Abstract

The vast majority of work on waveguide-coupled resonators focuses on decreasing losses in the waveguide and coupling region. Here we present fully integrated resonators based on an ultralow-loss Si3N4 waveguide platform. By tailoring the directional coupler excitation to the resonators, we are able to achieve lower loss single-mode coupling to multimode waveguide widths compared to straight bus waveguide directional couplers. This allows us to demonstrate record-high integrated waveguide coupled intrinsic quality factor (Qint) values of 81 million at a 9.65 mm bend radius, with a future direction to both stronger and lower loss waveguide–resonator coupling. This result opens up integration possibilities for narrow linewidth integrated diode lasers, low noise feedback systems, microwave photonic research, and the ultrastable timing reference community.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ultra-high quality factor planar Si3N4 ring resonators on Si substrates

Ming-Chun Tien, Jared F. Bauters, Martijn J. R. Heck, Daryl T. Spencer, Daniel J. Blumenthal, and John E. Bowers
Opt. Express 19(14) 13551-13556 (2011)

Ultralow-loss tightly confining Si3N4 waveguides and high-Q microresonators

Houssein El Dirani, Laurene Youssef, Camille Petit-Etienne, Sebastien Kerdiles, Philippe Grosse, Christelle Monat, Erwine Pargon, and Corrado Sciancalepore
Opt. Express 27(21) 30726-30740 (2019)

Low-loss prism-waveguide optical coupling for ultrahigh-Q low-index monolithic resonators

Guangyao Liu, Vladimir S. Ilchenko, Tiehui Su, Yi-Chun Ling, Shaoqi Feng, Kuanping Shang, Yu Zhang, Wei Liang, Anatoliy A. Savchenkov, Andrey B. Matsko, Lute Maleki, and S. J. Ben Yoo
Optica 5(2) 219-226 (2018)

