Abstract

Heterogeneous integration techniques, such as direct bonding, have enabled solutions to many problems facing integrated photonics. In particular, the relatively new field of mid-infrared (mid-IR) integrated photonics has been hindered by the availability of functional, transparent substrates in this wavelength range. The key to achieving compact, high-performance optical modulation and frequency conversion is the monolithic integration of silicon photonics with a material with high second-order nonlinear susceptibility. By transferring large areas of thin, monocrystalline silicon to bulk lithium niobate (LiNbO3) substrates, the first silicon-based platform to exploit the Pockels or linear electro-optic effect in the mid-IR range is achieved. Integrated Mach–Zehnder interferometer modulators with an extinction ratio of 8dB, a half-wave voltage-length product of 26V·cm, and an on-chip insertion loss of 3.3 dB are demonstrated at a wavelength of 3.39 μm. Ultrathin optical waveguides fabricated and characterized on this platform exhibit a low transverse electric mode linear propagation loss of 2.5dB/cm. Future capabilities such as wideband difference frequency generation for integrated mid-IR sources are envisioned for the demonstrated silicon-on-lithium-niobate platform.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Heterogeneous microring and Mach-Zehnder modulators based on lithium niobate and chalcogenide glasses on silicon

Ashutosh Rao, Aniket Patil, Jeff Chiles, Marcin Malinowski, Spencer Novak, Kathleen Richardson, Payam Rabiei, and Sasan Fathpour
Opt. Express 23(17) 22746-22752 (2015)

Hybrid silicon and lithium niobate electro-optical ring modulator

Li Chen, Qiang Xu, Michael G. Wood, and Ronald M. Reano
Optica 1(2) 112-118 (2014)

Heterogeneous lithium niobate photonics on silicon substrates

Payam Rabiei, Jichi Ma, Saeed Khan, Jeff Chiles, and Sasan Fathpour
Opt. Express 21(21) 25573-25581 (2013)

