Abstract

The reflection of an optical wave from metal, arising from strong interactions between the optical electric field and the free carriers of the metal, is accompanied by a phase reversal of the reflected electric field. A far less common route to achieving high reflectivity exploits strong interactions between the material and the optical magnetic field to produce a “magnetic mirror” that does not reverse the phase of the reflected electric field. At optical frequencies, the magnetic properties required for strong interaction can be achieved only by using artificially tailored materials. Here, we experimentally demonstrate, for the first time to the best of our knowledge, the magnetic mirror behavior of a low-loss all-dielectric metasurface at infrared optical frequencies through direct measurements of the phase and amplitude of the reflected optical wave. The enhanced absorption and emission of transverse-electric dipoles placed close to magnetic mirrors can lead to exciting new advances in sensors, photodetectors, and light sources.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Sievenpiper, Z. Lijun, R. F. J. Broas, N. G. Alexopolous, E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microwave Theor. Tech. 47, 2059–2074 (1999).
    [Crossref]
  2. J. D. Jackson, Classical Electrodynamics (Wiley, 1999).
  3. A. Erentok, P. L. Luljak, R. W. Ziolkowski, “Characterization of a volumetric metamaterial realization of an artificial magnetic conductor for antenna applications,” IEEE Trans. Antennas Propag. 53, 160–172 (2005).
    [Crossref]
  4. A. P. Feresidis, G. Goussetis, S. H. Wang, J. C. Vardaxoglou, “Artificial magnetic conductor surfaces and their application to low-profile high-gain planar antennas,” IEEE Trans. Antennas Propag. 53, 209–215 (2005).
    [Crossref]
  5. D. J. Kern, D. H. Werner, A. Monorchio, L. Lanuzza, M. J. Wilhelm, “The design synthesis of multiband artificial magnetic conductors using high impedance frequency selective surfaces,” IEEE Trans. Antennas Propag. 53, 8–17 (2005).
    [Crossref]
  6. A. Vallecchi, J. R. De Luis, F. Capolino, F. De Flaviis, “Low profile fully planar folded dipole antenna on a high impedance surface,” IEEE Trans. Antennas Propag. 60, 51–62 (2012).
    [Crossref]
  7. A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, N. I. Zheludev, “Optical magnetic mirrors,” J. Opt. A Pure Appl. Opt. 9, L1–L2 (2007).
    [Crossref]
  8. H. Rostami, Y. Abdi, E. Arzi, “Fabrication of optical magnetic mirrors using bent and mushroom-like carbon nanotubes,” Carbon 48, 3659–3666 (2010).
    [Crossref]
  9. I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7, 7824–7832 (2013).
    [Crossref]
  10. J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108, 097402 (2012).
    [Crossref]
  11. L. Shi, J. T. Harris, R. Fenollosa, I. Rodriguez, X. Lu, B. A. Korgel, F. Meseguer, “Monodisperse silicon nanocavities and photonic crystals with magnetic response in the optical region,” Nat. Commun. 4, 1904 (2013).
    [Crossref]
  12. S. Person, M. Jain, Z. Lapin, J. J. Sáenz, G. Wicks, L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Lett. 13, 1806–1809 (2013).
  13. P. Moitra, Y. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, J. Valentine, “Realization of an all-dielectric zero-index optical metamaterial,” Nat. Photonics 7, 791–795 (2013).
    [Crossref]
  14. Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
    [Crossref]
  15. P. Spinelli, M. A. Verschuuren, A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat. Commun. 3, 692 (2012).
    [Crossref]
  16. L. Shi, T. U. Tuzer, R. Fenollosa, F. Meseguer, “A new dielectric metamaterial building block with a strong magnetic response in the sub-1.5-micrometer region: silicon colloid nanocavities,” Adv. Mater. 24, 5934–5938 (2012).
    [Crossref]
  17. M. K. Schmidt, R. Esteban, J. J. Sáenz, I. Suárez-Lacalle, S. Mackowski, J. Aizpurua, “Dielectric antennas—a suitable platform for controlling magnetic dipolar emission,” Opt. Express 20, 13636–13650 (2012).
    [Crossref]
  18. A. E. Miroshnichenko, Y. S. Kivshar, “Fano resonances in all-dielectric oligomers,” Nano Lett. 12, 6459–6463 (2012).
    [Crossref]
  19. A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2012).
  20. A. E. Krasnok, A. E. Miroshnichenko, P. A. Belov, Y. S. Kivshar, “All-dielectric optical nanoantennas,” Opt. Express 20, 20599–20604 (2012).
    [Crossref]
  21. J. M. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. S. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun. 3, 1171 (2012).
    [Crossref]
  22. A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12, 3749–3755 (2012).
    [Crossref]
  23. K. Seo, M. Wober, P. Steinvurzel, E. Schonbrun, Y. Dan, T. Ellenbogen, K. B. Crozier, “Multicolored vertical silicon nanowires,” Nano Lett. 11, 1851–1856 (2011).
    [Crossref]
  24. J. Z. Hao, Y. Seokho, L. Lan, D. Brocker, D. H. Werner, T. S. Mayer, “Experimental demonstration of an optical artificial perfect magnetic mirror using dielectric resonators,” in IEEE Antennas and Propagation Society International Symposium (IEEE, 2012), pp. 1–2.
  25. J. Du, Z. Lin, S. T. Chui, G. Dong, W. Zhang, “Nearly total omnidirectional reflection by a single layer of nanorods,” Phys. Rev. Lett. 110, 163902 (2013).
    [Crossref]
  26. C. J. Chang-Hasnain, W. Yang, “High-contrast gratings for integrated optoelectronics,” Adv. Opt. Photon. 4, 379–440 (2012).
    [Crossref]
  27. S. Liu, J. F. Ihlefeld, J. Dominguez, E. F. Gonzales, J. E. Bower, D. B. Burckel, M. B. Sinclair, I. Brener, “Realization of tellurium-based all dielectric optical metamaterials using a multi-cycle deposition-etch process,” Appl. Phys. Lett. 102, 161905 (2013).
    [Crossref]
  28. Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282, 1679–1682 (1998).
    [Crossref]
  29. F. Capolino, A. Vallecchi, M. Albani, “Equivalent transmission line model with a lumped X-circuit for a metalayer made of pairs of planar conductors,” IEEE Trans. Antennas Propag. 61, 852–861 (2013).
    [Crossref]
  30. S. Liu, T. S. Mahony, D. A. Bender, M. B. Sinclair, I. Brener, “Mid-infrared time-domain spectroscopy system with carrier-envelope phase stabilization,” Appl. Phys. Lett. 103, 181111 (2013).
    [Crossref]
  31. N. Jukam, S. S. Dhillon, D. Oustinov, J. Madeo, C. Manquest, S. Barbieri, C. Sirtori, S. P. Khanna, E. H. Linfield, A. G. Davies, J. Tignon, “Terahertz amplifier based on gain switching in a quantum cascade laser,” Nat. Photonics 3, 715–719 (2009).
    [Crossref]
  32. J. Kroll, J. Darmo, S. S. Dhillon, X. Marcadet, M. Calligaro, C. Sirtori, K. Unterrainer, “Phase-resolved measurements of stimulated emission in a laser,” Nature 449, 698–701 (2007).
    [Crossref]
  33. B. Ferguson, X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1, 26–33 (2002).
    [Crossref]
  34. H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597–600 (2006).
    [Crossref]
  35. Q. Wu, X. C. Zhang, “Free-space electro-optics sampling of mid-infrared pulses,” Appl. Phys. Lett. 71, 1285–1286 (1997).
    [Crossref]
  36. R. Huber, A. Brodschelm, F. Tauser, A. Leitenstorfer, “Generation and field-resolved detection of femtosecond electromagnetic pulses tunable up to 41  THz,” Appl. Phys. Lett. 76, 3191–3193 (2000).
    [Crossref]
  37. R. Huber, F. Tauser, A. Brodschelm, M. Bichler, G. Abstreiter, A. Leitenstorfer, “How many-particle interactions develop after ultrafast excitation of an electron-hole plasma,” Nature 414, 286–289 (2001).
    [Crossref]
  38. G. Gunter, A. A. Anappara, J. Hees, A. Sell, G. Biasiol, L. Sorba, S. De Liberato, C. Ciuti, A. Tredicucci, A. Leitenstorfer, R. Huber, “Sub-cycle switch-on of ultrastrong light-matter interaction,” Nature 458, 178–181 (2009).
    [Crossref]
  39. A. Sell, A. Leitenstorfer, R. Huber, “Phase-locked generation and field-resolved detection of widely tunable terahertz pulses with amplitudes exceeding 100  MV/cm,” Opt. Lett. 33, 2767–2769 (2008).
    [Crossref]
  40. A. Benz, S. Campione, S. Liu, I. Montaño, J. F. Klem, A. Allerman, J. R. Wendt, M. B. Sinclair, F. Capolino, I. Brener, “Strong coupling in the sub-wavelength limit using metamaterial nanocavities,” Nat. Commun. 4, 2882 (2013).
  41. S. Steshenko, F. Capolino, P. Alitalo, S. Tretyakov, “Effective model and investigation of the near-field enhancement and subwavelength imaging properties of multilayer arrays of plasmonic nanospheres,” Phys. Rev. E 84, 016607 (2011).
    [Crossref]
  42. S. Campione, F. Mesa, F. Capolino, “Magnetoinductive waves and complex modes in two-dimensional periodic arrays of split ring resonators,” IEEE Trans. Antennas Propag. 61, 3554–3563 (2013).
    [Crossref]
  43. S. Campione, M. B. Sinclair, F. Capolino, “Effective medium representation and complex modes in 3D periodic metamaterials made of cubic resonators with large permittivity at mid-infrared frequencies,” Photon. Nanostr. Fundam. Appl. 11, 423–435 (2013).
    [Crossref]
  44. C. A. Balanis, Antenna Theory: Analysis and Design (Wiley, 2005).
  45. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
    [Crossref]
  46. K. H. Drexhage, “Influence of a dielectric interface on fluorescence decay time,” J. Lumin. 1–2, 693–701 (1970).
    [Crossref]
  47. W. L. Barnes, “Fluorescence near interfaces: the role of photonic mode density,” J. Mod. Opt. 45, 661–699 (1998).
    [Crossref]

2013 (12)

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7, 7824–7832 (2013).
[Crossref]

L. Shi, J. T. Harris, R. Fenollosa, I. Rodriguez, X. Lu, B. A. Korgel, F. Meseguer, “Monodisperse silicon nanocavities and photonic crystals with magnetic response in the optical region,” Nat. Commun. 4, 1904 (2013).
[Crossref]

S. Person, M. Jain, Z. Lapin, J. J. Sáenz, G. Wicks, L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Lett. 13, 1806–1809 (2013).

