Abstract

Recent experiments in the field of strong optomechanical interactions have focused on either structures that are simultaneously optically and mechanically resonant, or photonic crystal fibers pumped by a laser intensity modulated at a mechanical resonant frequency of the glass core. Here, we report continuous-wave (CW) pumped self-oscillations of a fiber nanostructure that is only mechanically resonant. Since the mechanism has close similarities to stimulated Raman scattering by molecules, it has been named stimulated Raman-like scattering. The structure consists of two submicrometer thick glass membranes (nanowebs), spaced by a few hundred nanometers and supported inside a 12-cm-long capillary fiber. It is driven into oscillation by a CW pump laser at powers as low as a few milliwatts. As the pump power is increased above threshold, a comb of Stokes and anti-Stokes lines is generated, spaced by the oscillator frequency of 6MHz. An unprecedentedly high Raman-like gain of 4×106m1W1 is inferred after analysis of the experimental data. Resonant frequencies as high as a few hundred megahertz are possible through the use of thicker and less-wide webs, suggesting that the structure can find application in passive mode-locking of fiber lasers, optical frequency metrology, and spectroscopy.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Moving boundary and photoelastic coupling in GaAs optomechanical resonators

Krishna C. Balram, Marcelo Davanço, Ju Young Lim, Jin Dong Song, and Kartik Srinivasan
Optica 1(6) 414-420 (2014)

Polarization dependent visible supercontinuum generation in the nanoweb fiber

Peiguang Yan, Jie Shu, Shuangchen Ruan, Jian Zhao, Junqing Zhao, Chenlin Du, Chunyu Guo, Huifeng Wei, and Jie Luo
Opt. Express 19(6) 4985-4990 (2011)

Green, red, and IR frequency comb line generation from single IR pump in AlN microring resonator

Hojoong Jung, Rebecca Stoll, Xiang Guo, Debra Fischer, and Hong X. Tang
Optica 1(6) 396-399 (2014)

References

  • View by:
  • |
  • |
  • |

  1. R. Riviere, S. Deleglise, S. Weis, E. Gavartin, O. Arcizet, A. Schliesser, T. J. Kippenberg, “Optomechanical sideband cooling of a micromechanical oscillator close to the quantum ground state,” Phys. Rev. A 83, 063835 (2011).
    [Crossref]
  2. A. H. Safavi-Naeini, J. Chan, J. T. Hill, T. P. M. Alegre, A. Krause, O. J. Painter, “Observation of quantum motion of a nanomechanical resonator,” Phys. Rev. Lett. 108, 033602 (2012).
    [Crossref]
  3. M. Aspelmeyer, T. J. Kippenberg, F. Marquardt, “Cavity optomechanics,” arXiv:1303.0733v1 (2013).
  4. P. Dainese, P. St.J. Russell, G. S. Wiederhecker, N. Joly, H. L. Fragnito, V. Laude, A. Khelif, “Raman-like light scattering from acoustic phonons in photonic crystal fiber,” Opt. Express 14, 4141–4150 (2006).
    [Crossref]
  5. G. Bahl, J. Zehnpfennig, M. Tomes, T. Carmon, “Stimulated optomechanical excitation of surface acoustic waves in a microdevice,” Nat. Commun. 2, 403 (2011).
    [Crossref]
  6. W. H. P. Pernice, M. Li, H. X. Tang, “A mechanical Kerr effect in deformable photonic media,” Appl. Phys. Lett. 95, 123507 (2009).
    [Crossref]
  7. D. Van Thourhout, J. Roels, “Optomechanical device actuation through the optical gradient force,” Nat. Photonics 4, 211–217 (2010).
    [Crossref]
  8. M. S. Kang, A. Nazarkin, A. Brenn, P. St.J. Russell, “Tightly trapped acoustic phonons in photonic crystal fibres as highly nonlinear artificial Raman oscillators,” Nat. Phys. 5, 276–280 (2009).
    [Crossref]
  9. M. S. Kang, N. Y. Joly, P. St.J. Russell, “Passive mode-locking of fiber ring laser at the 337th harmonic using gigahertz acoustic core resonances,” Opt. Lett. 38, 561–563 (2013).
    [Crossref]
  10. A. Butsch, M. S. Kang, T. G. Euser, J. R. Koehler, S. Rammler, R. Keding, P. St.J. Russell, “Optomechanical nonlinearity in dual-nanoweb structure suspended inside capillary fiber,” Phys. Rev. Lett. 109, 183904 (2012).
    [Crossref]
  11. A. Butsch, C. Conti, F. Biancalana, P. St.J. Russell, “Optomechanical self-channeling of light in a suspended planar dual-nanoweb waveguide,” Phys. Rev. Lett. 108, 093903 (2012).
    [Crossref]
  12. J. R. Koehler, A. Butsch, T. G. Euser, R. E. Noskov, P. St.J. Russell, “Effects of squeezed-film damping on the optomechanical nonlinearity in dual-nanoweb fiber,” Appl. Phys. Lett. 103, 221107 (2013).
    [Crossref]
  13. J. R. Koehler, A. Butsch, T. G. Euser, P. St.J. Russell, “Frequency comb generation via optomechanical nonlinearity in evacuated dual-nanoweb fibre,” in Frontiers in Optics Conference, (Optical Society of America, 2013), paper FTh3B.3.
  14. D. Braje, L. Hollberg, S. Diddams, “Brillouin-enhanced hyperparametric generation of an optical frequency comb in a monolithic highly nonlinear fiber cavity pumped by a cw laser,” Phys. Rev. Lett. 102, 193902 (2009).
    [Crossref]
  15. P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
    [Crossref]
  16. M. D. Duncan, R. Mahon, J. Reintjes, L. L. Tankersley, “Parametric Raman gain suppression in D2 and H2,” Opt. Lett. 11, 803–805 (1986).
    [Crossref]
  17. O. E. DeLange, “Optical heterodyne detection,” IEEE Spectrum 5, 77–85 (1968).
    [Crossref]
  18. C. Conti, A. Butsch, F. Biancalana, P. St.J. Russell, “Dynamics of optomechanical spatial solitons in dual-nanoweb structures,” Phys. Rev. A 86, 013830 (2012).
    [Crossref]
  19. A. N. Norris, “Flexural waves on narrow plates,” J. Acoust. Soc. Am. 113, 2647–2658 (2003).
    [Crossref]
  20. L. D. Landau, E. M. Lifshitz, Theory of Elasticity (Butterworth-Heinemann, 1986).
  21. R. W. Boyd, K. Rzazewski, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42, 5514–5521 (1990).
    [Crossref]

