Abstract

Semiconductor disk lasers have been shown to be ideal as wavelength-agile, high-brightness sources for producing high average power under various pulsed mode-locking scenarios. Systematic microscopic modeling reveals that ultrafast nonequilibrium kinetic hole burning in electron/hole carrier distributions dictates the outcome of femtosecond duration mode-locked pulse formation. The existence of a large reservoir of unsaturated carriers within the inverted distributions leads to the emergence of multiple pulse waveforms (not necessarily harmonically mode-locked pulse trains) that inefficiently draw on these carrier reservoirs. The concept of gain is no longer meaningful in this limit, and the dynamical inversion of electrons and holes primarily in the active medium establishes the final dynamical state of the system. The simulation results explain much of the generic behavior observed in key recent experiments and point to the difficulty of pushing semiconductor mode-locked lasers to pulse durations below 100 fs.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Nonequilibrium and thermal effects in mode-locked VECSELs

J.V Moloney, I. Kilen, A. Bäumner, M. Scheller, and S.W. Koch
Opt. Express 22(6) 6422-6427 (2014)

Non-equilibrium ultrashort pulse generation strategies in VECSELs

I. Kilen, S. W. Koch, J. Hader, and J. V. Moloney
Optica 4(4) 412-417 (2017)

Fully microscopic modeling of mode locking in microcavity lasers

I. Kilen, S. W. Koch, J. Hader, and J. V. Moloney
J. Opt. Soc. Am. B 33(1) 75-80 (2016)

References

  • View by:
  • |
  • |
  • |

  1. B. Heinen, T.-L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, W. Stolz, “106  W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett. 48, 516 (2012).
    [Crossref]
  2. T.-L. Wang, B. Heinen, J. Hader, C. Dineen, M. Sparenberg, A. Weber, B. Kunert, S. W. Koch, J. V. Moloney, M. Koch, W. Stolz, “Quantum design strategy pushes high-power vertical external cavity surface emitting lasers beyond 100  W,” Laser Photon. Rev. 6, L12–L14 (2012).
    [Crossref]
  3. A. Laurain, C. Mart, J. Hader, J. V. Moloney, B. Kunert, W. Stolz, “15  W single frequency optically pumped semiconductor laser with sub-MHz linewidth,” IEEE Photon. Technol. Lett. 26, 131–133 (2014).
    [Crossref]
  4. M. Scheller, T.-L. Wang, B. Kunert, W. Stolz, S. W. Koch, J. V. Moloney, “Passively mode-locked VECSEL emitting 682  fs pulses with 5.1  W of average output power,” Electron. Lett. 48, 588–589 (2012).
    [Crossref]
  5. K. G. Wilcox, A. C. Tropper, H. E. Beere, D. A. Ritchie, B. Kunert, B. Heinen, W. Stolz, “4.35  kW peak power femtosecond pulse mode-locked VECSEL for supercontinuum generation,” Opt. Express 21, 1599–1605 (2013).
    [Crossref]
  6. M. Hoffmann, O. D. Sieber, V. J. Wittwer, I. L. Krestnikov, D. A. Livshits, Y. Barbarin, T. Südmeyer, U. Keller, “Femtosecond high-power quantum dot vertical external cavity surface emitting laser,” Opt. Express 19, 8108–8116 (2011).
    [Crossref]
  7. C. A. Zaugg, Z. Sun, V. J. Wittwer, D. Popa, S. Milana, T. S. Kulmala, R. S. Sundaram, M. Mangold, O. D. Sieber, M. Golling, Y. Lee, J. H. Ahn, A. C. Ferrari, U. Keller, “Ultrafast and widely tuneable vertical-external-cavity surface-emitting laser, mode-locked by a graphene-integrated distributed Bragg reflector,” Opt. Express 21, 31548–31559 (2013).
    [Crossref]
  8. S. Husaini, R. A. Bedford, “Antiresonant graphene saturable absorber mirror for mode-locking VECSELs,” (private communication, 2013).
  9. K. Seger, N. Meiser, S. Y. Choi, B. H. Jung, D.-I. Yeom, F. Rotermund, O. Okhotnikov, F. Laurell, V. Pasiskevicius, “Carbon nanotube mode-locked optically-pumped semiconductor disk laser,” Opt. Express 21, 17806–17813 (2013).
    [Crossref]
  10. P. Klopp, U. Griebner, M. Zorn, M. Weyers, “Pulse repetition rate of 92  GHz or pulse duration shorter than 110  fs from a mode-locked semiconductor disk laser,” Appl. Phys. Lett. 98, 071103 (2011).
    [Crossref]
  11. A. H. Quarterman, K. G. Wilcox, V. Apostolopoulos, Z. Mihoubi, S. P. Elsmere, I. Farrer, D. A. Ritchie, A. Tropper, “A passively mode-locked external-cavity semiconductor laser emitting 60-fs pulses,” Nat. Photonics 3, 729–731 (2009).
    [Crossref]
  12. O. D. Sieber, M. Hoffmann, V. J. Wittwer, M. Mangold, M. Golling, B. W. Tilma, T. Südmeyer, U. Keller, “Experimentally verified pulse formation model for high-power femtosecond VECSELs,” Appl. Phys. B 113, 133–145 (2013).
    [Crossref]
  13. H. Haug, S. W. Koch, Quantum Theory of the Optical and Electronic Properties of Semiconductors (World Scientific, 2009).
  14. A. Baumner, S. W. Koch, J. V. Moloney, “Non-equilibrium analysis of the two-color operation in semiconductor quantum-well lasers,” Phys. Status Solidi B 248, 843–846 (2011).
    [Crossref]
  15. J. V. Moloney, I. Kilen, A. Bäumner, M. Scheller, S. W. Koch, “Nonequilibrium and thermal effects in mode-locked VECSELs,” Opt. Express 22, 6422–6427 (2014).
    [Crossref]
  16. H. A. Haus, “Mode-locking of lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 1173–1185 (2000).
    [Crossref]