P. Moitra, Y. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, J. Valentine, “Realization of an all-dielectric zero-index optical metamaterial,” Nat. Photonics 7, 791–795 (2013).
[Crossref]

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
[Crossref]

J. Du, Z. Lin, S. T. Chui, G. Dong, W. Zhang, “Nearly total omnidirectional reflection by a single layer of nanorods,” Phys. Rev. Lett. 110, 163902 (2013).
[Crossref]

S. Liu, J. F. Ihlefeld, J. Dominguez, E. F. Gonzales, J. E. Bower, D. B. Burckel, M. B. Sinclair, I. Brener, “Realization of tellurium-based all dielectric optical metamaterials using a multi-cycle deposition-etch process,” Appl. Phys. Lett. 102, 161905 (2013).
[Crossref]

F. Capolino, A. Vallecchi, M. Albani, “Equivalent transmission line model with a lumped X-circuit for a metalayer made of pairs of planar conductors,” IEEE Trans. Antennas Propag. 61, 852–861 (2013).
[Crossref]

S. Liu, T. S. Mahony, D. A. Bender, M. B. Sinclair, I. Brener, “Mid-infrared time-domain spectroscopy system with carrier-envelope phase stabilization,” Appl. Phys. Lett. 103, 181111 (2013).
[Crossref]

A. Benz, S. Campione, S. Liu, I. Montaño, J. F. Klem, A. Allerman, J. R. Wendt, M. B. Sinclair, F. Capolino, I. Brener, “Strong coupling in the sub-wavelength limit using metamaterial nanocavities,” Nat. Commun. 4, 2882 (2013).

S. Campione, F. Mesa, F. Capolino, “Magnetoinductive waves and complex modes in two-dimensional periodic arrays of split ring resonators,” IEEE Trans. Antennas Propag. 61, 3554–3563 (2013).
[Crossref]

S. Campione, M. B. Sinclair, F. Capolino, “Effective medium representation and complex modes in 3D periodic metamaterials made of cubic resonators with large permittivity at mid-infrared frequencies,” Photon. Nanostr. Fundam. Appl. 11, 423–435 (2013).
[Crossref]

2012 (11)

C. J. Chang-Hasnain, W. Yang, “High-contrast gratings for integrated optoelectronics,” Adv. Opt. Photon. 4, 379–440 (2012).
[Crossref]

P. Spinelli, M. A. Verschuuren, A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat. Commun. 3, 692 (2012).
[Crossref]

L. Shi, T. U. Tuzer, R. Fenollosa, F. Meseguer, “A new dielectric metamaterial building block with a strong magnetic response in the sub-1.5-micrometer region: silicon colloid nanocavities,” Adv. Mater. 24, 5934–5938 (2012).
[Crossref]

M. K. Schmidt, R. Esteban, J. J. Sáenz, I. Suárez-Lacalle, S. Mackowski, J. Aizpurua, “Dielectric antennas—a suitable platform for controlling magnetic dipolar emission,” Opt. Express 20, 13636–13650 (2012).
[Crossref]

A. E. Miroshnichenko, Y. S. Kivshar, “Fano resonances in all-dielectric oligomers,” Nano Lett. 12, 6459–6463 (2012).
[Crossref]

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2012).

A. E. Krasnok, A. E. Miroshnichenko, P. A. Belov, Y. S. Kivshar, “All-dielectric optical nanoantennas,” Opt. Express 20, 20599–20604 (2012).
[Crossref]

J. M. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. S. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun. 3, 1171 (2012).
[Crossref]

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12, 3749–3755 (2012).
[Crossref]

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108, 097402 (2012).
[Crossref]

A. Vallecchi, J. R. De Luis, F. Capolino, F. De Flaviis, “Low profile fully planar folded dipole antenna on a high impedance surface,” IEEE Trans. Antennas Propag. 60, 51–62 (2012).
[Crossref]

2011 (2)

K. Seo, M. Wober, P. Steinvurzel, E. Schonbrun, Y. Dan, T. Ellenbogen, K. B. Crozier, “Multicolored vertical silicon nanowires,” Nano Lett. 11, 1851–1856 (2011).
[Crossref]

S. Steshenko, F. Capolino, P. Alitalo, S. Tretyakov, “Effective model and investigation of the near-field enhancement and subwavelength imaging properties of multilayer arrays of plasmonic nanospheres,” Phys. Rev. E 84, 016607 (2011).
[Crossref]

2010 (1)

H. Rostami, Y. Abdi, E. Arzi, “Fabrication of optical magnetic mirrors using bent and mushroom-like carbon nanotubes,” Carbon 48, 3659–3666 (2010).
[Crossref]

2009 (2)

G. Gunter, A. A. Anappara, J. Hees, A. Sell, G. Biasiol, L. Sorba, S. De Liberato, C. Ciuti, A. Tredicucci, A. Leitenstorfer, R. Huber, “Sub-cycle switch-on of ultrastrong light-matter interaction,” Nature 458, 178–181 (2009).
[Crossref]

N. Jukam, S. S. Dhillon, D. Oustinov, J. Madeo, C. Manquest, S. Barbieri, C. Sirtori, S. P. Khanna, E. H. Linfield, A. G. Davies, J. Tignon, “Terahertz amplifier based on gain switching in a quantum cascade laser,” Nat. Photonics 3, 715–719 (2009).
[Crossref]

2008 (1)

2007 (2)

J. Kroll, J. Darmo, S. S. Dhillon, X. Marcadet, M. Calligaro, C. Sirtori, K. Unterrainer, “Phase-resolved measurements of stimulated emission in a laser,” Nature 449, 698–701 (2007).
[Crossref]

A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, N. I. Zheludev, “Optical magnetic mirrors,” J. Opt. A Pure Appl. Opt. 9, L1–L2 (2007).
[Crossref]

2006 (1)

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597–600 (2006).
[Crossref]

2005 (3)

A. Erentok, P. L. Luljak, R. W. Ziolkowski, “Characterization of a volumetric metamaterial realization of an artificial magnetic conductor for antenna applications,” IEEE Trans. Antennas Propag. 53, 160–172 (2005).
[Crossref]

A. P. Feresidis, G. Goussetis, S. H. Wang, J. C. Vardaxoglou, “Artificial magnetic conductor surfaces and their application to low-profile high-gain planar antennas,” IEEE Trans. Antennas Propag. 53, 209–215 (2005).
[Crossref]

D. J. Kern, D. H. Werner, A. Monorchio, L. Lanuzza, M. J. Wilhelm, “The design synthesis of multiband artificial magnetic conductors using high impedance frequency selective surfaces,” IEEE Trans. Antennas Propag. 53, 8–17 (2005).
[Crossref]

2002 (1)

B. Ferguson, X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1, 26–33 (2002).
[Crossref]

2001 (1)

R. Huber, F. Tauser, A. Brodschelm, M. Bichler, G. Abstreiter, A. Leitenstorfer, “How many-particle interactions develop after ultrafast excitation of an electron-hole plasma,” Nature 414, 286–289 (2001).
[Crossref]

2000 (1)

R. Huber, A. Brodschelm, F. Tauser, A. Leitenstorfer, “Generation and field-resolved detection of femtosecond electromagnetic pulses tunable up to 41  THz,” Appl. Phys. Lett. 76, 3191–3193 (2000).
[Crossref]

1999 (1)

D. Sievenpiper, Z. Lijun, R. F. J. Broas, N. G. Alexopolous, E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microwave Theor. Tech. 47, 2059–2074 (1999).
[Crossref]

1998 (2)

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282, 1679–1682 (1998).
[Crossref]

W. L. Barnes, “Fluorescence near interfaces: the role of photonic mode density,” J. Mod. Opt. 45, 661–699 (1998).
[Crossref]

1997 (1)

Q. Wu, X. C. Zhang, “Free-space electro-optics sampling of mid-infrared pulses,” Appl. Phys. Lett. 71, 1285–1286 (1997).
[Crossref]

1987 (1)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[Crossref]

1970 (1)

K. H. Drexhage, “Influence of a dielectric interface on fluorescence decay time,” J. Lumin. 1–2, 693–701 (1970).
[Crossref]

Abdi, Y.

H. Rostami, Y. Abdi, E. Arzi, “Fabrication of optical magnetic mirrors using bent and mushroom-like carbon nanotubes,” Carbon 48, 3659–3666 (2010).
[Crossref]

Abstreiter, G.

R. Huber, F. Tauser, A. Brodschelm, M. Bichler, G. Abstreiter, A. Leitenstorfer, “How many-particle interactions develop after ultrafast excitation of an electron-hole plasma,” Nature 414, 286–289 (2001).
[Crossref]

Aizpurua, J.

Albani, M.

F. Capolino, A. Vallecchi, M. Albani, “Equivalent transmission line model with a lumped X-circuit for a metalayer made of pairs of planar conductors,” IEEE Trans. Antennas Propag. 61, 852–861 (2013).
[Crossref]

Albella, P.

J. M. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. S. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun. 3, 1171 (2012).
[Crossref]

Alexopolous, N. G.

D. Sievenpiper, Z. Lijun, R. F. J. Broas, N. G. Alexopolous, E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microwave Theor. Tech. 47, 2059–2074 (1999).
[Crossref]

Alitalo, P.

S. Steshenko, F. Capolino, P. Alitalo, S. Tretyakov, “Effective model and investigation of the near-field enhancement and subwavelength imaging properties of multilayer arrays of plasmonic nanospheres,” Phys. Rev. E 84, 016607 (2011).
[Crossref]

Allerman, A.