2013 (2)

M. S. Kang, N. Y. Joly, P. St.J. Russell, “Passive mode-locking of fiber ring laser at the 337th harmonic using gigahertz acoustic core resonances,” Opt. Lett. 38, 561–563 (2013).
[Crossref]

J. R. Koehler, A. Butsch, T. G. Euser, R. E. Noskov, P. St.J. Russell, “Effects of squeezed-film damping on the optomechanical nonlinearity in dual-nanoweb fiber,” Appl. Phys. Lett. 103, 221107 (2013).
[Crossref]

2012 (4)

C. Conti, A. Butsch, F. Biancalana, P. St.J. Russell, “Dynamics of optomechanical spatial solitons in dual-nanoweb structures,” Phys. Rev. A 86, 013830 (2012).
[Crossref]

A. Butsch, M. S. Kang, T. G. Euser, J. R. Koehler, S. Rammler, R. Keding, P. St.J. Russell, “Optomechanical nonlinearity in dual-nanoweb structure suspended inside capillary fiber,” Phys. Rev. Lett. 109, 183904 (2012).
[Crossref]

A. Butsch, C. Conti, F. Biancalana, P. St.J. Russell, “Optomechanical self-channeling of light in a suspended planar dual-nanoweb waveguide,” Phys. Rev. Lett. 108, 093903 (2012).
[Crossref]

A. H. Safavi-Naeini, J. Chan, J. T. Hill, T. P. M. Alegre, A. Krause, O. J. Painter, “Observation of quantum motion of a nanomechanical resonator,” Phys. Rev. Lett. 108, 033602 (2012).
[Crossref]

2011 (2)

G. Bahl, J. Zehnpfennig, M. Tomes, T. Carmon, “Stimulated optomechanical excitation of surface acoustic waves in a microdevice,” Nat. Commun. 2, 403 (2011).
[Crossref]

R. Riviere, S. Deleglise, S. Weis, E. Gavartin, O. Arcizet, A. Schliesser, T. J. Kippenberg, “Optomechanical sideband cooling of a micromechanical oscillator close to the quantum ground state,” Phys. Rev. A 83, 063835 (2011).
[Crossref]

2010 (1)