2014 (2)

A. Laurain, C. Mart, J. Hader, J. V. Moloney, B. Kunert, W. Stolz, “15  W single frequency optically pumped semiconductor laser with sub-MHz linewidth,” IEEE Photon. Technol. Lett. 26, 131–133 (2014).
[Crossref]

J. V. Moloney, I. Kilen, A. Bäumner, M. Scheller, S. W. Koch, “Nonequilibrium and thermal effects in mode-locked VECSELs,” Opt. Express 22, 6422–6427 (2014).
[Crossref]

2013 (4)

2012 (3)

B. Heinen, T.-L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, W. Stolz, “106  W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett. 48, 516 (2012).
[Crossref]

T.-L. Wang, B. Heinen, J. Hader, C. Dineen, M. Sparenberg, A. Weber, B. Kunert, S. W. Koch, J. V. Moloney, M. Koch, W. Stolz, “Quantum design strategy pushes high-power vertical external cavity surface emitting lasers beyond 100  W,” Laser Photon. Rev. 6, L12–L14 (2012).
[Crossref]

M. Scheller, T.-L. Wang, B. Kunert, W. Stolz, S. W. Koch, J. V. Moloney, “Passively mode-locked VECSEL emitting 682  fs pulses with 5.1  W of average output power,” Electron. Lett. 48, 588–589 (2012).
[Crossref]

2011 (3)

P. Klopp, U. Griebner, M. Zorn, M. Weyers, “Pulse repetition rate of 92  GHz or pulse duration shorter than 110  fs from a mode-locked semiconductor disk laser,” Appl. Phys. Lett. 98, 071103 (2011).
[Crossref]

A. Baumner, S. W. Koch, J. V. Moloney, “Non-equilibrium analysis of the two-color operation in semiconductor quantum-well lasers,” Phys. Status Solidi B 248, 843–846 (2011).
[Crossref]

M. Hoffmann, O. D. Sieber, V. J. Wittwer, I. L. Krestnikov, D. A. Livshits, Y. Barbarin, T. Südmeyer, U. Keller, “Femtosecond high-power quantum dot vertical external cavity surface emitting laser,” Opt. Express 19, 8108–8116 (2011).
[Crossref]

2009 (1)

A. H. Quarterman, K. G. Wilcox, V. Apostolopoulos, Z. Mihoubi, S. P. Elsmere, I. Farrer, D. A. Ritchie, A. Tropper, “A passively mode-locked external-cavity semiconductor laser emitting 60-fs pulses,” Nat. Photonics 3, 729–731 (2009).
[Crossref]

2000 (1)

H. A. Haus, “Mode-locking of lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 1173–1185 (2000).
[Crossref]

Ahn, J. H.