References

  • View by:
  • |
  • |
  • |

  1. R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4, 495–497 (2010).
    [Crossref]
  2. B. Jalali, S. Fathpour, “Silicon photonics,” J. Lightwave Technol. 24, 4600–4615 (2006).
    [Crossref]
  3. R. A. Soref, S. J. Emelett, W. R. Buchwald, “Silicon waveguided components for the long-wave infrared region,” J. Opt. A 8, 840–848 (2006).
    [Crossref]
  4. T. Baehr-Jones, A. Spott, R. Ilic, A. Spott, B. Penkov, W. Asher, M. Hochberg, “Silicon-on-sapphire integrated waveguides for the mid-infrared,” Opt. Express 18, 12127–12135 (2010).
    [Crossref]
  5. R. Shankar, I. Bulu, M. Lončar, “Integrated high-quality factor silicon-on-sapphire ring resonators for the mid-infrared,” Appl. Phys. Lett. 102, 051108 (2013).
    [Crossref]
  6. S. Khan, J. Chiles, J. Ma, S. Fathpour, “Silicon-on-nitride waveguides for mid- and near-infrared integrated photonics,” Appl. Phys. Lett. 102, 121104 (2013).
    [Crossref]
  7. J. Chiles, S. Khan, J. Ma, S. Fathpour, “High-contrast, all-silicon waveguiding platform for ultra-broadband mid-infrared photonics,” Appl. Phys. Lett. 103, 151106 (2013).
    [Crossref]
  8. H.-K. Hsiao, K. A. Winick, J. D. Monnier, J.-P. Berger, “An infrared integrated optic astronomical beam combiner for stellar interferometry at 3-4 μm,” Opt. Express 17, 18489–18500 (2009).
    [Crossref]
  9. B. Jalali, V. Raghunathan, R. Shori, S. Fathpour, D. Dimitropoulos, O. Stafsudd, “Prospects for silicon mid-IR Raman lasers,” IEEE J. Sel. Top. Quantum Electron. 12, 1618–1627 (2006).
    [Crossref]
  10. D. Borlaug, S. Fathpour, B. Jalali, “Extreme value statistics in silicon photonics,” IEEE Photon. J. 1, 33–39 (2009).
    [Crossref]
  11. R. K. W. Lau, M. R. E. Lamont, A. G. Griffith, Y. Okawachi, M. Lipson, A. L. Gaeta, “Octave-spanning mid-infrared supercontinuum generation in silicon nanowaveguides,” Opt. Lett. 39, 4518–4521 (2014).
    [Crossref]
  12. B. Kuyken, P. Verheyen, P. Tannouri, X. Liu, J. Van Campenhout, R. Baets, W. M. J. Green, G. Roelkens, “Generation of 3.6  μm radiation and telecom-band amplification by four-wave mixing in a silicon waveguide with normal group velocity dispersion,” Opt. Lett. 39, 1349–1352 (2014).
    [Crossref]
  13. A. Densmore, S. Janz, R. Ma, J. H. Schmid, D.-X. Xu, A. Delâge, J. Lapointe, M. Vachon, P. Cheben, “Compact and low power thermo-optic switch using folded silicon waveguides,” Opt. Express 17, 10457 (2009).
    [Crossref]
  14. M. Nedeljkovic, S. Stankovic, C. J. Mitchell, A. Z. Khokhar, S. A. Reynolds, D. J. Thomson, F. Y. Gardes, C. G. Littlejohns, G. T. Reed, G. Z. Mashanovich, “Mid-infrared thermo-optic modulators in Sol,” IEEE Photon. Technol. Lett. 26, 1352–1355 (2014).
    [Crossref]
  15. R. Soref, J. Larenzo, “All-silicon active and passive guided-wave components for λ = 1.3 and 1.6  μm,” IEEE J. Quantum Electron. 22, 873–879 (1986).
    [Crossref]
  16. X. Tu, T.-Y. Liow, J. Song, X. Luo, Q. Fang, M. Yu, G.-Q. Lo, “50-Gb/s silicon optical modulator with traveling-wave electrodes,” Opt. Express 21, 12776–12782 (2013).
    [Crossref]
  17. D. J. Thomson, F. Y. Gardes, S. Liu, H. Porte, L. Zimmermann, J.-M. Fedeli, Y. Hu, M. Nedeljkovic, X. Yang, P. Petropoulos, G. Z. Mashanovich, “High performance Mach–Zehnder-based silicon optical modulators,” IEEE J. Sel. Top. Quantum Electron. 19, 85–94 (2013).
    [Crossref]
  18. M. Nedeljkovic, R. Soref, G. Z. Mashanovich, “Free-carrier electrorefraction and electroabsorption modulation predictions for silicon over the 1–14-μm infrared wavelength range,” IEEE Photon. J. 3, 1171–1180 (2011).
    [Crossref]
  19. B. Chmielak, M. Waldow, C. Matheisen, C. Ripperda, J. Bolten, T. Wahlbrink, M. Nagel, F. Merget, H. Kurz, “Pockels effect based fully integrated, strained silicon electro-optic modulator,” Opt. Express 19, 17212–17219 (2011).
    [Crossref]
  20. R. Palmer, S. Koeber, D. L. Elder, M. Woessner, W. Heni, D. Korn, M. Lauermann, W. Bogaerts, L. Dalton, W. Freude, J. Leuthold, C. Koos, “High-speed, low drive-voltage silicon-organic hybrid modulator based on a binary-chromophore electro-optic material,” J. Lightwave Technol. 32, 2726–2734 (2014).
    [Crossref]
  21. K. Noguchi, O. Mitomi, H. Miyazawa, “Millimeter-wave Ti:LiNbO3 optical modulators,” J. Lightwave Technol. 16, 615–619 (1998).
    [Crossref]
  22. R. A. Becker, R. H. Rediker, T. A. Lind, “Wide-bandwidth guided-wave electro-optic intensity modulator at λ = 3.39  μm,” Appl. Phys. Lett. 46, 809–811 (1985).
    [Crossref]
  23. Y. S. Lee, G.-D. Kim, W.-J. Kim, S.-S. Lee, W.-G. Lee, W. H. Steier, “Hybrid Si-LiNbO3 microring electro-optically tunable resonators for active photonic devices,” Opt. Lett. 36, 1119–1121 (2011).
    [Crossref]
  24. L. Chen, Q. Xu, M. G. Wood, R. M. Reano, “Hybrid silicon and lithium niobate electro-optical ring modulator,” Optica 1, 112–118 (2014).
    [Crossref]
  25. M. Solmaz, C. K. Madsen, “Silicon-on-lithium niobate waveguides for mid-infrared, ” Proc. SPIE 6386, 63860F (2006).
    [Crossref]
  26. L. Cao, A. Aboketaf, Z. Wang, S. Preble, “Hybrid amorphous silicon (a-Si:H)–LiNbO3 electro-optic modulator,” Opt. Commun. 330, 40–44 (2014).
    [Crossref]
  27. U. D. Dave, S. Uvin, B. Kuyken, S. Selvaraja, F. Leo, G. Roelkens, “Telecom to mid-infrared spanning supercontinuum generation in hydrogenated amorphous silicon waveguides using a thulium doped fiber laser pump source,” Opt. Express 21, 32032–32039 (2013).
    [Crossref]
  28. P. Rabiei, J. Ma, S. Khan, J. Chiles, S. Fathpour, “Heterogeneous lithium niobate photonics on silicon substrates,” Opt. Express 21, 25573–25581 (2013).
    [Crossref]
  29. J. Chiles, S. Fathpour, “Silicon on lithium niobate: A hybrid electro-optical platform for near- and mid-infrared photonics,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2014), paper STh1M.6.
  30. E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
    [Crossref]
  31. M. M. R. Howlader, T. Suga, M. J. Kim, “Room temperature bonding of silicon and lithium niobate,” Appl. Phys. Lett. 89, 031914 (2006).
    [Crossref]
  32. H. Lin, L. Li, Y. Zou, S. Danto, J. D. Musgraves, K. Richardson, S. Kozacik, M. Murakowski, D. Prather, P. T. Lin, V. Singh, A. Agarwal, L. C. Kimerling, J. Hu, “Demonstration of high-Q mid-infrared chalcogenide glass-on-silicon resonators,” Opt. Lett. 38, 1470–1472 (2013).
    [Crossref]
  33. H. Ito, C. Takyu, H. Inaba, “Fabrication of periodic domain grating in LiNbO3 by electron beam writing for application of nonlinear optical processes,” Electron. Lett. 27, 1221–1222 (1991).
    [Crossref]

2014 (6)

2013 (8)

U. D. Dave, S. Uvin, B. Kuyken, S. Selvaraja, F. Leo, G. Roelkens, “Telecom to mid-infrared spanning supercontinuum generation in hydrogenated amorphous silicon waveguides using a thulium doped fiber laser pump source,” Opt. Express 21, 32032–32039 (2013).
[Crossref]

P. Rabiei, J. Ma, S. Khan, J. Chiles, S. Fathpour, “Heterogeneous lithium niobate photonics on silicon substrates,” Opt. Express 21, 25573–25581 (2013).
[Crossref]

H. Lin, L. Li, Y. Zou, S. Danto, J. D. Musgraves, K. Richardson, S. Kozacik, M. Murakowski, D. Prather, P. T. Lin, V. Singh, A. Agarwal, L. C. Kimerling, J. Hu, “Demonstration of high-Q mid-infrared chalcogenide glass-on-silicon resonators,” Opt. Lett. 38, 1470–1472 (2013).
[Crossref]

