Abstract

Focusing light through scattering media has been a longstanding goal of biomedical optics. While wavefront shaping and optical time-reversal techniques can in principle be used to focus light across scattering media, achieving this within a scattering medium with a noninvasive and efficient reference beacon, or guide star, remains an important challenge. Here, we show optical time-reversal focusing using a new technique termed Time Reversal by Analysis of Changing wavefronts from Kinetic targets (TRACK). By taking the difference between time-varying scattering fields caused by a moving object and applying optical time reversal, light can be focused back to the location previously occupied by the object. We demonstrate this approach with discretely moved objects as well as with particles in an aqueous flow, and obtain a focal peak-to-background strength of 204 in our demonstration experiments. We further demonstrate that the generated focus can be used to noninvasively count particles in a flow-cytometry configuration—even when the particles are hidden behind a strong diffuser. By achieving optical time reversal and focusing noninvasively without any external guide stars, using just the intrinsic characteristics of the sample, this work paves the way to a range of scattering media imaging applications, including underwater and atmospheric focusing as well as noninvasive in vivo flow cytometry.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Imaging moving targets through scattering media

Michelle Cua, Edward (Haojiang) Zhou, and Changhuei Yang
Opt. Express 25(4) 3935-3945 (2017)

Focusing through dynamic tissue with millisecond digital optical phase conjugation

Daifa Wang, Edward Haojiang Zhou, Joshua Brake, Haowen Ruan, Mooseok Jang, and Changhuei Yang
Optica 2(8) 728-735 (2015)

Focusing light inside dynamic scattering media with millisecond digital optical phase conjugation

Yan Liu, Cheng Ma, Yuecheng Shen, Junhui Shi, and Lihong V. Wang
Optica 4(2) 280-288 (2017)