Apostolopoulos, V.

A. H. Quarterman, K. G. Wilcox, V. Apostolopoulos, Z. Mihoubi, S. P. Elsmere, I. Farrer, D. A. Ritchie, A. Tropper, “A passively mode-locked external-cavity semiconductor laser emitting 60-fs pulses,” Nat. Photonics 3, 729–731 (2009).
[Crossref]

Barbarin, Y.

Baumner, A.

A. Baumner, S. W. Koch, J. V. Moloney, “Non-equilibrium analysis of the two-color operation in semiconductor quantum-well lasers,” Phys. Status Solidi B 248, 843–846 (2011).
[Crossref]

Bäumner, A.

Bedford, R. A.

S. Husaini, R. A. Bedford, “Antiresonant graphene saturable absorber mirror for mode-locking VECSELs,” (private communication, 2013).

Beere, H. E.

Choi, S. Y.

Dineen, C.

T.-L. Wang, B. Heinen, J. Hader, C. Dineen, M. Sparenberg, A. Weber, B. Kunert, S. W. Koch, J. V. Moloney, M. Koch, W. Stolz, “Quantum design strategy pushes high-power vertical external cavity surface emitting lasers beyond 100  W,” Laser Photon. Rev. 6, L12–L14 (2012).
[Crossref]

Elsmere, S. P.

A. H. Quarterman, K. G. Wilcox, V. Apostolopoulos, Z. Mihoubi, S. P. Elsmere, I. Farrer, D. A. Ritchie, A. Tropper, “A passively mode-locked external-cavity semiconductor laser emitting 60-fs pulses,” Nat. Photonics 3, 729–731 (2009).
[Crossref]

Farrer, I.

A. H. Quarterman, K. G. Wilcox, V. Apostolopoulos, Z. Mihoubi, S. P. Elsmere, I. Farrer, D. A. Ritchie, A. Tropper, “A passively mode-locked external-cavity semiconductor laser emitting 60-fs pulses,” Nat. Photonics 3, 729–731 (2009).
[Crossref]

Ferrari, A. C.

Golling, M.

Griebner, U.

P. Klopp, U. Griebner, M. Zorn, M. Weyers, “Pulse repetition rate of 92  GHz or pulse duration shorter than 110  fs from a mode-locked semiconductor disk laser,” Appl. Phys. Lett. 98, 071103 (2011).
[Crossref]

Hader, J.

A. Laurain, C. Mart, J. Hader, J. V. Moloney, B. Kunert, W. Stolz, “15  W single frequency optically pumped semiconductor laser with sub-MHz linewidth,” IEEE Photon. Technol. Lett. 26, 131–133 (2014).
[Crossref]

T.-L. Wang, B. Heinen, J. Hader, C. Dineen, M. Sparenberg, A. Weber, B. Kunert, S. W. Koch, J. V. Moloney, M. Koch, W. Stolz, “Quantum design strategy pushes high-power vertical external cavity surface emitting lasers beyond 100  W,” Laser Photon. Rev. 6, L12–L14 (2012).
[Crossref]

B. Heinen, T.-L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, W. Stolz, “106  W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett. 48, 516 (2012).
[Crossref]

Haug, H.

H. Haug, S. W. Koch, Quantum Theory of the Optical and Electronic Properties of Semiconductors (World Scientific, 2009).

Haus, H. A.

H. A. Haus, “Mode-locking of lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 1173–1185 (2000).
[Crossref]

Heinen, B.

K. G. Wilcox, A. C. Tropper, H. E. Beere, D. A. Ritchie, B. Kunert, B. Heinen, W. Stolz, “4.35  kW peak power femtosecond pulse mode-locked VECSEL for supercontinuum generation,” Opt. Express 21, 1599–1605 (2013).
[Crossref]

B. Heinen, T.-L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, W. Stolz, “106  W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett. 48, 516 (2012).
[Crossref]

T.-L. Wang, B. Heinen, J. Hader, C. Dineen, M. Sparenberg, A. Weber, B. Kunert, S. W. Koch, J. V. Moloney, M. Koch, W. Stolz, “Quantum design strategy pushes high-power vertical external cavity surface emitting lasers beyond 100  W,” Laser Photon. Rev. 6, L12–L14 (2012).
[Crossref]

Hoffmann, M.

