Abstract

Optical resolution photoacoustic microscopy (OR-PAM), while providing high lateral resolution, has been limited by its relatively poor acoustically determined axial resolution. Although this limitation has been tackled in recent works by using either broadband acoustic detection or nonlinear photoacoustic effects, a flexible solution with three-dimensional optical resolution in reflection mode remains desired. Herein we present a multiview OR-PAM technique. By imaging the sample from multiple view angles and reconstructing the data using a multiview deconvolution method, we have experimentally demonstrated an isotropic optical resolution in three dimensions.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Pure optical photoacoustic microscopy

Zhixing Xie, Sung-Liang Chen, Tao Ling, L. Jay Guo, Paul L. Carson, and Xueding Wang
Opt. Express 19(10) 9027-9034 (2011)

Optical-resolution photoacoustic microscopy of oxygen saturation with nonlinear compensation

Chao Liu, Yizhi Liang, and Lidai Wang
Biomed. Opt. Express 10(6) 3061-3069 (2019)

Optical resolution photoacoustic microscopy based on multimode fibers

Mohesh Moothanchery, Renzhe Bi, Jin Young Kim, Seungwan Jeon, Chulhong Kim, and Malini Olivo
Biomed. Opt. Express 9(3) 1190-1197 (2018)

References

  • View by:
  • |
  • |
  • |

  1. D. J. Grunwald, J. S. Eisen, “Headwaters of the zebrafish—emergence of a new model vertebrate,” Nat. Rev. Genet. 3, 717–724 (2002).
  2. H. J. Bellen, C. Tong, H. Tsuda, “100 years of Drosophila research and its impact on vertebrate neuroscience: a history lesson for the future,” Nat. Rev. Neurosci. 11, 514–522 (2010).
    [Crossref]
  3. D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Köster, V. Ntziachristos, “Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo,” Nat. Photonics 3, 412–417 (2009).
    [Crossref]
  4. S. Ye, R. Yang, J. Xiong, K. K. Shung, Q. Zhou, C. Li, Q. Ren, “Label-free imaging of zebrafish larvae in vivo by photoacoustic microscopy,” Biomed. Opt. Express 3, 360–365 (2012).
    [Crossref]
  5. L. H. V. Wang, S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335, 1458–1462 (2012).
    [Crossref]
  6. L. V. Wang, L. Gao, “Photoacoustic microscopy and computed tomography: from bench to bedside,” Annu. Rev. Biomed. Eng. 16, 155–185 (2014).
    [Crossref]
  7. S. Hu, L. H. V. Wang, “Optical-resolution photoacoustic microscopy: auscultation of biological systems at the cellular level,” Biophys. J. 105, 841–847 (2013).
    [Crossref]
  8. C. Zhang, K. Maslov, S. Hu, R. M. Chen, Q. F. Zhou, K. K. Shung, L. H. V. Wang, “Reflection-mode submicron-resolution in vivo photoacoustic microscopy,” J. Biomed. Opt. 17, 020501 (2012).
    [Crossref]
  9. L. V. Wang, H. Wu, Biomedical Optics: Principles and Imaging (Wiley, 2012).
  10. C. Zhang, K. Maslov, J. J. Yao, L. H. V. Wang, “In vivo photoacoustic microscopy with 7.6-μm axial resolution using a commercial 125-MHz ultrasonic transducer,” J. Biomed. Opt. 17, 116016 (2012).
    [Crossref]
  11. Z. X. Xie, S. L. Chen, T. Ling, L. J. Guo, P. L. Carson, X. D. Wang, “Pure optical photoacoustic microscopy,” Opt. Express 19, 9027–9034 (2011).
    [Crossref]
  12. R. L. Shelton, S. P. Mattison, B. E. Applegate, “Volumetric imaging of erythrocytes using label-free multiphoton photoacoustic microscopy,” J. Biophotonics, doi: 10.1002/jbio.201300059 (posted online August21, 2013).
    [Crossref]
  13. L. Zhu, L. Gao, L. Li, L. Wang, T. Ma, Q. Zhou, K. K. Shung, L. V. Wang, “Cross-optical-beam nonlinear photoacoustic microscopy,” Proc. SPIE 8943, 89433H (2014).
  14. Y. Wu, P. Wawrzusin, J. Senseney, R. S. Fischer, R. Christensen, A. Santella, A. G. York, P. W. Winter, C. M. Waterman, Z. Bao, “Spatially isotropic four-dimensional imaging with dual-view plane illumination microscopy,” Nat. Biotechnol. 31, 1032–1038 (2013).
    [Crossref]
  15. S. Preibisch, F. Amat, E. Stamataki, M. Sarov, E. Myers, P. Tomancak, “Efficient Bayesian-based multi-view deconvolution,” Nat. Methods 11, 645–648 (2014).
    [Crossref]
  16. W. H. Richardson, “Bayesian-based iterative method of image restoration,” J. Opt. Soc. Am. 62, 55–59 (1972).
    [Crossref]
  17. L. Lucy, “An iterative technique for the rectification of observed distributions,” Astron. J. 79, 745–754 (1974).
    [Crossref]
  18. L. Li, C. Yeh, S. Hu, L. Wang, B. T. Soetikno, R. Chen, Q. Zhou, K. K. Shung, K. I. Maslov, L. V. Wang, “Fully motorized optical-resolution photoacoustic microscopy,” Opt. Lett. 39, 2117–2120 (2014).
    [Crossref]
  19. S. Preibisch, S. Saalfeld, J. Schindelin, P. Tomancak, “Software for bead-based registration of selective plane illumination microscopy data,” Nat. Methods 7, 418–419 (2010).
    [Crossref]
  20. A. N. Tikhonov, V. I. Arsenin, F. John, Solutions of Ill-Posed Problems (Winston, 1977).
  21. L. Gao, L. Zhu, C. Li, L. V. Wang, “Nonlinear light-sheet fluorescence microscopy by photobleaching imprinting,” J. R. Soc. Interface 11, 20130851 (2014).
    [Crossref]
  22. U. Krzic, “Multiple-view microscopy with light-sheet based fluorescence microscope,” Ph.D. thesis (Heidelberg University, 2009).