References

  • View by:
  • |
  • |
  • |

  1. I. M.  Vellekoop, A. P.  Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett. 32, 2309–2311 (2007).
    [Crossref]
  2. A. P.  Mosk, A.  Lagendijk, G.  Lerosey, M.  Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6, 283–292 (2012).
    [Crossref]
  3. I. M.  Vellekoop, A.  Lagendijk, A.  Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics 4, 320–322 (2010).
    [Crossref]
  4. D. B.  Conkey, A. M.  Caravaca-Aguirre, R.  Piestun, “High-speed focusing of light through dynamic turbid media,” in Imaging and Applied Optics Technical Papers, OSA Technical Digest (online) (Optical Society of America, 2012), paper CTu4B.6.
  5. H.  Yılmaz, W. L.  Vos, A. P.  Mosk, “Optimal control of light propagation through multiple-scattering media in the presence of noise,” Biomed. Opt. Express 4, 1759–1768 (2013).
    [Crossref]
  6. Z.  Yaqoob, D.  Psaltis, M. S.  Feld, C.  Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics 2, 110–115 (2008).
    [Crossref]
  7. S.  Popoff, G.  Lerosey, M.  Fink, A. C.  Boccara, S.  Gigan, “Image transmission through an opaque material,” Nat. Commun. 1, 81 (2010).
    [Crossref]
  8. Y.  Choi, C.  Yoon, M.  Kim, T.  Yang, C.  Fang-Yen, R.  Dasari, K.  Lee, W.  Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109, 203901 (2012).
    [Crossref]
  9. C.-L.  Hsieh, Y.  Pu, R.  Grange, D.  Psaltis, “Digital phase conjugation of second harmonic radiation emitted by nanoparticles in turbid media,” Opt. Express 18, 12283–12290 (2010).
    [Crossref]
  10. I. M.  Vellekoop, M.  Cui, C.  Yang, “Digital optical phase conjugation of fluorescence in turbid tissue,” Appl. Phys. Lett. 101, 81108 (2012).
    [Crossref]
  11. X.  Tao, J.  Crest, S.  Kotadia, O.  Azucena, D. C.  Chen, W.  Sullivan, J.  Kubby, “Live imaging using adaptive optics with fluorescent protein guide-stars,” Opt. Express 20, 15969–15982 (2012).
  12. X.  Xu, H.  Liu, L. V.  Wang, “Time-reversed ultrasonically encoded optical focusing into scattering media,” Nat. Photonics 5, 154–157 (2011).
    [Crossref]
  13. P.  Lai, X.  Xu, H.  Liu, Y.  Suzuki, L. V.  Wang, “Reflection-mode time-reversed ultrasonically encoded optical focusing into turbid media,” J. Biomed. Opt. 16, 080505 (2011).
    [Crossref]
  14. Y. M.  Wang, B.  Judkewitz, C. A.  DiMarzio, C.  Yang, “Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light,” Nat. Commun. 3, 928 (2012).
    [Crossref]
  15. K.  Si, R.  Fiolka, M.  Cui, “Fluorescence imaging beyond the ballistic regime by ultrasound pulse guided digital phase conjugation,” Nat. Photonics 6, 657–661 (2012).
    [Crossref]
  16. B.  Judkewitz, Y. M.  Wang, R.  Horstmeyer, A.  Mathy, C.  Yang, “Speckle-scale focusing in the diffusive regime with time reversal of variance-encoded light (TROVE),” Nat. Photonics 7, 300–305 (2013).
    [Crossref]
  17. F.  Kong, R. H.  Silverman, L.  Liu, P. V.  Chitnis, K. K.  Lee, Y. C.  Chen, “Photoacoustic-guided convergence of light through optically diffusive media,” Opt. Lett. 36, 2053–2055 (2011).
    [Crossref]
  18. D. B.  Conkey, A. M.  Caravaca-Aguirre, J. D.  Dove, H.  Ju, T. W.  Murray, R.  Piestun, “Super-resolution photoacoustic imaging through a scattering wall,” arXiv:1310.5736 (2013).
  19. P.  Lai, L.  Wang, J. W.  Tay, L. V.  Wang, “Nonlinear photoacoustic wavefront shaping (PAWS) for single speckle-grain optical focusing in scattering media,” arXiv:1402.0816 (2014).
  20. T.  Chaigne, O.  Katz, A. C.  Boccara, M.  Fink, E.  Bossy, S.  Gigan, “Controlling light in scattering media non-invasively using the photoacoustic transmission matrix,” Nat. Photonics 8, 58–64 (2014).
    [Crossref]
  21. U.  Schnars, W.  Jüptner, “Direct recording of holograms by a CCD target and numerical reconstruction,” Appl. Opt. 33, 179–181 (1994).
    [Crossref]
  22. E.  Cuche, P.  Marquet, C.  Depeursinge, “Spatial filtering for zero-order and twin-image elimination in digital off-axis holography,” Appl. Opt. 39, 4070–4075 (2000).
    [Crossref]
  23. I. M.  Vellekoop, “Controlling the propagation of light in disordered scattering media,” Ph.D. thesis (University of Twente, 2008).

2014 (1)

T.  Chaigne, O.  Katz, A. C.  Boccara, M.  Fink, E.  Bossy, S.  Gigan, “Controlling light in scattering media non-invasively using the photoacoustic transmission matrix,” Nat. Photonics 8, 58–64 (2014).
[Crossref]

2013 (2)

H.  Yılmaz, W. L.  Vos, A. P.  Mosk, “Optimal control of light propagation through multiple-scattering media in the presence of noise,” Biomed. Opt. Express 4, 1759–1768 (2013).
[Crossref]

B.  Judkewitz, Y. M.  Wang, R.  Horstmeyer, A.  Mathy, C.  Yang, “Speckle-scale focusing in the diffusive regime with time reversal of variance-encoded light (TROVE),” Nat. Photonics 7, 300–305 (2013).
[Crossref]

2012 (6)

Y. M.  Wang, B.  Judkewitz, C. A.  DiMarzio, C.  Yang, “Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light,” Nat. Commun. 3, 928 (2012).
[Crossref]

K.  Si, R.  Fiolka, M.  Cui, “Fluorescence imaging beyond the ballistic regime by ultrasound pulse guided digital phase conjugation,” Nat. Photonics 6, 657–661 (2012).
[Crossref]

I. M.  Vellekoop, M.  Cui, C.  Yang, “Digital optical phase conjugation of fluorescence in turbid tissue,” Appl. Phys. Lett. 101, 81108 (2012).
[Crossref]

X.  Tao, J.  Crest, S.  Kotadia, O.  Azucena, D. C.  Chen, W.  Sullivan, J.  Kubby, “Live imaging using adaptive optics with fluorescent protein guide-stars,” Opt. Express 20, 15969–15982 (2012).

