Abstract

Conventional polarizers operate by rejecting undesired polarization, which limits their transmission efficiency to much less than 50% when illuminated by unpolarized light. We designed, fabricated, and characterized a multilevel metamaterial linear polarizer that rotates light with polarization perpendicular to its principal axis by 90 deg. Light with polarization parallel to its principal axis is transmitted undisturbed. Thereby, such a polarizer is able to output linearly polarized light from unpolarized input with a transmission efficiency that is substantially higher than the theoretical upper limit of 50%. A nonlinear optimization algorithm was used to design the polarizer, while multilevel focused-ion-beam lithography was used to fabricate it in silicon for the vacuum wavelength, λ0=1550nm. We experimentally confirmed that the fabricated device enhances the transmission of the desired linear polarization by 100% compared to an unpatterned film, corresponding to a transmission efficiency of 74% at the design wavelength. Since our method allows for the generalized manipulation of the amplitude, phase, and polarization of light with high transmission efficiency using ultrathin elements, it should enable the efficient generation of complex vector distributions of light.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Wave front engineering from an array of thin aperture antennas

Ming Kang, Tianhua Feng, Hui-Tian Wang, and Jensen Li
Opt. Express 20(14) 15882-15890 (2012)

Efficient polarization beam splitter pixels based on a dielectric metasurface

M. Khorasaninejad, W. Zhu, and K. B. Crozier
Optica 2(4) 376-382 (2015)

Manipulating light polarizations with a hyperbolic metamaterial waveguide

Hua Zhu, Xiang Yin, Lin Chen, Zhongshu Zhu, and Xun Li
Opt. Lett. 40(20) 4595-4598 (2015)