O. D. Sieber, M. Hoffmann, V. J. Wittwer, M. Mangold, M. Golling, B. W. Tilma, T. Südmeyer, U. Keller, “Experimentally verified pulse formation model for high-power femtosecond VECSELs,” Appl. Phys. B 113, 133–145 (2013).
[Crossref]

M. Hoffmann, O. D. Sieber, V. J. Wittwer, I. L. Krestnikov, D. A. Livshits, Y. Barbarin, T. Südmeyer, U. Keller, “Femtosecond high-power quantum dot vertical external cavity surface emitting laser,” Opt. Express 19, 8108–8116 (2011).
[Crossref]

Husaini, S.

S. Husaini, R. A. Bedford, “Antiresonant graphene saturable absorber mirror for mode-locking VECSELs,” (private communication, 2013).

Jung, B. H.

Keller, U.

Kilen, I.

Klopp, P.

P. Klopp, U. Griebner, M. Zorn, M. Weyers, “Pulse repetition rate of 92  GHz or pulse duration shorter than 110  fs from a mode-locked semiconductor disk laser,” Appl. Phys. Lett. 98, 071103 (2011).
[Crossref]

Koch, M.

B. Heinen, T.-L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, W. Stolz, “106  W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett. 48, 516 (2012).
[Crossref]

T.-L. Wang, B. Heinen, J. Hader, C. Dineen, M. Sparenberg, A. Weber, B. Kunert, S. W. Koch, J. V. Moloney, M. Koch, W. Stolz, “Quantum design strategy pushes high-power vertical external cavity surface emitting lasers beyond 100  W,” Laser Photon. Rev. 6, L12–L14 (2012).
[Crossref]

Koch, S. W.

J. V. Moloney, I. Kilen, A. Bäumner, M. Scheller, S. W. Koch, “Nonequilibrium and thermal effects in mode-locked VECSELs,” Opt. Express 22, 6422–6427 (2014).
[Crossref]

M. Scheller, T.-L. Wang, B. Kunert, W. Stolz, S. W. Koch, J. V. Moloney, “Passively mode-locked VECSEL emitting 682  fs pulses with 5.1  W of average output power,” Electron. Lett. 48, 588–589 (2012).
[Crossref]

B. Heinen, T.-L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, W. Stolz, “106  W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett. 48, 516 (2012).
[Crossref]

T.-L. Wang, B. Heinen, J. Hader, C. Dineen, M. Sparenberg, A. Weber, B. Kunert, S. W. Koch, J. V. Moloney, M. Koch, W. Stolz, “Quantum design strategy pushes high-power vertical external cavity surface emitting lasers beyond 100  W,” Laser Photon. Rev. 6, L12–L14 (2012).
[Crossref]

A. Baumner, S. W. Koch, J. V. Moloney, “Non-equilibrium analysis of the two-color operation in semiconductor quantum-well lasers,” Phys. Status Solidi B 248, 843–846 (2011).
[Crossref]

H. Haug, S. W. Koch, Quantum Theory of the Optical and Electronic Properties of Semiconductors (World Scientific, 2009).

Krestnikov, I. L.

Kulmala, T. S.

Kunert, B.

A. Laurain, C. Mart, J. Hader, J. V. Moloney, B. Kunert, W. Stolz, “15  W single frequency optically pumped semiconductor laser with sub-MHz linewidth,” IEEE Photon. Technol. Lett. 26, 131–133 (2014).
[Crossref]

K. G. Wilcox, A. C. Tropper, H. E. Beere, D. A. Ritchie, B. Kunert, B. Heinen, W. Stolz, “4.35  kW peak power femtosecond pulse mode-locked VECSEL for supercontinuum generation,” Opt. Express 21, 1599–1605 (2013).
[Crossref]

M. Scheller, T.-L. Wang, B. Kunert, W. Stolz, S. W. Koch, J. V. Moloney, “Passively mode-locked VECSEL emitting 682  fs pulses with 5.1  W of average output power,” Electron. Lett. 48, 588–589 (2012).
[Crossref]

T.-L. Wang, B. Heinen, J. Hader, C. Dineen, M. Sparenberg, A. Weber, B. Kunert, S. W. Koch, J. V. Moloney, M. Koch, W. Stolz, “Quantum design strategy pushes high-power vertical external cavity surface emitting lasers beyond 100  W,” Laser Photon. Rev. 6, L12–L14 (2012).
[Crossref]

B. Heinen, T.-L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, W. Stolz, “106  W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett. 48, 516 (2012).
[Crossref]

Laurain, A.