A. Benz, S. Campione, S. Liu, I. Montaño, J. F. Klem, A. Allerman, J. R. Wendt, M. B. Sinclair, F. Capolino, I. Brener, “Strong coupling in the sub-wavelength limit using metamaterial nanocavities,” Nat. Commun. 4, 2882 (2013).

Anappara, A. A.

G. Gunter, A. A. Anappara, J. Hees, A. Sell, G. Biasiol, L. Sorba, S. De Liberato, C. Ciuti, A. Tredicucci, A. Leitenstorfer, R. Huber, “Sub-cycle switch-on of ultrastrong light-matter interaction,” Nature 458, 178–181 (2009).
[Crossref]

Anderson, Z.

P. Moitra, Y. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, J. Valentine, “Realization of an all-dielectric zero-index optical metamaterial,” Nat. Photonics 7, 791–795 (2013).
[Crossref]

Arzi, E.

H. Rostami, Y. Abdi, E. Arzi, “Fabrication of optical magnetic mirrors using bent and mushroom-like carbon nanotubes,” Carbon 48, 3659–3666 (2010).
[Crossref]

Averitt, R. D.

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597–600 (2006).
[Crossref]

Balanis, C. A.

C. A. Balanis, Antenna Theory: Analysis and Design (Wiley, 2005).

Barbieri, S.

N. Jukam, S. S. Dhillon, D. Oustinov, J. Madeo, C. Manquest, S. Barbieri, C. Sirtori, S. P. Khanna, E. H. Linfield, A. G. Davies, J. Tignon, “Terahertz amplifier based on gain switching in a quantum cascade laser,” Nat. Photonics 3, 715–719 (2009).
[Crossref]

Barnes, W. L.

W. L. Barnes, “Fluorescence near interfaces: the role of photonic mode density,” J. Mod. Opt. 45, 661–699 (1998).
[Crossref]

Basilio, L. I.

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108, 097402 (2012).
[Crossref]

Belov, P. A.

Bender, D. A.

S. Liu, T. S. Mahony, D. A. Bender, M. B. Sinclair, I. Brener, “Mid-infrared time-domain spectroscopy system with carrier-envelope phase stabilization,” Appl. Phys. Lett. 103, 181111 (2013).
[Crossref]

Benz, A.

A. Benz, S. Campione, S. Liu, I. Montaño, J. F. Klem, A. Allerman, J. R. Wendt, M. B. Sinclair, F. Capolino, I. Brener, “Strong coupling in the sub-wavelength limit using metamaterial nanocavities,” Nat. Commun. 4, 2882 (2013).

Biasiol, G.

G. Gunter, A. A. Anappara, J. Hees, A. Sell, G. Biasiol, L. Sorba, S. De Liberato, C. Ciuti, A. Tredicucci, A. Leitenstorfer, R. Huber, “Sub-cycle switch-on of ultrastrong light-matter interaction,” Nature 458, 178–181 (2009).
[Crossref]

Bichler, M.

R. Huber, F. Tauser, A. Brodschelm, M. Bichler, G. Abstreiter, A. Leitenstorfer, “How many-particle interactions develop after ultrafast excitation of an electron-hole plasma,” Nature 414, 286–289 (2001).
[Crossref]

Bower, J. E.

S. Liu, J. F. Ihlefeld, J. Dominguez, E. F. Gonzales, J. E. Bower, D. B. Burckel, M. B. Sinclair, I. Brener, “Realization of tellurium-based all dielectric optical metamaterials using a multi-cycle deposition-etch process,” Appl. Phys. Lett. 102, 161905 (2013).
[Crossref]

Bozhevolnyi, S. I.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12, 3749–3755 (2012).
[Crossref]

Brener, I.

A. Benz, S. Campione, S. Liu, I. Montaño, J. F. Klem, A. Allerman, J. R. Wendt, M. B. Sinclair, F. Capolino, I. Brener, “Strong coupling in the sub-wavelength limit using metamaterial nanocavities,” Nat. Commun. 4, 2882 (2013).

S. Liu, J. F. Ihlefeld, J. Dominguez, E. F. Gonzales, J. E. Bower, D. B. Burckel, M. B. Sinclair, I. Brener, “Realization of tellurium-based all dielectric optical metamaterials using a multi-cycle deposition-etch process,” Appl. Phys. Lett. 102, 161905 (2013).
[Crossref]

S. Liu, T. S. Mahony, D. A. Bender, M. B. Sinclair, I. Brener, “Mid-infrared time-domain spectroscopy system with carrier-envelope phase stabilization,” Appl. Phys. Lett. 103, 181111 (2013).
[Crossref]

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7, 7824–7832 (2013).
[Crossref]

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108, 097402 (2012).
[Crossref]

Briggs, D. P.

P. Moitra, Y. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, J. Valentine, “Realization of an all-dielectric zero-index optical metamaterial,” Nat. Photonics 7, 791–795 (2013).
[Crossref]

Broas, R. F. J.

D. Sievenpiper, Z. Lijun, R. F. J. Broas, N. G. Alexopolous, E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microwave Theor. Tech. 47, 2059–2074 (1999).
[Crossref]

Brocker, D.

J. Z. Hao, Y. Seokho, L. Lan, D. Brocker, D. H. Werner, T. S. Mayer, “Experimental demonstration of an optical artificial perfect magnetic mirror using dielectric resonators,” in IEEE Antennas and Propagation Society International Symposium (IEEE, 2012), pp. 1–2.

Brodschelm, A.

R. Huber, F. Tauser, A. Brodschelm, M. Bichler, G. Abstreiter, A. Leitenstorfer, “How many-particle interactions develop after ultrafast excitation of an electron-hole plasma,” Nature 414, 286–289 (2001).
[Crossref]

R. Huber, A. Brodschelm, F. Tauser, A. Leitenstorfer, “Generation and field-resolved detection of femtosecond electromagnetic pulses tunable up to 41  THz,” Appl. Phys. Lett. 76, 3191–3193 (2000).
[Crossref]

Burckel, D. B.

S. Liu, J. F. Ihlefeld, J. Dominguez, E. F. Gonzales, J. E. Bower, D. B. Burckel, M. B. Sinclair, I. Brener, “Realization of tellurium-based all dielectric optical metamaterials using a multi-cycle deposition-etch process,” Appl. Phys. Lett. 102, 161905 (2013).
[Crossref]

Calligaro, M.

J. Kroll, J. Darmo, S. S. Dhillon, X. Marcadet, M. Calligaro, C. Sirtori, K. Unterrainer, “Phase-resolved measurements of stimulated emission in a laser,” Nature 449, 698–701 (2007).
[Crossref]

Campione, S.

A. Benz, S. Campione, S. Liu, I. Montaño, J. F. Klem, A. Allerman, J. R. Wendt, M. B. Sinclair, F. Capolino, I. Brener, “Strong coupling in the sub-wavelength limit using metamaterial nanocavities,” Nat. Commun. 4, 2882 (2013).

S. Campione, F. Mesa, F. Capolino, “Magnetoinductive waves and complex modes in two-dimensional periodic arrays of split ring resonators,” IEEE Trans. Antennas Propag. 61, 3554–3563 (2013).
[Crossref]

S. Campione, M. B. Sinclair, F. Capolino, “Effective medium representation and complex modes in 3D periodic metamaterials made of cubic resonators with large permittivity at mid-infrared frequencies,” Photon. Nanostr. Fundam. Appl. 11, 423–435 (2013).
[Crossref]

Capolino, F.

S. Campione, F. Mesa, F. Capolino, “Magnetoinductive waves and complex modes in two-dimensional periodic arrays of split ring resonators,” IEEE Trans. Antennas Propag. 61, 3554–3563 (2013).
[Crossref]

S. Campione, M. B. Sinclair, F. Capolino, “Effective medium representation and complex modes in 3D periodic metamaterials made of cubic resonators with large permittivity at mid-infrared frequencies,” Photon. Nanostr. Fundam. Appl. 11, 423–435 (2013).
[Crossref]

A. Benz, S. Campione, S. Liu, I. Montaño, J. F. Klem, A. Allerman, J. R. Wendt, M. B. Sinclair, F. Capolino, I. Brener, “Strong coupling in the sub-wavelength limit using metamaterial nanocavities,” Nat. Commun. 4, 2882 (2013).

F. Capolino, A. Vallecchi, M. Albani, “Equivalent transmission line model with a lumped X-circuit for a metalayer made of pairs of planar conductors,” IEEE Trans. Antennas Propag. 61, 852–861 (2013).
[Crossref]

A. Vallecchi, J. R. De Luis, F. Capolino, F. De Flaviis, “Low profile fully planar folded dipole antenna on a high impedance surface,” IEEE Trans. Antennas Propag. 60, 51–62 (2012).
[Crossref]

S. Steshenko, F. Capolino, P. Alitalo, S. Tretyakov, “Effective model and investigation of the near-field enhancement and subwavelength imaging properties of multilayer arrays of plasmonic nanospheres,” Phys. Rev. E 84, 016607 (2011).
[Crossref]

Chang-Hasnain, C. J.

Chen, C.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282, 1679–1682 (1998).
[Crossref]

Chen, H.-T.

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597–600 (2006).
[Crossref]

Chen, Y.

A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, N. I. Zheludev, “Optical magnetic mirrors,” J. Opt. A Pure Appl. Opt. 9, L1–L2 (2007).
[Crossref]

Chichkov, B. N.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12, 3749–3755 (2012).
[Crossref]

Chui, S. T.

J. Du, Z. Lin, S. T. Chui, G. Dong, W. Zhang, “Nearly total omnidirectional reflection by a single layer of nanorods,” Phys. Rev. Lett. 110, 163902 (2013).
[Crossref]

Ciuti, C.

G. Gunter, A. A. Anappara, J. Hees, A. Sell, G. Biasiol, L. Sorba, S. De Liberato, C. Ciuti, A. Tredicucci, A. Leitenstorfer, R. Huber, “Sub-cycle switch-on of ultrastrong light-matter interaction,” Nature 458, 178–181 (2009).
[Crossref]

Clem, P. G.

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108, 097402 (2012).
[Crossref]

Crozier, K. B.