X. Tu, T.-Y. Liow, J. Song, X. Luo, Q. Fang, M. Yu, G.-Q. Lo, “50-Gb/s silicon optical modulator with traveling-wave electrodes,” Opt. Express 21, 12776–12782 (2013).
[Crossref]

D. J. Thomson, F. Y. Gardes, S. Liu, H. Porte, L. Zimmermann, J.-M. Fedeli, Y. Hu, M. Nedeljkovic, X. Yang, P. Petropoulos, G. Z. Mashanovich, “High performance Mach–Zehnder-based silicon optical modulators,” IEEE J. Sel. Top. Quantum Electron. 19, 85–94 (2013).
[Crossref]

R. Shankar, I. Bulu, M. Lončar, “Integrated high-quality factor silicon-on-sapphire ring resonators for the mid-infrared,” Appl. Phys. Lett. 102, 051108 (2013).
[Crossref]

S. Khan, J. Chiles, J. Ma, S. Fathpour, “Silicon-on-nitride waveguides for mid- and near-infrared integrated photonics,” Appl. Phys. Lett. 102, 121104 (2013).
[Crossref]

J. Chiles, S. Khan, J. Ma, S. Fathpour, “High-contrast, all-silicon waveguiding platform for ultra-broadband mid-infrared photonics,” Appl. Phys. Lett. 103, 151106 (2013).
[Crossref]

2011 (3)

2010 (2)

2009 (3)

2006 (5)

B. Jalali, V. Raghunathan, R. Shori, S. Fathpour, D. Dimitropoulos, O. Stafsudd, “Prospects for silicon mid-IR Raman lasers,” IEEE J. Sel. Top. Quantum Electron. 12, 1618–1627 (2006).
[Crossref]

B. Jalali, S. Fathpour, “Silicon photonics,” J. Lightwave Technol. 24, 4600–4615 (2006).
[Crossref]

R. A. Soref, S. J. Emelett, W. R. Buchwald, “Silicon waveguided components for the long-wave infrared region,” J. Opt. A 8, 840–848 (2006).
[Crossref]

M. M. R. Howlader, T. Suga, M. J. Kim, “Room temperature bonding of silicon and lithium niobate,” Appl. Phys. Lett. 89, 031914 (2006).
[Crossref]

M. Solmaz, C. K. Madsen, “Silicon-on-lithium niobate waveguides for mid-infrared, ” Proc. SPIE 6386, 63860F (2006).
[Crossref]

2000 (1)

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[Crossref]

1998 (1)

1991 (1)

H. Ito, C. Takyu, H. Inaba, “Fabrication of periodic domain grating in LiNbO3 by electron beam writing for application of nonlinear optical processes,” Electron. Lett. 27, 1221–1222 (1991).
[Crossref]

1986 (1)

R. Soref, J. Larenzo, “All-silicon active and passive guided-wave components for λ = 1.3 and 1.6  μm,” IEEE J. Quantum Electron. 22, 873–879 (1986).
[Crossref]

1985 (1)

R. A. Becker, R. H. Rediker, T. A. Lind, “Wide-bandwidth guided-wave electro-optic intensity modulator at λ = 3.39  μm,” Appl. Phys. Lett. 46, 809–811 (1985).
[Crossref]

Aboketaf, A.

L. Cao, A. Aboketaf, Z. Wang, S. Preble, “Hybrid amorphous silicon (a-Si:H)–LiNbO3 electro-optic modulator,” Opt. Commun. 330, 40–44 (2014).
[Crossref]

Agarwal, A.

Asher, W.

Attanasio, D. V.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[Crossref]

Baehr-Jones, T.

Baets, R.

Becker, R. A.

R. A. Becker, R. H. Rediker, T. A. Lind, “Wide-bandwidth guided-wave electro-optic intensity modulator at λ = 3.39  μm,” Appl. Phys. Lett. 46, 809–811 (1985).
[Crossref]

Berger, J.-P.

Bogaerts, W.

Bolten, J.

Borlaug, D.

D. Borlaug, S. Fathpour, B. Jalali, “Extreme value statistics in silicon photonics,” IEEE Photon. J. 1, 33–39 (2009).
[Crossref]

Bossi, D. E.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[Crossref]

Buchwald, W. R.

R. A. Soref, S. J. Emelett, W. R. Buchwald, “Silicon waveguided components for the long-wave infrared region,” J. Opt. A 8, 840–848 (2006).
[Crossref]

Bulu, I.

R. Shankar, I. Bulu, M. Lončar, “Integrated high-quality factor silicon-on-sapphire ring resonators for the mid-infrared,” Appl. Phys. Lett. 102, 051108 (2013).
[Crossref]

Cao, L.

L. Cao, A. Aboketaf, Z. Wang, S. Preble, “Hybrid amorphous silicon (a-Si:H)–LiNbO3 electro-optic modulator,” Opt. Commun. 330, 40–44 (2014).
[Crossref]

Cheben, P.

Chen, L.

Chiles, J.

P. Rabiei, J. Ma, S. Khan, J. Chiles, S. Fathpour, “Heterogeneous lithium niobate photonics on silicon substrates,” Opt. Express 21, 25573–25581 (2013).
[Crossref]

S. Khan, J. Chiles, J. Ma, S. Fathpour, “Silicon-on-nitride waveguides for mid- and near-infrared integrated photonics,” Appl. Phys. Lett. 102, 121104 (2013).
[Crossref]

J. Chiles, S. Khan, J. Ma, S. Fathpour, “High-contrast, all-silicon waveguiding platform for ultra-broadband mid-infrared photonics,” Appl. Phys. Lett. 103, 151106 (2013).
[Crossref]

J. Chiles, S. Fathpour, “Silicon on lithium niobate: A hybrid electro-optical platform for near- and mid-infrared photonics,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2014), paper STh1M.6.