2014 (5)

L. V. Wang, L. Gao, “Photoacoustic microscopy and computed tomography: from bench to bedside,” Annu. Rev. Biomed. Eng. 16, 155–185 (2014).
[Crossref]

L. Zhu, L. Gao, L. Li, L. Wang, T. Ma, Q. Zhou, K. K. Shung, L. V. Wang, “Cross-optical-beam nonlinear photoacoustic microscopy,” Proc. SPIE 8943, 89433H (2014).

S. Preibisch, F. Amat, E. Stamataki, M. Sarov, E. Myers, P. Tomancak, “Efficient Bayesian-based multi-view deconvolution,” Nat. Methods 11, 645–648 (2014).
[Crossref]

L. Gao, L. Zhu, C. Li, L. V. Wang, “Nonlinear light-sheet fluorescence microscopy by photobleaching imprinting,” J. R. Soc. Interface 11, 20130851 (2014).
[Crossref]

L. Li, C. Yeh, S. Hu, L. Wang, B. T. Soetikno, R. Chen, Q. Zhou, K. K. Shung, K. I. Maslov, L. V. Wang, “Fully motorized optical-resolution photoacoustic microscopy,” Opt. Lett. 39, 2117–2120 (2014).
[Crossref]

2013 (2)

Y. Wu, P. Wawrzusin, J. Senseney, R. S. Fischer, R. Christensen, A. Santella, A. G. York, P. W. Winter, C. M. Waterman, Z. Bao, “Spatially isotropic four-dimensional imaging with dual-view plane illumination microscopy,” Nat. Biotechnol. 31, 1032–1038 (2013).
[Crossref]

S. Hu, L. H. V. Wang, “Optical-resolution photoacoustic microscopy: auscultation of biological systems at the cellular level,” Biophys. J. 105, 841–847 (2013).
[Crossref]

2012 (4)

C. Zhang, K. Maslov, S. Hu, R. M. Chen, Q. F. Zhou, K. K. Shung, L. H. V. Wang, “Reflection-mode submicron-resolution in vivo photoacoustic microscopy,” J. Biomed. Opt. 17, 020501 (2012).
[Crossref]

C. Zhang, K. Maslov, J. J. Yao, L. H. V. Wang, “In vivo photoacoustic microscopy with 7.6-μm axial resolution using a commercial 125-MHz ultrasonic transducer,” J. Biomed. Opt. 17, 116016 (2012).
[Crossref]

L. H. V. Wang, S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335, 1458–1462 (2012).
[Crossref]

S. Ye, R. Yang, J. Xiong, K. K. Shung, Q. Zhou, C. Li, Q. Ren, “Label-free imaging of zebrafish larvae in vivo by photoacoustic microscopy,” Biomed. Opt. Express 3, 360–365 (2012).
[Crossref]

2011 (1)

2010 (2)

S. Preibisch, S. Saalfeld, J. Schindelin, P. Tomancak, “Software for bead-based registration of selective plane illumination microscopy data,” Nat. Methods 7, 418–419 (2010).
[Crossref]

H. J. Bellen, C. Tong, H. Tsuda, “100 years of Drosophila research and its impact on vertebrate neuroscience: a history lesson for the future,” Nat. Rev. Neurosci. 11, 514–522 (2010).
[Crossref]

2009 (1)

D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Köster, V. Ntziachristos, “Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo,” Nat. Photonics 3, 412–417 (2009).
[Crossref]

2002 (1)

D. J. Grunwald, J. S. Eisen, “Headwaters of the zebrafish—emergence of a new model vertebrate,” Nat. Rev. Genet. 3, 717–724 (2002).