A. P.  Mosk, A.  Lagendijk, G.  Lerosey, M.  Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6, 283–292 (2012).
[Crossref]

Y.  Choi, C.  Yoon, M.  Kim, T.  Yang, C.  Fang-Yen, R.  Dasari, K.  Lee, W.  Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109, 203901 (2012).
[Crossref]

2011 (3)

X.  Xu, H.  Liu, L. V.  Wang, “Time-reversed ultrasonically encoded optical focusing into scattering media,” Nat. Photonics 5, 154–157 (2011).
[Crossref]

P.  Lai, X.  Xu, H.  Liu, Y.  Suzuki, L. V.  Wang, “Reflection-mode time-reversed ultrasonically encoded optical focusing into turbid media,” J. Biomed. Opt. 16, 080505 (2011).
[Crossref]

F.  Kong, R. H.  Silverman, L.  Liu, P. V.  Chitnis, K. K.  Lee, Y. C.  Chen, “Photoacoustic-guided convergence of light through optically diffusive media,” Opt. Lett. 36, 2053–2055 (2011).
[Crossref]

2010 (3)

C.-L.  Hsieh, Y.  Pu, R.  Grange, D.  Psaltis, “Digital phase conjugation of second harmonic radiation emitted by nanoparticles in turbid media,” Opt. Express 18, 12283–12290 (2010).
[Crossref]

S.  Popoff, G.  Lerosey, M.  Fink, A. C.  Boccara, S.  Gigan, “Image transmission through an opaque material,” Nat. Commun. 1, 81 (2010).
[Crossref]

I. M.  Vellekoop, A.  Lagendijk, A.  Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics 4, 320–322 (2010).
[Crossref]

2008 (1)

Z.  Yaqoob, D.  Psaltis, M. S.  Feld, C.  Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics 2, 110–115 (2008).
[Crossref]

2007 (1)

2000 (1)

1994 (1)

Azucena, O.

Boccara, A. C.

T.  Chaigne, O.  Katz, A. C.  Boccara, M.  Fink, E.  Bossy, S.  Gigan, “Controlling light in scattering media non-invasively using the photoacoustic transmission matrix,” Nat. Photonics 8, 58–64 (2014).
[Crossref]

S.  Popoff, G.  Lerosey, M.  Fink, A. C.  Boccara, S.  Gigan, “Image transmission through an opaque material,” Nat. Commun. 1, 81 (2010).
[Crossref]

Bossy, E.

T.  Chaigne, O.  Katz, A. C.  Boccara, M.  Fink, E.  Bossy, S.  Gigan, “Controlling light in scattering media non-invasively using the photoacoustic transmission matrix,” Nat. Photonics 8, 58–64 (2014).
[Crossref]

Caravaca-Aguirre, A. M.

D. B.  Conkey, A. M.  Caravaca-Aguirre, J. D.  Dove, H.  Ju, T. W.  Murray, R.  Piestun, “Super-resolution photoacoustic imaging through a scattering wall,” arXiv:1310.5736 (2013).

D. B.  Conkey, A. M.  Caravaca-Aguirre, R.  Piestun, “High-speed focusing of light through dynamic turbid media,” in Imaging and Applied Optics Technical Papers, OSA Technical Digest (online) (Optical Society of America, 2012), paper CTu4B.6.

Chaigne, T.

T.  Chaigne, O.  Katz, A. C.  Boccara, M.  Fink, E.  Bossy, S.  Gigan, “Controlling light in scattering media non-invasively using the photoacoustic transmission matrix,” Nat. Photonics 8, 58–64 (2014).
[Crossref]

Chen, D. C.