Chmielak, B.

Dalton, L.

Danto, S.

Dave, U. D.

Delâge, A.

Densmore, A.

Dimitropoulos, D.

B. Jalali, V. Raghunathan, R. Shori, S. Fathpour, D. Dimitropoulos, O. Stafsudd, “Prospects for silicon mid-IR Raman lasers,” IEEE J. Sel. Top. Quantum Electron. 12, 1618–1627 (2006).
[Crossref]

Elder, D. L.

Emelett, S. J.

R. A. Soref, S. J. Emelett, W. R. Buchwald, “Silicon waveguided components for the long-wave infrared region,” J. Opt. A 8, 840–848 (2006).
[Crossref]

Fang, Q.

Fathpour, S.

P. Rabiei, J. Ma, S. Khan, J. Chiles, S. Fathpour, “Heterogeneous lithium niobate photonics on silicon substrates,” Opt. Express 21, 25573–25581 (2013).
[Crossref]

S. Khan, J. Chiles, J. Ma, S. Fathpour, “Silicon-on-nitride waveguides for mid- and near-infrared integrated photonics,” Appl. Phys. Lett. 102, 121104 (2013).
[Crossref]

J. Chiles, S. Khan, J. Ma, S. Fathpour, “High-contrast, all-silicon waveguiding platform for ultra-broadband mid-infrared photonics,” Appl. Phys. Lett. 103, 151106 (2013).
[Crossref]

D. Borlaug, S. Fathpour, B. Jalali, “Extreme value statistics in silicon photonics,” IEEE Photon. J. 1, 33–39 (2009).
[Crossref]

B. Jalali, V. Raghunathan, R. Shori, S. Fathpour, D. Dimitropoulos, O. Stafsudd, “Prospects for silicon mid-IR Raman lasers,” IEEE J. Sel. Top. Quantum Electron. 12, 1618–1627 (2006).
[Crossref]

B. Jalali, S. Fathpour, “Silicon photonics,” J. Lightwave Technol. 24, 4600–4615 (2006).
[Crossref]

J. Chiles, S. Fathpour, “Silicon on lithium niobate: A hybrid electro-optical platform for near- and mid-infrared photonics,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2014), paper STh1M.6.

Fedeli, J.-M.

D. J. Thomson, F. Y. Gardes, S. Liu, H. Porte, L. Zimmermann, J.-M. Fedeli, Y. Hu, M. Nedeljkovic, X. Yang, P. Petropoulos, G. Z. Mashanovich, “High performance Mach–Zehnder-based silicon optical modulators,” IEEE J. Sel. Top. Quantum Electron. 19, 85–94 (2013).
[Crossref]

Freude, W.

Fritz, D. J.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[Crossref]

Gaeta, A. L.

Gardes, F. Y.

M. Nedeljkovic, S. Stankovic, C. J. Mitchell, A. Z. Khokhar, S. A. Reynolds, D. J. Thomson, F. Y. Gardes, C. G. Littlejohns, G. T. Reed, G. Z. Mashanovich, “Mid-infrared thermo-optic modulators in Sol,” IEEE Photon. Technol. Lett. 26, 1352–1355 (2014).
[Crossref]

D. J. Thomson, F. Y. Gardes, S. Liu, H. Porte, L. Zimmermann, J.-M. Fedeli, Y. Hu, M. Nedeljkovic, X. Yang, P. Petropoulos, G. Z. Mashanovich, “High performance Mach–Zehnder-based silicon optical modulators,” IEEE J. Sel. Top. Quantum Electron. 19, 85–94 (2013).
[Crossref]

Green, W. M. J.

Griffith, A. G.

Hallemeier, P. F.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[Crossref]

Heni, W.

Hochberg, M.

Howlader, M. M. R.

M. M. R. Howlader, T. Suga, M. J. Kim, “Room temperature bonding of silicon and lithium niobate,” Appl. Phys. Lett. 89, 031914 (2006).
[Crossref]

Hsiao, H.-K.

Hu, J.

Hu, Y.

D. J. Thomson, F. Y. Gardes, S. Liu, H. Porte, L. Zimmermann, J.-M. Fedeli, Y. Hu, M. Nedeljkovic, X. Yang, P. Petropoulos, G. Z. Mashanovich, “High performance Mach–Zehnder-based silicon optical modulators,” IEEE J. Sel. Top. Quantum Electron. 19, 85–94 (2013).
[Crossref]

Ilic, R.

Inaba, H.

H. Ito, C. Takyu, H. Inaba, “Fabrication of periodic domain grating in LiNbO3 by electron beam writing for application of nonlinear optical processes,” Electron. Lett. 27, 1221–1222 (1991).
[Crossref]

Ito, H.

H. Ito, C. Takyu, H. Inaba, “Fabrication of periodic domain grating in LiNbO3 by electron beam writing for application of nonlinear optical processes,” Electron. Lett. 27, 1221–1222 (1991).
[Crossref]

Jalali, B.

D. Borlaug, S. Fathpour, B. Jalali, “Extreme value statistics in silicon photonics,” IEEE Photon. J. 1, 33–39 (2009).
[Crossref]

B. Jalali, V. Raghunathan, R. Shori, S. Fathpour, D. Dimitropoulos, O. Stafsudd, “Prospects for silicon mid-IR Raman lasers,” IEEE J. Sel. Top. Quantum Electron. 12, 1618–1627 (2006).
[Crossref]

B. Jalali, S. Fathpour, “Silicon photonics,” J. Lightwave Technol. 24, 4600–4615 (2006).
[Crossref]

Janz, S.

Khan, S.