References

  • View by:
  • |
  • |
  • |

  1. J. N. Damask, Polarization Optics in Telecommunications (Springer, 2004).
  2. D. S. Kliger, J. W. Lewis, C. E. Randall, Polarized Light in Optics and Spectroscopy (Academic, 1990).
  3. V. V. Tuchin, L. V. Wang, D. A. Zimnyako, Optical Polarization in Biomedical Applications (Springer, 2006).
  4. Y. P. Svirko, N. I. Zheludev, Polarization of Light in Nonlinear Optics (Wiley, 1998).
  5. S. W. Ahn, K. D. Lee, J. S. Kim, S. H. Kim, J. D. Park, S. H. Lee, P. W. Yoon, “Fabrication of a 50  nm half-pitch wire grid polarizer using nanoimprint lithography,” Nanotechnology 16, 1874–1877 (2005).
    [Crossref]
  6. Commercial polarizers in Thorlabs, http://www.thorlabs.us/newgrouppage9.cfm?objectgroup_id=4984 .
  7. R. C. Tyan, A. A. Salvekar, H. P. Chou, C. C. Cheng, A. Scherer, P. C. Sun, F. Xu, Y. Fainman, “Design, fabrication, and characterization of form-birefringent multilayer polarizing beam splitter,” J. Opt. Soc. Am. A 14, 1627–1636 (1997).
    [Crossref]
  8. N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340, 1304–1307 (2013).
    [Crossref]
  9. J. Elliott, I. I. Smolyaninov, N. I. Zheludev, A. V. Zayats, “Polarization control of optical transmission of a periodic array of elliptical nanoholes in a metal film,” Opt. Lett. 29, 1414–1416 (2004).
    [Crossref]
  10. Y. N. Fang, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
    [Crossref]
  11. F. Aieta, P. Genevet, N. Yu, M. A. Kats, Z. Gaburro, F. Capasso, “Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities,” Nano Lett. 12, 1702–1706 (2012).
    [Crossref]
  12. N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12, 6328–6333 (2012).
    [Crossref]
  13. S. Pancharatnam, “Generalized theory of interference, and its applications,” Proc. Ind. Acad. Sci. A 44, 247–262 (1956).
  14. A. Niv, G. Biener, V. Kleiner, E. Hasman, “Spiral phase elements obtained by use of discrete space-variant subwavelength gratings,” Opt. Commun. 251, 306–314 (2005).
    [Crossref]
  15. A. Niv, G. Biener, V. Kleiner, E. Hasman, “Propagation-invariant vectorial Bessel beams obtained by use of quantized Pancharatnam–Berry phase optical elements,” Opt. Lett. 29, 238–240 (2004).
    [Crossref]
  16. G. Biener, A. Niv, V. Kleiner, E. Hasman, “Geometrical phase image encryption obtained with space-variant subwavelength grating,” Opt. Lett. 30, 1096–1098 (2005).
    [Crossref]
  17. G. Biener, A. Niv, V. Kleiner, E. Hasman, “Near-field Fourier transform polarimetry by use of a quantized space-variant subwavelength grating,” J. Opt. Soc. Am. A 20, 1940–1948 (2003).
    [Crossref]
  18. P. Hariharan, Optical Holography: Principles, Techniques and Applications (Cambridge University, 1996).
  19. J. Lin, P. Genevet, M. A. Kats, N. Antoniou, F. Capasso, “Nanostructured holograms for broadband manipulation of vector beams,” Nano Lett. 13, 4269–4274 (2013).
    [Crossref]
  20. X. Ni, A. V. Kildishev, V. M. Shalaev, “Metasurface holograms for visible light,” Nat. Commun. 4, 1–6 (2013).
  21. S. Wu, Z. Zhang, Y. Zhang, K. Zhang, L. Zhou, X. Zhang, Y. Y. Zhu, “Enhanced rotation of the polarization of a light beam transmitted through a silver film with an array of perforated S-shaped holes,” Phys. Rev. Lett. 110, 207401 (2013).
    [Crossref]
  22. C. Pfeiffer, A. Grbic, “Metamaterial Huygens’ surfaces: tailoring wave fronts with reflectionless sheets,” Phys. Rev. Lett. 110, 197401 (2013).
    [Crossref]
  23. F. Monticone, N. M. Estakhri, A. Alu, “Full control of nanoscale optical transmission with a composite metascreen,” Phys. Rev. Lett. 110, 203903 (2013).
    [Crossref]
  24. P. Wang, R. Menon, “Optimization of generalized dielectric nanostructures for enhanced light trapping in thin-film photovoltaics via boosting the local density of optical states,” Opt. Express 22, A99–A110 (2014).
    [Crossref]
  25. P. Wang, R. Menon, “Optimization of periodic nanostructures for enhanced light-trapping in ultra-thin photovoltaics,” Opt. Express 21, 6274–6285 (2013).
    [Crossref]
  26. G. Kim, J. A. Dominguez-Caballero, R. Menon, “Design and analysis of multi-wavelength diffractive optics,” Opt. Express 20, 2814–2823 (2012).
    [Crossref]
  27. G. Kim, J. A. Dominguez-Caballero, H. Lee, D. Friedman, R. Menon, “Increased photovoltaic power output via diffractive spectrum separation,” Phys. Rev. Lett. 110, 123901 (2013).
    [Crossref]
  28. P. Wang, R. Menon, “Three-dimensional lithography via digital holography,” in Frontiers in Optics 2012/Laser Science XXVIII, OSA Technical Digest (online) (Optical Society of America, 2012), paper FTu3A.4.
  29. V. Liu, D. A. B. Miller, S. Fan, “Ultra-compact photonic crystal waveguide spatial mode converter and its connection to the optical diode effect,” Opt. Express 20, 28388–28397 (2012).
    [Crossref]
  30. J. Lu, J. Vučković, “Objective-first design of high-efficiency, small-footprint couplers between arbitrary nanophotonic waveguide modes,” Opt. Express 20, 7221–7236 (2012).
    [Crossref]
  31. C. Brosseau, Fundamentals of Polarized Light: A Statistical Optics Approach (Wiley, 1998).
  32. S. Franke-Arnold, L. Allen, M. Padgett, “Advances in optical angular momentum,” Laser Photonics Rev. 2, 299–313 (2008).
    [Crossref]
  33. N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
    [Crossref]

2014 (1)

2013 (9)

P. Wang, R. Menon, “Optimization of periodic nanostructures for enhanced light-trapping in ultra-thin photovoltaics,” Opt. Express 21, 6274–6285 (2013).
[Crossref]

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340, 1304–1307 (2013).
[Crossref]

J. Lin, P. Genevet, M. A. Kats, N. Antoniou, F. Capasso, “Nanostructured holograms for broadband manipulation of vector beams,” Nano Lett. 13, 4269–4274 (2013).
[Crossref]

