Abstract

Recent research on time cloaking has revealed a fascinating approach to hide temporal events from an interrogating optical field, by opening up and subsequently closing intensity gaps in a probe beam. Experiments thus far have demonstrated temporal cloaking of nonlinear interactions and high-speed optical data. Here we report a temporal cloak with the new capability not only to hide optical data, but also to concurrently transmit it along another wavelength channel for subsequent readout, masking the information from one observer while directing it to another. Additionally, the cloak succeeds in passing modulated data unscathed through a scrambling event, providing a new form of tampering resistance. Both examples launch a paradigm shift in temporal cloaking: instead of using time cloaks primarily to disrupt communication, we show how they can also improve data transmission, in turn greatly widening the range of possible applications in telecommunications.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. W. McCall, A. Favaro, P. Kinsler, A. Boardman, J. Opt. 13, 024003 (2011).
    [Crossref]
  2. U. Leonhardt, Science 312, 1777 (2006).
    [Crossref]
  3. J. B. Pendry, D. Schurig, D. R. Smith, Science 312, 1780 (2006).
    [Crossref]
  4. H. Chen, C. T. Chan, P. Sheng, Nat. Mater. 9, 387 (2010).
    [Crossref]
  5. R. B. Li, L. Deng, E. W. Hagley, J. C. Bienfang, M. G. Payne, M.-L. Ge, Phys. Rev. A 87, 023839 (2013).
    [Crossref]
  6. P. Kinsler, M. W. McCall, Ann. Phys. 526, 51 (2014).
    [Crossref]
  7. P. Kinsler, M. W. McCall, Phys. Rev. A 89, 063818 (2014).
    [Crossref]
  8. I. Chremmos, Opt. Lett. 39, 4611 (2014).
    [Crossref]
  9. M. Fridman, A. Farsi, Y. Okawachi, A. L. Gaeta, Nature 481, 62 (2012).
    [Crossref]
  10. J. M. Lukens, D. E. Leaird, A. M. Weiner, Nature 498, 205 (2013).
    [Crossref]
  11. P. Y. Bony, M. Guasoni, P. Morin, D. Sugny, A. Picozzi, H. R. Jauslin, S. Pitois, J. Fatome, Nat. Commun. 5, 4678 (2014).
    [Crossref]
  12. S. Arnon, M. Fridman, J. Lightwave Technol. 30, 3427 (2012).
    [Crossref]
  13. B. H. Kolner, M. Nazarathy, Opt. Lett. 14, 630 (1989).
    [Crossref]
  14. B. H. Kolner, IEEE J. Quantum Electron. 30, 1951 (1994).
    [Crossref]
  15. V. Torres-Company, J. Lancis, P. Andrés, in Progress in Optics (Elsevier, 2011), Vol. 56, Chap. 1.
  16. R. Salem, M. A. Foster, A. L. Gaeta, Adv. Opt. Photon. 5, 274 (2013).
    [Crossref]
  17. T. Jannson, J. Jannson, J. Opt. Soc. Am. 71, 1373 (1981).
    [Crossref]
  18. K. Patorski, in Progress in Optics (Elsevier, 1989), Vol. 27, Chap. 1.
  19. J. Wen, Y. Zhang, M. Xiao, Adv. Opt. Photon. 5, 83 (2013).
    [Crossref]
  20. T. Komukai, T. Yamamoto, S. Kawanishi, IEEE Photon. Technol. Lett. 17, 1746 (2005).
    [Crossref]
  21. V. Torres-Company, J. Lancis, P. Andrés, Opt. Express 14, 3171 (2006).
    [Crossref]
  22. V. Torres-Company, J. Lancis, P. Andrés, Opt. Lett. 33, 1822 (2008).
    [Crossref]
  23. A. J. Metcalf, V. Torres-Company, D. E. Leaird, A. M. Weiner, IEEE J. Sel. Top. Quantum Electron. 19, 3500306 (2013).
    [Crossref]
  24. E. Lau, Ann. Phys. 437, 417 (1948).
    [Crossref]
  25. J. Jahns, A. W. Lohmann, Opt. Commun. 28, 263 (1979).
    [Crossref]
  26. D. Zalvidea, R. Duchowicz, E. E. Sicre, Appl. Opt. 43, 3005 (2004).
    [Crossref]
  27. J. Lancis, C. M. Gómez-Sarabia, J. Ojeda-Castañeda, C. R. Fernández-Pousa, P. Andrés, J. Eur. Opt. Soc. Rapid Pub. 1, 06018 (2006).
    [Crossref]
  28. V. Torres-Company, C. R. Fernández-Pousa, L. R. Chen, Opt. Lett. 34, 1885 (2009).
    [Crossref]
  29. A. M. Weiner, Rev. Sci. Instrum. 71, 1929 (2000).
    [Crossref]
  30. A. M. Weiner, Opt. Commun. 284, 3669 (2011).
    [Crossref]