S. Khan, J. Chiles, J. Ma, S. Fathpour, “Silicon-on-nitride waveguides for mid- and near-infrared integrated photonics,” Appl. Phys. Lett. 102, 121104 (2013).
[Crossref]

J. Chiles, S. Khan, J. Ma, S. Fathpour, “High-contrast, all-silicon waveguiding platform for ultra-broadband mid-infrared photonics,” Appl. Phys. Lett. 103, 151106 (2013).
[Crossref]

P. Rabiei, J. Ma, S. Khan, J. Chiles, S. Fathpour, “Heterogeneous lithium niobate photonics on silicon substrates,” Opt. Express 21, 25573–25581 (2013).
[Crossref]

Khokhar, A. Z.

M. Nedeljkovic, S. Stankovic, C. J. Mitchell, A. Z. Khokhar, S. A. Reynolds, D. J. Thomson, F. Y. Gardes, C. G. Littlejohns, G. T. Reed, G. Z. Mashanovich, “Mid-infrared thermo-optic modulators in Sol,” IEEE Photon. Technol. Lett. 26, 1352–1355 (2014).
[Crossref]

Kim, G.-D.

Kim, M. J.

M. M. R. Howlader, T. Suga, M. J. Kim, “Room temperature bonding of silicon and lithium niobate,” Appl. Phys. Lett. 89, 031914 (2006).
[Crossref]

Kim, W.-J.

Kimerling, L. C.

Kissa, K. M.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[Crossref]

Koeber, S.

Koos, C.

Korn, D.

Kozacik, S.

Kurz, H.

Kuyken, B.

Lafaw, D. A.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[Crossref]

Lamont, M. R. E.

Lapointe, J.

Larenzo, J.

R. Soref, J. Larenzo, “All-silicon active and passive guided-wave components for λ = 1.3 and 1.6  μm,” IEEE J. Quantum Electron. 22, 873–879 (1986).
[Crossref]

Lau, R. K. W.

Lauermann, M.

Lee, S.-S.

Lee, W.-G.

Lee, Y. S.

Leo, F.

Leuthold, J.

Li, L.

Lin, H.

Lin, P. T.

Lind, T. A.

R. A. Becker, R. H. Rediker, T. A. Lind, “Wide-bandwidth guided-wave electro-optic intensity modulator at λ = 3.39  μm,” Appl. Phys. Lett. 46, 809–811 (1985).
[Crossref]

Liow, T.-Y.

Lipson, M.

Littlejohns, C. G.

M. Nedeljkovic, S. Stankovic, C. J. Mitchell, A. Z. Khokhar, S. A. Reynolds, D. J. Thomson, F. Y. Gardes, C. G. Littlejohns, G. T. Reed, G. Z. Mashanovich, “Mid-infrared thermo-optic modulators in Sol,” IEEE Photon. Technol. Lett. 26, 1352–1355 (2014).
[Crossref]

Liu, S.

D. J. Thomson, F. Y. Gardes, S. Liu, H. Porte, L. Zimmermann, J.-M. Fedeli, Y. Hu, M. Nedeljkovic, X. Yang, P. Petropoulos, G. Z. Mashanovich, “High performance Mach–Zehnder-based silicon optical modulators,” IEEE J. Sel. Top. Quantum Electron. 19, 85–94 (2013).
[Crossref]

Liu, X.

Lo, G.-Q.

Loncar, M.

R. Shankar, I. Bulu, M. Lončar, “Integrated high-quality factor silicon-on-sapphire ring resonators for the mid-infrared,” Appl. Phys. Lett. 102, 051108 (2013).
[Crossref]

Luo, X.

Ma, J.

P. Rabiei, J. Ma, S. Khan, J. Chiles, S. Fathpour, “Heterogeneous lithium niobate photonics on silicon substrates,” Opt. Express 21, 25573–25581 (2013).
[Crossref]

S. Khan, J. Chiles, J. Ma, S. Fathpour, “Silicon-on-nitride waveguides for mid- and near-infrared integrated photonics,” Appl. Phys. Lett. 102, 121104 (2013).
[Crossref]

J. Chiles, S. Khan, J. Ma, S. Fathpour, “High-contrast, all-silicon waveguiding platform for ultra-broadband mid-infrared photonics,” Appl. Phys. Lett. 103, 151106 (2013).
[Crossref]

Ma, R.

Maack, D.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[Crossref]

Madsen, C. K.

M. Solmaz, C. K. Madsen, “Silicon-on-lithium niobate waveguides for mid-infrared, ” Proc. SPIE 6386, 63860F (2006).
[Crossref]

Mashanovich, G. Z.

M. Nedeljkovic, S. Stankovic, C. J. Mitchell, A. Z. Khokhar, S. A. Reynolds, D. J. Thomson, F. Y. Gardes, C. G. Littlejohns, G. T. Reed, G. Z. Mashanovich, “Mid-infrared thermo-optic modulators in Sol,” IEEE Photon. Technol. Lett. 26, 1352–1355 (2014).
[Crossref]

D. J. Thomson, F. Y. Gardes, S. Liu, H. Porte, L. Zimmermann, J.-M. Fedeli, Y. Hu, M. Nedeljkovic, X. Yang, P. Petropoulos, G. Z. Mashanovich, “High performance Mach–Zehnder-based silicon optical modulators,” IEEE J. Sel. Top. Quantum Electron. 19, 85–94 (2013).
[Crossref]

M. Nedeljkovic, R. Soref, G. Z. Mashanovich, “Free-carrier electrorefraction and electroabsorption modulation predictions for silicon over the 1–14-μm infrared wavelength range,” IEEE Photon. J. 3, 1171–1180 (2011).
[Crossref]

Matheisen, C.

McBrien, G. J.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[Crossref]

Merget, F.

Mitchell, C. J.