References

  • View by:
  • |
  • |
  • |

  1. M. J. R. Heck, J. F. Bauters, M. L. Davenport, D. T. Spencer, J. E. Bowers, “Ultra-low loss waveguide platform and its integration with silicon photonics,” Laser Photon. Rev., doi: 10.1002/lpor.201300183 (posted online March 5, 2014).
  2. D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, J. Capmany, Laser Photon. Rev. 7, 506 (2013).
    [Crossref]
  3. D. Cabric, M. S. W. Chen, D. A. Sobel, S. Wang, J. Yang, R. W. Brodersen, EURASIP J. Wirel. Commun. Netw. 2006, 1 (2006).
    [Crossref]
  4. J. R. Vig, “Introduction to quartz frequency standards,” (U.S. Army Electronics Technology and Devices Laboratory, 1992).
  5. P. Maddaloni, M. Bellini, P. De Natale, Laser-Based Measurements for Time and Frequency Domain Applications (Taylor & Francis, 2013).
  6. C. Ciminelli, F. Dell’Olio, M. N. Armenise, F. M. Soares, W. Passenberg, Opt. Express 21, 556 (2013).
    [Crossref]
  7. C. Ciminelli, F. Dell’Olio, M. N. Armenise, IEEE Photon. J. 4, 1844 (2012).
    [Crossref]
  8. A. Biberman, M. J. Shaw, E. Timurdogan, J. B. Wright, M. R. Watts, Opt. Lett. 37, 4236 (2012).
    [Crossref]
  9. R. Adar, Y. Shani, C. Henry, Appl. Phys. Lett. 58, 444 (1991).
    [Crossref]
  10. R. Adar, M. R. Serbin, V. Mizrahi, J. Lightwave Technol. 12, 1369 (1994).
    [Crossref]
  11. Q. Li, A. A. Eftekhar, M. Sodagar, Z. Xia, A. H. Atabaki, A. Adibi, Opt. Express 21, 18236 (2013).
    [Crossref]
  12. A. Gondarenko, J. S. Levy, M. Lipson, Opt. Express 17, 11366 (2009).
    [Crossref]
  13. K. Luke, A. Dutt, C. B. Poitras, M. Lipson, Opt. Express 21, 22829 (2013).
    [Crossref]
  14. L. Zhuang, D. Marpaung, M. Burla, W. Beeker, A. Leinse, C. Roeloffzen, Opt. Express 19, 23162 (2011).
    [Crossref]
  15. D. T. Spencer, Y. Tang, J. F. Bauters, M. J. R. Heck, J. E. Bowers, in IEEE Photonics Conference (Institute of Electrical and Electronics Engineers, 2012), pp. 141–142.
  16. M.-C. Tien, J. F. Bauters, M. J. R. Heck, D. T. Spencer, D. J. Blumenthal, J. E. Bowers, Opt. Express 19, 13551 (2011).
    [Crossref]
  17. O. Schwelb, J. Lightwave Technol. 22, 1380 (2004).
    [Crossref]
  18. D. Ding, M. J. A. de Dood, J. F. Bauters, M. J. R. Heck, J. E. Bowers, D. Bouwmeester, Opt. Express 22, 6778 (2014).
    [Crossref]
  19. T. Tsuchizawa, K. Yamada, IEEE J. Sel. Top. Quantum Electron. 17, 516 (2011).
    [Crossref]
  20. J. F. Bauters, M. L. Davenport, M. J. R. Heck, J. K. Doylend, A. Chen, A. W. Fang, J. E. Bowers, Opt. Express 21, 544 (2013).
    [Crossref]
  21. M. Piels, J. Bauters, M. Davenport, M. Heck, J. Bowers, J. Lightwave Technol. 32, 817 (2013).
    [Crossref]
  22. J. F. Bauters, M. J. R. Heck, D. D. John, J. S. Barton, C. M. Bruinink, A. Leinse, R. G. Heideman, D. J. Blumenthal, J. E. Bowers, Opt. Express 19, 24090 (2011).
    [Crossref]
  23. H. R. Philipp, J. Electrochem. Soc. 120, 295 (1973).
    [Crossref]
  24. T. Bååk, Appl. Opt. 21, 1069 (1982).
    [Crossref]
  25. N. Uehara, K. Ueda, Appl. Phys. B 61, 9 (1995).
    [Crossref]
  26. B. J. J. Slagmolen, M. B. Gray, K. G. Baigent, D. E. McClelland, Appl. Opt. 39, 3638 (2000).
    [Crossref]
  27. A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, L. Maleki, Opt. Express 15, 6768 (2007).
    [Crossref]
  28. J. F. Bauters, M. J. R. Heck, D. Dai, J. S. Barton, D. J. Blumenthal, J. E. Bowers, IEEE Photon. J. 5, 6600207 (2013).
    [Crossref]

2014 (1)

2013 (7)

2012 (2)

C. Ciminelli, F. Dell’Olio, M. N. Armenise, IEEE Photon. J. 4, 1844 (2012).
[Crossref]

A. Biberman, M. J. Shaw, E. Timurdogan, J. B. Wright, M. R. Watts, Opt. Lett. 37, 4236 (2012).
[Crossref]

2011 (4)

2009 (1)

2007 (1)

2006 (1)

D. Cabric, M. S. W. Chen, D. A. Sobel, S. Wang, J. Yang, R. W. Brodersen, EURASIP J. Wirel. Commun. Netw. 2006, 1 (2006).
[Crossref]

2004 (1)

2000 (1)

1995 (1)

N. Uehara, K. Ueda, Appl. Phys. B 61, 9 (1995).
[Crossref]

1994 (1)

R. Adar, M. R. Serbin, V. Mizrahi, J. Lightwave Technol. 12, 1369 (1994).
[Crossref]

1991 (1)

R. Adar, Y. Shani, C. Henry, Appl. Phys. Lett. 58, 444 (1991).
[Crossref]

1982 (1)

1973 (1)

H. R. Philipp, J. Electrochem. Soc. 120, 295 (1973).
[Crossref]

Adar, R.

R. Adar, M. R. Serbin, V. Mizrahi, J. Lightwave Technol. 12, 1369 (1994).
[Crossref]

R. Adar, Y. Shani, C. Henry, Appl. Phys. Lett. 58, 444 (1991).
[Crossref]

Adibi, A.

Armenise, M. N.

Atabaki, A. H.

Bååk, T.

Baigent, K. G.