D. Van Thourhout, J. Roels, “Optomechanical device actuation through the optical gradient force,” Nat. Photonics 4, 211–217 (2010).
[Crossref]

2009 (3)

M. S. Kang, A. Nazarkin, A. Brenn, P. St.J. Russell, “Tightly trapped acoustic phonons in photonic crystal fibres as highly nonlinear artificial Raman oscillators,” Nat. Phys. 5, 276–280 (2009).
[Crossref]

W. H. P. Pernice, M. Li, H. X. Tang, “A mechanical Kerr effect in deformable photonic media,” Appl. Phys. Lett. 95, 123507 (2009).
[Crossref]

D. Braje, L. Hollberg, S. Diddams, “Brillouin-enhanced hyperparametric generation of an optical frequency comb in a monolithic highly nonlinear fiber cavity pumped by a cw laser,” Phys. Rev. Lett. 102, 193902 (2009).
[Crossref]

2007 (1)

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

2006 (1)

2003 (1)

A. N. Norris, “Flexural waves on narrow plates,” J. Acoust. Soc. Am. 113, 2647–2658 (2003).
[Crossref]

1990 (1)

R. W. Boyd, K. Rzazewski, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42, 5514–5521 (1990).
[Crossref]

1986 (1)

1968 (1)

O. E. DeLange, “Optical heterodyne detection,” IEEE Spectrum 5, 77–85 (1968).
[Crossref]

Alegre, T. P. M.

A. H. Safavi-Naeini, J. Chan, J. T. Hill, T. P. M. Alegre, A. Krause, O. J. Painter, “Observation of quantum motion of a nanomechanical resonator,” Phys. Rev. Lett. 108, 033602 (2012).
[Crossref]

Arcizet, O.

R. Riviere, S. Deleglise, S. Weis, E. Gavartin, O. Arcizet, A. Schliesser, T. J. Kippenberg, “Optomechanical sideband cooling of a micromechanical oscillator close to the quantum ground state,” Phys. Rev. A 83, 063835 (2011).
[Crossref]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

Aspelmeyer, M.

M. Aspelmeyer, T. J. Kippenberg, F. Marquardt, “Cavity optomechanics,” arXiv:1303.0733v1 (2013).

Bahl, G.

G. Bahl, J. Zehnpfennig, M. Tomes, T. Carmon, “Stimulated optomechanical excitation of surface acoustic waves in a microdevice,” Nat. Commun. 2, 403 (2011).
[Crossref]

Biancalana, F.

A. Butsch, C. Conti, F. Biancalana, P. St.J. Russell, “Optomechanical self-channeling of light in a suspended planar dual-nanoweb waveguide,” Phys. Rev. Lett. 108, 093903 (2012).
[Crossref]

C. Conti, A. Butsch, F. Biancalana, P. St.J. Russell, “Dynamics of optomechanical spatial solitons in dual-nanoweb structures,” Phys. Rev. A 86, 013830 (2012).
[Crossref]

Boyd, R. W.

R. W. Boyd, K. Rzazewski, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42, 5514–5521 (1990).
[Crossref]

Braje, D.

D. Braje, L. Hollberg, S. Diddams, “Brillouin-enhanced hyperparametric generation of an optical frequency comb in a monolithic highly nonlinear fiber cavity pumped by a cw laser,” Phys. Rev. Lett. 102, 193902 (2009).
[Crossref]

Brenn, A.

M. S. Kang, A. Nazarkin, A. Brenn, P. St.J. Russell, “Tightly trapped acoustic phonons in photonic crystal fibres as highly nonlinear artificial Raman oscillators,” Nat. Phys. 5, 276–280 (2009).
[Crossref]

Butsch, A.

J. R. Koehler, A. Butsch, T. G. Euser, R. E. Noskov, P. St.J. Russell, “Effects of squeezed-film damping on the optomechanical nonlinearity in dual-nanoweb fiber,” Appl. Phys. Lett. 103, 221107 (2013).
[Crossref]

A. Butsch, C. Conti, F. Biancalana, P. St.J. Russell, “Optomechanical self-channeling of light in a suspended planar dual-nanoweb waveguide,” Phys. Rev. Lett. 108, 093903 (2012).
[Crossref]

A. Butsch, M. S. Kang, T. G. Euser, J. R. Koehler, S. Rammler, R. Keding, P. St.J. Russell, “Optomechanical nonlinearity in dual-nanoweb structure suspended inside capillary fiber,” Phys. Rev. Lett. 109, 183904 (2012).
[Crossref]

C. Conti, A. Butsch, F. Biancalana, P. St.J. Russell, “Dynamics of optomechanical spatial solitons in dual-nanoweb structures,” Phys. Rev. A 86, 013830 (2012).
[Crossref]

J. R. Koehler, A. Butsch, T. G. Euser, P. St.J. Russell, “Frequency comb generation via optomechanical nonlinearity in evacuated dual-nanoweb fibre,” in Frontiers in Optics Conference, (Optical Society of America, 2013), paper FTh3B.3.