X. Ni, A. V. Kildishev, V. M. Shalaev, “Metasurface holograms for visible light,” Nat. Commun. 4, 1–6 (2013).

S. Wu, Z. Zhang, Y. Zhang, K. Zhang, L. Zhou, X. Zhang, Y. Y. Zhu, “Enhanced rotation of the polarization of a light beam transmitted through a silver film with an array of perforated S-shaped holes,” Phys. Rev. Lett. 110, 207401 (2013).
[Crossref]

C. Pfeiffer, A. Grbic, “Metamaterial Huygens’ surfaces: tailoring wave fronts with reflectionless sheets,” Phys. Rev. Lett. 110, 197401 (2013).
[Crossref]

F. Monticone, N. M. Estakhri, A. Alu, “Full control of nanoscale optical transmission with a composite metascreen,” Phys. Rev. Lett. 110, 203903 (2013).
[Crossref]

G. Kim, J. A. Dominguez-Caballero, H. Lee, D. Friedman, R. Menon, “Increased photovoltaic power output via diffractive spectrum separation,” Phys. Rev. Lett. 110, 123901 (2013).
[Crossref]

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
[Crossref]

2012 (5)

F. Aieta, P. Genevet, N. Yu, M. A. Kats, Z. Gaburro, F. Capasso, “Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities,” Nano Lett. 12, 1702–1706 (2012).
[Crossref]

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12, 6328–6333 (2012).
[Crossref]

G. Kim, J. A. Dominguez-Caballero, R. Menon, “Design and analysis of multi-wavelength diffractive optics,” Opt. Express 20, 2814–2823 (2012).
[Crossref]

J. Lu, J. Vučković, “Objective-first design of high-efficiency, small-footprint couplers between arbitrary nanophotonic waveguide modes,” Opt. Express 20, 7221–7236 (2012).
[Crossref]

V. Liu, D. A. B. Miller, S. Fan, “Ultra-compact photonic crystal waveguide spatial mode converter and its connection to the optical diode effect,” Opt. Express 20, 28388–28397 (2012).
[Crossref]

2011 (1)

Y. N. Fang, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref]

2008 (1)

S. Franke-Arnold, L. Allen, M. Padgett, “Advances in optical angular momentum,” Laser Photonics Rev. 2, 299–313 (2008).
[Crossref]

2005 (3)

S. W. Ahn, K. D. Lee, J. S. Kim, S. H. Kim, J. D. Park, S. H. Lee, P. W. Yoon, “Fabrication of a 50  nm half-pitch wire grid polarizer using nanoimprint lithography,” Nanotechnology 16, 1874–1877 (2005).
[Crossref]

A. Niv, G. Biener, V. Kleiner, E. Hasman, “Spiral phase elements obtained by use of discrete space-variant subwavelength gratings,” Opt. Commun. 251, 306–314 (2005).
[Crossref]

G. Biener, A. Niv, V. Kleiner, E. Hasman, “Geometrical phase image encryption obtained with space-variant subwavelength grating,” Opt. Lett. 30, 1096–1098 (2005).
[Crossref]

2004 (2)

2003 (1)

1997 (1)

1956 (1)

S. Pancharatnam, “Generalized theory of interference, and its applications,” Proc. Ind. Acad. Sci. A 44, 247–262 (1956).

Ahn, S. W.

S. W. Ahn, K. D. Lee, J. S. Kim, S. H. Kim, J. D. Park, S. H. Lee, P. W. Yoon, “Fabrication of a 50  nm half-pitch wire grid polarizer using nanoimprint lithography,” Nanotechnology 16, 1874–1877 (2005).
[Crossref]

Aieta, F.

F. Aieta, P. Genevet, N. Yu, M. A. Kats, Z. Gaburro, F. Capasso, “Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities,” Nano Lett. 12, 1702–1706 (2012).
[Crossref]

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12, 6328–6333 (2012).
[Crossref]

Y. N. Fang, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref]

Allen, L.

S. Franke-Arnold, L. Allen, M. Padgett, “Advances in optical angular momentum,” Laser Photonics Rev. 2, 299–313 (2008).
[Crossref]

Alu, A.

F. Monticone, N. M. Estakhri, A. Alu, “Full control of nanoscale optical transmission with a composite metascreen,” Phys. Rev. Lett. 110, 203903 (2013).
[Crossref]

Antoniou, N.