M. Nedeljkovic, S. Stankovic, C. J. Mitchell, A. Z. Khokhar, S. A. Reynolds, D. J. Thomson, F. Y. Gardes, C. G. Littlejohns, G. T. Reed, G. Z. Mashanovich, “Mid-infrared thermo-optic modulators in Sol,” IEEE Photon. Technol. Lett. 26, 1352–1355 (2014).
[Crossref]

Mitomi, O.

Miyazawa, H.

Monnier, J. D.

Murakowski, M.

Murphy, E. J.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[Crossref]

Musgraves, J. D.

Nagel, M.

Nedeljkovic, M.

M. Nedeljkovic, S. Stankovic, C. J. Mitchell, A. Z. Khokhar, S. A. Reynolds, D. J. Thomson, F. Y. Gardes, C. G. Littlejohns, G. T. Reed, G. Z. Mashanovich, “Mid-infrared thermo-optic modulators in Sol,” IEEE Photon. Technol. Lett. 26, 1352–1355 (2014).
[Crossref]

D. J. Thomson, F. Y. Gardes, S. Liu, H. Porte, L. Zimmermann, J.-M. Fedeli, Y. Hu, M. Nedeljkovic, X. Yang, P. Petropoulos, G. Z. Mashanovich, “High performance Mach–Zehnder-based silicon optical modulators,” IEEE J. Sel. Top. Quantum Electron. 19, 85–94 (2013).
[Crossref]

M. Nedeljkovic, R. Soref, G. Z. Mashanovich, “Free-carrier electrorefraction and electroabsorption modulation predictions for silicon over the 1–14-μm infrared wavelength range,” IEEE Photon. J. 3, 1171–1180 (2011).
[Crossref]

Noguchi, K.

Okawachi, Y.

Palmer, R.

Penkov, B.

Petropoulos, P.

D. J. Thomson, F. Y. Gardes, S. Liu, H. Porte, L. Zimmermann, J.-M. Fedeli, Y. Hu, M. Nedeljkovic, X. Yang, P. Petropoulos, G. Z. Mashanovich, “High performance Mach–Zehnder-based silicon optical modulators,” IEEE J. Sel. Top. Quantum Electron. 19, 85–94 (2013).
[Crossref]

Porte, H.

D. J. Thomson, F. Y. Gardes, S. Liu, H. Porte, L. Zimmermann, J.-M. Fedeli, Y. Hu, M. Nedeljkovic, X. Yang, P. Petropoulos, G. Z. Mashanovich, “High performance Mach–Zehnder-based silicon optical modulators,” IEEE J. Sel. Top. Quantum Electron. 19, 85–94 (2013).
[Crossref]

Prather, D.

Preble, S.

L. Cao, A. Aboketaf, Z. Wang, S. Preble, “Hybrid amorphous silicon (a-Si:H)–LiNbO3 electro-optic modulator,” Opt. Commun. 330, 40–44 (2014).
[Crossref]

Rabiei, P.

Raghunathan, V.

B. Jalali, V. Raghunathan, R. Shori, S. Fathpour, D. Dimitropoulos, O. Stafsudd, “Prospects for silicon mid-IR Raman lasers,” IEEE J. Sel. Top. Quantum Electron. 12, 1618–1627 (2006).
[Crossref]

Reano, R. M.

Rediker, R. H.

R. A. Becker, R. H. Rediker, T. A. Lind, “Wide-bandwidth guided-wave electro-optic intensity modulator at λ = 3.39  μm,” Appl. Phys. Lett. 46, 809–811 (1985).
[Crossref]

Reed, G. T.

M. Nedeljkovic, S. Stankovic, C. J. Mitchell, A. Z. Khokhar, S. A. Reynolds, D. J. Thomson, F. Y. Gardes, C. G. Littlejohns, G. T. Reed, G. Z. Mashanovich, “Mid-infrared thermo-optic modulators in Sol,” IEEE Photon. Technol. Lett. 26, 1352–1355 (2014).
[Crossref]

Reynolds, S. A.

M. Nedeljkovic, S. Stankovic, C. J. Mitchell, A. Z. Khokhar, S. A. Reynolds, D. J. Thomson, F. Y. Gardes, C. G. Littlejohns, G. T. Reed, G. Z. Mashanovich, “Mid-infrared thermo-optic modulators in Sol,” IEEE Photon. Technol. Lett. 26, 1352–1355 (2014).
[Crossref]

Richardson, K.

Ripperda, C.

Roelkens, G.

Schmid, J. H.

Selvaraja, S.

Shankar, R.

R. Shankar, I. Bulu, M. Lončar, “Integrated high-quality factor silicon-on-sapphire ring resonators for the mid-infrared,” Appl. Phys. Lett. 102, 051108 (2013).
[Crossref]

Shori, R.

B. Jalali, V. Raghunathan, R. Shori, S. Fathpour, D. Dimitropoulos, O. Stafsudd, “Prospects for silicon mid-IR Raman lasers,” IEEE J. Sel. Top. Quantum Electron. 12, 1618–1627 (2006).
[Crossref]

Singh, V.

Solmaz, M.

M. Solmaz, C. K. Madsen, “Silicon-on-lithium niobate waveguides for mid-infrared, ” Proc. SPIE 6386, 63860F (2006).
[Crossref]

Song, J.

Soref, R.

M. Nedeljkovic, R. Soref, G. Z. Mashanovich, “Free-carrier electrorefraction and electroabsorption modulation predictions for silicon over the 1–14-μm infrared wavelength range,” IEEE Photon. J. 3, 1171–1180 (2011).
[Crossref]

R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4, 495–497 (2010).
[Crossref]

R. Soref, J. Larenzo, “All-silicon active and passive guided-wave components for λ = 1.3 and 1.6  μm,” IEEE J. Quantum Electron. 22, 873–879 (1986).
[Crossref]

Soref, R. A.