Carmon, T.

G. Bahl, J. Zehnpfennig, M. Tomes, T. Carmon, “Stimulated optomechanical excitation of surface acoustic waves in a microdevice,” Nat. Commun. 2, 403 (2011).
[Crossref]

Chan, J.

A. H. Safavi-Naeini, J. Chan, J. T. Hill, T. P. M. Alegre, A. Krause, O. J. Painter, “Observation of quantum motion of a nanomechanical resonator,” Phys. Rev. Lett. 108, 033602 (2012).
[Crossref]

Conti, C.

A. Butsch, C. Conti, F. Biancalana, P. St.J. Russell, “Optomechanical self-channeling of light in a suspended planar dual-nanoweb waveguide,” Phys. Rev. Lett. 108, 093903 (2012).
[Crossref]

C. Conti, A. Butsch, F. Biancalana, P. St.J. Russell, “Dynamics of optomechanical spatial solitons in dual-nanoweb structures,” Phys. Rev. A 86, 013830 (2012).
[Crossref]

Dainese, P.

Del’Haye, P.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

DeLange, O. E.

O. E. DeLange, “Optical heterodyne detection,” IEEE Spectrum 5, 77–85 (1968).
[Crossref]

Deleglise, S.

R. Riviere, S. Deleglise, S. Weis, E. Gavartin, O. Arcizet, A. Schliesser, T. J. Kippenberg, “Optomechanical sideband cooling of a micromechanical oscillator close to the quantum ground state,” Phys. Rev. A 83, 063835 (2011).
[Crossref]

Diddams, S.

D. Braje, L. Hollberg, S. Diddams, “Brillouin-enhanced hyperparametric generation of an optical frequency comb in a monolithic highly nonlinear fiber cavity pumped by a cw laser,” Phys. Rev. Lett. 102, 193902 (2009).
[Crossref]

Duncan, M. D.

Euser, T. G.

J. R. Koehler, A. Butsch, T. G. Euser, R. E. Noskov, P. St.J. Russell, “Effects of squeezed-film damping on the optomechanical nonlinearity in dual-nanoweb fiber,” Appl. Phys. Lett. 103, 221107 (2013).
[Crossref]

A. Butsch, M. S. Kang, T. G. Euser, J. R. Koehler, S. Rammler, R. Keding, P. St.J. Russell, “Optomechanical nonlinearity in dual-nanoweb structure suspended inside capillary fiber,” Phys. Rev. Lett. 109, 183904 (2012).
[Crossref]

J. R. Koehler, A. Butsch, T. G. Euser, P. St.J. Russell, “Frequency comb generation via optomechanical nonlinearity in evacuated dual-nanoweb fibre,” in Frontiers in Optics Conference, (Optical Society of America, 2013), paper FTh3B.3.

Fragnito, H. L.

Gavartin, E.

R. Riviere, S. Deleglise, S. Weis, E. Gavartin, O. Arcizet, A. Schliesser, T. J. Kippenberg, “Optomechanical sideband cooling of a micromechanical oscillator close to the quantum ground state,” Phys. Rev. A 83, 063835 (2011).
[Crossref]

Hill, J. T.

A. H. Safavi-Naeini, J. Chan, J. T. Hill, T. P. M. Alegre, A. Krause, O. J. Painter, “Observation of quantum motion of a nanomechanical resonator,” Phys. Rev. Lett. 108, 033602 (2012).
[Crossref]

Hollberg, L.

D. Braje, L. Hollberg, S. Diddams, “Brillouin-enhanced hyperparametric generation of an optical frequency comb in a monolithic highly nonlinear fiber cavity pumped by a cw laser,” Phys. Rev. Lett. 102, 193902 (2009).
[Crossref]

Holzwarth, R.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

Joly, N.

Joly, N. Y.

Kang, M. S.