K. Seo, M. Wober, P. Steinvurzel, E. Schonbrun, Y. Dan, T. Ellenbogen, K. B. Crozier, “Multicolored vertical silicon nanowires,” Nano Lett. 11, 1851–1856 (2011).
[Crossref]

Dan, Y.

K. Seo, M. Wober, P. Steinvurzel, E. Schonbrun, Y. Dan, T. Ellenbogen, K. B. Crozier, “Multicolored vertical silicon nanowires,” Nano Lett. 11, 1851–1856 (2011).
[Crossref]

Darmo, J.

J. Kroll, J. Darmo, S. S. Dhillon, X. Marcadet, M. Calligaro, C. Sirtori, K. Unterrainer, “Phase-resolved measurements of stimulated emission in a laser,” Nature 449, 698–701 (2007).
[Crossref]

Davies, A. G.

N. Jukam, S. S. Dhillon, D. Oustinov, J. Madeo, C. Manquest, S. Barbieri, C. Sirtori, S. P. Khanna, E. H. Linfield, A. G. Davies, J. Tignon, “Terahertz amplifier based on gain switching in a quantum cascade laser,” Nat. Photonics 3, 715–719 (2009).
[Crossref]

De Flaviis, F.

A. Vallecchi, J. R. De Luis, F. Capolino, F. De Flaviis, “Low profile fully planar folded dipole antenna on a high impedance surface,” IEEE Trans. Antennas Propag. 60, 51–62 (2012).
[Crossref]

De Liberato, S.

G. Gunter, A. A. Anappara, J. Hees, A. Sell, G. Biasiol, L. Sorba, S. De Liberato, C. Ciuti, A. Tredicucci, A. Leitenstorfer, R. Huber, “Sub-cycle switch-on of ultrastrong light-matter interaction,” Nature 458, 178–181 (2009).
[Crossref]

De Luis, J. R.

A. Vallecchi, J. R. De Luis, F. Capolino, F. De Flaviis, “Low profile fully planar folded dipole antenna on a high impedance surface,” IEEE Trans. Antennas Propag. 60, 51–62 (2012).
[Crossref]

Decker, M.

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7, 7824–7832 (2013).
[Crossref]

Dhillon, S. S.

N. Jukam, S. S. Dhillon, D. Oustinov, J. Madeo, C. Manquest, S. Barbieri, C. Sirtori, S. P. Khanna, E. H. Linfield, A. G. Davies, J. Tignon, “Terahertz amplifier based on gain switching in a quantum cascade laser,” Nat. Photonics 3, 715–719 (2009).
[Crossref]

J. Kroll, J. Darmo, S. S. Dhillon, X. Marcadet, M. Calligaro, C. Sirtori, K. Unterrainer, “Phase-resolved measurements of stimulated emission in a laser,” Nature 449, 698–701 (2007).
[Crossref]

Dominguez, J.

S. Liu, J. F. Ihlefeld, J. Dominguez, E. F. Gonzales, J. E. Bower, D. B. Burckel, M. B. Sinclair, I. Brener, “Realization of tellurium-based all dielectric optical metamaterials using a multi-cycle deposition-etch process,” Appl. Phys. Lett. 102, 161905 (2013).
[Crossref]

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7, 7824–7832 (2013).
[Crossref]

Dong, G.

J. Du, Z. Lin, S. T. Chui, G. Dong, W. Zhang, “Nearly total omnidirectional reflection by a single layer of nanorods,” Phys. Rev. Lett. 110, 163902 (2013).
[Crossref]

Drexhage, K. H.

K. H. Drexhage, “Influence of a dielectric interface on fluorescence decay time,” J. Lumin. 1–2, 693–701 (1970).
[Crossref]

Du, J.

J. Du, Z. Lin, S. T. Chui, G. Dong, W. Zhang, “Nearly total omnidirectional reflection by a single layer of nanorods,” Phys. Rev. Lett. 110, 163902 (2013).
[Crossref]

Ellenbogen, T.

K. Seo, M. Wober, P. Steinvurzel, E. Schonbrun, Y. Dan, T. Ellenbogen, K. B. Crozier, “Multicolored vertical silicon nanowires,” Nano Lett. 11, 1851–1856 (2011).
[Crossref]

Erentok, A.

A. Erentok, P. L. Luljak, R. W. Ziolkowski, “Characterization of a volumetric metamaterial realization of an artificial magnetic conductor for antenna applications,” IEEE Trans. Antennas Propag. 53, 160–172 (2005).
[Crossref]

Eriksen, R. L.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12, 3749–3755 (2012).
[Crossref]

Esteban, R.

Evlyukhin, A. B.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12, 3749–3755 (2012).
[Crossref]

Eyraud, C.

J. M. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. S. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun. 3, 1171 (2012).
[Crossref]

Fan, S.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282, 1679–1682 (1998).
[Crossref]

Fedotov, V. A.

A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, N. I. Zheludev, “Optical magnetic mirrors,” J. Opt. A Pure Appl. Opt. 9, L1–L2 (2007).
[Crossref]

Fenollosa, R.

L. Shi, J. T. Harris, R. Fenollosa, I. Rodriguez, X. Lu, B. A. Korgel, F. Meseguer, “Monodisperse silicon nanocavities and photonic crystals with magnetic response in the optical region,” Nat. Commun. 4, 1904 (2013).
[Crossref]

L. Shi, T. U. Tuzer, R. Fenollosa, F. Meseguer, “A new dielectric metamaterial building block with a strong magnetic response in the sub-1.5-micrometer region: silicon colloid nanocavities,” Adv. Mater. 24, 5934–5938 (2012).
[Crossref]

Feresidis, A. P.

A. P. Feresidis, G. Goussetis, S. H. Wang, J. C. Vardaxoglou, “Artificial magnetic conductor surfaces and their application to low-profile high-gain planar antennas,” IEEE Trans. Antennas Propag. 53, 209–215 (2005).
[Crossref]

Ferguson, B.

B. Ferguson, X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1, 26–33 (2002).
[Crossref]

Fink, Y.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282, 1679–1682 (1998).
[Crossref]

Fofang, N. T.

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7, 7824–7832 (2013).
[Crossref]

Froufe-Pérez, L. S.

J. M. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. S. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun. 3, 1171 (2012).
[Crossref]

Fu, Y. H.

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
[Crossref]

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2012).

García-Cámara, B.

J. M. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. S. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun. 3, 1171 (2012).
[Crossref]

Geffrin, J. M.

J. M. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. S. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun. 3, 1171 (2012).
[Crossref]

Ginn, J. C.

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108, 097402 (2012).
[Crossref]

Gómez-Medina, R.

J. M. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. S. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun. 3, 1171 (2012).
[Crossref]

Gonzales, E.

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7, 7824–7832 (2013).
[Crossref]

Gonzales, E. F.

S. Liu, J. F. Ihlefeld, J. Dominguez, E. F. Gonzales, J. E. Bower, D. B. Burckel, M. B. Sinclair, I. Brener, “Realization of tellurium-based all dielectric optical metamaterials using a multi-cycle deposition-etch process,” Appl. Phys. Lett. 102, 161905 (2013).
[Crossref]

González, F.

J. M. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. S. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun. 3, 1171 (2012).
[Crossref]

Gossard, A. C.

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597–600 (2006).
[Crossref]

Goussetis, G.

A. P. Feresidis, G. Goussetis, S. H. Wang, J. C. Vardaxoglou, “Artificial magnetic conductor surfaces and their application to low-profile high-gain planar antennas,” IEEE Trans. Antennas Propag. 53, 209–215 (2005).
[Crossref]

Gunter, G.

G. Gunter, A. A. Anappara, J. Hees, A. Sell, G. Biasiol, L. Sorba, S. De Liberato, C. Ciuti, A. Tredicucci, A. Leitenstorfer, R. Huber, “Sub-cycle switch-on of ultrastrong light-matter interaction,” Nature 458, 178–181 (2009).
[Crossref]

Hao, J. Z.

J. Z. Hao, Y. Seokho, L. Lan, D. Brocker, D. H. Werner, T. S. Mayer, “Experimental demonstration of an optical artificial perfect magnetic mirror using dielectric resonators,” in IEEE Antennas and Propagation Society International Symposium (IEEE, 2012), pp. 1–2.

Harris, J. T.

L. Shi, J. T. Harris, R. Fenollosa, I. Rodriguez, X. Lu, B. A. Korgel, F. Meseguer, “Monodisperse silicon nanocavities and photonic crystals with magnetic response in the optical region,” Nat. Commun. 4, 1904 (2013).
[Crossref]

Hees, J.

G. Gunter, A. A. Anappara, J. Hees, A. Sell, G. Biasiol, L. Sorba, S. De Liberato, C. Ciuti, A. Tredicucci, A. Leitenstorfer, R. Huber, “Sub-cycle switch-on of ultrastrong light-matter interaction,” Nature 458, 178–181 (2009).
[Crossref]

Hines, P. F.

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108, 097402 (2012).
[Crossref]

Huber, R.

G. Gunter, A. A. Anappara, J. Hees, A. Sell, G. Biasiol, L. Sorba, S. De Liberato, C. Ciuti, A. Tredicucci, A. Leitenstorfer, R. Huber, “Sub-cycle switch-on of ultrastrong light-matter interaction,” Nature 458, 178–181 (2009).
[Crossref]

A. Sell, A. Leitenstorfer, R. Huber, “Phase-locked generation and field-resolved detection of widely tunable terahertz pulses with amplitudes exceeding 100  MV/cm,” Opt. Lett. 33, 2767–2769 (2008).
[Crossref]

R. Huber, F. Tauser, A. Brodschelm, M. Bichler, G. Abstreiter, A. Leitenstorfer, “How many-particle interactions develop after ultrafast excitation of an electron-hole plasma,” Nature 414, 286–289 (2001).
[Crossref]

R. Huber, A. Brodschelm, F. Tauser, A. Leitenstorfer, “Generation and field-resolved detection of femtosecond electromagnetic pulses tunable up to 41  THz,” Appl. Phys. Lett. 76, 3191–3193 (2000).
[Crossref]

Ihlefeld, J. F.