Barton, J. S.

Bauters, J.

Bauters, J. F.

D. Ding, M. J. A. de Dood, J. F. Bauters, M. J. R. Heck, J. E. Bowers, D. Bouwmeester, Opt. Express 22, 6778 (2014).
[Crossref]

J. F. Bauters, M. L. Davenport, M. J. R. Heck, J. K. Doylend, A. Chen, A. W. Fang, J. E. Bowers, Opt. Express 21, 544 (2013).
[Crossref]

J. F. Bauters, M. J. R. Heck, D. Dai, J. S. Barton, D. J. Blumenthal, J. E. Bowers, IEEE Photon. J. 5, 6600207 (2013).
[Crossref]

J. F. Bauters, M. J. R. Heck, D. D. John, J. S. Barton, C. M. Bruinink, A. Leinse, R. G. Heideman, D. J. Blumenthal, J. E. Bowers, Opt. Express 19, 24090 (2011).
[Crossref]

M.-C. Tien, J. F. Bauters, M. J. R. Heck, D. T. Spencer, D. J. Blumenthal, J. E. Bowers, Opt. Express 19, 13551 (2011).
[Crossref]

D. T. Spencer, Y. Tang, J. F. Bauters, M. J. R. Heck, J. E. Bowers, in IEEE Photonics Conference (Institute of Electrical and Electronics Engineers, 2012), pp. 141–142.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, D. T. Spencer, J. E. Bowers, “Ultra-low loss waveguide platform and its integration with silicon photonics,” Laser Photon. Rev., doi: 10.1002/lpor.201300183 (posted online March 5, 2014).

Beeker, W.

Bellini, M.

P. Maddaloni, M. Bellini, P. De Natale, Laser-Based Measurements for Time and Frequency Domain Applications (Taylor & Francis, 2013).

Biberman, A.

Blumenthal, D. J.

Bouwmeester, D.

Bowers, J.

Bowers, J. E.

D. Ding, M. J. A. de Dood, J. F. Bauters, M. J. R. Heck, J. E. Bowers, D. Bouwmeester, Opt. Express 22, 6778 (2014).
[Crossref]

J. F. Bauters, M. L. Davenport, M. J. R. Heck, J. K. Doylend, A. Chen, A. W. Fang, J. E. Bowers, Opt. Express 21, 544 (2013).
[Crossref]

J. F. Bauters, M. J. R. Heck, D. Dai, J. S. Barton, D. J. Blumenthal, J. E. Bowers, IEEE Photon. J. 5, 6600207 (2013).
[Crossref]

M.-C. Tien, J. F. Bauters, M. J. R. Heck, D. T. Spencer, D. J. Blumenthal, J. E. Bowers, Opt. Express 19, 13551 (2011).
[Crossref]

J. F. Bauters, M. J. R. Heck, D. D. John, J. S. Barton, C. M. Bruinink, A. Leinse, R. G. Heideman, D. J. Blumenthal, J. E. Bowers, Opt. Express 19, 24090 (2011).
[Crossref]

M. J. R. Heck, J. F. Bauters, M. L. Davenport, D. T. Spencer, J. E. Bowers, “Ultra-low loss waveguide platform and its integration with silicon photonics,” Laser Photon. Rev., doi: 10.1002/lpor.201300183 (posted online March 5, 2014).

D. T. Spencer, Y. Tang, J. F. Bauters, M. J. R. Heck, J. E. Bowers, in IEEE Photonics Conference (Institute of Electrical and Electronics Engineers, 2012), pp. 141–142.

Brodersen, R. W.

D. Cabric, M. S. W. Chen, D. A. Sobel, S. Wang, J. Yang, R. W. Brodersen, EURASIP J. Wirel. Commun. Netw. 2006, 1 (2006).
[Crossref]

Bruinink, C. M.

Burla, M.

Cabric, D.

D. Cabric, M. S. W. Chen, D. A. Sobel, S. Wang, J. Yang, R. W. Brodersen, EURASIP J. Wirel. Commun. Netw. 2006, 1 (2006).
[Crossref]

Capmany, J.

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, J. Capmany, Laser Photon. Rev. 7, 506 (2013).
[Crossref]

Chen, A.