A. Laurain, C. Mart, J. Hader, J. V. Moloney, B. Kunert, W. Stolz, “15  W single frequency optically pumped semiconductor laser with sub-MHz linewidth,” IEEE Photon. Technol. Lett. 26, 131–133 (2014).
[Crossref]

Laurell, F.

Lee, Y.

Livshits, D. A.

Mangold, M.

Mart, C.

A. Laurain, C. Mart, J. Hader, J. V. Moloney, B. Kunert, W. Stolz, “15  W single frequency optically pumped semiconductor laser with sub-MHz linewidth,” IEEE Photon. Technol. Lett. 26, 131–133 (2014).
[Crossref]

Meiser, N.

Mihoubi, Z.

A. H. Quarterman, K. G. Wilcox, V. Apostolopoulos, Z. Mihoubi, S. P. Elsmere, I. Farrer, D. A. Ritchie, A. Tropper, “A passively mode-locked external-cavity semiconductor laser emitting 60-fs pulses,” Nat. Photonics 3, 729–731 (2009).
[Crossref]

Milana, S.

Moloney, J. V.

J. V. Moloney, I. Kilen, A. Bäumner, M. Scheller, S. W. Koch, “Nonequilibrium and thermal effects in mode-locked VECSELs,” Opt. Express 22, 6422–6427 (2014).
[Crossref]

A. Laurain, C. Mart, J. Hader, J. V. Moloney, B. Kunert, W. Stolz, “15  W single frequency optically pumped semiconductor laser with sub-MHz linewidth,” IEEE Photon. Technol. Lett. 26, 131–133 (2014).
[Crossref]

M. Scheller, T.-L. Wang, B. Kunert, W. Stolz, S. W. Koch, J. V. Moloney, “Passively mode-locked VECSEL emitting 682  fs pulses with 5.1  W of average output power,” Electron. Lett. 48, 588–589 (2012).
[Crossref]

T.-L. Wang, B. Heinen, J. Hader, C. Dineen, M. Sparenberg, A. Weber, B. Kunert, S. W. Koch, J. V. Moloney, M. Koch, W. Stolz, “Quantum design strategy pushes high-power vertical external cavity surface emitting lasers beyond 100  W,” Laser Photon. Rev. 6, L12–L14 (2012).
[Crossref]

B. Heinen, T.-L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, W. Stolz, “106  W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett. 48, 516 (2012).
[Crossref]

A. Baumner, S. W. Koch, J. V. Moloney, “Non-equilibrium analysis of the two-color operation in semiconductor quantum-well lasers,” Phys. Status Solidi B 248, 843–846 (2011).
[Crossref]

Okhotnikov, O.

Pasiskevicius, V.

Popa, D.

Quarterman, A. H.

A. H. Quarterman, K. G. Wilcox, V. Apostolopoulos, Z. Mihoubi, S. P. Elsmere, I. Farrer, D. A. Ritchie, A. Tropper, “A passively mode-locked external-cavity semiconductor laser emitting 60-fs pulses,” Nat. Photonics 3, 729–731 (2009).
[Crossref]

Ritchie, D. A.

K. G. Wilcox, A. C. Tropper, H. E. Beere, D. A. Ritchie, B. Kunert, B. Heinen, W. Stolz, “4.35  kW peak power femtosecond pulse mode-locked VECSEL for supercontinuum generation,” Opt. Express 21, 1599–1605 (2013).
[Crossref]

A. H. Quarterman, K. G. Wilcox, V. Apostolopoulos, Z. Mihoubi, S. P. Elsmere, I. Farrer, D. A. Ritchie, A. Tropper, “A passively mode-locked external-cavity semiconductor laser emitting 60-fs pulses,” Nat. Photonics 3, 729–731 (2009).
[Crossref]

Rotermund, F.