S. Liu, J. F. Ihlefeld, J. Dominguez, E. F. Gonzales, J. E. Bower, D. B. Burckel, M. B. Sinclair, I. Brener, “Realization of tellurium-based all dielectric optical metamaterials using a multi-cycle deposition-etch process,” Appl. Phys. Lett. 102, 161905 (2013).
[Crossref]

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108, 097402 (2012).
[Crossref]

Jackson, J. D.

J. D. Jackson, Classical Electrodynamics (Wiley, 1999).

Jain, M.

S. Person, M. Jain, Z. Lapin, J. J. Sáenz, G. Wicks, L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Lett. 13, 1806–1809 (2013).

Joannopoulos, J. D.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282, 1679–1682 (1998).
[Crossref]

Jukam, N.

N. Jukam, S. S. Dhillon, D. Oustinov, J. Madeo, C. Manquest, S. Barbieri, C. Sirtori, S. P. Khanna, E. H. Linfield, A. G. Davies, J. Tignon, “Terahertz amplifier based on gain switching in a quantum cascade laser,” Nat. Photonics 3, 715–719 (2009).
[Crossref]

Kern, D. J.

D. J. Kern, D. H. Werner, A. Monorchio, L. Lanuzza, M. J. Wilhelm, “The design synthesis of multiband artificial magnetic conductors using high impedance frequency selective surfaces,” IEEE Trans. Antennas Propag. 53, 8–17 (2005).
[Crossref]

Khanna, S. P.

N. Jukam, S. S. Dhillon, D. Oustinov, J. Madeo, C. Manquest, S. Barbieri, C. Sirtori, S. P. Khanna, E. H. Linfield, A. G. Davies, J. Tignon, “Terahertz amplifier based on gain switching in a quantum cascade laser,” Nat. Photonics 3, 715–719 (2009).
[Crossref]

Khardikov, V. V.

A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, N. I. Zheludev, “Optical magnetic mirrors,” J. Opt. A Pure Appl. Opt. 9, L1–L2 (2007).
[Crossref]

Kivshar, Y.

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7, 7824–7832 (2013).
[Crossref]

Kivshar, Y. S.

A. E. Miroshnichenko, Y. S. Kivshar, “Fano resonances in all-dielectric oligomers,” Nano Lett. 12, 6459–6463 (2012).
[Crossref]

A. E. Krasnok, A. E. Miroshnichenko, P. A. Belov, Y. S. Kivshar, “All-dielectric optical nanoantennas,” Opt. Express 20, 20599–20604 (2012).
[Crossref]

Klem, J. F.

A. Benz, S. Campione, S. Liu, I. Montaño, J. F. Klem, A. Allerman, J. R. Wendt, M. B. Sinclair, F. Capolino, I. Brener, “Strong coupling in the sub-wavelength limit using metamaterial nanocavities,” Nat. Commun. 4, 2882 (2013).

Korgel, B. A.

L. Shi, J. T. Harris, R. Fenollosa, I. Rodriguez, X. Lu, B. A. Korgel, F. Meseguer, “Monodisperse silicon nanocavities and photonic crystals with magnetic response in the optical region,” Nat. Commun. 4, 1904 (2013).
[Crossref]

Krasnok, A. E.

Kravchenko, I. I.

P. Moitra, Y. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, J. Valentine, “Realization of an all-dielectric zero-index optical metamaterial,” Nat. Photonics 7, 791–795 (2013).
[Crossref]

Kroll, J.

J. Kroll, J. Darmo, S. S. Dhillon, X. Marcadet, M. Calligaro, C. Sirtori, K. Unterrainer, “Phase-resolved measurements of stimulated emission in a laser,” Nature 449, 698–701 (2007).
[Crossref]

Kuznetsov, A. I.

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
[Crossref]

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2012).

Lan, L.

J. Z. Hao, Y. Seokho, L. Lan, D. Brocker, D. H. Werner, T. S. Mayer, “Experimental demonstration of an optical artificial perfect magnetic mirror using dielectric resonators,” in IEEE Antennas and Propagation Society International Symposium (IEEE, 2012), pp. 1–2.

Lanuzza, L.

D. J. Kern, D. H. Werner, A. Monorchio, L. Lanuzza, M. J. Wilhelm, “The design synthesis of multiband artificial magnetic conductors using high impedance frequency selective surfaces,” IEEE Trans. Antennas Propag. 53, 8–17 (2005).
[Crossref]

Lapin, Z.

S. Person, M. Jain, Z. Lapin, J. J. Sáenz, G. Wicks, L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Lett. 13, 1806–1809 (2013).

Leitenstorfer, A.

G. Gunter, A. A. Anappara, J. Hees, A. Sell, G. Biasiol, L. Sorba, S. De Liberato, C. Ciuti, A. Tredicucci, A. Leitenstorfer, R. Huber, “Sub-cycle switch-on of ultrastrong light-matter interaction,” Nature 458, 178–181 (2009).
[Crossref]

A. Sell, A. Leitenstorfer, R. Huber, “Phase-locked generation and field-resolved detection of widely tunable terahertz pulses with amplitudes exceeding 100  MV/cm,” Opt. Lett. 33, 2767–2769 (2008).
[Crossref]

R. Huber, F. Tauser, A. Brodschelm, M. Bichler, G. Abstreiter, A. Leitenstorfer, “How many-particle interactions develop after ultrafast excitation of an electron-hole plasma,” Nature 414, 286–289 (2001).
[Crossref]

R. Huber, A. Brodschelm, F. Tauser, A. Leitenstorfer, “Generation and field-resolved detection of femtosecond electromagnetic pulses tunable up to 41  THz,” Appl. Phys. Lett. 76, 3191–3193 (2000).
[Crossref]

Lijun, Z.

D. Sievenpiper, Z. Lijun, R. F. J. Broas, N. G. Alexopolous, E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microwave Theor. Tech. 47, 2059–2074 (1999).
[Crossref]

Lin, Z.

J. Du, Z. Lin, S. T. Chui, G. Dong, W. Zhang, “Nearly total omnidirectional reflection by a single layer of nanorods,” Phys. Rev. Lett. 110, 163902 (2013).
[Crossref]

Linfield, E. H.

N. Jukam, S. S. Dhillon, D. Oustinov, J. Madeo, C. Manquest, S. Barbieri, C. Sirtori, S. P. Khanna, E. H. Linfield, A. G. Davies, J. Tignon, “Terahertz amplifier based on gain switching in a quantum cascade laser,” Nat. Photonics 3, 715–719 (2009).
[Crossref]

Litman, A.

J. M. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. S. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun. 3, 1171 (2012).
[Crossref]

Liu, S.

A. Benz, S. Campione, S. Liu, I. Montaño, J. F. Klem, A. Allerman, J. R. Wendt, M. B. Sinclair, F. Capolino, I. Brener, “Strong coupling in the sub-wavelength limit using metamaterial nanocavities,” Nat. Commun. 4, 2882 (2013).

S. Liu, T. S. Mahony, D. A. Bender, M. B. Sinclair, I. Brener, “Mid-infrared time-domain spectroscopy system with carrier-envelope phase stabilization,” Appl. Phys. Lett. 103, 181111 (2013).
[Crossref]

S. Liu, J. F. Ihlefeld, J. Dominguez, E. F. Gonzales, J. E. Bower, D. B. Burckel, M. B. Sinclair, I. Brener, “Realization of tellurium-based all dielectric optical metamaterials using a multi-cycle deposition-etch process,” Appl. Phys. Lett. 102, 161905 (2013).
[Crossref]

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7, 7824–7832 (2013).
[Crossref]

Lu, X.

L. Shi, J. T. Harris, R. Fenollosa, I. Rodriguez, X. Lu, B. A. Korgel, F. Meseguer, “Monodisperse silicon nanocavities and photonic crystals with magnetic response in the optical region,” Nat. Commun. 4, 1904 (2013).
[Crossref]

Luk, T. S.

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7, 7824–7832 (2013).
[Crossref]

Luk’yanchuk, B.

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
[Crossref]

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2012).

Luljak, P. L.

A. Erentok, P. L. Luljak, R. W. Ziolkowski, “Characterization of a volumetric metamaterial realization of an artificial magnetic conductor for antenna applications,” IEEE Trans. Antennas Propag. 53, 160–172 (2005).
[Crossref]

Mackowski, S.

Madeo, J.

N. Jukam, S. S. Dhillon, D. Oustinov, J. Madeo, C. Manquest, S. Barbieri, C. Sirtori, S. P. Khanna, E. H. Linfield, A. G. Davies, J. Tignon, “Terahertz amplifier based on gain switching in a quantum cascade laser,” Nat. Photonics 3, 715–719 (2009).
[Crossref]

Mahony, T. S.

S. Liu, T. S. Mahony, D. A. Bender, M. B. Sinclair, I. Brener, “Mid-infrared time-domain spectroscopy system with carrier-envelope phase stabilization,” Appl. Phys. Lett. 103, 181111 (2013).
[Crossref]

Manquest, C.

N. Jukam, S. S. Dhillon, D. Oustinov, J. Madeo, C. Manquest, S. Barbieri, C. Sirtori, S. P. Khanna, E. H. Linfield, A. G. Davies, J. Tignon, “Terahertz amplifier based on gain switching in a quantum cascade laser,” Nat. Photonics 3, 715–719 (2009).
[Crossref]

Marcadet, X.

J. Kroll, J. Darmo, S. S. Dhillon, X. Marcadet, M. Calligaro, C. Sirtori, K. Unterrainer, “Phase-resolved measurements of stimulated emission in a laser,” Nature 449, 698–701 (2007).
[Crossref]

Mayer, T. S.

J. Z. Hao, Y. Seokho, L. Lan, D. Brocker, D. H. Werner, T. S. Mayer, “Experimental demonstration of an optical artificial perfect magnetic mirror using dielectric resonators,” in IEEE Antennas and Propagation Society International Symposium (IEEE, 2012), pp. 1–2.

Mesa, F.

S. Campione, F. Mesa, F. Capolino, “Magnetoinductive waves and complex modes in two-dimensional periodic arrays of split ring resonators,” IEEE Trans. Antennas Propag. 61, 3554–3563 (2013).
[Crossref]

Meseguer, F.