2014 (4)

P. Kinsler, M. W. McCall, Ann. Phys. 526, 51 (2014).
[Crossref]

P. Kinsler, M. W. McCall, Phys. Rev. A 89, 063818 (2014).
[Crossref]

I. Chremmos, Opt. Lett. 39, 4611 (2014).
[Crossref]

P. Y. Bony, M. Guasoni, P. Morin, D. Sugny, A. Picozzi, H. R. Jauslin, S. Pitois, J. Fatome, Nat. Commun. 5, 4678 (2014).
[Crossref]

2013 (5)

J. M. Lukens, D. E. Leaird, A. M. Weiner, Nature 498, 205 (2013).
[Crossref]

R. Salem, M. A. Foster, A. L. Gaeta, Adv. Opt. Photon. 5, 274 (2013).
[Crossref]

J. Wen, Y. Zhang, M. Xiao, Adv. Opt. Photon. 5, 83 (2013).
[Crossref]

R. B. Li, L. Deng, E. W. Hagley, J. C. Bienfang, M. G. Payne, M.-L. Ge, Phys. Rev. A 87, 023839 (2013).
[Crossref]

A. J. Metcalf, V. Torres-Company, D. E. Leaird, A. M. Weiner, IEEE J. Sel. Top. Quantum Electron. 19, 3500306 (2013).
[Crossref]

2012 (2)

M. Fridman, A. Farsi, Y. Okawachi, A. L. Gaeta, Nature 481, 62 (2012).
[Crossref]

S. Arnon, M. Fridman, J. Lightwave Technol. 30, 3427 (2012).
[Crossref]

2011 (2)

M. W. McCall, A. Favaro, P. Kinsler, A. Boardman, J. Opt. 13, 024003 (2011).
[Crossref]

A. M. Weiner, Opt. Commun. 284, 3669 (2011).
[Crossref]

2010 (1)

H. Chen, C. T. Chan, P. Sheng, Nat. Mater. 9, 387 (2010).
[Crossref]

2009 (1)

2008 (1)

2006 (4)

V. Torres-Company, J. Lancis, P. Andrés, Opt. Express 14, 3171 (2006).
[Crossref]

J. Lancis, C. M. Gómez-Sarabia, J. Ojeda-Castañeda, C. R. Fernández-Pousa, P. Andrés, J. Eur. Opt. Soc. Rapid Pub. 1, 06018 (2006).
[Crossref]

U. Leonhardt, Science 312, 1777 (2006).
[Crossref]

J. B. Pendry, D. Schurig, D. R. Smith, Science 312, 1780 (2006).
[Crossref]

2005 (1)

T. Komukai, T. Yamamoto, S. Kawanishi, IEEE Photon. Technol. Lett. 17, 1746 (2005).
[Crossref]

2004 (1)

2000 (1)

A. M. Weiner, Rev. Sci. Instrum. 71, 1929 (2000).
[Crossref]

1994 (1)

B. H. Kolner, IEEE J. Quantum Electron. 30, 1951 (1994).
[Crossref]

1989 (1)

1981 (1)

1979 (1)

J. Jahns, A. W. Lohmann, Opt. Commun. 28, 263 (1979).
[Crossref]

1948 (1)

E. Lau, Ann. Phys. 437, 417 (1948).
[Crossref]

Andrés, P.