J. Lin, P. Genevet, M. A. Kats, N. Antoniou, F. Capasso, “Nanostructured holograms for broadband manipulation of vector beams,” Nano Lett. 13, 4269–4274 (2013).
[Crossref]

Azad, A. K.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340, 1304–1307 (2013).
[Crossref]

Biener, G.

Bozinovic, N.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
[Crossref]

Brosseau, C.

C. Brosseau, Fundamentals of Polarized Light: A Statistical Optics Approach (Wiley, 1998).

Capasso, F.

J. Lin, P. Genevet, M. A. Kats, N. Antoniou, F. Capasso, “Nanostructured holograms for broadband manipulation of vector beams,” Nano Lett. 13, 4269–4274 (2013).
[Crossref]

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12, 6328–6333 (2012).
[Crossref]

F. Aieta, P. Genevet, N. Yu, M. A. Kats, Z. Gaburro, F. Capasso, “Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities,” Nano Lett. 12, 1702–1706 (2012).
[Crossref]

Y. N. Fang, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref]

Chen, H. T.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340, 1304–1307 (2013).
[Crossref]

Cheng, C. C.

Chou, H. P.

Chowdhury, D. R.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340, 1304–1307 (2013).
[Crossref]

Dalvit, D. A. R.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340, 1304–1307 (2013).
[Crossref]

Damask, J. N.

J. N. Damask, Polarization Optics in Telecommunications (Springer, 2004).

Dominguez-Caballero, J. A.

G. Kim, J. A. Dominguez-Caballero, H. Lee, D. Friedman, R. Menon, “Increased photovoltaic power output via diffractive spectrum separation,” Phys. Rev. Lett. 110, 123901 (2013).
[Crossref]

G. Kim, J. A. Dominguez-Caballero, R. Menon, “Design and analysis of multi-wavelength diffractive optics,” Opt. Express 20, 2814–2823 (2012).
[Crossref]

Elliott, J.

Estakhri, N. M.

F. Monticone, N. M. Estakhri, A. Alu, “Full control of nanoscale optical transmission with a composite metascreen,” Phys. Rev. Lett. 110, 203903 (2013).
[Crossref]

Fainman, Y.

Fan, S.

Fang, Y. N.

Y. N. Fang, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref]

Franke-Arnold, S.

S. Franke-Arnold, L. Allen, M. Padgett, “Advances in optical angular momentum,” Laser Photonics Rev. 2, 299–313 (2008).
[Crossref]

Friedman, D.

G. Kim, J. A. Dominguez-Caballero, H. Lee, D. Friedman, R. Menon, “Increased photovoltaic power output via diffractive spectrum separation,” Phys. Rev. Lett. 110, 123901 (2013).
[Crossref]

Gaburro, Z.

F. Aieta, P. Genevet, N. Yu, M. A. Kats, Z. Gaburro, F. Capasso, “Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities,” Nano Lett. 12, 1702–1706 (2012).
[Crossref]

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12, 6328–6333 (2012).
[Crossref]

Y. N. Fang, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref]

Genevet, P.

J. Lin, P. Genevet, M. A. Kats, N. Antoniou, F. Capasso, “Nanostructured holograms for broadband manipulation of vector beams,” Nano Lett. 13, 4269–4274 (2013).
[Crossref]

F. Aieta, P. Genevet, N. Yu, M. A. Kats, Z. Gaburro, F. Capasso, “Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities,” Nano Lett. 12, 1702–1706 (2012).
[Crossref]

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12, 6328–6333 (2012).
[Crossref]

Y. N. Fang, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref]

Grady, N. K.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340, 1304–1307 (2013).
[Crossref]

Grbic, A.

C. Pfeiffer, A. Grbic, “Metamaterial Huygens’ surfaces: tailoring wave fronts with reflectionless sheets,” Phys. Rev. Lett. 110, 197401 (2013).
[Crossref]

Hariharan, P.

P. Hariharan, Optical Holography: Principles, Techniques and Applications (Cambridge University, 1996).

Hasman, E.

Heyes, J. E.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340, 1304–1307 (2013).
[Crossref]

Huang, H.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
[Crossref]

Kats, M. A.