1974 (1)

L. Lucy, “An iterative technique for the rectification of observed distributions,” Astron. J. 79, 745–754 (1974).
[Crossref]

1972 (1)

Amat, F.

S. Preibisch, F. Amat, E. Stamataki, M. Sarov, E. Myers, P. Tomancak, “Efficient Bayesian-based multi-view deconvolution,” Nat. Methods 11, 645–648 (2014).
[Crossref]

Applegate, B. E.

R. L. Shelton, S. P. Mattison, B. E. Applegate, “Volumetric imaging of erythrocytes using label-free multiphoton photoacoustic microscopy,” J. Biophotonics, doi: 10.1002/jbio.201300059 (posted online August21, 2013).
[Crossref]

Arsenin, V. I.

A. N. Tikhonov, V. I. Arsenin, F. John, Solutions of Ill-Posed Problems (Winston, 1977).

Bao, Z.

Y. Wu, P. Wawrzusin, J. Senseney, R. S. Fischer, R. Christensen, A. Santella, A. G. York, P. W. Winter, C. M. Waterman, Z. Bao, “Spatially isotropic four-dimensional imaging with dual-view plane illumination microscopy,” Nat. Biotechnol. 31, 1032–1038 (2013).
[Crossref]

Bellen, H. J.

H. J. Bellen, C. Tong, H. Tsuda, “100 years of Drosophila research and its impact on vertebrate neuroscience: a history lesson for the future,” Nat. Rev. Neurosci. 11, 514–522 (2010).
[Crossref]

Carson, P. L.

Chen, R.

Chen, R. M.

C. Zhang, K. Maslov, S. Hu, R. M. Chen, Q. F. Zhou, K. K. Shung, L. H. V. Wang, “Reflection-mode submicron-resolution in vivo photoacoustic microscopy,” J. Biomed. Opt. 17, 020501 (2012).
[Crossref]

Chen, S. L.

Christensen, R.

Y. Wu, P. Wawrzusin, J. Senseney, R. S. Fischer, R. Christensen, A. Santella, A. G. York, P. W. Winter, C. M. Waterman, Z. Bao, “Spatially isotropic four-dimensional imaging with dual-view plane illumination microscopy,” Nat. Biotechnol. 31, 1032–1038 (2013).
[Crossref]

Distel, M.

D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Köster, V. Ntziachristos, “Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo,” Nat. Photonics 3, 412–417 (2009).
[Crossref]

Eisen, J. S.

D. J. Grunwald, J. S. Eisen, “Headwaters of the zebrafish—emergence of a new model vertebrate,” Nat. Rev. Genet. 3, 717–724 (2002).

Fischer, R. S.

Y. Wu, P. Wawrzusin, J. Senseney, R. S. Fischer, R. Christensen, A. Santella, A. G. York, P. W. Winter, C. M. Waterman, Z. Bao, “Spatially isotropic four-dimensional imaging with dual-view plane illumination microscopy,” Nat. Biotechnol. 31, 1032–1038 (2013).
[Crossref]

Gao, L.

L. Zhu, L. Gao, L. Li, L. Wang, T. Ma, Q. Zhou, K. K. Shung, L. V. Wang, “Cross-optical-beam nonlinear photoacoustic microscopy,” Proc. SPIE 8943, 89433H (2014).

L. Gao, L. Zhu, C. Li, L. V. Wang, “Nonlinear light-sheet fluorescence microscopy by photobleaching imprinting,” J. R. Soc. Interface 11, 20130851 (2014).
[Crossref]

L. V. Wang, L. Gao, “Photoacoustic microscopy and computed tomography: from bench to bedside,” Annu. Rev. Biomed. Eng. 16, 155–185 (2014).
[Crossref]

Grunwald, D. J.

D. J. Grunwald, J. S. Eisen, “Headwaters of the zebrafish—emergence of a new model vertebrate,” Nat. Rev. Genet. 3, 717–724 (2002).

Guo, L. J.

Hu, S.