R. A. Soref, S. J. Emelett, W. R. Buchwald, “Silicon waveguided components for the long-wave infrared region,” J. Opt. A 8, 840–848 (2006).
[Crossref]

Spott, A.

Stafsudd, O.

B. Jalali, V. Raghunathan, R. Shori, S. Fathpour, D. Dimitropoulos, O. Stafsudd, “Prospects for silicon mid-IR Raman lasers,” IEEE J. Sel. Top. Quantum Electron. 12, 1618–1627 (2006).
[Crossref]

Stankovic, S.

M. Nedeljkovic, S. Stankovic, C. J. Mitchell, A. Z. Khokhar, S. A. Reynolds, D. J. Thomson, F. Y. Gardes, C. G. Littlejohns, G. T. Reed, G. Z. Mashanovich, “Mid-infrared thermo-optic modulators in Sol,” IEEE Photon. Technol. Lett. 26, 1352–1355 (2014).
[Crossref]

Steier, W. H.

Suga, T.

M. M. R. Howlader, T. Suga, M. J. Kim, “Room temperature bonding of silicon and lithium niobate,” Appl. Phys. Lett. 89, 031914 (2006).
[Crossref]

Takyu, C.

H. Ito, C. Takyu, H. Inaba, “Fabrication of periodic domain grating in LiNbO3 by electron beam writing for application of nonlinear optical processes,” Electron. Lett. 27, 1221–1222 (1991).
[Crossref]

Tannouri, P.

Thomson, D. J.

M. Nedeljkovic, S. Stankovic, C. J. Mitchell, A. Z. Khokhar, S. A. Reynolds, D. J. Thomson, F. Y. Gardes, C. G. Littlejohns, G. T. Reed, G. Z. Mashanovich, “Mid-infrared thermo-optic modulators in Sol,” IEEE Photon. Technol. Lett. 26, 1352–1355 (2014).
[Crossref]

D. J. Thomson, F. Y. Gardes, S. Liu, H. Porte, L. Zimmermann, J.-M. Fedeli, Y. Hu, M. Nedeljkovic, X. Yang, P. Petropoulos, G. Z. Mashanovich, “High performance Mach–Zehnder-based silicon optical modulators,” IEEE J. Sel. Top. Quantum Electron. 19, 85–94 (2013).
[Crossref]

Tu, X.

Uvin, S.

Vachon, M.

Van Campenhout, J.

Verheyen, P.

Wahlbrink, T.

Waldow, M.

Wang, Z.

L. Cao, A. Aboketaf, Z. Wang, S. Preble, “Hybrid amorphous silicon (a-Si:H)–LiNbO3 electro-optic modulator,” Opt. Commun. 330, 40–44 (2014).
[Crossref]

Winick, K. A.

Woessner, M.

Wood, M. G.

Wooten, E. L.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[Crossref]

Xu, D.-X.

Xu, Q.

Yang, X.

D. J. Thomson, F. Y. Gardes, S. Liu, H. Porte, L. Zimmermann, J.-M. Fedeli, Y. Hu, M. Nedeljkovic, X. Yang, P. Petropoulos, G. Z. Mashanovich, “High performance Mach–Zehnder-based silicon optical modulators,” IEEE J. Sel. Top. Quantum Electron. 19, 85–94 (2013).
[Crossref]

Yi-Yan, A.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[Crossref]

Yu, M.

Zimmermann, L.

D. J. Thomson, F. Y. Gardes, S. Liu, H. Porte, L. Zimmermann, J.-M. Fedeli, Y. Hu, M. Nedeljkovic, X. Yang, P. Petropoulos, G. Z. Mashanovich, “High performance Mach–Zehnder-based silicon optical modulators,” IEEE J. Sel. Top. Quantum Electron. 19, 85–94 (2013).
[Crossref]

Zou, Y.

Appl. Phys. Lett. (5)

R. Shankar, I. Bulu, M. Lončar, “Integrated high-quality factor silicon-on-sapphire ring resonators for the mid-infrared,” Appl. Phys. Lett. 102, 051108 (2013).
[Crossref]

S. Khan, J. Chiles, J. Ma, S. Fathpour, “Silicon-on-nitride waveguides for mid- and near-infrared integrated photonics,” Appl. Phys. Lett. 102, 121104 (2013).
[Crossref]

J. Chiles, S. Khan, J. Ma, S. Fathpour, “High-contrast, all-silicon waveguiding platform for ultra-broadband mid-infrared photonics,” Appl. Phys. Lett. 103, 151106 (2013).
[Crossref]

R. A. Becker, R. H. Rediker, T. A. Lind, “Wide-bandwidth guided-wave electro-optic intensity modulator at λ = 3.39  μm,” Appl. Phys. Lett. 46, 809–811 (1985).
[Crossref]

M. M. R. Howlader, T. Suga, M. J. Kim, “Room temperature bonding of silicon and lithium niobate,” Appl. Phys. Lett. 89, 031914 (2006).
[Crossref]

Electron. Lett. (1)

H. Ito, C. Takyu, H. Inaba, “Fabrication of periodic domain grating in LiNbO3 by electron beam writing for application of nonlinear optical processes,” Electron. Lett. 27, 1221–1222 (1991).
[Crossref]

IEEE J. Quantum Electron. (1)

R. Soref, J. Larenzo, “All-silicon active and passive guided-wave components for λ = 1.3 and 1.6  μm,” IEEE J. Quantum Electron. 22, 873–879 (1986).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (3)

D. J. Thomson, F. Y. Gardes, S. Liu, H. Porte, L. Zimmermann, J.-M. Fedeli, Y. Hu, M. Nedeljkovic, X. Yang, P. Petropoulos, G. Z. Mashanovich, “High performance Mach–Zehnder-based silicon optical modulators,” IEEE J. Sel. Top. Quantum Electron. 19, 85–94 (2013).
[Crossref]