J. Lin, P. Genevet, M. A. Kats, N. Antoniou, F. Capasso, “Nanostructured holograms for broadband manipulation of vector beams,” Nano Lett. 13, 4269–4274 (2013).
[Crossref]

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12, 6328–6333 (2012).
[Crossref]

F. Aieta, P. Genevet, N. Yu, M. A. Kats, Z. Gaburro, F. Capasso, “Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities,” Nano Lett. 12, 1702–1706 (2012).
[Crossref]

Y. N. Fang, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref]

Kildishev, A. V.

X. Ni, A. V. Kildishev, V. M. Shalaev, “Metasurface holograms for visible light,” Nat. Commun. 4, 1–6 (2013).

Kim, G.

G. Kim, J. A. Dominguez-Caballero, H. Lee, D. Friedman, R. Menon, “Increased photovoltaic power output via diffractive spectrum separation,” Phys. Rev. Lett. 110, 123901 (2013).
[Crossref]

G. Kim, J. A. Dominguez-Caballero, R. Menon, “Design and analysis of multi-wavelength diffractive optics,” Opt. Express 20, 2814–2823 (2012).
[Crossref]

Kim, J. S.

S. W. Ahn, K. D. Lee, J. S. Kim, S. H. Kim, J. D. Park, S. H. Lee, P. W. Yoon, “Fabrication of a 50  nm half-pitch wire grid polarizer using nanoimprint lithography,” Nanotechnology 16, 1874–1877 (2005).
[Crossref]

Kim, S. H.

S. W. Ahn, K. D. Lee, J. S. Kim, S. H. Kim, J. D. Park, S. H. Lee, P. W. Yoon, “Fabrication of a 50  nm half-pitch wire grid polarizer using nanoimprint lithography,” Nanotechnology 16, 1874–1877 (2005).
[Crossref]

Kleiner, V.

Kliger, D. S.

D. S. Kliger, J. W. Lewis, C. E. Randall, Polarized Light in Optics and Spectroscopy (Academic, 1990).

Kristensen, P.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
[Crossref]

Lee, H.

G. Kim, J. A. Dominguez-Caballero, H. Lee, D. Friedman, R. Menon, “Increased photovoltaic power output via diffractive spectrum separation,” Phys. Rev. Lett. 110, 123901 (2013).
[Crossref]

Lee, K. D.

S. W. Ahn, K. D. Lee, J. S. Kim, S. H. Kim, J. D. Park, S. H. Lee, P. W. Yoon, “Fabrication of a 50  nm half-pitch wire grid polarizer using nanoimprint lithography,” Nanotechnology 16, 1874–1877 (2005).
[Crossref]

Lee, S. H.

S. W. Ahn, K. D. Lee, J. S. Kim, S. H. Kim, J. D. Park, S. H. Lee, P. W. Yoon, “Fabrication of a 50  nm half-pitch wire grid polarizer using nanoimprint lithography,” Nanotechnology 16, 1874–1877 (2005).
[Crossref]

Lewis, J. W.

D. S. Kliger, J. W. Lewis, C. E. Randall, Polarized Light in Optics and Spectroscopy (Academic, 1990).

Lin, J.

J. Lin, P. Genevet, M. A. Kats, N. Antoniou, F. Capasso, “Nanostructured holograms for broadband manipulation of vector beams,” Nano Lett. 13, 4269–4274 (2013).
[Crossref]

Liu, V.

Lu, J.

Menon, R.

P. Wang, R. Menon, “Optimization of generalized dielectric nanostructures for enhanced light trapping in thin-film photovoltaics via boosting the local density of optical states,” Opt. Express 22, A99–A110 (2014).
[Crossref]

G. Kim, J. A. Dominguez-Caballero, H. Lee, D. Friedman, R. Menon, “Increased photovoltaic power output via diffractive spectrum separation,” Phys. Rev. Lett. 110, 123901 (2013).
[Crossref]

P. Wang, R. Menon, “Optimization of periodic nanostructures for enhanced light-trapping in ultra-thin photovoltaics,” Opt. Express 21, 6274–6285 (2013).
[Crossref]

G. Kim, J. A. Dominguez-Caballero, R. Menon, “Design and analysis of multi-wavelength diffractive optics,” Opt. Express 20, 2814–2823 (2012).
[Crossref]

P. Wang, R. Menon, “Three-dimensional lithography via digital holography,” in Frontiers in Optics 2012/Laser Science XXVIII, OSA Technical Digest (online) (Optical Society of America, 2012), paper FTu3A.4.