L. Li, C. Yeh, S. Hu, L. Wang, B. T. Soetikno, R. Chen, Q. Zhou, K. K. Shung, K. I. Maslov, L. V. Wang, “Fully motorized optical-resolution photoacoustic microscopy,” Opt. Lett. 39, 2117–2120 (2014).
[Crossref]

S. Hu, L. H. V. Wang, “Optical-resolution photoacoustic microscopy: auscultation of biological systems at the cellular level,” Biophys. J. 105, 841–847 (2013).
[Crossref]

L. H. V. Wang, S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335, 1458–1462 (2012).
[Crossref]

C. Zhang, K. Maslov, S. Hu, R. M. Chen, Q. F. Zhou, K. K. Shung, L. H. V. Wang, “Reflection-mode submicron-resolution in vivo photoacoustic microscopy,” J. Biomed. Opt. 17, 020501 (2012).
[Crossref]

John, F.

A. N. Tikhonov, V. I. Arsenin, F. John, Solutions of Ill-Posed Problems (Winston, 1977).

Köster, R. W.

D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Köster, V. Ntziachristos, “Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo,” Nat. Photonics 3, 412–417 (2009).
[Crossref]

Krzic, U.

U. Krzic, “Multiple-view microscopy with light-sheet based fluorescence microscope,” Ph.D. thesis (Heidelberg University, 2009).

Li, C.

L. Gao, L. Zhu, C. Li, L. V. Wang, “Nonlinear light-sheet fluorescence microscopy by photobleaching imprinting,” J. R. Soc. Interface 11, 20130851 (2014).
[Crossref]

S. Ye, R. Yang, J. Xiong, K. K. Shung, Q. Zhou, C. Li, Q. Ren, “Label-free imaging of zebrafish larvae in vivo by photoacoustic microscopy,” Biomed. Opt. Express 3, 360–365 (2012).
[Crossref]

Li, L.

L. Li, C. Yeh, S. Hu, L. Wang, B. T. Soetikno, R. Chen, Q. Zhou, K. K. Shung, K. I. Maslov, L. V. Wang, “Fully motorized optical-resolution photoacoustic microscopy,” Opt. Lett. 39, 2117–2120 (2014).
[Crossref]

L. Zhu, L. Gao, L. Li, L. Wang, T. Ma, Q. Zhou, K. K. Shung, L. V. Wang, “Cross-optical-beam nonlinear photoacoustic microscopy,” Proc. SPIE 8943, 89433H (2014).

Ling, T.

Lucy, L.

L. Lucy, “An iterative technique for the rectification of observed distributions,” Astron. J. 79, 745–754 (1974).
[Crossref]

Ma, R.

D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Köster, V. Ntziachristos, “Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo,” Nat. Photonics 3, 412–417 (2009).
[Crossref]

Ma, T.

L. Zhu, L. Gao, L. Li, L. Wang, T. Ma, Q. Zhou, K. K. Shung, L. V. Wang, “Cross-optical-beam nonlinear photoacoustic microscopy,” Proc. SPIE 8943, 89433H (2014).

Maslov, K.

C. Zhang, K. Maslov, J. J. Yao, L. H. V. Wang, “In vivo photoacoustic microscopy with 7.6-μm axial resolution using a commercial 125-MHz ultrasonic transducer,” J. Biomed. Opt. 17, 116016 (2012).
[Crossref]

C. Zhang, K. Maslov, S. Hu, R. M. Chen, Q. F. Zhou, K. K. Shung, L. H. V. Wang, “Reflection-mode submicron-resolution in vivo photoacoustic microscopy,” J. Biomed. Opt. 17, 020501 (2012).
[Crossref]

Maslov, K. I.

Mattison, S. P.

R. L. Shelton, S. P. Mattison, B. E. Applegate, “Volumetric imaging of erythrocytes using label-free multiphoton photoacoustic microscopy,” J. Biophotonics, doi: 10.1002/jbio.201300059 (posted online August21, 2013).
[Crossref]

Myers, E.

S. Preibisch, F. Amat, E. Stamataki, M. Sarov, E. Myers, P. Tomancak, “Efficient Bayesian-based multi-view deconvolution,” Nat. Methods 11, 645–648 (2014).
[Crossref]

Ntziachristos, V.

D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Köster, V. Ntziachristos, “Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo,” Nat. Photonics 3, 412–417 (2009).
[Crossref]

Perrimon, N.

D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Köster, V. Ntziachristos, “Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo,” Nat. Photonics 3, 412–417 (2009).
[Crossref]

Preibisch, S.