L. Shi, J. T. Harris, R. Fenollosa, I. Rodriguez, X. Lu, B. A. Korgel, F. Meseguer, “Monodisperse silicon nanocavities and photonic crystals with magnetic response in the optical region,” Nat. Commun. 4, 1904 (2013).
[Crossref]

L. Shi, T. U. Tuzer, R. Fenollosa, F. Meseguer, “A new dielectric metamaterial building block with a strong magnetic response in the sub-1.5-micrometer region: silicon colloid nanocavities,” Adv. Mater. 24, 5934–5938 (2012).
[Crossref]

Michel, J.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282, 1679–1682 (1998).
[Crossref]

Miroshnichenko, A. E.

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
[Crossref]

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7, 7824–7832 (2013).
[Crossref]

A. E. Krasnok, A. E. Miroshnichenko, P. A. Belov, Y. S. Kivshar, “All-dielectric optical nanoantennas,” Opt. Express 20, 20599–20604 (2012).
[Crossref]

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2012).

A. E. Miroshnichenko, Y. S. Kivshar, “Fano resonances in all-dielectric oligomers,” Nano Lett. 12, 6459–6463 (2012).
[Crossref]

Moitra, P.

P. Moitra, Y. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, J. Valentine, “Realization of an all-dielectric zero-index optical metamaterial,” Nat. Photonics 7, 791–795 (2013).
[Crossref]

Monorchio, A.

D. J. Kern, D. H. Werner, A. Monorchio, L. Lanuzza, M. J. Wilhelm, “The design synthesis of multiband artificial magnetic conductors using high impedance frequency selective surfaces,” IEEE Trans. Antennas Propag. 53, 8–17 (2005).
[Crossref]

Montaño, I.

A. Benz, S. Campione, S. Liu, I. Montaño, J. F. Klem, A. Allerman, J. R. Wendt, M. B. Sinclair, F. Capolino, I. Brener, “Strong coupling in the sub-wavelength limit using metamaterial nanocavities,” Nat. Commun. 4, 2882 (2013).

Moreno, F.

J. M. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. S. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun. 3, 1171 (2012).
[Crossref]

Neshev, D. N.

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7, 7824–7832 (2013).
[Crossref]

Nieto-Vesperinas, M.

J. M. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. S. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun. 3, 1171 (2012).
[Crossref]

Novikov, S. M.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12, 3749–3755 (2012).
[Crossref]

Novotny, L.

S. Person, M. Jain, Z. Lapin, J. J. Sáenz, G. Wicks, L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Lett. 13, 1806–1809 (2013).

Oustinov, D.

N. Jukam, S. S. Dhillon, D. Oustinov, J. Madeo, C. Manquest, S. Barbieri, C. Sirtori, S. P. Khanna, E. H. Linfield, A. G. Davies, J. Tignon, “Terahertz amplifier based on gain switching in a quantum cascade laser,” Nat. Photonics 3, 715–719 (2009).
[Crossref]

Padilla, W. J.

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597–600 (2006).
[Crossref]

Person, S.

S. Person, M. Jain, Z. Lapin, J. J. Sáenz, G. Wicks, L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Lett. 13, 1806–1809 (2013).

Peters, D. W.

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108, 097402 (2012).
[Crossref]

Polman, A.

P. Spinelli, M. A. Verschuuren, A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat. Commun. 3, 692 (2012).
[Crossref]

Prosvirnin, S. L.

A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, N. I. Zheludev, “Optical magnetic mirrors,” J. Opt. A Pure Appl. Opt. 9, L1–L2 (2007).
[Crossref]

Reinhardt, C.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12, 3749–3755 (2012).
[Crossref]

Rodriguez, I.

L. Shi, J. T. Harris, R. Fenollosa, I. Rodriguez, X. Lu, B. A. Korgel, F. Meseguer, “Monodisperse silicon nanocavities and photonic crystals with magnetic response in the optical region,” Nat. Commun. 4, 1904 (2013).
[Crossref]

Rostami, H.

H. Rostami, Y. Abdi, E. Arzi, “Fabrication of optical magnetic mirrors using bent and mushroom-like carbon nanotubes,” Carbon 48, 3659–3666 (2010).
[Crossref]

Sáenz, J. J.

S. Person, M. Jain, Z. Lapin, J. J. Sáenz, G. Wicks, L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Lett. 13, 1806–1809 (2013).

J. M. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. S. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun. 3, 1171 (2012).
[Crossref]

M. K. Schmidt, R. Esteban, J. J. Sáenz, I. Suárez-Lacalle, S. Mackowski, J. Aizpurua, “Dielectric antennas—a suitable platform for controlling magnetic dipolar emission,” Opt. Express 20, 13636–13650 (2012).
[Crossref]

Schmidt, M. K.

Schonbrun, E.

K. Seo, M. Wober, P. Steinvurzel, E. Schonbrun, Y. Dan, T. Ellenbogen, K. B. Crozier, “Multicolored vertical silicon nanowires,” Nano Lett. 11, 1851–1856 (2011).
[Crossref]

Schwanecke, A. S.

A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, N. I. Zheludev, “Optical magnetic mirrors,” J. Opt. A Pure Appl. Opt. 9, L1–L2 (2007).
[Crossref]

Sell, A.

G. Gunter, A. A. Anappara, J. Hees, A. Sell, G. Biasiol, L. Sorba, S. De Liberato, C. Ciuti, A. Tredicucci, A. Leitenstorfer, R. Huber, “Sub-cycle switch-on of ultrastrong light-matter interaction,” Nature 458, 178–181 (2009).
[Crossref]

A. Sell, A. Leitenstorfer, R. Huber, “Phase-locked generation and field-resolved detection of widely tunable terahertz pulses with amplitudes exceeding 100  MV/cm,” Opt. Lett. 33, 2767–2769 (2008).
[Crossref]

Seo, K.

K. Seo, M. Wober, P. Steinvurzel, E. Schonbrun, Y. Dan, T. Ellenbogen, K. B. Crozier, “Multicolored vertical silicon nanowires,” Nano Lett. 11, 1851–1856 (2011).
[Crossref]

Seokho, Y.

J. Z. Hao, Y. Seokho, L. Lan, D. Brocker, D. H. Werner, T. S. Mayer, “Experimental demonstration of an optical artificial perfect magnetic mirror using dielectric resonators,” in IEEE Antennas and Propagation Society International Symposium (IEEE, 2012), pp. 1–2.

Shi, L.

L. Shi, J. T. Harris, R. Fenollosa, I. Rodriguez, X. Lu, B. A. Korgel, F. Meseguer, “Monodisperse silicon nanocavities and photonic crystals with magnetic response in the optical region,” Nat. Commun. 4, 1904 (2013).
[Crossref]

L. Shi, T. U. Tuzer, R. Fenollosa, F. Meseguer, “A new dielectric metamaterial building block with a strong magnetic response in the sub-1.5-micrometer region: silicon colloid nanocavities,” Adv. Mater. 24, 5934–5938 (2012).
[Crossref]

Sievenpiper, D.

D. Sievenpiper, Z. Lijun, R. F. J. Broas, N. G. Alexopolous, E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microwave Theor. Tech. 47, 2059–2074 (1999).
[Crossref]

Sinclair, M. B.

S. Liu, J. F. Ihlefeld, J. Dominguez, E. F. Gonzales, J. E. Bower, D. B. Burckel, M. B. Sinclair, I. Brener, “Realization of tellurium-based all dielectric optical metamaterials using a multi-cycle deposition-etch process,” Appl. Phys. Lett. 102, 161905 (2013).
[Crossref]

S. Liu, T. S. Mahony, D. A. Bender, M. B. Sinclair, I. Brener, “Mid-infrared time-domain spectroscopy system with carrier-envelope phase stabilization,” Appl. Phys. Lett. 103, 181111 (2013).
[Crossref]

A. Benz, S. Campione, S. Liu, I. Montaño, J. F. Klem, A. Allerman, J. R. Wendt, M. B. Sinclair, F. Capolino, I. Brener, “Strong coupling in the sub-wavelength limit using metamaterial nanocavities,” Nat. Commun. 4, 2882 (2013).

S. Campione, M. B. Sinclair, F. Capolino, “Effective medium representation and complex modes in 3D periodic metamaterials made of cubic resonators with large permittivity at mid-infrared frequencies,” Photon. Nanostr. Fundam. Appl. 11, 423–435 (2013).
[Crossref]

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108, 097402 (2012).
[Crossref]

Sirtori, C.

N. Jukam, S. S. Dhillon, D. Oustinov, J. Madeo, C. Manquest, S. Barbieri, C. Sirtori, S. P. Khanna, E. H. Linfield, A. G. Davies, J. Tignon, “Terahertz amplifier based on gain switching in a quantum cascade laser,” Nat. Photonics 3, 715–719 (2009).
[Crossref]

J. Kroll, J. Darmo, S. S. Dhillon, X. Marcadet, M. Calligaro, C. Sirtori, K. Unterrainer, “Phase-resolved measurements of stimulated emission in a laser,” Nature 449, 698–701 (2007).
[Crossref]

Sorba, L.

G. Gunter, A. A. Anappara, J. Hees, A. Sell, G. Biasiol, L. Sorba, S. De Liberato, C. Ciuti, A. Tredicucci, A. Leitenstorfer, R. Huber, “Sub-cycle switch-on of ultrastrong light-matter interaction,” Nature 458, 178–181 (2009).
[Crossref]

Spinelli, P.

P. Spinelli, M. A. Verschuuren, A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat. Commun. 3, 692 (2012).
[Crossref]

Staude, I.

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7, 7824–7832 (2013).
[Crossref]

Steinvurzel, P.

K. Seo, M. Wober, P. Steinvurzel, E. Schonbrun, Y. Dan, T. Ellenbogen, K. B. Crozier, “Multicolored vertical silicon nanowires,” Nano Lett. 11, 1851–1856 (2011).
[Crossref]

Steshenko, S.

S. Steshenko, F. Capolino, P. Alitalo, S. Tretyakov, “Effective model and investigation of the near-field enhancement and subwavelength imaging properties of multilayer arrays of plasmonic nanospheres,” Phys. Rev. E 84, 016607 (2011).
[Crossref]

Stevens, J. O.

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108, 097402 (2012).
[Crossref]

Suárez-Lacalle, I.