Miller, D. A. B.

Monticone, F.

F. Monticone, N. M. Estakhri, A. Alu, “Full control of nanoscale optical transmission with a composite metascreen,” Phys. Rev. Lett. 110, 203903 (2013).
[Crossref]

Ni, X.

X. Ni, A. V. Kildishev, V. M. Shalaev, “Metasurface holograms for visible light,” Nat. Commun. 4, 1–6 (2013).

Niv, A.

Padgett, M.

S. Franke-Arnold, L. Allen, M. Padgett, “Advances in optical angular momentum,” Laser Photonics Rev. 2, 299–313 (2008).
[Crossref]

Pancharatnam, S.

S. Pancharatnam, “Generalized theory of interference, and its applications,” Proc. Ind. Acad. Sci. A 44, 247–262 (1956).

Park, J. D.

S. W. Ahn, K. D. Lee, J. S. Kim, S. H. Kim, J. D. Park, S. H. Lee, P. W. Yoon, “Fabrication of a 50  nm half-pitch wire grid polarizer using nanoimprint lithography,” Nanotechnology 16, 1874–1877 (2005).
[Crossref]

Pfeiffer, C.

C. Pfeiffer, A. Grbic, “Metamaterial Huygens’ surfaces: tailoring wave fronts with reflectionless sheets,” Phys. Rev. Lett. 110, 197401 (2013).
[Crossref]

Ramachandran, S.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
[Crossref]

Randall, C. E.

D. S. Kliger, J. W. Lewis, C. E. Randall, Polarized Light in Optics and Spectroscopy (Academic, 1990).

Reiten, M. T.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340, 1304–1307 (2013).
[Crossref]

Ren, Y.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
[Crossref]

Salvekar, A. A.

Scherer, A.

Shalaev, V. M.

X. Ni, A. V. Kildishev, V. M. Shalaev, “Metasurface holograms for visible light,” Nat. Commun. 4, 1–6 (2013).

Smolyaninov, I. I.

Sun, P. C.

Svirko, Y. P.

Y. P. Svirko, N. I. Zheludev, Polarization of Light in Nonlinear Optics (Wiley, 1998).

Taylor, A. J.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340, 1304–1307 (2013).
[Crossref]

Tetienne, J. P.

Y. N. Fang, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref]

Tuchin, V. V.

V. V. Tuchin, L. V. Wang, D. A. Zimnyako, Optical Polarization in Biomedical Applications (Springer, 2006).

Tur, M.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
[Crossref]

Tyan, R. C.

Vuckovic, J.

Wang, L. V.

V. V. Tuchin, L. V. Wang, D. A. Zimnyako, Optical Polarization in Biomedical Applications (Springer, 2006).

Wang, P.

Willner, A. E.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
[Crossref]

Wu, S.

S. Wu, Z. Zhang, Y. Zhang, K. Zhang, L. Zhou, X. Zhang, Y. Y. Zhu, “Enhanced rotation of the polarization of a light beam transmitted through a silver film with an array of perforated S-shaped holes,” Phys. Rev. Lett. 110, 207401 (2013).
[Crossref]

Xu, F.

Yoon, P. W.

S. W. Ahn, K. D. Lee, J. S. Kim, S. H. Kim, J. D. Park, S. H. Lee, P. W. Yoon, “Fabrication of a 50  nm half-pitch wire grid polarizer using nanoimprint lithography,” Nanotechnology 16, 1874–1877 (2005).
[Crossref]

Yu, N.

F. Aieta, P. Genevet, N. Yu, M. A. Kats, Z. Gaburro, F. Capasso, “Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities,” Nano Lett. 12, 1702–1706 (2012).
[Crossref]

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12, 6328–6333 (2012).
[Crossref]

Yue, Y.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
[Crossref]

Zayats, A. V.

Zeng, Y.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340, 1304–1307 (2013).
[Crossref]

Zhang, K.

S. Wu, Z. Zhang, Y. Zhang, K. Zhang, L. Zhou, X. Zhang, Y. Y. Zhu, “Enhanced rotation of the polarization of a light beam transmitted through a silver film with an array of perforated S-shaped holes,” Phys. Rev. Lett. 110, 207401 (2013).
[Crossref]

Zhang, X.