Scheller, M.

J. V. Moloney, I. Kilen, A. Bäumner, M. Scheller, S. W. Koch, “Nonequilibrium and thermal effects in mode-locked VECSELs,” Opt. Express 22, 6422–6427 (2014).
[Crossref]

M. Scheller, T.-L. Wang, B. Kunert, W. Stolz, S. W. Koch, J. V. Moloney, “Passively mode-locked VECSEL emitting 682  fs pulses with 5.1  W of average output power,” Electron. Lett. 48, 588–589 (2012).
[Crossref]

Seger, K.

Sieber, O. D.

Sparenberg, M.

B. Heinen, T.-L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, W. Stolz, “106  W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett. 48, 516 (2012).
[Crossref]

T.-L. Wang, B. Heinen, J. Hader, C. Dineen, M. Sparenberg, A. Weber, B. Kunert, S. W. Koch, J. V. Moloney, M. Koch, W. Stolz, “Quantum design strategy pushes high-power vertical external cavity surface emitting lasers beyond 100  W,” Laser Photon. Rev. 6, L12–L14 (2012).
[Crossref]

Stolz, W.

A. Laurain, C. Mart, J. Hader, J. V. Moloney, B. Kunert, W. Stolz, “15  W single frequency optically pumped semiconductor laser with sub-MHz linewidth,” IEEE Photon. Technol. Lett. 26, 131–133 (2014).
[Crossref]

K. G. Wilcox, A. C. Tropper, H. E. Beere, D. A. Ritchie, B. Kunert, B. Heinen, W. Stolz, “4.35  kW peak power femtosecond pulse mode-locked VECSEL for supercontinuum generation,” Opt. Express 21, 1599–1605 (2013).
[Crossref]

T.-L. Wang, B. Heinen, J. Hader, C. Dineen, M. Sparenberg, A. Weber, B. Kunert, S. W. Koch, J. V. Moloney, M. Koch, W. Stolz, “Quantum design strategy pushes high-power vertical external cavity surface emitting lasers beyond 100  W,” Laser Photon. Rev. 6, L12–L14 (2012).
[Crossref]

M. Scheller, T.-L. Wang, B. Kunert, W. Stolz, S. W. Koch, J. V. Moloney, “Passively mode-locked VECSEL emitting 682  fs pulses with 5.1  W of average output power,” Electron. Lett. 48, 588–589 (2012).
[Crossref]

B. Heinen, T.-L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, W. Stolz, “106  W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett. 48, 516 (2012).
[Crossref]

Südmeyer, T.

O. D. Sieber, M. Hoffmann, V. J. Wittwer, M. Mangold, M. Golling, B. W. Tilma, T. Südmeyer, U. Keller, “Experimentally verified pulse formation model for high-power femtosecond VECSELs,” Appl. Phys. B 113, 133–145 (2013).
[Crossref]

M. Hoffmann, O. D. Sieber, V. J. Wittwer, I. L. Krestnikov, D. A. Livshits, Y. Barbarin, T. Südmeyer, U. Keller, “Femtosecond high-power quantum dot vertical external cavity surface emitting laser,” Opt. Express 19, 8108–8116 (2011).
[Crossref]

Sun, Z.

Sundaram, R. S.

Tilma, B. W.

O. D. Sieber, M. Hoffmann, V. J. Wittwer, M. Mangold, M. Golling, B. W. Tilma, T. Südmeyer, U. Keller, “Experimentally verified pulse formation model for high-power femtosecond VECSELs,” Appl. Phys. B 113, 133–145 (2013).
[Crossref]

Tropper, A.

A. H. Quarterman, K. G. Wilcox, V. Apostolopoulos, Z. Mihoubi, S. P. Elsmere, I. Farrer, D. A. Ritchie, A. Tropper, “A passively mode-locked external-cavity semiconductor laser emitting 60-fs pulses,” Nat. Photonics 3, 729–731 (2009).
[Crossref]

Tropper, A. C.

Wang, T.-L.