S. Preibisch, F. Amat, E. Stamataki, M. Sarov, E. Myers, P. Tomancak, “Efficient Bayesian-based multi-view deconvolution,” Nat. Methods 11, 645–648 (2014).
[Crossref]

S. Preibisch, S. Saalfeld, J. Schindelin, P. Tomancak, “Software for bead-based registration of selective plane illumination microscopy data,” Nat. Methods 7, 418–419 (2010).
[Crossref]

Razansky, D.

D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Köster, V. Ntziachristos, “Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo,” Nat. Photonics 3, 412–417 (2009).
[Crossref]

Ren, Q.

Richardson, W. H.

Saalfeld, S.

S. Preibisch, S. Saalfeld, J. Schindelin, P. Tomancak, “Software for bead-based registration of selective plane illumination microscopy data,” Nat. Methods 7, 418–419 (2010).
[Crossref]

Santella, A.

Y. Wu, P. Wawrzusin, J. Senseney, R. S. Fischer, R. Christensen, A. Santella, A. G. York, P. W. Winter, C. M. Waterman, Z. Bao, “Spatially isotropic four-dimensional imaging with dual-view plane illumination microscopy,” Nat. Biotechnol. 31, 1032–1038 (2013).
[Crossref]

Sarov, M.

S. Preibisch, F. Amat, E. Stamataki, M. Sarov, E. Myers, P. Tomancak, “Efficient Bayesian-based multi-view deconvolution,” Nat. Methods 11, 645–648 (2014).
[Crossref]

Schindelin, J.

S. Preibisch, S. Saalfeld, J. Schindelin, P. Tomancak, “Software for bead-based registration of selective plane illumination microscopy data,” Nat. Methods 7, 418–419 (2010).
[Crossref]

Senseney, J.

Y. Wu, P. Wawrzusin, J. Senseney, R. S. Fischer, R. Christensen, A. Santella, A. G. York, P. W. Winter, C. M. Waterman, Z. Bao, “Spatially isotropic four-dimensional imaging with dual-view plane illumination microscopy,” Nat. Biotechnol. 31, 1032–1038 (2013).
[Crossref]

Shelton, R. L.

R. L. Shelton, S. P. Mattison, B. E. Applegate, “Volumetric imaging of erythrocytes using label-free multiphoton photoacoustic microscopy,” J. Biophotonics, doi: 10.1002/jbio.201300059 (posted online August21, 2013).
[Crossref]

Shung, K. K.

L. Zhu, L. Gao, L. Li, L. Wang, T. Ma, Q. Zhou, K. K. Shung, L. V. Wang, “Cross-optical-beam nonlinear photoacoustic microscopy,” Proc. SPIE 8943, 89433H (2014).

L. Li, C. Yeh, S. Hu, L. Wang, B. T. Soetikno, R. Chen, Q. Zhou, K. K. Shung, K. I. Maslov, L. V. Wang, “Fully motorized optical-resolution photoacoustic microscopy,” Opt. Lett. 39, 2117–2120 (2014).
[Crossref]

S. Ye, R. Yang, J. Xiong, K. K. Shung, Q. Zhou, C. Li, Q. Ren, “Label-free imaging of zebrafish larvae in vivo by photoacoustic microscopy,” Biomed. Opt. Express 3, 360–365 (2012).
[Crossref]

C. Zhang, K. Maslov, S. Hu, R. M. Chen, Q. F. Zhou, K. K. Shung, L. H. V. Wang, “Reflection-mode submicron-resolution in vivo photoacoustic microscopy,” J. Biomed. Opt. 17, 020501 (2012).
[Crossref]

Soetikno, B. T.

Stamataki, E.

S. Preibisch, F. Amat, E. Stamataki, M. Sarov, E. Myers, P. Tomancak, “Efficient Bayesian-based multi-view deconvolution,” Nat. Methods 11, 645–648 (2014).
[Crossref]

Tikhonov, A. N.

A. N. Tikhonov, V. I. Arsenin, F. John, Solutions of Ill-Posed Problems (Winston, 1977).

Tomancak, P.

S. Preibisch, F. Amat, E. Stamataki, M. Sarov, E. Myers, P. Tomancak, “Efficient Bayesian-based multi-view deconvolution,” Nat. Methods 11, 645–648 (2014).
[Crossref]

S. Preibisch, S. Saalfeld, J. Schindelin, P. Tomancak, “Software for bead-based registration of selective plane illumination microscopy data,” Nat. Methods 7, 418–419 (2010).
[Crossref]

Tong, C.

H. J. Bellen, C. Tong, H. Tsuda, “100 years of Drosophila research and its impact on vertebrate neuroscience: a history lesson for the future,” Nat. Rev. Neurosci. 11, 514–522 (2010).
[Crossref]

Tsuda, H.