M. S. Kang, N. Y. Joly, P. St.J. Russell, “Passive mode-locking of fiber ring laser at the 337th harmonic using gigahertz acoustic core resonances,” Opt. Lett. 38, 561–563 (2013).
[Crossref]

A. Butsch, M. S. Kang, T. G. Euser, J. R. Koehler, S. Rammler, R. Keding, P. St.J. Russell, “Optomechanical nonlinearity in dual-nanoweb structure suspended inside capillary fiber,” Phys. Rev. Lett. 109, 183904 (2012).
[Crossref]

M. S. Kang, A. Nazarkin, A. Brenn, P. St.J. Russell, “Tightly trapped acoustic phonons in photonic crystal fibres as highly nonlinear artificial Raman oscillators,” Nat. Phys. 5, 276–280 (2009).
[Crossref]

Keding, R.

A. Butsch, M. S. Kang, T. G. Euser, J. R. Koehler, S. Rammler, R. Keding, P. St.J. Russell, “Optomechanical nonlinearity in dual-nanoweb structure suspended inside capillary fiber,” Phys. Rev. Lett. 109, 183904 (2012).
[Crossref]

Khelif, A.

Kippenberg, T. J.

R. Riviere, S. Deleglise, S. Weis, E. Gavartin, O. Arcizet, A. Schliesser, T. J. Kippenberg, “Optomechanical sideband cooling of a micromechanical oscillator close to the quantum ground state,” Phys. Rev. A 83, 063835 (2011).
[Crossref]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

M. Aspelmeyer, T. J. Kippenberg, F. Marquardt, “Cavity optomechanics,” arXiv:1303.0733v1 (2013).

Koehler, J. R.

J. R. Koehler, A. Butsch, T. G. Euser, R. E. Noskov, P. St.J. Russell, “Effects of squeezed-film damping on the optomechanical nonlinearity in dual-nanoweb fiber,” Appl. Phys. Lett. 103, 221107 (2013).
[Crossref]

A. Butsch, M. S. Kang, T. G. Euser, J. R. Koehler, S. Rammler, R. Keding, P. St.J. Russell, “Optomechanical nonlinearity in dual-nanoweb structure suspended inside capillary fiber,” Phys. Rev. Lett. 109, 183904 (2012).
[Crossref]

J. R. Koehler, A. Butsch, T. G. Euser, P. St.J. Russell, “Frequency comb generation via optomechanical nonlinearity in evacuated dual-nanoweb fibre,” in Frontiers in Optics Conference, (Optical Society of America, 2013), paper FTh3B.3.

Krause, A.

A. H. Safavi-Naeini, J. Chan, J. T. Hill, T. P. M. Alegre, A. Krause, O. J. Painter, “Observation of quantum motion of a nanomechanical resonator,” Phys. Rev. Lett. 108, 033602 (2012).
[Crossref]

Landau, L. D.

L. D. Landau, E. M. Lifshitz, Theory of Elasticity (Butterworth-Heinemann, 1986).

Laude, V.

Li, M.

W. H. P. Pernice, M. Li, H. X. Tang, “A mechanical Kerr effect in deformable photonic media,” Appl. Phys. Lett. 95, 123507 (2009).
[Crossref]

Lifshitz, E. M.

L. D. Landau, E. M. Lifshitz, Theory of Elasticity (Butterworth-Heinemann, 1986).

Mahon, R.

Marquardt, F.

M. Aspelmeyer, T. J. Kippenberg, F. Marquardt, “Cavity optomechanics,” arXiv:1303.0733v1 (2013).

Nazarkin, A.

M. S. Kang, A. Nazarkin, A. Brenn, P. St.J. Russell, “Tightly trapped acoustic phonons in photonic crystal fibres as highly nonlinear artificial Raman oscillators,” Nat. Phys. 5, 276–280 (2009).
[Crossref]

Norris, A. N.

A. N. Norris, “Flexural waves on narrow plates,” J. Acoust. Soc. Am. 113, 2647–2658 (2003).
[Crossref]

Noskov, R. E.

J. R. Koehler, A. Butsch, T. G. Euser, R. E. Noskov, P. St.J. Russell, “Effects of squeezed-film damping on the optomechanical nonlinearity in dual-nanoweb fiber,” Appl. Phys. Lett. 103, 221107 (2013).
[Crossref]

Painter, O. J.

A. H. Safavi-Naeini, J. Chan, J. T. Hill, T. P. M. Alegre, A. Krause, O. J. Painter, “Observation of quantum motion of a nanomechanical resonator,” Phys. Rev. Lett. 108, 033602 (2012).
[Crossref]

Pernice, W. H. P.