Chen, Y. C.

Chitnis, P. V.

Choi, W.

Y.  Choi, C.  Yoon, M.  Kim, T.  Yang, C.  Fang-Yen, R.  Dasari, K.  Lee, W.  Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109, 203901 (2012).
[Crossref]

Choi, Y.

Y.  Choi, C.  Yoon, M.  Kim, T.  Yang, C.  Fang-Yen, R.  Dasari, K.  Lee, W.  Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109, 203901 (2012).
[Crossref]

Conkey, D. B.

D. B.  Conkey, A. M.  Caravaca-Aguirre, R.  Piestun, “High-speed focusing of light through dynamic turbid media,” in Imaging and Applied Optics Technical Papers, OSA Technical Digest (online) (Optical Society of America, 2012), paper CTu4B.6.

D. B.  Conkey, A. M.  Caravaca-Aguirre, J. D.  Dove, H.  Ju, T. W.  Murray, R.  Piestun, “Super-resolution photoacoustic imaging through a scattering wall,” arXiv:1310.5736 (2013).

Crest, J.

Cuche, E.

Cui, M.

K.  Si, R.  Fiolka, M.  Cui, “Fluorescence imaging beyond the ballistic regime by ultrasound pulse guided digital phase conjugation,” Nat. Photonics 6, 657–661 (2012).
[Crossref]

I. M.  Vellekoop, M.  Cui, C.  Yang, “Digital optical phase conjugation of fluorescence in turbid tissue,” Appl. Phys. Lett. 101, 81108 (2012).
[Crossref]

Dasari, R.

Y.  Choi, C.  Yoon, M.  Kim, T.  Yang, C.  Fang-Yen, R.  Dasari, K.  Lee, W.  Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109, 203901 (2012).
[Crossref]

Depeursinge, C.

DiMarzio, C. A.

Y. M.  Wang, B.  Judkewitz, C. A.  DiMarzio, C.  Yang, “Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light,” Nat. Commun. 3, 928 (2012).
[Crossref]

Dove, J. D.

D. B.  Conkey, A. M.  Caravaca-Aguirre, J. D.  Dove, H.  Ju, T. W.  Murray, R.  Piestun, “Super-resolution photoacoustic imaging through a scattering wall,” arXiv:1310.5736 (2013).

Fang-Yen, C.

Y.  Choi, C.  Yoon, M.  Kim, T.  Yang, C.  Fang-Yen, R.  Dasari, K.  Lee, W.  Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109, 203901 (2012).
[Crossref]

Feld, M. S.

Z.  Yaqoob, D.  Psaltis, M. S.  Feld, C.  Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics 2, 110–115 (2008).
[Crossref]

Fink, M.

T.  Chaigne, O.  Katz, A. C.  Boccara, M.  Fink, E.  Bossy, S.  Gigan, “Controlling light in scattering media non-invasively using the photoacoustic transmission matrix,” Nat. Photonics 8, 58–64 (2014).
[Crossref]

A. P.  Mosk, A.  Lagendijk, G.  Lerosey, M.  Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6, 283–292 (2012).
[Crossref]

S.  Popoff, G.  Lerosey, M.  Fink, A. C.  Boccara, S.  Gigan, “Image transmission through an opaque material,” Nat. Commun. 1, 81 (2010).
[Crossref]

Fiolka, R.

K.  Si, R.  Fiolka, M.  Cui, “Fluorescence imaging beyond the ballistic regime by ultrasound pulse guided digital phase conjugation,” Nat. Photonics 6, 657–661 (2012).
[Crossref]

Gigan, S.

T.  Chaigne, O.  Katz, A. C.  Boccara, M.  Fink, E.  Bossy, S.  Gigan, “Controlling light in scattering media non-invasively using the photoacoustic transmission matrix,” Nat. Photonics 8, 58–64 (2014).
[Crossref]

S.  Popoff, G.  Lerosey, M.  Fink, A. C.  Boccara, S.  Gigan, “Image transmission through an opaque material,” Nat. Commun. 1, 81 (2010).
[Crossref]

Grange, R.