S. Wu, Z. Zhang, Y. Zhang, K. Zhang, L. Zhou, X. Zhang, Y. Y. Zhu, “Enhanced rotation of the polarization of a light beam transmitted through a silver film with an array of perforated S-shaped holes,” Phys. Rev. Lett. 110, 207401 (2013).
[Crossref]

Zhang, Y.

S. Wu, Z. Zhang, Y. Zhang, K. Zhang, L. Zhou, X. Zhang, Y. Y. Zhu, “Enhanced rotation of the polarization of a light beam transmitted through a silver film with an array of perforated S-shaped holes,” Phys. Rev. Lett. 110, 207401 (2013).
[Crossref]

Zhang, Z.

S. Wu, Z. Zhang, Y. Zhang, K. Zhang, L. Zhou, X. Zhang, Y. Y. Zhu, “Enhanced rotation of the polarization of a light beam transmitted through a silver film with an array of perforated S-shaped holes,” Phys. Rev. Lett. 110, 207401 (2013).
[Crossref]

Zheludev, N. I.

Zhou, L.

S. Wu, Z. Zhang, Y. Zhang, K. Zhang, L. Zhou, X. Zhang, Y. Y. Zhu, “Enhanced rotation of the polarization of a light beam transmitted through a silver film with an array of perforated S-shaped holes,” Phys. Rev. Lett. 110, 207401 (2013).
[Crossref]

Zhu, Y. Y.

S. Wu, Z. Zhang, Y. Zhang, K. Zhang, L. Zhou, X. Zhang, Y. Y. Zhu, “Enhanced rotation of the polarization of a light beam transmitted through a silver film with an array of perforated S-shaped holes,” Phys. Rev. Lett. 110, 207401 (2013).
[Crossref]

Zimnyako, D. A.

V. V. Tuchin, L. V. Wang, D. A. Zimnyako, Optical Polarization in Biomedical Applications (Springer, 2006).

J. Opt. Soc. Am. A (2)

Laser Photonics Rev. (1)

S. Franke-Arnold, L. Allen, M. Padgett, “Advances in optical angular momentum,” Laser Photonics Rev. 2, 299–313 (2008).
[Crossref]

Nano Lett. (3)

J. Lin, P. Genevet, M. A. Kats, N. Antoniou, F. Capasso, “Nanostructured holograms for broadband manipulation of vector beams,” Nano Lett. 13, 4269–4274 (2013).
[Crossref]

F. Aieta, P. Genevet, N. Yu, M. A. Kats, Z. Gaburro, F. Capasso, “Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities,” Nano Lett. 12, 1702–1706 (2012).
[Crossref]

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12, 6328–6333 (2012).
[Crossref]

Nanotechnology (1)

S. W. Ahn, K. D. Lee, J. S. Kim, S. H. Kim, J. D. Park, S. H. Lee, P. W. Yoon, “Fabrication of a 50  nm half-pitch wire grid polarizer using nanoimprint lithography,” Nanotechnology 16, 1874–1877 (2005).
[Crossref]

Nat. Commun. (1)

X. Ni, A. V. Kildishev, V. M. Shalaev, “Metasurface holograms for visible light,” Nat. Commun. 4, 1–6 (2013).

Opt. Commun. (1)

A. Niv, G. Biener, V. Kleiner, E. Hasman, “Spiral phase elements obtained by use of discrete space-variant subwavelength gratings,” Opt. Commun. 251, 306–314 (2005).
[Crossref]

Opt. Express (5)

Opt. Lett. (3)

Phys. Rev. Lett. (4)

G. Kim, J. A. Dominguez-Caballero, H. Lee, D. Friedman, R. Menon, “Increased photovoltaic power output via diffractive spectrum separation,” Phys. Rev. Lett. 110, 123901 (2013).
[Crossref]

S. Wu, Z. Zhang, Y. Zhang, K. Zhang, L. Zhou, X. Zhang, Y. Y. Zhu, “Enhanced rotation of the polarization of a light beam transmitted through a silver film with an array of perforated S-shaped holes,” Phys. Rev. Lett. 110, 207401 (2013).
[Crossref]