Tauser, F.

R. Huber, F. Tauser, A. Brodschelm, M. Bichler, G. Abstreiter, A. Leitenstorfer, “How many-particle interactions develop after ultrafast excitation of an electron-hole plasma,” Nature 414, 286–289 (2001).
[Crossref]

R. Huber, A. Brodschelm, F. Tauser, A. Leitenstorfer, “Generation and field-resolved detection of femtosecond electromagnetic pulses tunable up to 41  THz,” Appl. Phys. Lett. 76, 3191–3193 (2000).
[Crossref]

Taylor, A. J.

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597–600 (2006).
[Crossref]

Thomas, E. L.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282, 1679–1682 (1998).
[Crossref]

Tignon, J.

N. Jukam, S. S. Dhillon, D. Oustinov, J. Madeo, C. Manquest, S. Barbieri, C. Sirtori, S. P. Khanna, E. H. Linfield, A. G. Davies, J. Tignon, “Terahertz amplifier based on gain switching in a quantum cascade laser,” Nat. Photonics 3, 715–719 (2009).
[Crossref]

Tredicucci, A.

G. Gunter, A. A. Anappara, J. Hees, A. Sell, G. Biasiol, L. Sorba, S. De Liberato, C. Ciuti, A. Tredicucci, A. Leitenstorfer, R. Huber, “Sub-cycle switch-on of ultrastrong light-matter interaction,” Nature 458, 178–181 (2009).
[Crossref]

Tretyakov, S.

S. Steshenko, F. Capolino, P. Alitalo, S. Tretyakov, “Effective model and investigation of the near-field enhancement and subwavelength imaging properties of multilayer arrays of plasmonic nanospheres,” Phys. Rev. E 84, 016607 (2011).
[Crossref]

Tuzer, T. U.

L. Shi, T. U. Tuzer, R. Fenollosa, F. Meseguer, “A new dielectric metamaterial building block with a strong magnetic response in the sub-1.5-micrometer region: silicon colloid nanocavities,” Adv. Mater. 24, 5934–5938 (2012).
[Crossref]

Unterrainer, K.

J. Kroll, J. Darmo, S. S. Dhillon, X. Marcadet, M. Calligaro, C. Sirtori, K. Unterrainer, “Phase-resolved measurements of stimulated emission in a laser,” Nature 449, 698–701 (2007).
[Crossref]

Vaillon, R.

J. M. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. S. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun. 3, 1171 (2012).
[Crossref]

Valentine, J.

P. Moitra, Y. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, J. Valentine, “Realization of an all-dielectric zero-index optical metamaterial,” Nat. Photonics 7, 791–795 (2013).
[Crossref]

Vallecchi, A.

F. Capolino, A. Vallecchi, M. Albani, “Equivalent transmission line model with a lumped X-circuit for a metalayer made of pairs of planar conductors,” IEEE Trans. Antennas Propag. 61, 852–861 (2013).
[Crossref]

A. Vallecchi, J. R. De Luis, F. Capolino, F. De Flaviis, “Low profile fully planar folded dipole antenna on a high impedance surface,” IEEE Trans. Antennas Propag. 60, 51–62 (2012).
[Crossref]

Vardaxoglou, J. C.

A. P. Feresidis, G. Goussetis, S. H. Wang, J. C. Vardaxoglou, “Artificial magnetic conductor surfaces and their application to low-profile high-gain planar antennas,” IEEE Trans. Antennas Propag. 53, 209–215 (2005).
[Crossref]

Verschuuren, M. A.

P. Spinelli, M. A. Verschuuren, A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat. Commun. 3, 692 (2012).
[Crossref]

Wang, S. H.

A. P. Feresidis, G. Goussetis, S. H. Wang, J. C. Vardaxoglou, “Artificial magnetic conductor surfaces and their application to low-profile high-gain planar antennas,” IEEE Trans. Antennas Propag. 53, 209–215 (2005).
[Crossref]

Warne, L. K.

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108, 097402 (2012).
[Crossref]

Wendt, J. R.

A. Benz, S. Campione, S. Liu, I. Montaño, J. F. Klem, A. Allerman, J. R. Wendt, M. B. Sinclair, F. Capolino, I. Brener, “Strong coupling in the sub-wavelength limit using metamaterial nanocavities,” Nat. Commun. 4, 2882 (2013).

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108, 097402 (2012).
[Crossref]

Werner, D. H.

D. J. Kern, D. H. Werner, A. Monorchio, L. Lanuzza, M. J. Wilhelm, “The design synthesis of multiband artificial magnetic conductors using high impedance frequency selective surfaces,” IEEE Trans. Antennas Propag. 53, 8–17 (2005).
[Crossref]

J. Z. Hao, Y. Seokho, L. Lan, D. Brocker, D. H. Werner, T. S. Mayer, “Experimental demonstration of an optical artificial perfect magnetic mirror using dielectric resonators,” in IEEE Antennas and Propagation Society International Symposium (IEEE, 2012), pp. 1–2.

Wicks, G.

S. Person, M. Jain, Z. Lapin, J. J. Sáenz, G. Wicks, L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Lett. 13, 1806–1809 (2013).

Wilhelm, M. J.

D. J. Kern, D. H. Werner, A. Monorchio, L. Lanuzza, M. J. Wilhelm, “The design synthesis of multiband artificial magnetic conductors using high impedance frequency selective surfaces,” IEEE Trans. Antennas Propag. 53, 8–17 (2005).
[Crossref]

Winn, J. N.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282, 1679–1682 (1998).
[Crossref]

Wober, M.

K. Seo, M. Wober, P. Steinvurzel, E. Schonbrun, Y. Dan, T. Ellenbogen, K. B. Crozier, “Multicolored vertical silicon nanowires,” Nano Lett. 11, 1851–1856 (2011).
[Crossref]

Wu, Q.

Q. Wu, X. C. Zhang, “Free-space electro-optics sampling of mid-infrared pulses,” Appl. Phys. Lett. 71, 1285–1286 (1997).
[Crossref]

Yablonovitch, E.

D. Sievenpiper, Z. Lijun, R. F. J. Broas, N. G. Alexopolous, E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microwave Theor. Tech. 47, 2059–2074 (1999).
[Crossref]

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[Crossref]

Yang, W.

Yang, Y.

P. Moitra, Y. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, J. Valentine, “Realization of an all-dielectric zero-index optical metamaterial,” Nat. Photonics 7, 791–795 (2013).
[Crossref]

Yu, Y. F.

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
[Crossref]

Zhang, J.

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2012).

Zhang, W.

J. Du, Z. Lin, S. T. Chui, G. Dong, W. Zhang, “Nearly total omnidirectional reflection by a single layer of nanorods,” Phys. Rev. Lett. 110, 163902 (2013).
[Crossref]

Zhang, X. C.

Q. Wu, X. C. Zhang, “Free-space electro-optics sampling of mid-infrared pulses,” Appl. Phys. Lett. 71, 1285–1286 (1997).
[Crossref]

Zhang, X.-C.

B. Ferguson, X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1, 26–33 (2002).
[Crossref]

Zheludev, N. I.

A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, N. I. Zheludev, “Optical magnetic mirrors,” J. Opt. A Pure Appl. Opt. 9, L1–L2 (2007).
[Crossref]

Zide, J. M. O.

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597–600 (2006).
[Crossref]

Ziolkowski, R. W.

A. Erentok, P. L. Luljak, R. W. Ziolkowski, “Characterization of a volumetric metamaterial realization of an artificial magnetic conductor for antenna applications,” IEEE Trans. Antennas Propag. 53, 160–172 (2005).
[Crossref]

Zywietz, U.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12, 3749–3755 (2012).
[Crossref]

ACS Nano (1)

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7, 7824–7832 (2013).
[Crossref]

Adv. Mater. (1)

L. Shi, T. U. Tuzer, R. Fenollosa, F. Meseguer, “A new dielectric metamaterial building block with a strong magnetic response in the sub-1.5-micrometer region: silicon colloid nanocavities,” Adv. Mater. 24, 5934–5938 (2012).
[Crossref]

Adv. Opt. Photon. (1)

Appl. Phys. Lett. (4)

S. Liu, J. F. Ihlefeld, J. Dominguez, E. F. Gonzales, J. E. Bower, D. B. Burckel, M. B. Sinclair, I. Brener, “Realization of tellurium-based all dielectric optical metamaterials using a multi-cycle deposition-etch process,” Appl. Phys. Lett. 102, 161905 (2013).
[Crossref]

S. Liu, T. S. Mahony, D. A. Bender, M. B. Sinclair, I. Brener, “Mid-infrared time-domain spectroscopy system with carrier-envelope phase stabilization,” Appl. Phys. Lett. 103, 181111 (2013).
[Crossref]

Q. Wu, X. C. Zhang, “Free-space electro-optics sampling of mid-infrared pulses,” Appl. Phys. Lett. 71, 1285–1286 (1997).
[Crossref]

R. Huber, A. Brodschelm, F. Tauser, A. Leitenstorfer, “Generation and field-resolved detection of femtosecond electromagnetic pulses tunable up to 41  THz,” Appl. Phys. Lett. 76, 3191–3193 (2000).
[Crossref]

Carbon (1)

H. Rostami, Y. Abdi, E. Arzi, “Fabrication of optical magnetic mirrors using bent and mushroom-like carbon nanotubes,” Carbon 48, 3659–3666 (2010).
[Crossref]

IEEE Trans. Antennas Propag. (6)

A. Erentok, P. L. Luljak, R. W. Ziolkowski, “Characterization of a volumetric metamaterial realization of an artificial magnetic conductor for antenna applications,” IEEE Trans. Antennas Propag. 53, 160–172 (2005).
[Crossref]

A. P. Feresidis, G. Goussetis, S. H. Wang, J. C. Vardaxoglou, “Artificial magnetic conductor surfaces and their application to low-profile high-gain planar antennas,” IEEE Trans. Antennas Propag. 53, 209–215 (2005).
[Crossref]

D. J. Kern, D. H. Werner, A. Monorchio, L. Lanuzza, M. J. Wilhelm, “The design synthesis of multiband artificial magnetic conductors using high impedance frequency selective surfaces,” IEEE Trans. Antennas Propag. 53, 8–17 (2005).
[Crossref]