Horstmeyer, R.

B.  Judkewitz, Y. M.  Wang, R.  Horstmeyer, A.  Mathy, C.  Yang, “Speckle-scale focusing in the diffusive regime with time reversal of variance-encoded light (TROVE),” Nat. Photonics 7, 300–305 (2013).
[Crossref]

Hsieh, C.-L.

Ju, H.

D. B.  Conkey, A. M.  Caravaca-Aguirre, J. D.  Dove, H.  Ju, T. W.  Murray, R.  Piestun, “Super-resolution photoacoustic imaging through a scattering wall,” arXiv:1310.5736 (2013).

Judkewitz, B.

B.  Judkewitz, Y. M.  Wang, R.  Horstmeyer, A.  Mathy, C.  Yang, “Speckle-scale focusing in the diffusive regime with time reversal of variance-encoded light (TROVE),” Nat. Photonics 7, 300–305 (2013).
[Crossref]

Y. M.  Wang, B.  Judkewitz, C. A.  DiMarzio, C.  Yang, “Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light,” Nat. Commun. 3, 928 (2012).
[Crossref]

Jüptner, W.

Katz, O.

T.  Chaigne, O.  Katz, A. C.  Boccara, M.  Fink, E.  Bossy, S.  Gigan, “Controlling light in scattering media non-invasively using the photoacoustic transmission matrix,” Nat. Photonics 8, 58–64 (2014).
[Crossref]

Kim, M.

Y.  Choi, C.  Yoon, M.  Kim, T.  Yang, C.  Fang-Yen, R.  Dasari, K.  Lee, W.  Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109, 203901 (2012).
[Crossref]

Kong, F.

Kotadia, S.

Kubby, J.

Lagendijk, A.

A. P.  Mosk, A.  Lagendijk, G.  Lerosey, M.  Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6, 283–292 (2012).
[Crossref]

I. M.  Vellekoop, A.  Lagendijk, A.  Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics 4, 320–322 (2010).
[Crossref]

Lai, P.

P.  Lai, X.  Xu, H.  Liu, Y.  Suzuki, L. V.  Wang, “Reflection-mode time-reversed ultrasonically encoded optical focusing into turbid media,” J. Biomed. Opt. 16, 080505 (2011).
[Crossref]

P.  Lai, L.  Wang, J. W.  Tay, L. V.  Wang, “Nonlinear photoacoustic wavefront shaping (PAWS) for single speckle-grain optical focusing in scattering media,” arXiv:1402.0816 (2014).

Lee, K.

Y.  Choi, C.  Yoon, M.  Kim, T.  Yang, C.  Fang-Yen, R.  Dasari, K.  Lee, W.  Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109, 203901 (2012).
[Crossref]

Lee, K. K.

Lerosey, G.

A. P.  Mosk, A.  Lagendijk, G.  Lerosey, M.  Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6, 283–292 (2012).
[Crossref]

S.  Popoff, G.  Lerosey, M.  Fink, A. C.  Boccara, S.  Gigan, “Image transmission through an opaque material,” Nat. Commun. 1, 81 (2010).
[Crossref]

Liu, H.

X.  Xu, H.  Liu, L. V.  Wang, “Time-reversed ultrasonically encoded optical focusing into scattering media,” Nat. Photonics 5, 154–157 (2011).
[Crossref]

P.  Lai, X.  Xu, H.  Liu, Y.  Suzuki, L. V.  Wang, “Reflection-mode time-reversed ultrasonically encoded optical focusing into turbid media,” J. Biomed. Opt. 16, 080505 (2011).
[Crossref]

Liu, L.

Marquet, P.

Mathy, A.

B.  Judkewitz, Y. M.  Wang, R.  Horstmeyer, A.  Mathy, C.  Yang, “Speckle-scale focusing in the diffusive regime with time reversal of variance-encoded light (TROVE),” Nat. Photonics 7, 300–305 (2013).
[Crossref]

Mosk, A.