V. Torres-Company, J. Lancis, P. Andrés, Opt. Lett. 33, 1822 (2008).
[Crossref]

V. Torres-Company, J. Lancis, P. Andrés, Opt. Express 14, 3171 (2006).
[Crossref]

J. Lancis, C. M. Gómez-Sarabia, J. Ojeda-Castañeda, C. R. Fernández-Pousa, P. Andrés, J. Eur. Opt. Soc. Rapid Pub. 1, 06018 (2006).
[Crossref]

V. Torres-Company, J. Lancis, P. Andrés, in Progress in Optics (Elsevier, 2011), Vol. 56, Chap. 1.

Arnon, S.

Bienfang, J. C.

R. B. Li, L. Deng, E. W. Hagley, J. C. Bienfang, M. G. Payne, M.-L. Ge, Phys. Rev. A 87, 023839 (2013).
[Crossref]

Boardman, A.

M. W. McCall, A. Favaro, P. Kinsler, A. Boardman, J. Opt. 13, 024003 (2011).
[Crossref]

Bony, P. Y.

P. Y. Bony, M. Guasoni, P. Morin, D. Sugny, A. Picozzi, H. R. Jauslin, S. Pitois, J. Fatome, Nat. Commun. 5, 4678 (2014).
[Crossref]

Chan, C. T.

H. Chen, C. T. Chan, P. Sheng, Nat. Mater. 9, 387 (2010).
[Crossref]

Chen, H.

H. Chen, C. T. Chan, P. Sheng, Nat. Mater. 9, 387 (2010).
[Crossref]

Chen, L. R.

Chremmos, I.

Deng, L.

R. B. Li, L. Deng, E. W. Hagley, J. C. Bienfang, M. G. Payne, M.-L. Ge, Phys. Rev. A 87, 023839 (2013).
[Crossref]

Duchowicz, R.

Farsi, A.

M. Fridman, A. Farsi, Y. Okawachi, A. L. Gaeta, Nature 481, 62 (2012).
[Crossref]

Fatome, J.

P. Y. Bony, M. Guasoni, P. Morin, D. Sugny, A. Picozzi, H. R. Jauslin, S. Pitois, J. Fatome, Nat. Commun. 5, 4678 (2014).
[Crossref]

Favaro, A.

M. W. McCall, A. Favaro, P. Kinsler, A. Boardman, J. Opt. 13, 024003 (2011).
[Crossref]

Fernández-Pousa, C. R.

V. Torres-Company, C. R. Fernández-Pousa, L. R. Chen, Opt. Lett. 34, 1885 (2009).
[Crossref]

J. Lancis, C. M. Gómez-Sarabia, J. Ojeda-Castañeda, C. R. Fernández-Pousa, P. Andrés, J. Eur. Opt. Soc. Rapid Pub. 1, 06018 (2006).
[Crossref]

Foster, M. A.

Fridman, M.

S. Arnon, M. Fridman, J. Lightwave Technol. 30, 3427 (2012).
[Crossref]

M. Fridman, A. Farsi, Y. Okawachi, A. L. Gaeta, Nature 481, 62 (2012).
[Crossref]

Gaeta, A. L.

R. Salem, M. A. Foster, A. L. Gaeta, Adv. Opt. Photon. 5, 274 (2013).
[Crossref]

M. Fridman, A. Farsi, Y. Okawachi, A. L. Gaeta, Nature 481, 62 (2012).
[Crossref]

Ge, M.-L.

R. B. Li, L. Deng, E. W. Hagley, J. C. Bienfang, M. G. Payne, M.-L. Ge, Phys. Rev. A 87, 023839 (2013).
[Crossref]

Gómez-Sarabia, C. M.

J. Lancis, C. M. Gómez-Sarabia, J. Ojeda-Castañeda, C. R. Fernández-Pousa, P. Andrés, J. Eur. Opt. Soc. Rapid Pub. 1, 06018 (2006).
[Crossref]

Guasoni, M.

P. Y. Bony, M. Guasoni, P. Morin, D. Sugny, A. Picozzi, H. R. Jauslin, S. Pitois, J. Fatome, Nat. Commun. 5, 4678 (2014).
[Crossref]

Hagley, E. W.

R. B. Li, L. Deng, E. W. Hagley, J. C. Bienfang, M. G. Payne, M.-L. Ge, Phys. Rev. A 87, 023839 (2013).
[Crossref]

Jahns, J.

J. Jahns, A. W. Lohmann, Opt. Commun. 28, 263 (1979).
[Crossref]

Jannson, J.

Jannson, T.