W. H. P. Pernice, M. Li, H. X. Tang, “A mechanical Kerr effect in deformable photonic media,” Appl. Phys. Lett. 95, 123507 (2009).
[Crossref]

Rammler, S.

A. Butsch, M. S. Kang, T. G. Euser, J. R. Koehler, S. Rammler, R. Keding, P. St.J. Russell, “Optomechanical nonlinearity in dual-nanoweb structure suspended inside capillary fiber,” Phys. Rev. Lett. 109, 183904 (2012).
[Crossref]

Reintjes, J.

Riviere, R.

R. Riviere, S. Deleglise, S. Weis, E. Gavartin, O. Arcizet, A. Schliesser, T. J. Kippenberg, “Optomechanical sideband cooling of a micromechanical oscillator close to the quantum ground state,” Phys. Rev. A 83, 063835 (2011).
[Crossref]

Roels, J.

D. Van Thourhout, J. Roels, “Optomechanical device actuation through the optical gradient force,” Nat. Photonics 4, 211–217 (2010).
[Crossref]

Russell, P. St.J.

M. S. Kang, N. Y. Joly, P. St.J. Russell, “Passive mode-locking of fiber ring laser at the 337th harmonic using gigahertz acoustic core resonances,” Opt. Lett. 38, 561–563 (2013).
[Crossref]

J. R. Koehler, A. Butsch, T. G. Euser, R. E. Noskov, P. St.J. Russell, “Effects of squeezed-film damping on the optomechanical nonlinearity in dual-nanoweb fiber,” Appl. Phys. Lett. 103, 221107 (2013).
[Crossref]

A. Butsch, C. Conti, F. Biancalana, P. St.J. Russell, “Optomechanical self-channeling of light in a suspended planar dual-nanoweb waveguide,” Phys. Rev. Lett. 108, 093903 (2012).
[Crossref]

A. Butsch, M. S. Kang, T. G. Euser, J. R. Koehler, S. Rammler, R. Keding, P. St.J. Russell, “Optomechanical nonlinearity in dual-nanoweb structure suspended inside capillary fiber,” Phys. Rev. Lett. 109, 183904 (2012).
[Crossref]

C. Conti, A. Butsch, F. Biancalana, P. St.J. Russell, “Dynamics of optomechanical spatial solitons in dual-nanoweb structures,” Phys. Rev. A 86, 013830 (2012).
[Crossref]

M. S. Kang, A. Nazarkin, A. Brenn, P. St.J. Russell, “Tightly trapped acoustic phonons in photonic crystal fibres as highly nonlinear artificial Raman oscillators,” Nat. Phys. 5, 276–280 (2009).
[Crossref]

P. Dainese, P. St.J. Russell, G. S. Wiederhecker, N. Joly, H. L. Fragnito, V. Laude, A. Khelif, “Raman-like light scattering from acoustic phonons in photonic crystal fiber,” Opt. Express 14, 4141–4150 (2006).
[Crossref]

J. R. Koehler, A. Butsch, T. G. Euser, P. St.J. Russell, “Frequency comb generation via optomechanical nonlinearity in evacuated dual-nanoweb fibre,” in Frontiers in Optics Conference, (Optical Society of America, 2013), paper FTh3B.3.

Rzazewski, K.

R. W. Boyd, K. Rzazewski, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42, 5514–5521 (1990).
[Crossref]

Safavi-Naeini, A. H.

A. H. Safavi-Naeini, J. Chan, J. T. Hill, T. P. M. Alegre, A. Krause, O. J. Painter, “Observation of quantum motion of a nanomechanical resonator,” Phys. Rev. Lett. 108, 033602 (2012).
[Crossref]

Schliesser, A.

R. Riviere, S. Deleglise, S. Weis, E. Gavartin, O. Arcizet, A. Schliesser, T. J. Kippenberg, “Optomechanical sideband cooling of a micromechanical oscillator close to the quantum ground state,” Phys. Rev. A 83, 063835 (2011).
[Crossref]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

Tang, H. X.

W. H. P. Pernice, M. Li, H. X. Tang, “A mechanical Kerr effect in deformable photonic media,” Appl. Phys. Lett. 95, 123507 (2009).
[Crossref]

Tankersley, L. L.

Tomes, M.

