Crossref]

A. Wirth, M. Th. Hassan, I. Grguraš, J. Gagnon, A. Moulet, T. T. Luu, S. Pabst, R. Santra, Z. A. Alahmed, A. M. Azzeer, V. S. Yakovlev, V. Pervak, F. Krausz, E. Goulielmakis, “Synthesized light transients,” Science 334, 195–200 (2011).
[Crossref]

Other (3)

R. R. Alfano, ed., The Supercontinuum Laser Source (Springer-Verlag, 1989).

S. L. Chin, Femtosecond Laser Filamentation, Vol. 55 of Springer Series on Atomic, Optical, and Plasma Physics (Springer, 2010).

R. Trebino, Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses (Kluwer, 2002).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Schematic of the experimental setup. BS, beam splitter; P1, thin film polarizer; P2, horizontal wire grid polarizer; P3, vertical wire grid polarizer; C, 0.15 mm thin fused silica crystal for PG-XFROG measurement; HWP, half-wave plate; L1, L2, L3, focusing elements. Insert on lower left is a sketch of the MPContinuum system, consisting of four thin fused silica plates aligned at Brewster’s angle to the incident beam. HWP and P1 are used to adjust the input pulse energy. Any chirp in the pulse is compensated to provide a transform-limited pulse entering the first fused silica plate and at C. The energy of the reference pulse for PG-XFROG measurements was 20 μJ.
Fig. 2.
Fig. 2. Spectra recorded at a distance of 30 cm after the final fused silica plate by a Si-detector-based optical spectrometer (Ocean Optics HR4000) of the pulse after passing through air only, and after passing through different numbers of thin fused silica plates. Also shown is the spectrum of the incident pump pulse. Every spectrum has been normalized to its maximum value. The spectra show clearly rapid expansion to the blue side beginning with the second plate, and the formation of a pedestal after insertion of the fourth plate.
Fig. 3.
Fig. 3. (a) Original color photographic image of MPContinuum taken by a commercial portable CCD camera of 1200 megapixel resolution and exposure of 1 msec at 30 cm from the fourth plate just before the iris aperture. The central white zone is about 2 mm in diameter. (b) For comparison, we show a photograph of light generated in 0.5 mm thick fused silica pumped at the same intensity. The image in (b) was taken at 10 cm from the generating source and shows the presence of multiple filaments. The diameter of the visible portion of the image in (b) is more than 3 cm.
Fig. 4.
Fig. 4. MPContinuum spectrum as a function of incident pulse energy under conditions optimized for 140 μJ of incident energy. The spectrum is quite robust and is resistant to small fluctuations in pulse energy at the high end. Energies are shown as average power in mW at 1 kHz.
Fig. 5.
Fig. 5. False color beam profile of the MPContinuum pulse adjusted for best M2 at 30 cm beyond the iris aperture. The red curves display the x and y transverse profile of the beam.
Fig. 6.
Fig. 6. PG-XFROG measurement of MPContinuum. (a) FROG trace taken by recording the spectrum transmitted through P3 in Fig. 1 at time-delay interval of 0.66 fs. Zero delay time in the horizontal axis is set as the time when the recorded peak signal is at the maximum. (b) Retrieved FROG trace with a retrieval error of 0.93%. Color codes in (a) and (b) are in log scale. (c) Retrieved spectral intensity (blue) and phase (green). The original spectrum recorded directly by the spectrometer is shown in red. All intensities are normalized to its maximum value. (d) Normalized temporal intensity (blue) and phase (green) of the MPContinuum pulse.
Fig. 7.
Fig. 7. Young interference fringes obtained by heterodyning at zero time delay two MPContinua independently generated from spatially separate but phase-locked pulses. (a) Spectrally resolved real color interferogram created by dispersing the white Young interference fringes with a fused silica prism. Fringes of good contrast are present at every wavelength segment. (b) Spectral-integrated intensity pattern obtained by plotting the intensity of the unresolved fringe pattern along the red dotted line shown in the inset in (b).
Fig. 8.
Fig. 8. (a) Time-delay spectral interferogram of MPContinuum generated by two separate but phase-locked pulses. Zero delay is when the two MPContinua are perfectly overlapping in time. The fringes show the spectrally resolved phase difference of the two MPContinua at different time delays between the two pulses. Good contrast implies reproducible spectral phase of the pulses. (b) Time-delay fringes produced by a single MPContinuum in a Michelson interferometer arrangement. The clean and sharp fringes in (b) are testimony of the high degree of stability of the interferometer used in both (a) and (b) to obtain the interferograms. Color code is in log scale.

Metrics