Chen, M. S. W.

D. Cabric, M. S. W. Chen, D. A. Sobel, S. Wang, J. Yang, R. W. Brodersen, EURASIP J. Wirel. Commun. Netw. 2006, 1 (2006).
[Crossref]

Ciminelli, C.

Dai, D.

J. F. Bauters, M. J. R. Heck, D. Dai, J. S. Barton, D. J. Blumenthal, J. E. Bowers, IEEE Photon. J. 5, 6600207 (2013).
[Crossref]

Davenport, M.

Davenport, M. L.

J. F. Bauters, M. L. Davenport, M. J. R. Heck, J. K. Doylend, A. Chen, A. W. Fang, J. E. Bowers, Opt. Express 21, 544 (2013).
[Crossref]

M. J. R. Heck, J. F. Bauters, M. L. Davenport, D. T. Spencer, J. E. Bowers, “Ultra-low loss waveguide platform and its integration with silicon photonics,” Laser Photon. Rev., doi: 10.1002/lpor.201300183 (posted online March 5, 2014).

de Dood, M. J. A.

De Natale, P.

P. Maddaloni, M. Bellini, P. De Natale, Laser-Based Measurements for Time and Frequency Domain Applications (Taylor & Francis, 2013).

Dell’Olio, F.

Ding, D.

Doylend, J. K.

Dutt, A.

Eftekhar, A. A.

Fang, A. W.

Gondarenko, A.

Gray, M. B.

Heck, M.

Heck, M. J. R.

D. Ding, M. J. A. de Dood, J. F. Bauters, M. J. R. Heck, J. E. Bowers, D. Bouwmeester, Opt. Express 22, 6778 (2014).
[Crossref]

J. F. Bauters, M. L. Davenport, M. J. R. Heck, J. K. Doylend, A. Chen, A. W. Fang, J. E. Bowers, Opt. Express 21, 544 (2013).
[Crossref]

J. F. Bauters, M. J. R. Heck, D. Dai, J. S. Barton, D. J. Blumenthal, J. E. Bowers, IEEE Photon. J. 5, 6600207 (2013).
[Crossref]

M.-C. Tien, J. F. Bauters, M. J. R. Heck, D. T. Spencer, D. J. Blumenthal, J. E. Bowers, Opt. Express 19, 13551 (2011).
[Crossref]

J. F. Bauters, M. J. R. Heck, D. D. John, J. S. Barton, C. M. Bruinink, A. Leinse, R. G. Heideman, D. J. Blumenthal, J. E. Bowers, Opt. Express 19, 24090 (2011).
[Crossref]

D. T. Spencer, Y. Tang, J. F. Bauters, M. J. R. Heck, J. E. Bowers, in IEEE Photonics Conference (Institute of Electrical and Electronics Engineers, 2012), pp. 141–142.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, D. T. Spencer, J. E. Bowers, “Ultra-low loss waveguide platform and its integration with silicon photonics,” Laser Photon. Rev., doi: 10.1002/lpor.201300183 (posted online March 5, 2014).

Heideman, R.

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, J. Capmany, Laser Photon. Rev. 7, 506 (2013).
[Crossref]

Heideman, R. G.

Henry, C.

R. Adar, Y. Shani, C. Henry, Appl. Phys. Lett. 58, 444 (1991).
[Crossref]

Ilchenko, V. S.

John, D. D.

Leinse, A.

Levy, J. S.

Li, Q.

Lipson, M.

Luke, K.

Maddaloni, P.

P. Maddaloni, M. Bellini, P. De Natale, Laser-Based Measurements for Time and Frequency Domain Applications (Taylor & Francis, 2013).

Maleki, L.

Marpaung, D.

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, J. Capmany, Laser Photon. Rev. 7, 506 (2013).
[Crossref]

L. Zhuang, D. Marpaung, M. Burla, W. Beeker, A. Leinse, C. Roeloffzen, Opt. Express 19, 23162 (2011).
[Crossref]

Matsko, A. B.

McClelland, D. E.

Mizrahi, V.

R. Adar, M. R. Serbin, V. Mizrahi, J. Lightwave Technol. 12, 1369 (1994).
[Crossref]

Passenberg, W.