G. Bahl, J. Zehnpfennig, M. Tomes, T. Carmon, “Stimulated optomechanical excitation of surface acoustic waves in a microdevice,” Nat. Commun. 2, 403 (2011).
[Crossref]

Van Thourhout, D.

D. Van Thourhout, J. Roels, “Optomechanical device actuation through the optical gradient force,” Nat. Photonics 4, 211–217 (2010).
[Crossref]

Weis, S.

R. Riviere, S. Deleglise, S. Weis, E. Gavartin, O. Arcizet, A. Schliesser, T. J. Kippenberg, “Optomechanical sideband cooling of a micromechanical oscillator close to the quantum ground state,” Phys. Rev. A 83, 063835 (2011).
[Crossref]

Wiederhecker, G. S.

Wilken, T.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

Zehnpfennig, J.

G. Bahl, J. Zehnpfennig, M. Tomes, T. Carmon, “Stimulated optomechanical excitation of surface acoustic waves in a microdevice,” Nat. Commun. 2, 403 (2011).
[Crossref]

Appl. Phys. Lett. (2)

W. H. P. Pernice, M. Li, H. X. Tang, “A mechanical Kerr effect in deformable photonic media,” Appl. Phys. Lett. 95, 123507 (2009).
[Crossref]

J. R. Koehler, A. Butsch, T. G. Euser, R. E. Noskov, P. St.J. Russell, “Effects of squeezed-film damping on the optomechanical nonlinearity in dual-nanoweb fiber,” Appl. Phys. Lett. 103, 221107 (2013).
[Crossref]

IEEE Spectrum (1)

O. E. DeLange, “Optical heterodyne detection,” IEEE Spectrum 5, 77–85 (1968).
[Crossref]

J. Acoust. Soc. Am. (1)

A. N. Norris, “Flexural waves on narrow plates,” J. Acoust. Soc. Am. 113, 2647–2658 (2003).
[Crossref]

Nat. Commun. (1)

G. Bahl, J. Zehnpfennig, M. Tomes, T. Carmon, “Stimulated optomechanical excitation of surface acoustic waves in a microdevice,” Nat. Commun. 2, 403 (2011).
[Crossref]

Nat. Photonics (1)

D. Van Thourhout, J. Roels, “Optomechanical device actuation through the optical gradient force,” Nat. Photonics 4, 211–217 (2010).
[Crossref]

Nat. Phys. (1)

M. S. Kang, A. Nazarkin, A. Brenn, P. St.J. Russell, “Tightly trapped acoustic phonons in photonic crystal fibres as highly nonlinear artificial Raman oscillators,” Nat. Phys. 5, 276–280 (2009).
[Crossref]

Nature (1)

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

Opt. Express (1)

Opt. Lett. (2)

Phys. Rev. A (3)

C. Conti, A. Butsch, F. Biancalana, P. St.J. Russell, “Dynamics of optomechanical spatial solitons in dual-nanoweb structures,” Phys. Rev. A 86, 013830 (2012).
[Crossref]

R. Riviere, S. Deleglise, S. Weis, E. Gavartin, O. Arcizet, A. Schliesser, T. J. Kippenberg, “Optomechanical sideband cooling of a micromechanical oscillator close to the quantum ground state,” Phys. Rev. A 83, 063835 (2011).
[Crossref]

R. W. Boyd, K. Rzazewski, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42, 5514–5521 (1990).
[Crossref]

Phys. Rev. Lett. (4)

D. Braje, L. Hollberg, S. Diddams, “Brillouin-enhanced hyperparametric generation of an optical frequency comb in a monolithic highly nonlinear fiber cavity pumped by a cw laser,” Phys. Rev. Lett. 102, 193902 (2009).
[Crossref]

A. H. Safavi-Naeini, J. Chan, J. T. Hill, T. P. M. Alegre, A. Krause, O. J. Painter, “Observation of quantum motion of a nanomechanical resonator,” Phys. Rev. Lett. 108, 033602 (2012).
[Crossref]

A. Butsch, M. S. Kang, T. G. Euser, J. R. Koehler, S. Rammler, R. Keding, P. St.J. Russell, “Optomechanical nonlinearity in dual-nanoweb structure suspended inside capillary fiber,” Phys. Rev. Lett. 109, 183904 (2012).
[Crossref]

A. Butsch, C. Conti, F. Biancalana, P. St.J. Russell, “Optomechanical self-channeling of light in a suspended planar dual-nanoweb waveguide,” Phys. Rev. Lett. 108, 093903 (2012).
[Crossref]