I. M.  Vellekoop, A.  Lagendijk, A.  Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics 4, 320–322 (2010).
[Crossref]

Mosk, A. P.

Murray, T. W.

D. B.  Conkey, A. M.  Caravaca-Aguirre, J. D.  Dove, H.  Ju, T. W.  Murray, R.  Piestun, “Super-resolution photoacoustic imaging through a scattering wall,” arXiv:1310.5736 (2013).

Piestun, R.

D. B.  Conkey, A. M.  Caravaca-Aguirre, J. D.  Dove, H.  Ju, T. W.  Murray, R.  Piestun, “Super-resolution photoacoustic imaging through a scattering wall,” arXiv:1310.5736 (2013).

D. B.  Conkey, A. M.  Caravaca-Aguirre, R.  Piestun, “High-speed focusing of light through dynamic turbid media,” in Imaging and Applied Optics Technical Papers, OSA Technical Digest (online) (Optical Society of America, 2012), paper CTu4B.6.

Popoff, S.

S.  Popoff, G.  Lerosey, M.  Fink, A. C.  Boccara, S.  Gigan, “Image transmission through an opaque material,” Nat. Commun. 1, 81 (2010).
[Crossref]

Psaltis, D.

C.-L.  Hsieh, Y.  Pu, R.  Grange, D.  Psaltis, “Digital phase conjugation of second harmonic radiation emitted by nanoparticles in turbid media,” Opt. Express 18, 12283–12290 (2010).
[Crossref]

Z.  Yaqoob, D.  Psaltis, M. S.  Feld, C.  Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics 2, 110–115 (2008).
[Crossref]

Pu, Y.

Schnars, U.

Si, K.

K.  Si, R.  Fiolka, M.  Cui, “Fluorescence imaging beyond the ballistic regime by ultrasound pulse guided digital phase conjugation,” Nat. Photonics 6, 657–661 (2012).
[Crossref]

Silverman, R. H.

Sullivan, W.

Suzuki, Y.

P.  Lai, X.  Xu, H.  Liu, Y.  Suzuki, L. V.  Wang, “Reflection-mode time-reversed ultrasonically encoded optical focusing into turbid media,” J. Biomed. Opt. 16, 080505 (2011).
[Crossref]

Tao, X.

Tay, J. W.

P.  Lai, L.  Wang, J. W.  Tay, L. V.  Wang, “Nonlinear photoacoustic wavefront shaping (PAWS) for single speckle-grain optical focusing in scattering media,” arXiv:1402.0816 (2014).

Vellekoop, I. M.

I. M.  Vellekoop, M.  Cui, C.  Yang, “Digital optical phase conjugation of fluorescence in turbid tissue,” Appl. Phys. Lett. 101, 81108 (2012).
[Crossref]

I. M.  Vellekoop, A.  Lagendijk, A.  Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics 4, 320–322 (2010).
[Crossref]

I. M.  Vellekoop, A. P.  Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett. 32, 2309–2311 (2007).
[Crossref]

I. M.  Vellekoop, “Controlling the propagation of light in disordered scattering media,” Ph.D. thesis (University of Twente, 2008).

Vos, W. L.

Wang, L.

P.  Lai, L.  Wang, J. W.  Tay, L. V.  Wang, “Nonlinear photoacoustic wavefront shaping (PAWS) for single speckle-grain optical focusing in scattering media,” arXiv:1402.0816 (2014).

Wang, L. V.

P.  Lai, X.  Xu, H.  Liu, Y.  Suzuki, L. V.  Wang, “Reflection-mode time-reversed ultrasonically encoded optical focusing into turbid media,” J. Biomed. Opt. 16, 080505 (2011).
[Crossref]

X.  Xu, H.  Liu, L. V.  Wang, “Time-reversed ultrasonically encoded optical focusing into scattering media,” Nat. Photonics 5, 154–157 (2011).
[Crossref]

P.  Lai, L.  Wang, J. W.  Tay, L. V.  Wang, “Nonlinear photoacoustic wavefront shaping (PAWS) for single speckle-grain optical focusing in scattering media,” arXiv:1402.0816 (2014).