Jauslin, H. R.

P. Y. Bony, M. Guasoni, P. Morin, D. Sugny, A. Picozzi, H. R. Jauslin, S. Pitois, J. Fatome, Nat. Commun. 5, 4678 (2014).
[Crossref]

Kawanishi, S.

T. Komukai, T. Yamamoto, S. Kawanishi, IEEE Photon. Technol. Lett. 17, 1746 (2005).
[Crossref]

Kinsler, P.

P. Kinsler, M. W. McCall, Phys. Rev. A 89, 063818 (2014).
[Crossref]

P. Kinsler, M. W. McCall, Ann. Phys. 526, 51 (2014).
[Crossref]

M. W. McCall, A. Favaro, P. Kinsler, A. Boardman, J. Opt. 13, 024003 (2011).
[Crossref]

Kolner, B. H.

B. H. Kolner, IEEE J. Quantum Electron. 30, 1951 (1994).
[Crossref]

B. H. Kolner, M. Nazarathy, Opt. Lett. 14, 630 (1989).
[Crossref]

Komukai, T.

T. Komukai, T. Yamamoto, S. Kawanishi, IEEE Photon. Technol. Lett. 17, 1746 (2005).
[Crossref]

Lancis, J.

V. Torres-Company, J. Lancis, P. Andrés, Opt. Lett. 33, 1822 (2008).
[Crossref]

J. Lancis, C. M. Gómez-Sarabia, J. Ojeda-Castañeda, C. R. Fernández-Pousa, P. Andrés, J. Eur. Opt. Soc. Rapid Pub. 1, 06018 (2006).
[Crossref]

V. Torres-Company, J. Lancis, P. Andrés, Opt. Express 14, 3171 (2006).
[Crossref]

V. Torres-Company, J. Lancis, P. Andrés, in Progress in Optics (Elsevier, 2011), Vol. 56, Chap. 1.

Lau, E.

E. Lau, Ann. Phys. 437, 417 (1948).
[Crossref]

Leaird, D. E.

A. J. Metcalf, V. Torres-Company, D. E. Leaird, A. M. Weiner, IEEE J. Sel. Top. Quantum Electron. 19, 3500306 (2013).
[Crossref]

J. M. Lukens, D. E. Leaird, A. M. Weiner, Nature 498, 205 (2013).
[Crossref]

Leonhardt, U.

U. Leonhardt, Science 312, 1777 (2006).
[Crossref]

Li, R. B.

R. B. Li, L. Deng, E. W. Hagley, J. C. Bienfang, M. G. Payne, M.-L. Ge, Phys. Rev. A 87, 023839 (2013).
[Crossref]

Lohmann, A. W.

J. Jahns, A. W. Lohmann, Opt. Commun. 28, 263 (1979).
[Crossref]

Lukens, J. M.

J. M. Lukens, D. E. Leaird, A. M. Weiner, Nature 498, 205 (2013).
[Crossref]

McCall, M. W.

P. Kinsler, M. W. McCall, Phys. Rev. A 89, 063818 (2014).
[Crossref]

P. Kinsler, M. W. McCall, Ann. Phys. 526, 51 (2014).
[Crossref]

M. W. McCall, A. Favaro, P. Kinsler, A. Boardman, J. Opt. 13, 024003 (2011).
[Crossref]

Metcalf, A. J.

A. J. Metcalf, V. Torres-Company, D. E. Leaird, A. M. Weiner, IEEE J. Sel. Top. Quantum Electron. 19, 3500306 (2013).
[Crossref]

Morin, P.

P. Y. Bony, M. Guasoni, P. Morin, D. Sugny, A. Picozzi, H. R. Jauslin, S. Pitois, J. Fatome, Nat. Commun. 5, 4678 (2014).
[Crossref]

Nazarathy, M.

Ojeda-Castañeda, J.

J. Lancis, C. M. Gómez-Sarabia, J. Ojeda-Castañeda, C. R. Fernández-Pousa, P. Andrés, J. Eur. Opt. Soc. Rapid Pub. 1, 06018 (2006).
[Crossref]

Okawachi, Y.

M. Fridman, A. Farsi, Y. Okawachi, A. L. Gaeta, Nature 481, 62 (2012).
[Crossref]

Patorski, K.