Philipp, H. R.

H. R. Philipp, J. Electrochem. Soc. 120, 295 (1973).
[Crossref]

Piels, M.

Poitras, C. B.

Roeloffzen, C.

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, J. Capmany, Laser Photon. Rev. 7, 506 (2013).
[Crossref]

L. Zhuang, D. Marpaung, M. Burla, W. Beeker, A. Leinse, C. Roeloffzen, Opt. Express 19, 23162 (2011).
[Crossref]

Sales, S.

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, J. Capmany, Laser Photon. Rev. 7, 506 (2013).
[Crossref]

Savchenkov, A. A.

Schwelb, O.

Serbin, M. R.

R. Adar, M. R. Serbin, V. Mizrahi, J. Lightwave Technol. 12, 1369 (1994).
[Crossref]

Shani, Y.

R. Adar, Y. Shani, C. Henry, Appl. Phys. Lett. 58, 444 (1991).
[Crossref]

Shaw, M. J.

Slagmolen, B. J. J.

Soares, F. M.

Sobel, D. A.

D. Cabric, M. S. W. Chen, D. A. Sobel, S. Wang, J. Yang, R. W. Brodersen, EURASIP J. Wirel. Commun. Netw. 2006, 1 (2006).
[Crossref]

Sodagar, M.

Spencer, D. T.

M.-C. Tien, J. F. Bauters, M. J. R. Heck, D. T. Spencer, D. J. Blumenthal, J. E. Bowers, Opt. Express 19, 13551 (2011).
[Crossref]

M. J. R. Heck, J. F. Bauters, M. L. Davenport, D. T. Spencer, J. E. Bowers, “Ultra-low loss waveguide platform and its integration with silicon photonics,” Laser Photon. Rev., doi: 10.1002/lpor.201300183 (posted online March 5, 2014).

D. T. Spencer, Y. Tang, J. F. Bauters, M. J. R. Heck, J. E. Bowers, in IEEE Photonics Conference (Institute of Electrical and Electronics Engineers, 2012), pp. 141–142.

Tang, Y.

D. T. Spencer, Y. Tang, J. F. Bauters, M. J. R. Heck, J. E. Bowers, in IEEE Photonics Conference (Institute of Electrical and Electronics Engineers, 2012), pp. 141–142.

Tien, M.-C.

Timurdogan, E.

Tsuchizawa, T.

T. Tsuchizawa, K. Yamada, IEEE J. Sel. Top. Quantum Electron. 17, 516 (2011).
[Crossref]

Ueda, K.

N. Uehara, K. Ueda, Appl. Phys. B 61, 9 (1995).
[Crossref]

Uehara, N.

N. Uehara, K. Ueda, Appl. Phys. B 61, 9 (1995).
[Crossref]

Vig, J. R.

J. R. Vig, “Introduction to quartz frequency standards,” (U.S. Army Electronics Technology and Devices Laboratory, 1992).

Wang, S.

D. Cabric, M. S. W. Chen, D. A. Sobel, S. Wang, J. Yang, R. W. Brodersen, EURASIP J. Wirel. Commun. Netw. 2006, 1 (2006).
[Crossref]

Watts, M. R.

Wright, J. B.

Xia, Z.

Yamada, K.

T. Tsuchizawa, K. Yamada, IEEE J. Sel. Top. Quantum Electron. 17, 516 (2011).
[Crossref]

Yang, J.

D. Cabric, M. S. W. Chen, D. A. Sobel, S. Wang, J. Yang, R. W. Brodersen, EURASIP J. Wirel. Commun. Netw. 2006, 1 (2006).
[Crossref]

Zhuang, L.