T.-L. Wang, B. Heinen, J. Hader, C. Dineen, M. Sparenberg, A. Weber, B. Kunert, S. W. Koch, J. V. Moloney, M. Koch, W. Stolz, “Quantum design strategy pushes high-power vertical external cavity surface emitting lasers beyond 100  W,” Laser Photon. Rev. 6, L12–L14 (2012).
[Crossref]

B. Heinen, T.-L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, W. Stolz, “106  W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett. 48, 516 (2012).
[Crossref]

M. Scheller, T.-L. Wang, B. Kunert, W. Stolz, S. W. Koch, J. V. Moloney, “Passively mode-locked VECSEL emitting 682  fs pulses with 5.1  W of average output power,” Electron. Lett. 48, 588–589 (2012).
[Crossref]

Weber, A.

B. Heinen, T.-L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, W. Stolz, “106  W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett. 48, 516 (2012).
[Crossref]

T.-L. Wang, B. Heinen, J. Hader, C. Dineen, M. Sparenberg, A. Weber, B. Kunert, S. W. Koch, J. V. Moloney, M. Koch, W. Stolz, “Quantum design strategy pushes high-power vertical external cavity surface emitting lasers beyond 100  W,” Laser Photon. Rev. 6, L12–L14 (2012).
[Crossref]

Weyers, M.

P. Klopp, U. Griebner, M. Zorn, M. Weyers, “Pulse repetition rate of 92  GHz or pulse duration shorter than 110  fs from a mode-locked semiconductor disk laser,” Appl. Phys. Lett. 98, 071103 (2011).
[Crossref]

Wilcox, K. G.

K. G. Wilcox, A. C. Tropper, H. E. Beere, D. A. Ritchie, B. Kunert, B. Heinen, W. Stolz, “4.35  kW peak power femtosecond pulse mode-locked VECSEL for supercontinuum generation,” Opt. Express 21, 1599–1605 (2013).
[Crossref]

A. H. Quarterman, K. G. Wilcox, V. Apostolopoulos, Z. Mihoubi, S. P. Elsmere, I. Farrer, D. A. Ritchie, A. Tropper, “A passively mode-locked external-cavity semiconductor laser emitting 60-fs pulses,” Nat. Photonics 3, 729–731 (2009).
[Crossref]

Wittwer, V. J.

Yeom, D.-I.

Zaugg, C. A.

Zorn, M.

P. Klopp, U. Griebner, M. Zorn, M. Weyers, “Pulse repetition rate of 92  GHz or pulse duration shorter than 110  fs from a mode-locked semiconductor disk laser,” Appl. Phys. Lett. 98, 071103 (2011).
[Crossref]

Appl. Phys. B (1)

O. D. Sieber, M. Hoffmann, V. J. Wittwer, M. Mangold, M. Golling, B. W. Tilma, T. Südmeyer, U. Keller, “Experimentally verified pulse formation model for high-power femtosecond VECSELs,” Appl. Phys. B 113, 133–145 (2013).
[Crossref]

Appl. Phys. Lett. (1)

P. Klopp, U. Griebner, M. Zorn, M. Weyers, “Pulse repetition rate of 92  GHz or pulse duration shorter than 110  fs from a mode-locked semiconductor disk laser,” Appl. Phys. Lett. 98, 071103 (2011).
[Crossref]

Electron. Lett. (2)

M. Scheller, T.-L. Wang, B. Kunert, W. Stolz, S. W. Koch, J. V. Moloney, “Passively mode-locked VECSEL emitting 682  fs pulses with 5.1  W of average output power,” Electron. Lett. 48, 588–589 (2012).
[Crossref]

B. Heinen, T.-L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, W. Stolz, “106  W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett. 48, 516 (2012).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

H. A. Haus, “Mode-locking of lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 1173–1185 (2000).
[Crossref]

IEEE Photon. Technol. Lett. (1)

A. Laurain, C. Mart, J. Hader, J. V. Moloney, B. Kunert, W. Stolz, “15  W single frequency optically pumped semiconductor laser with sub-MHz linewidth,” IEEE Photon. Technol. Lett. 26, 131–133 (2014).
[Crossref]

Laser Photon. Rev. (1)