Wang, Y. M.

B.  Judkewitz, Y. M.  Wang, R.  Horstmeyer, A.  Mathy, C.  Yang, “Speckle-scale focusing in the diffusive regime with time reversal of variance-encoded light (TROVE),” Nat. Photonics 7, 300–305 (2013).
[Crossref]

Y. M.  Wang, B.  Judkewitz, C. A.  DiMarzio, C.  Yang, “Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light,” Nat. Commun. 3, 928 (2012).
[Crossref]

Xu, X.

P.  Lai, X.  Xu, H.  Liu, Y.  Suzuki, L. V.  Wang, “Reflection-mode time-reversed ultrasonically encoded optical focusing into turbid media,” J. Biomed. Opt. 16, 080505 (2011).
[Crossref]

X.  Xu, H.  Liu, L. V.  Wang, “Time-reversed ultrasonically encoded optical focusing into scattering media,” Nat. Photonics 5, 154–157 (2011).
[Crossref]

Yang, C.

B.  Judkewitz, Y. M.  Wang, R.  Horstmeyer, A.  Mathy, C.  Yang, “Speckle-scale focusing in the diffusive regime with time reversal of variance-encoded light (TROVE),” Nat. Photonics 7, 300–305 (2013).
[Crossref]

Y. M.  Wang, B.  Judkewitz, C. A.  DiMarzio, C.  Yang, “Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light,” Nat. Commun. 3, 928 (2012).
[Crossref]

I. M.  Vellekoop, M.  Cui, C.  Yang, “Digital optical phase conjugation of fluorescence in turbid tissue,” Appl. Phys. Lett. 101, 81108 (2012).
[Crossref]

Z.  Yaqoob, D.  Psaltis, M. S.  Feld, C.  Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics 2, 110–115 (2008).
[Crossref]

Yang, T.

Y.  Choi, C.  Yoon, M.  Kim, T.  Yang, C.  Fang-Yen, R.  Dasari, K.  Lee, W.  Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109, 203901 (2012).
[Crossref]

Yaqoob, Z.

Z.  Yaqoob, D.  Psaltis, M. S.  Feld, C.  Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics 2, 110–115 (2008).
[Crossref]

Yilmaz, H.

Yoon, C.

Y.  Choi, C.  Yoon, M.  Kim, T.  Yang, C.  Fang-Yen, R.  Dasari, K.  Lee, W.  Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109, 203901 (2012).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

I. M.  Vellekoop, M.  Cui, C.  Yang, “Digital optical phase conjugation of fluorescence in turbid tissue,” Appl. Phys. Lett. 101, 81108 (2012).
[Crossref]

Biomed. Opt. Express (1)

J. Biomed. Opt. (1)

P.  Lai, X.  Xu, H.  Liu, Y.  Suzuki, L. V.  Wang, “Reflection-mode time-reversed ultrasonically encoded optical focusing into turbid media,” J. Biomed. Opt. 16, 080505 (2011).
[Crossref]

Nat. Commun. (2)

Y. M.  Wang, B.  Judkewitz, C. A.  DiMarzio, C.  Yang, “Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light,” Nat. Commun. 3, 928 (2012).
[Crossref]

S.  Popoff, G.  Lerosey, M.  Fink, A. C.  Boccara, S.  Gigan, “Image transmission through an opaque material,” Nat. Commun. 1, 81 (2010).
[Crossref]

Nat. Photonics (7)

Z.  Yaqoob, D.  Psaltis, M. S.  Feld, C.  Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics 2, 110–115 (2008).
[Crossref]

A. P.  Mosk, A.  Lagendijk, G.  Lerosey, M.  Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6, 283–292 (2012).
[Crossref]

I. M.  Vellekoop, A.  Lagendijk, A.  Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics 4, 320–322 (2010).
[Crossref]

K.  Si, R.  Fiolka, M.  Cui, “Fluorescence imaging beyond the ballistic regime by ultrasound pulse guided digital phase conjugation,” Nat. Photonics 6, 657–661 (2012).
[Crossref]