Appl. Opt. (2)

Appl. Phys. B (1)

N. Uehara, K. Ueda, Appl. Phys. B 61, 9 (1995).
[Crossref]

Appl. Phys. Lett. (1)

R. Adar, Y. Shani, C. Henry, Appl. Phys. Lett. 58, 444 (1991).
[Crossref]

EURASIP J. Wirel. Commun. Netw. (1)

D. Cabric, M. S. W. Chen, D. A. Sobel, S. Wang, J. Yang, R. W. Brodersen, EURASIP J. Wirel. Commun. Netw. 2006, 1 (2006).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

T. Tsuchizawa, K. Yamada, IEEE J. Sel. Top. Quantum Electron. 17, 516 (2011).
[Crossref]

IEEE Photon. J. (2)

J. F. Bauters, M. J. R. Heck, D. Dai, J. S. Barton, D. J. Blumenthal, J. E. Bowers, IEEE Photon. J. 5, 6600207 (2013).
[Crossref]

C. Ciminelli, F. Dell’Olio, M. N. Armenise, IEEE Photon. J. 4, 1844 (2012).
[Crossref]

J. Electrochem. Soc. (1)

H. R. Philipp, J. Electrochem. Soc. 120, 295 (1973).
[Crossref]

J. Lightwave Technol. (3)

Laser Photon. Rev. (1)

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, J. Capmany, Laser Photon. Rev. 7, 506 (2013).
[Crossref]

Opt. Express (10)

Opt. Lett. (1)

Other (4)

M. J. R. Heck, J. F. Bauters, M. L. Davenport, D. T. Spencer, J. E. Bowers, “Ultra-low loss waveguide platform and its integration with silicon photonics,” Laser Photon. Rev., doi: 10.1002/lpor.201300183 (posted online March 5, 2014).

J. R. Vig, “Introduction to quartz frequency standards,” (U.S. Army Electronics Technology and Devices Laboratory, 1992).

P. Maddaloni, M. Bellini, P. De Natale, Laser-Based Measurements for Time and Frequency Domain Applications (Taylor & Francis, 2013).

D. T. Spencer, Y. Tang, J. F. Bauters, M. J. R. Heck, J. E. Bowers, in IEEE Photonics Conference (Institute of Electrical and Electronics Engineers, 2012), pp. 141–142.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. State-of-the-art resonator comparison of Qint versus bend radius for integrated waveguide-coupled resonators [6,816]. The propagation loss (α) and FSR are scaled assuming λ=1550nm, neff=ng=1.5, and lossless directional couplers according to Eq. (1). UCSB Si3N4 results [15,16], including this Letter, are highlighted in red triangles.
Fig. 2.
Fig. 2. Theoretically obtainable Qint for a given directional coupler excess loss value, γ, and propagation loss, α, according to Eq. (1).
Fig. 3.
Fig. 3. (a) Waveguide cross section and (b)–(d) all supported modes of the 11μm×40nm Si3N4 core geometry at a 9.65 mm bending radius, simulated with FIMMWAVE.
Fig. 4.
Fig. 4. Directional coupler layouts for ring resonators. The tapering of the gap is strongest for (a) symmetric coupling and identical for the (b) straight and (c) pulley couplers, while the (d) weakly tapered gap coupler smoothes the gap transition. We fabricated straight and weakly tapered gap couplers in this study.
Fig. 5.
Fig. 5. Simulated TE effective and group indices for the 11μm×40nm Si3N4 multimode waveguides studied in this Letter. Due to the fundamental TE0 mode having a higher group index, there will be a relative resonance wavelength separation, Δλres and overall beat wavelength, λbeat (inset).
Fig. 6.
Fig. 6. Relative resonance wavelengths and ERs for the TE0 and TE1 modes across the region of interest. All numbers are taken relative to the fundamental TE0 mode and averaged over multiple closely spaced resonances every 5 nm. The weakly tapered gap directional coupler resonator shows a beat wavelength of 73 nm similar to that of a straight directional coupler resonator, with an increase in absolute and relative ER.
Fig. 7.
Fig. 7. Resonator spectra and fits near 1580 nm for three different directional coupler designs: (a) 5 μm straight bus waveguide, (b) 3.8 μm straight bus waveguide, and (c) 3.8 μm weakly tapered gap waveguide.

Tables (1)

Tables Icon

Table 1. Measured and Extracted Resonator Parameters for the Three Directional Coupler Designs Studied at 1580 nm, Assuming No Parasitic Losses (γ=0)a

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Qload=2πneffLλ[κ+αL+γ]1.
ngTE0ngTE1=1+1m.

Metrics