A. Vallecchi, J. R. De Luis, F. Capolino, F. De Flaviis, “Low profile fully planar folded dipole antenna on a high impedance surface,” IEEE Trans. Antennas Propag. 60, 51–62 (2012).
[Crossref]

F. Capolino, A. Vallecchi, M. Albani, “Equivalent transmission line model with a lumped X-circuit for a metalayer made of pairs of planar conductors,” IEEE Trans. Antennas Propag. 61, 852–861 (2013).
[Crossref]

S. Campione, F. Mesa, F. Capolino, “Magnetoinductive waves and complex modes in two-dimensional periodic arrays of split ring resonators,” IEEE Trans. Antennas Propag. 61, 3554–3563 (2013).
[Crossref]

IEEE Trans. Microwave Theor. Tech. (1)

D. Sievenpiper, Z. Lijun, R. F. J. Broas, N. G. Alexopolous, E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microwave Theor. Tech. 47, 2059–2074 (1999).
[Crossref]

J. Lumin. (1)

K. H. Drexhage, “Influence of a dielectric interface on fluorescence decay time,” J. Lumin. 1–2, 693–701 (1970).
[Crossref]

J. Mod. Opt. (1)

W. L. Barnes, “Fluorescence near interfaces: the role of photonic mode density,” J. Mod. Opt. 45, 661–699 (1998).
[Crossref]

J. Opt. A Pure Appl. Opt. (1)

A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, N. I. Zheludev, “Optical magnetic mirrors,” J. Opt. A Pure Appl. Opt. 9, L1–L2 (2007).
[Crossref]

Nano Lett. (4)

S. Person, M. Jain, Z. Lapin, J. J. Sáenz, G. Wicks, L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Lett. 13, 1806–1809 (2013).

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12, 3749–3755 (2012).
[Crossref]

K. Seo, M. Wober, P. Steinvurzel, E. Schonbrun, Y. Dan, T. Ellenbogen, K. B. Crozier, “Multicolored vertical silicon nanowires,” Nano Lett. 11, 1851–1856 (2011).
[Crossref]

A. E. Miroshnichenko, Y. S. Kivshar, “Fano resonances in all-dielectric oligomers,” Nano Lett. 12, 6459–6463 (2012).
[Crossref]

Nat. Commun. (5)

J. M. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. S. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun. 3, 1171 (2012).
[Crossref]

L. Shi, J. T. Harris, R. Fenollosa, I. Rodriguez, X. Lu, B. A. Korgel, F. Meseguer, “Monodisperse silicon nanocavities and photonic crystals with magnetic response in the optical region,” Nat. Commun. 4, 1904 (2013).
[Crossref]

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
[Crossref]

P. Spinelli, M. A. Verschuuren, A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat. Commun. 3, 692 (2012).
[Crossref]

A. Benz, S. Campione, S. Liu, I. Montaño, J. F. Klem, A. Allerman, J. R. Wendt, M. B. Sinclair, F. Capolino, I. Brener, “Strong coupling in the sub-wavelength limit using metamaterial nanocavities,” Nat. Commun. 4, 2882 (2013).

Nat. Mater. (1)

B. Ferguson, X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1, 26–33 (2002).
[Crossref]

Nat. Photonics (2)

P. Moitra, Y. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, J. Valentine, “Realization of an all-dielectric zero-index optical metamaterial,” Nat. Photonics 7, 791–795 (2013).
[Crossref]

N. Jukam, S. S. Dhillon, D. Oustinov, J. Madeo, C. Manquest, S. Barbieri, C. Sirtori, S. P. Khanna, E. H. Linfield, A. G. Davies, J. Tignon, “Terahertz amplifier based on gain switching in a quantum cascade laser,” Nat. Photonics 3, 715–719 (2009).
[Crossref]

Nature (4)

J. Kroll, J. Darmo, S. S. Dhillon, X. Marcadet, M. Calligaro, C. Sirtori, K. Unterrainer, “Phase-resolved measurements of stimulated emission in a laser,” Nature 449, 698–701 (2007).
[Crossref]

R. Huber, F. Tauser, A. Brodschelm, M. Bichler, G. Abstreiter, A. Leitenstorfer, “How many-particle interactions develop after ultrafast excitation of an electron-hole plasma,” Nature 414, 286–289 (2001).
[Crossref]

G. Gunter, A. A. Anappara, J. Hees, A. Sell, G. Biasiol, L. Sorba, S. De Liberato, C. Ciuti, A. Tredicucci, A. Leitenstorfer, R. Huber, “Sub-cycle switch-on of ultrastrong light-matter interaction,” Nature 458, 178–181 (2009).
[Crossref]

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597–600 (2006).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Photon. Nanostr. Fundam. Appl. (1)

S. Campione, M. B. Sinclair, F. Capolino, “Effective medium representation and complex modes in 3D periodic metamaterials made of cubic resonators with large permittivity at mid-infrared frequencies,” Photon. Nanostr. Fundam. Appl. 11, 423–435 (2013).
[Crossref]

Phys. Rev. E (1)

S. Steshenko, F. Capolino, P. Alitalo, S. Tretyakov, “Effective model and investigation of the near-field enhancement and subwavelength imaging properties of multilayer arrays of plasmonic nanospheres,” Phys. Rev. E 84, 016607 (2011).
[Crossref]

Phys. Rev. Lett. (3)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[Crossref]

J. Du, Z. Lin, S. T. Chui, G. Dong, W. Zhang, “Nearly total omnidirectional reflection by a single layer of nanorods,” Phys. Rev. Lett. 110, 163902 (2013).
[Crossref]

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108, 097402 (2012).
[Crossref]

Sci. Rep. (1)

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2012).

Science (1)

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282, 1679–1682 (1998).
[Crossref]

Other (3)

J. Z. Hao, Y. Seokho, L. Lan, D. Brocker, D. H. Werner, T. S. Mayer, “Experimental demonstration of an optical artificial perfect magnetic mirror using dielectric resonators,” in IEEE Antennas and Propagation Society International Symposium (IEEE, 2012), pp. 1–2.

J. D. Jackson, Classical Electrodynamics (Wiley, 1999).

C. A. Balanis, Antenna Theory: Analysis and Design (Wiley, 2005).

Supplementary Material (2)

» Supplement 1: PDF (892 KB)     
» Media 2: MOV (2783 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Principle of all-dielectric OMMs. (a) The cubic dielectric resonators on the left side do not induce a phase shift of the reflected electric field at the magnetic resonance, but rather act as a dielectric magnetic mirror in the optical frequency range. In contrast, the gold surface on the right side (which serves as a reference surface) exhibits a 180 deg phase shift of the electric field upon reflection. (b) SEM image of the Te cube dielectric metasurface of our OMM. The scale bar corresponds to 5 μm. (c) The reflection spectrum (black-dotted curve) of the metamaterial sample in (b) shows two reflection maxima corresponding to the lowest (magnetic dipole) and the second lowest (electric dipole) resonances. The solid blue curve shows the spectrum of the femtosecond mid-IR pulses obtained by performing a Fourier transform of the measured electric field transients as discussed in Section 2.B.

Fig. 2.
Fig. 2.

Schematic of the TDS setup. We used a phase-locked TDS in the mid-IR to directly measure the phase shift of the reflected electric field from the OMM. Mid-IR pulses of 250 fs duration, produced by difference frequency mixing between 1.35 and 1.55 μm pulses, were focused by a ZnSe lens onto the OMM or gold surface. Another ZnSe lens was used to collect the reflected mid-IR beam. Gate pulses with a wavelength of 1.05 μm and duration of 15 fs were combined with the mid-IR pulses, using a dichroic mirror, and then focused into another GaSe crystal for phase-matched electro-optic sampling. DM, dichroic mirror; L, lens; M, mirror.

Fig. 3.
Fig. 3.

Electric-field transients measured by TDS. (a) Experimental measurement of the electric field reflected from the gold surface (blue curve) and OMM (red curve) at the OMM magnetic resonance. The gold surface serves as a reference. (b) FDTD simulation of the reflected electric field from the gold surface (blue curve) and the OMM (red curve). Both experiment and simulation show that the electric-field fringes from the OMM are out-of-phase with those from the gold surface (i.e., a normal mirror). This unambiguously demonstrates the magnetic mirror behavior of the OMM. (c) Experimental and FDTD simulation results of the optical phase of the reflected wave. To cover a broader spectral range, two experimental data sets were obtained with the central frequency tuned to 8.8 and 8.1 μm. The inset is the reflectivity of the OMM derived from the Fourier transform of measured field transients.

Fig. 4.
Fig. 4.

Standing-wave patterns of light reflected from a gold mirror and an OMM at (a) the OMM electric resonance and (b) the OMM magnetic resonance. The OMM behaves like a conventional mirror at the electric resonance shown in (a) and behaves like a magnetic mirror at the magnetic resonance shown in (b) Media 1. The black lines and rectangles represent the gold–air interfaces and the boundaries of the Te cubic resonators, respectively. A node of the standing wave always occurs at the gold–air interface. In contrast, the top of the cubic resonator is at the node for the electric resonance and at the antinode for the magnetic resonance. All patterns share the same color scale bar on the right. Also note that the aspect ratio used for this figure causes the profile of the cubic resonator to appear as a rectangle.

Fig. 5.
Fig. 5.

Normalized radiative decay rate of a transverse-electric dipole oscillating at the magnetic resonance frequency as a function of the dipole–surface separation for both a 5 × 5 array approximating our OMM (red curve) and a gold surface (black curve). The distance of the dipole from the OMM is calculated using the center of the cubic resonator as distance “0,” which is in agreement with our theoretical calculation (Section 4 of Supplement 1). First, the oscillatory dependence on distance is shifted by about half a period. Second, while the emission from the dipole is quenched very close to the gold surface, the dipole emission near the magnetic mirror is enhanced even for very small distances. Inset: a schematic of an electric dipole placed on top of a typical mirror and its reversed image dipole (left) and a schematic of an electric dipole on top of a dielectric magnetic mirror and its unreversed image dipole (right) at the magnetic dipole resonance.

Metrics