H. J. Bellen, C. Tong, H. Tsuda, “100 years of Drosophila research and its impact on vertebrate neuroscience: a history lesson for the future,” Nat. Rev. Neurosci. 11, 514–522 (2010).
[Crossref]

Vinegoni, C.

D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Köster, V. Ntziachristos, “Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo,” Nat. Photonics 3, 412–417 (2009).
[Crossref]

Wang, L.

L. Zhu, L. Gao, L. Li, L. Wang, T. Ma, Q. Zhou, K. K. Shung, L. V. Wang, “Cross-optical-beam nonlinear photoacoustic microscopy,” Proc. SPIE 8943, 89433H (2014).

L. Li, C. Yeh, S. Hu, L. Wang, B. T. Soetikno, R. Chen, Q. Zhou, K. K. Shung, K. I. Maslov, L. V. Wang, “Fully motorized optical-resolution photoacoustic microscopy,” Opt. Lett. 39, 2117–2120 (2014).
[Crossref]

Wang, L. H. V.

S. Hu, L. H. V. Wang, “Optical-resolution photoacoustic microscopy: auscultation of biological systems at the cellular level,” Biophys. J. 105, 841–847 (2013).
[Crossref]

L. H. V. Wang, S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335, 1458–1462 (2012).
[Crossref]

C. Zhang, K. Maslov, S. Hu, R. M. Chen, Q. F. Zhou, K. K. Shung, L. H. V. Wang, “Reflection-mode submicron-resolution in vivo photoacoustic microscopy,” J. Biomed. Opt. 17, 020501 (2012).
[Crossref]

C. Zhang, K. Maslov, J. J. Yao, L. H. V. Wang, “In vivo photoacoustic microscopy with 7.6-μm axial resolution using a commercial 125-MHz ultrasonic transducer,” J. Biomed. Opt. 17, 116016 (2012).
[Crossref]

Wang, L. V.

L. V. Wang, L. Gao, “Photoacoustic microscopy and computed tomography: from bench to bedside,” Annu. Rev. Biomed. Eng. 16, 155–185 (2014).
[Crossref]

L. Zhu, L. Gao, L. Li, L. Wang, T. Ma, Q. Zhou, K. K. Shung, L. V. Wang, “Cross-optical-beam nonlinear photoacoustic microscopy,” Proc. SPIE 8943, 89433H (2014).

L. Gao, L. Zhu, C. Li, L. V. Wang, “Nonlinear light-sheet fluorescence microscopy by photobleaching imprinting,” J. R. Soc. Interface 11, 20130851 (2014).
[Crossref]

L. Li, C. Yeh, S. Hu, L. Wang, B. T. Soetikno, R. Chen, Q. Zhou, K. K. Shung, K. I. Maslov, L. V. Wang, “Fully motorized optical-resolution photoacoustic microscopy,” Opt. Lett. 39, 2117–2120 (2014).
[Crossref]

L. V. Wang, H. Wu, Biomedical Optics: Principles and Imaging (Wiley, 2012).

Wang, X. D.

Waterman, C. M.

Y. Wu, P. Wawrzusin, J. Senseney, R. S. Fischer, R. Christensen, A. Santella, A. G. York, P. W. Winter, C. M. Waterman, Z. Bao, “Spatially isotropic four-dimensional imaging with dual-view plane illumination microscopy,” Nat. Biotechnol. 31, 1032–1038 (2013).
[Crossref]

Wawrzusin, P.

Y. Wu, P. Wawrzusin, J. Senseney, R. S. Fischer, R. Christensen, A. Santella, A. G. York, P. W. Winter, C. M. Waterman, Z. Bao, “Spatially isotropic four-dimensional imaging with dual-view plane illumination microscopy,” Nat. Biotechnol. 31, 1032–1038 (2013).
[Crossref]

Winter, P. W.

Y. Wu, P. Wawrzusin, J. Senseney, R. S. Fischer, R. Christensen, A. Santella, A. G. York, P. W. Winter, C. M. Waterman, Z. Bao, “Spatially isotropic four-dimensional imaging with dual-view plane illumination microscopy,” Nat. Biotechnol. 31, 1032–1038 (2013).
[Crossref]

Wu, H.

L. V. Wang, H. Wu, Biomedical Optics: Principles and Imaging (Wiley, 2012).

Wu, Y.

Y. Wu, P. Wawrzusin, J. Senseney, R. S. Fischer, R. Christensen, A. Santella, A. G. York, P. W. Winter, C. M. Waterman, Z. Bao, “Spatially isotropic four-dimensional imaging with dual-view plane illumination microscopy,” Nat. Biotechnol. 31, 1032–1038 (2013).
[Crossref]

Xie, Z. X.