B.  Judkewitz, Y. M.  Wang, R.  Horstmeyer, A.  Mathy, C.  Yang, “Speckle-scale focusing in the diffusive regime with time reversal of variance-encoded light (TROVE),” Nat. Photonics 7, 300–305 (2013).
[Crossref]

X.  Xu, H.  Liu, L. V.  Wang, “Time-reversed ultrasonically encoded optical focusing into scattering media,” Nat. Photonics 5, 154–157 (2011).
[Crossref]

T.  Chaigne, O.  Katz, A. C.  Boccara, M.  Fink, E.  Bossy, S.  Gigan, “Controlling light in scattering media non-invasively using the photoacoustic transmission matrix,” Nat. Photonics 8, 58–64 (2014).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Phys. Rev. Lett. (1)

Y.  Choi, C.  Yoon, M.  Kim, T.  Yang, C.  Fang-Yen, R.  Dasari, K.  Lee, W.  Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109, 203901 (2012).
[Crossref]

Other (4)

D. B.  Conkey, A. M.  Caravaca-Aguirre, R.  Piestun, “High-speed focusing of light through dynamic turbid media,” in Imaging and Applied Optics Technical Papers, OSA Technical Digest (online) (Optical Society of America, 2012), paper CTu4B.6.

D. B.  Conkey, A. M.  Caravaca-Aguirre, J. D.  Dove, H.  Ju, T. W.  Murray, R.  Piestun, “Super-resolution photoacoustic imaging through a scattering wall,” arXiv:1310.5736 (2013).

P.  Lai, L.  Wang, J. W.  Tay, L. V.  Wang, “Nonlinear photoacoustic wavefront shaping (PAWS) for single speckle-grain optical focusing in scattering media,” arXiv:1402.0816 (2014).

I. M.  Vellekoop, “Controlling the propagation of light in disordered scattering media,” Ph.D. thesis (University of Twente, 2008).

Supplementary Material (2)

» Media 1: MOV (2980 KB)     
» Supplement 2: PDF (746 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Concise setup including sample and digital phase conjugation: varying backscattered wavefronts due to a target’s movement are captured by off-axis holography. The phase of the wavefront difference is time reversed by the digital optical phase-conjugation (DOPC) system. Diffuse light is focused back to the previous position of the target.

Fig. 2.
Fig. 2.

Focusing on a moving target through a scattering sample: (a) target at position 1 (far off the illuminated field of view); (b) target at position 2 (within the illuminated field of view); (c) light is focused behind the diffuser; (d)–(f) corresponding images recorded with the observing microscope; (g) and (h) phase maps recorded at the camera imaging the SLM surface; (i) difference of field in (g) and field in (h). The cross-section intensity distribution in (f) indicates a PBR of 204. Scale bars in (d)–(f) are 100 μm. Scale bars in (g)–(i) all stand for 1 mm.

Fig. 3.
Fig. 3.

Target tracking: images taken with the observing microscope. (a)–(c) Images of targets at positions 1–3 in the laser speckle; (d)–(f) phase-conjugate foci at corresponding positions.

Fig. 4.
Fig. 4.

Optical flow cytometry in scattering media: (a) schematic of the recording step, in which a focus is established as above; (b) laser speckle shining on the microfluidic channel as imaged by the observing camera; (c) time-reversed focus established with the help of the first bead; (d) schematic of the particle counting setup; (e) signal captured on the PMT with clear signals caused by fluorescent beads passing the focus. Both scale bars stand for 100 μm (Media 1).

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

E1(xa)=Tt(xa,xb)E1(xb),
M1(xa)=Tt(xa,xb)E1(xb)+B(xa),
M2(xa)=Tt(xa,xb)E2(xb)+B(xa).
M2(xa)M1(xa)=Tt(xa,xb)[E2(xb)E1(xb)].
Ef(xb)=T(xa,xb)T(xa,xb)[E2(xb)E1(xb)]*[E2(xb)E1(xb)]*.
PBRphaseonlyπ4.NSLMNtarget,

Metrics