K. Patorski, in Progress in Optics (Elsevier, 1989), Vol. 27, Chap. 1.

Payne, M. G.

R. B. Li, L. Deng, E. W. Hagley, J. C. Bienfang, M. G. Payne, M.-L. Ge, Phys. Rev. A 87, 023839 (2013).
[Crossref]

Pendry, J. B.

J. B. Pendry, D. Schurig, D. R. Smith, Science 312, 1780 (2006).
[Crossref]

Picozzi, A.

P. Y. Bony, M. Guasoni, P. Morin, D. Sugny, A. Picozzi, H. R. Jauslin, S. Pitois, J. Fatome, Nat. Commun. 5, 4678 (2014).
[Crossref]

Pitois, S.

P. Y. Bony, M. Guasoni, P. Morin, D. Sugny, A. Picozzi, H. R. Jauslin, S. Pitois, J. Fatome, Nat. Commun. 5, 4678 (2014).
[Crossref]

Salem, R.

Schurig, D.

J. B. Pendry, D. Schurig, D. R. Smith, Science 312, 1780 (2006).
[Crossref]

Sheng, P.

H. Chen, C. T. Chan, P. Sheng, Nat. Mater. 9, 387 (2010).
[Crossref]

Sicre, E. E.

Smith, D. R.

J. B. Pendry, D. Schurig, D. R. Smith, Science 312, 1780 (2006).
[Crossref]

Sugny, D.

P. Y. Bony, M. Guasoni, P. Morin, D. Sugny, A. Picozzi, H. R. Jauslin, S. Pitois, J. Fatome, Nat. Commun. 5, 4678 (2014).
[Crossref]

Torres-Company, V.

A. J. Metcalf, V. Torres-Company, D. E. Leaird, A. M. Weiner, IEEE J. Sel. Top. Quantum Electron. 19, 3500306 (2013).
[Crossref]

V. Torres-Company, C. R. Fernández-Pousa, L. R. Chen, Opt. Lett. 34, 1885 (2009).
[Crossref]

V. Torres-Company, J. Lancis, P. Andrés, Opt. Lett. 33, 1822 (2008).
[Crossref]

V. Torres-Company, J. Lancis, P. Andrés, Opt. Express 14, 3171 (2006).
[Crossref]

V. Torres-Company, J. Lancis, P. Andrés, in Progress in Optics (Elsevier, 2011), Vol. 56, Chap. 1.

Weiner, A. M.

A. J. Metcalf, V. Torres-Company, D. E. Leaird, A. M. Weiner, IEEE J. Sel. Top. Quantum Electron. 19, 3500306 (2013).
[Crossref]

J. M. Lukens, D. E. Leaird, A. M. Weiner, Nature 498, 205 (2013).
[Crossref]

A. M. Weiner, Opt. Commun. 284, 3669 (2011).
[Crossref]

A. M. Weiner, Rev. Sci. Instrum. 71, 1929 (2000).
[Crossref]

Wen, J.

Xiao, M.

Yamamoto, T.

T. Komukai, T. Yamamoto, S. Kawanishi, IEEE Photon. Technol. Lett. 17, 1746 (2005).
[Crossref]

Zalvidea, D.

Zhang, Y.

Adv. Opt. Photon. (2)

Ann. Phys. (2)

E. Lau, Ann. Phys. 437, 417 (1948).
[Crossref]

P. Kinsler, M. W. McCall, Ann. Phys. 526, 51 (2014).
[Crossref]

Appl. Opt. (1)

IEEE J. Quantum Electron. (1)

B. H. Kolner, IEEE J. Quantum Electron. 30, 1951 (1994).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

A. J. Metcalf, V. Torres-Company, D. E. Leaird, A. M. Weiner, IEEE J. Sel. Top. Quantum Electron. 19, 3500306 (2013).
[Crossref]

IEEE Photon. Technol. Lett. (1)

T. Komukai, T. Yamamoto, S. Kawanishi, IEEE Photon. Technol. Lett. 17, 1746 (2005).
[Crossref]

J. Eur. Opt. Soc. Rapid Pub. (1)

J. Lancis, C. M. Gómez-Sarabia, J. Ojeda-Castañeda, C. R. Fernández-Pousa, P. Andrés, J. Eur. Opt. Soc. Rapid Pub. 1, 06018 (2006).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. (1)