Xiong, J.

Yang, R.

Yao, J. J.

C. Zhang, K. Maslov, J. J. Yao, L. H. V. Wang, “In vivo photoacoustic microscopy with 7.6-μm axial resolution using a commercial 125-MHz ultrasonic transducer,” J. Biomed. Opt. 17, 116016 (2012).
[Crossref]

Ye, S.

Yeh, C.

York, A. G.

Y. Wu, P. Wawrzusin, J. Senseney, R. S. Fischer, R. Christensen, A. Santella, A. G. York, P. W. Winter, C. M. Waterman, Z. Bao, “Spatially isotropic four-dimensional imaging with dual-view plane illumination microscopy,” Nat. Biotechnol. 31, 1032–1038 (2013).
[Crossref]

Zhang, C.

C. Zhang, K. Maslov, J. J. Yao, L. H. V. Wang, “In vivo photoacoustic microscopy with 7.6-μm axial resolution using a commercial 125-MHz ultrasonic transducer,” J. Biomed. Opt. 17, 116016 (2012).
[Crossref]

C. Zhang, K. Maslov, S. Hu, R. M. Chen, Q. F. Zhou, K. K. Shung, L. H. V. Wang, “Reflection-mode submicron-resolution in vivo photoacoustic microscopy,” J. Biomed. Opt. 17, 020501 (2012).
[Crossref]

Zhou, Q.

Zhou, Q. F.

C. Zhang, K. Maslov, S. Hu, R. M. Chen, Q. F. Zhou, K. K. Shung, L. H. V. Wang, “Reflection-mode submicron-resolution in vivo photoacoustic microscopy,” J. Biomed. Opt. 17, 020501 (2012).
[Crossref]

Zhu, L.

L. Zhu, L. Gao, L. Li, L. Wang, T. Ma, Q. Zhou, K. K. Shung, L. V. Wang, “Cross-optical-beam nonlinear photoacoustic microscopy,” Proc. SPIE 8943, 89433H (2014).

L. Gao, L. Zhu, C. Li, L. V. Wang, “Nonlinear light-sheet fluorescence microscopy by photobleaching imprinting,” J. R. Soc. Interface 11, 20130851 (2014).
[Crossref]

Annu. Rev. Biomed. Eng. (1)

L. V. Wang, L. Gao, “Photoacoustic microscopy and computed tomography: from bench to bedside,” Annu. Rev. Biomed. Eng. 16, 155–185 (2014).
[Crossref]

Astron. J. (1)

L. Lucy, “An iterative technique for the rectification of observed distributions,” Astron. J. 79, 745–754 (1974).
[Crossref]

Biomed. Opt. Express (1)

Biophys. J. (1)

S. Hu, L. H. V. Wang, “Optical-resolution photoacoustic microscopy: auscultation of biological systems at the cellular level,” Biophys. J. 105, 841–847 (2013).
[Crossref]

J. Biomed. Opt. (2)

C. Zhang, K. Maslov, S. Hu, R. M. Chen, Q. F. Zhou, K. K. Shung, L. H. V. Wang, “Reflection-mode submicron-resolution in vivo photoacoustic microscopy,” J. Biomed. Opt. 17, 020501 (2012).
[Crossref]

C. Zhang, K. Maslov, J. J. Yao, L. H. V. Wang, “In vivo photoacoustic microscopy with 7.6-μm axial resolution using a commercial 125-MHz ultrasonic transducer,” J. Biomed. Opt. 17, 116016 (2012).
[Crossref]

J. Opt. Soc. Am. (1)

J. R. Soc. Interface (1)

L. Gao, L. Zhu, C. Li, L. V. Wang, “Nonlinear light-sheet fluorescence microscopy by photobleaching imprinting,” J. R. Soc. Interface 11, 20130851 (2014).
[Crossref]

Nat. Biotechnol. (1)

Y. Wu, P. Wawrzusin, J. Senseney, R. S. Fischer, R. Christensen, A. Santella, A. G. York, P. W. Winter, C. M. Waterman, Z. Bao, “Spatially isotropic four-dimensional imaging with dual-view plane illumination microscopy,” Nat. Biotechnol. 31, 1032–1038 (2013).
[Crossref]

Nat. Methods (2)

S. Preibisch, F. Amat, E. Stamataki, M. Sarov, E. Myers, P. Tomancak, “Efficient Bayesian-based multi-view deconvolution,” Nat. Methods 11, 645–648 (2014).
[Crossref]

S. Preibisch, S. Saalfeld, J. Schindelin, P. Tomancak, “Software for bead-based registration of selective plane illumination microscopy data,” Nat. Methods 7, 418–419 (2010).
[Crossref]

Nat. Photonics (1)

D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Köster, V. Ntziachristos, “Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo,” Nat. Photonics 3, 412–417 (2009).
[Crossref]

Nat. Rev. Genet. (1)

D. J. Grunwald, J. S. Eisen, “Headwaters of the zebrafish—emergence of a new model vertebrate,” Nat. Rev. Genet. 3, 717–724 (2002).