Other (3)

M. Aspelmeyer, T. J. Kippenberg, F. Marquardt, “Cavity optomechanics,” arXiv:1303.0733v1 (2013).

L. D. Landau, E. M. Lifshitz, Theory of Elasticity (Butterworth-Heinemann, 1986).

J. R. Koehler, A. Butsch, T. G. Euser, P. St.J. Russell, “Frequency comb generation via optomechanical nonlinearity in evacuated dual-nanoweb fibre,” in Frontiers in Optics Conference, (Optical Society of America, 2013), paper FTh3B.3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. (a) Scanning electron micrograph of the fiber core region: the width w of the dual-nanoweb waveguide is 22μm, the upper and lower web thicknesses in the center are hu460nm and hl480nm, and the gap thickness is hg550nm. The sample length L is 12 cm. (b) Schematic of the heterodyne detection setup with an evacuated dual-nanoweb fiber sample. FL, fiber laser; EDFA, erbium-doped fiber amplifier; L, lens; P, polarizer; PBS, polarizing beam splitter; AOM, acousto-optical modulator; SMF, single mode fiber; PC, polarization controller; FC, fiber coupler; PD, photodiode; RF-SA, radio-frequency spectrum analyzer; PM, power meter.
Fig. 2.
Fig. 2. RF spectra of the transmitted optical signal measured at different CW input powers. The frequency was scanned over 500 kHz around each of the comb sidebands at multiples of ±6.022MHz. (a) Initial amplification of first-order S and AS components at 4.8 mW input power. (b) At 5.3 mW, three sidebands appear on each side of the pump peak. (c) S and AS components up to fifth order are detected at 7.8 mW input power. (d) At 10.2 mW, a fine structure of lines with a spacing of 39 kHz appears around each of the main comb components. The tick spacing on the frequency axis of each pane is 39 kHz.
Fig. 3.
Fig. 3. Energy transfer from pump to Stokes as a function of the frequency spacing of the dual-frequency light (50% pump and 50% Stokes) at 2 mW launched total power.
Fig. 4.
Fig. 4. Schematic of the dispersion diagram for SRLS by guided flexural waves with a cut-off angular frequency Ωco. A phonon with frequency Ω0Ωco and propagation constant q automatically provides phase matching between successive optical S and AS components.
Fig. 5.
Fig. 5. Evolution of the power in the comb lines (normalized to the total output power) as a function of the launched pump power. Full and open circles represent experimental data for the S and AS components, respectively. Full lines show the theoretical expectations for the pump (black), the first-order (red), second-order (blue), third-order (green), fourth-order (magenta), and fifth-order (cyan) S and AS using the fit parameters g0=4×106m1W1 and an effective comb generation length Leff=6cm. A distinct threshold for the onset of frequency comb generation occurs at a launched power of 4.9mW, marked by the dashed vertical line. Below threshold, the power in each comb line decreases exponentially with its order. The inset shows the experimentally relevant data range above a noise floor of 107 relative to the pump power.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

2Ez2nm2c22Et2=1ε0c22PNLt2,
PNL=ε0εδδE=2ε0nmnmδδE.
D(1+τt)(4δx4+24δx2z2+4δz4)+σ2δt2=popt+f˜ε02[E2]y=ylowery=yupper+f˜,
E(x,y,z,t)=s(x)f(y)P0Z02nmnan(z,t)ei(βnzωnt)+c.c.,
δ(x,z,t)=δ0(x)eac2σΩco2b(z,t)ei(qzΩt)+c.c.,
anz+1vgant=iκ(ban1+b*an+1),bt+(Γ2+Ω2Ω022iΩ)b=iγnanan1*+ξL,
anz=g0P02(an1lalal1*+an+1lal1al*)+i2κΓ(ξLn1an1+ξLn+1an+1),g0=4κγΓP0=ω0Qom2nmc2hpσΩ0Γnmδ.
κ=ω02cnmδQom2eacσΩ02
γ=ε0Z0P0Qom2hpnm2σeac,
Qom=w/2w/2δ0(x)|s(x)|2dx
hp=(|f(yupper)|2|f(ylower)|2)1,
ξL(z,t)=0andξL(z,t)ξL*(z,t)=kBTeacΓδ(zz)δ(tt).
ζ=2σeacΩ0(w/2w/2δ0(x)dx)1=π2Ω0σeacw.

Metrics