M. W. McCall, A. Favaro, P. Kinsler, A. Boardman, J. Opt. 13, 024003 (2011).
[Crossref]

J. Opt. Soc. Am. (1)

Nat. Commun. (1)

P. Y. Bony, M. Guasoni, P. Morin, D. Sugny, A. Picozzi, H. R. Jauslin, S. Pitois, J. Fatome, Nat. Commun. 5, 4678 (2014).
[Crossref]

Nat. Mater. (1)

H. Chen, C. T. Chan, P. Sheng, Nat. Mater. 9, 387 (2010).
[Crossref]

Nature (2)

M. Fridman, A. Farsi, Y. Okawachi, A. L. Gaeta, Nature 481, 62 (2012).
[Crossref]

J. M. Lukens, D. E. Leaird, A. M. Weiner, Nature 498, 205 (2013).
[Crossref]

Opt. Commun. (2)

A. M. Weiner, Opt. Commun. 284, 3669 (2011).
[Crossref]

J. Jahns, A. W. Lohmann, Opt. Commun. 28, 263 (1979).
[Crossref]

Opt. Express (1)

Opt. Lett. (4)

Phys. Rev. A (2)

P. Kinsler, M. W. McCall, Phys. Rev. A 89, 063818 (2014).
[Crossref]

R. B. Li, L. Deng, E. W. Hagley, J. C. Bienfang, M. G. Payne, M.-L. Ge, Phys. Rev. A 87, 023839 (2013).
[Crossref]

Rev. Sci. Instrum. (1)

A. M. Weiner, Rev. Sci. Instrum. 71, 1929 (2000).
[Crossref]

Science (2)

U. Leonhardt, Science 312, 1777 (2006).
[Crossref]

J. B. Pendry, D. Schurig, D. R. Smith, Science 312, 1780 (2006).
[Crossref]

Other (2)

K. Patorski, in Progress in Optics (Elsevier, 1989), Vol. 27, Chap. 1.

V. Torres-Company, J. Lancis, P. Andrés, in Progress in Optics (Elsevier, 2011), Vol. 56, Chap. 1.

Supplementary Material (1)

» Supplement 1: PDF (477 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Basic outline of temporal cloak. (a) Waveform progression for multiwavelength cloak. Blue and red lines denote the intensity in the channels to be cloaked and to receive the data, respectively. Roman numerals represent various points in the circuit: I, input to first phase modulator; II, after quarter-Talbot dispersion; III, at event plane just prior to event modulation; IV, at event plane immediately after modulation; V, before compensating quarter-Talbot dispersion; VI, at output. Only the red channel is impacted by the data modulation, which is an alternating zero–one sequence in this example. (b) Experimental setup. Boxes at the input and output show differences between the multiwavelength cloak (“WDM Experiment”) and data-as-input cloak (“Data Experiment”). Blue fibers and Bragg gratings signify anomalous dispersion, whereas red represents normal dispersion. CFBG, chirped fiber Bragg grating; SMF, single-mode fiber; DCF, dispersion-compensating fiber.

Fig. 2.
Fig. 2.

Experimental results for multiwavelength cloak. (a) Optical spectrum when the first two phase modulators are running. Colors indicate from which input laser a given spectral line was primarily generated, with blue representing the short-wavelength laser and red the long-wavelength one. (b) Received output for the short-wavelength (blue) and long-wavelength (red) demultiplexed channels when the event modulator is running and all phase modulators are off. (c) Received signals when the cloak is on and optimized to cloak the blue channel but transmit along the red. (d) Corresponding waveforms when the cloak is instead aligned to transmit data on the blue channel and cloak the red.

Fig. 3.
Fig. 3.

Received signals for data-as-input experiment, when the cloak is off. (a) Input data rate is two times less than the clock. (b) Four times. (c) Eight times. (d) Sixteen times. In all cases, the high-speed event modulation at 12.11 GHz significantly corrupts the input data.

Fig. 4.
Fig. 4.

Received signals for data-as-input experiment, when the cloak is on. (a) Input data rate is two times less than the clock. (b) Four times. (c) Eight times. (d) Sixteen times. Now the input sequences are fully recovered, with clear data signals observed at the appropriate repetition rates.

Metrics