C. Pfeiffer, A. Grbic, “Metamaterial Huygens’ surfaces: tailoring wave fronts with reflectionless sheets,” Phys. Rev. Lett. 110, 197401 (2013).
[Crossref]

F. Monticone, N. M. Estakhri, A. Alu, “Full control of nanoscale optical transmission with a composite metascreen,” Phys. Rev. Lett. 110, 203903 (2013).
[Crossref]

Proc. Ind. Acad. Sci. A (1)

S. Pancharatnam, “Generalized theory of interference, and its applications,” Proc. Ind. Acad. Sci. A 44, 247–262 (1956).

Science (3)

Y. N. Fang, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref]

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340, 1304–1307 (2013).
[Crossref]

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
[Crossref]

Other (8)

C. Brosseau, Fundamentals of Polarized Light: A Statistical Optics Approach (Wiley, 1998).

P. Wang, R. Menon, “Three-dimensional lithography via digital holography,” in Frontiers in Optics 2012/Laser Science XXVIII, OSA Technical Digest (online) (Optical Society of America, 2012), paper FTu3A.4.

Commercial polarizers in Thorlabs, http://www.thorlabs.us/newgrouppage9.cfm?objectgroup_id=4984 .

J. N. Damask, Polarization Optics in Telecommunications (Springer, 2004).

D. S. Kliger, J. W. Lewis, C. E. Randall, Polarized Light in Optics and Spectroscopy (Academic, 1990).

V. V. Tuchin, L. V. Wang, D. A. Zimnyako, Optical Polarization in Biomedical Applications (Springer, 2006).

Y. P. Svirko, N. I. Zheludev, Polarization of Light in Nonlinear Optics (Wiley, 1998).

P. Hariharan, Optical Holography: Principles, Techniques and Applications (Cambridge University, 1996).

Supplementary Material (19)

» Media 1: PDF (1972 KB)     
» Media 2: MOV (1966 KB)     
» Media 3: MOV (1147 KB)     
» Media 4: MOV (1669 KB)     
» Media 5: MOV (1379 KB)     
» Media 6: MOV (7397 KB)     
» Media 7: MOV (8233 KB)     
» Media 8: MOV (7012 KB)     
» Media 9: MOV (7975 KB)     
» Media 10: MOV (7123 KB)     
» Media 11: MOV (7293 KB)     
» Media 12: MOV (7642 KB)     
» Media 13: MOV (8760 KB)     
» Media 14: MOV (3803 KB)     
» Media 15: MOV (4867 KB)     
» Media 16: MOV (4278 KB)     
» Media 17: MOV (4870 KB)     
» Media 18: MOV (4459 KB)     
» Supplement Media 19: MOV (4117 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

(a) High-efficiency metamaterial polarizer. The design (left) is composed of etched square pixels in silicon. (b)–(e) Simulated light intensity distributions after transmission through the polarizer for (b)  E y and (c)  E x under E y input and for (d)  E y and (e)  E x for E x input. The white dashed lines in (b)–(e) indicate the boundaries of the finite device (Media 2, Media 3, Media 4, Media 5, Media 6, Media 7, Media 8, Media 9, Media 10, Media 11, Media 12, Media 13, Media 14, Media 15, Media 16, Media 17, Media 18, Media 19).

Fig. 2.
Fig. 2.

(a) Scanning-electron micrograph of the metamaterial polarizer. One unit cell is 4 μm × 4 μm (yellow dashed lines). (b) Magnified view shows pixels with a period of 400 nm. (c) Measured transmitted power as a function of position in the X–Y plane. The left two images correspond to the E y source, while the right two images correspond to the E x source. Within the device area (dashed white square), E y is rotated to E x . (d) Comparison of the measured peak transmitted power in E x and E y between unpatterned silicon and the metamaterial polarizer.

Fig. 3.
Fig. 3.

(a) Transmission efficiency (at E x ) and selection ratio (power in E x to power in E y ) as a function of maximum aspect ratio. (b) Device with transmission efficiency of 80% and maximum aspect ratio of 5.7. (c)–(f) Time-averaged intensity distributions after the device for (c), (d)  E x source and (e), (f)  E y source. The polarizer is located in the X–Y plane at the left edge. (g) 2D device designed for polarization separation and focusing. (h) Intensity distribution along the dashed white line in (g) when the device is illuminated by E x and E y simultaneously.

Metrics