Nat. Rev. Neurosci. (1)

H. J. Bellen, C. Tong, H. Tsuda, “100 years of Drosophila research and its impact on vertebrate neuroscience: a history lesson for the future,” Nat. Rev. Neurosci. 11, 514–522 (2010).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Proc. SPIE (1)

L. Zhu, L. Gao, L. Li, L. Wang, T. Ma, Q. Zhou, K. K. Shung, L. V. Wang, “Cross-optical-beam nonlinear photoacoustic microscopy,” Proc. SPIE 8943, 89433H (2014).

Science (1)

L. H. V. Wang, S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335, 1458–1462 (2012).
[Crossref]

Other (4)

L. V. Wang, H. Wu, Biomedical Optics: Principles and Imaging (Wiley, 2012).

R. L. Shelton, S. P. Mattison, B. E. Applegate, “Volumetric imaging of erythrocytes using label-free multiphoton photoacoustic microscopy,” J. Biophotonics, doi: 10.1002/jbio.201300059 (posted online August21, 2013).
[Crossref]

A. N. Tikhonov, V. I. Arsenin, F. John, Solutions of Ill-Posed Problems (Winston, 1977).

U. Krzic, “Multiple-view microscopy with light-sheet based fluorescence microscope,” Ph.D. thesis (Heidelberg University, 2009).

Supplementary Material (2)

» Media 1: AVI (9892 KB)     
» Media 2: AVI (6599 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Principle and simulation of MV-OR-PAM. (a) Imaging two closely located (2 μm apart) point absorbers at angle 0° when the lab coordinate system is identical to the sample’s local-coordinate system. (b) Rotate the sample by 90° and image it again. Notice the orientations of the absorbers and the local system are changed. (c), (d) Acquired images from (a) and (b) under the global-coordinate system. (e) Reconstructed image using MV-OR-PAM under the local-coordinate system. (f) Ground truth image (blurred for display) of the two absorbers.
Fig. 2.
Fig. 2. Simulating the effect of the number of views on axial resolution and resolution isotropy. Views were spaced evenly within a 180° angle. Notice the left y axis is log scaled.
Fig. 3.
Fig. 3. Schematic of the MV-OR-PAM system. L1, condenser lens; L2, fiber collimator lens; L3, objective lens; L4, compensation lens; UST, ultrasound transducer. Both optical and acoustic axes are along the z direction under the lab coordinate system, and the rotation axis is along the x direction of the lab coordinate system.
Fig. 4.
Fig. 4. Quantification of improvement of axial resolution and resolution isotropy. Image slices perpendicular to rotation axis (original B-scan plane) from (a) single-view and (b) reconstructed 3D volume data. (c) Arithmetic fusion of the two views at the same area as in (a) and (b), showing overlap between the two views. (d) Lateral line profiles from single-view and reconstructed volume, indicated by the horizontal arrows marked as “L” in panels (a) and (b). (e) Axial line profiles extracted along the depth direction from single-view image (a) and along the worst-resolution direction from the reconstructed image (b), both marked as “A”. (f), (g) Volumetric rendering of single-view dataset and reconstructed dataset. See Media 1 for a full view angle rendering of these two datasets.
Fig. 5.
Fig. 5. Single-view and reconstructed images of zebrafish ex vivo. (a), (b) MAP images along the y axis of the single-view image at 0° and the reconstructed image of MV-OR-PAM, respectively. (c), (d) Close-up of the region marked by the white, dashed boxes from panels (a) and (b), respectively. (e) Signal profiles along the white, dashed lines in panels (c) and (d). (f), (g) Volumetric rendering of the two single-view images at 0° and 90°, respectively. (h) Volumetric rendering of the reconstructed image from the same angle as in (f) and (g). See Media 2 for a full view angle rendering of these three datasets.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

I(r,z)=[f(r,z)*rgo(r,z)]*zga(z).
I(r,z)=f(r,z)*g(r,z),
Iv(r,z)=f(r,z)*Tv{g(r0,z0)}(r,z).
u0=I0f^(r)*g0*g0,
u90=I90f^(r)*g90*g90,
f^(r+1)=f^(r)·u0·u90,

Metrics