B. Jalali, V. Raghunathan, R. Shori, S. Fathpour, D. Dimitropoulos, O. Stafsudd, “Prospects for silicon mid-IR Raman lasers,” IEEE J. Sel. Top. Quantum Electron. 12, 1618–1627 (2006).
[Crossref]

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[Crossref]

IEEE Photon. J. (2)

D. Borlaug, S. Fathpour, B. Jalali, “Extreme value statistics in silicon photonics,” IEEE Photon. J. 1, 33–39 (2009).
[Crossref]

M. Nedeljkovic, R. Soref, G. Z. Mashanovich, “Free-carrier electrorefraction and electroabsorption modulation predictions for silicon over the 1–14-μm infrared wavelength range,” IEEE Photon. J. 3, 1171–1180 (2011).
[Crossref]

IEEE Photon. Technol. Lett. (1)

M. Nedeljkovic, S. Stankovic, C. J. Mitchell, A. Z. Khokhar, S. A. Reynolds, D. J. Thomson, F. Y. Gardes, C. G. Littlejohns, G. T. Reed, G. Z. Mashanovich, “Mid-infrared thermo-optic modulators in Sol,” IEEE Photon. Technol. Lett. 26, 1352–1355 (2014).
[Crossref]

J. Lightwave Technol. (3)

J. Opt. A (1)

R. A. Soref, S. J. Emelett, W. R. Buchwald, “Silicon waveguided components for the long-wave infrared region,” J. Opt. A 8, 840–848 (2006).
[Crossref]

Nat. Photonics (1)

R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4, 495–497 (2010).
[Crossref]

Opt. Commun. (1)

L. Cao, A. Aboketaf, Z. Wang, S. Preble, “Hybrid amorphous silicon (a-Si:H)–LiNbO3 electro-optic modulator,” Opt. Commun. 330, 40–44 (2014).
[Crossref]

Opt. Express (7)

U. D. Dave, S. Uvin, B. Kuyken, S. Selvaraja, F. Leo, G. Roelkens, “Telecom to mid-infrared spanning supercontinuum generation in hydrogenated amorphous silicon waveguides using a thulium doped fiber laser pump source,” Opt. Express 21, 32032–32039 (2013).
[Crossref]

P. Rabiei, J. Ma, S. Khan, J. Chiles, S. Fathpour, “Heterogeneous lithium niobate photonics on silicon substrates,” Opt. Express 21, 25573–25581 (2013).
[Crossref]

A. Densmore, S. Janz, R. Ma, J. H. Schmid, D.-X. Xu, A. Delâge, J. Lapointe, M. Vachon, P. Cheben, “Compact and low power thermo-optic switch using folded silicon waveguides,” Opt. Express 17, 10457 (2009).
[Crossref]

T. Baehr-Jones, A. Spott, R. Ilic, A. Spott, B. Penkov, W. Asher, M. Hochberg, “Silicon-on-sapphire integrated waveguides for the mid-infrared,” Opt. Express 18, 12127–12135 (2010).
[Crossref]

B. Chmielak, M. Waldow, C. Matheisen, C. Ripperda, J. Bolten, T. Wahlbrink, M. Nagel, F. Merget, H. Kurz, “Pockels effect based fully integrated, strained silicon electro-optic modulator,” Opt. Express 19, 17212–17219 (2011).
[Crossref]

X. Tu, T.-Y. Liow, J. Song, X. Luo, Q. Fang, M. Yu, G.-Q. Lo, “50-Gb/s silicon optical modulator with traveling-wave electrodes,” Opt. Express 21, 12776–12782 (2013).
[Crossref]

H.-K. Hsiao, K. A. Winick, J. D. Monnier, J.-P. Berger, “An infrared integrated optic astronomical beam combiner for stellar interferometry at 3-4 μm,” Opt. Express 17, 18489–18500 (2009).
[Crossref]

Opt. Lett. (4)

Optica (1)

Proc. SPIE (1)

M. Solmaz, C. K. Madsen, “Silicon-on-lithium niobate waveguides for mid-infrared, ” Proc. SPIE 6386, 63860F (2006).
[Crossref]

Other (1)

J. Chiles, S. Fathpour, “Silicon on lithium niobate: A hybrid electro-optical platform for near- and mid-infrared photonics,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2014), paper STh1M.6.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Process used to prepare SiLN chips.
Fig. 2.
Fig. 2. Simulated mode profile (red is the peak intensity) and modulator dimensions: w=2.1μm, h=210nm, d=8.5μm. The gold rectangles represent the edges of the electrodes used for modulation.
Fig. 3.
Fig. 3. Simulated optical bandwidth of the SiLN modulator for a center operation wavelength of 3.39 μm. Blue squares show discrete simulation points and the blue line is spline-fitted to these points.
Fig. 4.
Fig. 4. Scanning electron micrograph of the cross-section of a SiLN modulator. The white lines crossing underneath the silicon represent the direction of the applied electric field during modulation.
Fig. 5.
Fig. 5. Optical micrographs of a SiLN modulator chip: (a) wide view of chip showing half-etched (left) and full-etched (right) regions, (b) fiber-to-waveguide grating coupler, and (c) Y junction and modulator electrodes.
Fig. 6.
Fig. 6. Measurement setup used for characterization.
Fig. 7.
Fig. 7. Transmission through the device during simultaneous optical chopping at 700 Hz and optical modulation at 70 Hz. The photodetector signal (blue data line) has been shifted to emphasize the envelope.
Fig. 8.
Fig. 8. SiLN modulator response. The red line is the modulator drive voltage divided by a factor of 20, and the blue line is the optical signal transmitted through the modulator, shifted for visibility. The inset shows the frequency response, limited by the detector speed.

Metrics