T.-L. Wang, B. Heinen, J. Hader, C. Dineen, M. Sparenberg, A. Weber, B. Kunert, S. W. Koch, J. V. Moloney, M. Koch, W. Stolz, “Quantum design strategy pushes high-power vertical external cavity surface emitting lasers beyond 100  W,” Laser Photon. Rev. 6, L12–L14 (2012).
[Crossref]

Nat. Photonics (1)

A. H. Quarterman, K. G. Wilcox, V. Apostolopoulos, Z. Mihoubi, S. P. Elsmere, I. Farrer, D. A. Ritchie, A. Tropper, “A passively mode-locked external-cavity semiconductor laser emitting 60-fs pulses,” Nat. Photonics 3, 729–731 (2009).
[Crossref]

Opt. Express (5)

Phys. Status Solidi B (1)

A. Baumner, S. W. Koch, J. V. Moloney, “Non-equilibrium analysis of the two-color operation in semiconductor quantum-well lasers,” Phys. Status Solidi B 248, 843–846 (2011).
[Crossref]

Other (2)

H. Haug, S. W. Koch, Quantum Theory of the Optical and Electronic Properties of Semiconductors (World Scientific, 2009).

S. Husaini, R. A. Bedford, “Antiresonant graphene saturable absorber mirror for mode-locking VECSELs,” (private communication, 2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Schematic of linear cavity with the 10 QW RPG VECSEL chip shown on the left (DBR to the left of this not shown) and a single QW SESAM with spacer and an output coupler. The empty cavity part of the simulation domain in the center is not shown.
Fig. 2.
Fig. 2. (a) Plot of the equilibrium gain at a carrier density n=1.75×1016m2 and at room temperature (blue). Included in this graph is the single QW absorption of the SESAM. The net roundtrip gain is interpreted as the difference of these two curves. (b) Instantaneous snapshots of the inversion in the active VECSEL structure immediately before (blue), at the peak (black), and immediately after the transit of the mode-locked pulse. (c) Plot of the final stable low-power, mode-locked pulse together with the phase across the pulse. (d) Spectrum of the mode-locked pulse. The shaded area shows that this pulse utilizes the full available linear net gain bandwidth.
Fig. 3.
Fig. 3. (a) Similar plot to Fig. 1(a) except that the carriers are now driven more strongly by the pump with density n=2.4×1016m2 and at room temperature. The net gain is again the difference between the blue (gain) and black (SESAM QW absorption). (b) The electron momentum resolved (k) inversion now shows a double depression and again cycles back and forth between the blue and black curve every roundtrip. (c) Mode-locked pulse waveform showing a beating between two slightly shifted sub-ps-duration pulses. (d) Split spectral peaks, each associated with slighted time-shifted single pulses.
Fig. 4.
Fig. 4. Development of dual kinetic holes in the inversion starting from an initial Fermi distribution at t=0. The inversion goes negative transiently prior to splitting into two kinetic holes.
Fig. 5.
Fig. 5. (a) Linear gain and SESAM absorption spectrum at higher pump levels. (b) Strongly distorted nonequilibrium carrier inversions now show four curves, with the two intermediate ones at the peak of each time-separated pulse. (c) Time-separated, mode-locked pulses and (d) spectrum of both pulses.
Fig. 6.
Fig. 6. (a) Emergence of mode-locked pulse train with a slow saturable absorber. (b) Cleaned up single pulse with fast saturable absorber. (c) Triple-peaked spectrum of mode-locked pulses. (d) Double-peaked spectrum of interfering mode-locked pulses (see Fig. 3).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

[2z2n2c022t2]E(z,t)=μ02t2P(z,t),
tpλ,ν,k=iλ1,ν1(eλ,λ1,keδν,ν1+eν,ν1,khδλ,λ1)pλ1,ν1,ki(nλ,ke+nν,kh1)Ωλ,ν,k+Γλ,ν;deph,tnλ(ν),ke(h)=2Im(Ωλ,ν,k(pλ,ν,k))+Γλ(ν);scatte(h).
eλ,λ1,ke=ελ,keδλ,λ1λ2,qVkqλ,λ2,λ1,λ2nλ2,qe,eν,ν1,kh=εν,khδν,ν1ν2,qVkqν,ν2,ν1,ν2nν2,qh,
Ωλ,ν,k=ωR+1λ1,ν1,qkVkqλ,ν1,ν,λ1pλ1,ν1,q.

Metrics