Abstract

As photonics moves from the single-device level toward large-scale, integrated, and complex systems on a chip, monitoring, control, and stabilization of the components become critical. We need to monitor a circuit non-invasively and apply a simple, fast, and robust feedback control. Here, we show non-invasive monitoring and feedback control of high-quality-factor silicon (Si) photonic resonators assisted by a transparent detector that is directly integrated inside the cavity. Control operations are entirely managed by a CMOS microelectronic circuit that is bridged to the Si photonic chip and hosts many parallel electronic readout channels. Advanced functionalities, such as wavelength tuning, locking, labeling, and swapping, are demonstrated. The non-invasive nature of the transparent monitor and the scalability of the CMOS readout system offer a viable solution for the control of arbitrarily reconfigurable photonic integrated circuits aggregating many components on a single chip.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Demonstration of a 4 × 4-port universal linear circuit

Antonio Ribeiro, Alfonso Ruocco, Laurent Vanacker, and Wim Bogaerts
Optica 3(12) 1348-1357 (2016)

Wavelength tuning and stabilization of microring-based filters using silicon in-resonator photoconductive heaters

Hasitha Jayatilleka, Kyle Murray, Miguel Ángel Guillén-Torres, Michael Caverley, Ricky Hu, Nicolas A. F. Jaeger, Lukas Chrostowski, and Sudip Shekhar
Opt. Express 23(19) 25084-25097 (2015)

Multiwavelength stabilization control of a thermo-optic system with adaptive reconfiguration

Andri Mahendra, Chunle Xiong, Xiang Zhang, Benjamin J. Eggleton, and Philip H. W. Leong
Appl. Opt. 56(4) 1113-1118 (2017)

References

  • View by:
  • |
  • |
  • |

  1. R. Chau, B. Doyle, S. Datta, J. Kavalieros, K. Zhang, “Integrated nanoelectronics for the future,” Nat. Mater. 6, 810–812 (2007).
    [Crossref]
  2. R. Gonzalez, B. M. Gordon, M. A. Horowitz, “Supply and threshold voltage scaling for low power CMOS,” IEEE J. Solid-State Circuits 32, 1210–1216 (1997).
    [Crossref]
  3. J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493, 195–199 (2013).
    [Crossref]
  4. F. Morichetti, S. Grillanda, A. Melloni, “Toward feedback-controlled integrated photonics,” IEEE Photon. J. 6, 1–6 (2014).
    [Crossref]
  5. F. Xia, L. Sekaric, Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1, 65–71 (2007).
    [Crossref]
  6. B. Guha, A. Gondarenko, M. Lipson, “Minimizing temperature sensitivity of silicon Mach–Zehnder interferometers,” Opt. Express 18, 1879–1887 (2010).
    [Crossref]
  7. K. Padmaraju, D. F. Logan, T. Shiraishi, J. J. Ackert, A. P. Knights, K. Bergman, “Wavelength locking and thermally stabilizing microring resonators using dithering signals,” J. Lightwave Technol. 32, 505–512 (2014).
    [Crossref]
  8. J. A. Cox, A. L. Lentine, D. C. Trotter, A. L. Starbuck, “Control of integrated micro-resonator wavelength via balanced homodyne locking,” Opt. Express 22, 11279–11289 (2014).
    [Crossref]
  9. K. Padmaraju, J. Chan, L. Chen, M. Lipson, K. Bergman, “Thermal stabilization of a microring modulator using feedback control,” Opt. Express 20, 27999–28008 (2012).
    [Crossref]
  10. K. Padmaraju, D. F. Logan, X. Zhu, J. J. Ackert, A. P. Knights, K. Bergman, “Integrated thermal stabilization of a microring modulator,” Opt. Express 21, 14342–14350 (2013).
    [Crossref]
  11. W. A. Zortman, A. L. Lentine, D. C. Trotter, M. R. Watts, “Bit-error-rate monitoring for active wavelength control of resonant modulators,” IEEE Micro 33, 42–52 (2013).
    [Crossref]
  12. T. Baehr-Jones, T. Pinguet, P. Lo Guo-Qiang, S. Danziger, D. Prather, M. Hochberg, “Myths and rumours of silicon photonics,” Nat. Photonics 6, 206–208 (2012).
    [Crossref]
  13. D. A. B. Miller, “Designing linear optical components,” Opt. Photon. News 24(12), 38 (2013).
    [Crossref]
  14. D. A. B. Miller, “Self-configuring universal linear optical component,” Photon. Res. 1, 1–15 (2013).
    [Crossref]
  15. J. K. Doylend, A. P. Knights, “The evolution of silicon photonics as an enabling technology for optical interconnection,” Laser Photon. Rev. 6, 504–525 (2012).
  16. F. Morichetti, S. Grillanda, M. Carminati, G. Ferrari, M. Sampietro, M. J. Strain, M. Sorel, A. Melloni, “Non-invasive on-chip light observation by contactless waveguide conductivity monitoring,” IEEE J. Sel. Top. Quantum Electron. 20, 1–10 (2014).
    [Crossref]
  17. P. Ciccarella, M. Carminati, G. Ferrari, D. Bianchi, S. Grillanda, F. Morichetti, A. Melloni, M. Sampietro are preparing a manuscript to be called “Impedance sensing CMOS chip for non-invasive light detection in integrated photonics.”
  18. M. Gnan, S. Thoms, D. S. Macintyre, R. M. De La Rue, M. Sorel, “Fabrication of low-loss photonic wires in silicon-on-insulator using hydrogen silsesquioxane electron-beam resist,” Electron. Lett. 44, 115–116 (2008).
    [Crossref]
  19. T. Baehr-Jones, M. Hochberg, A. Scherer, “Photodetection in silicon beyond the band edge with surface states,” Opt. Express 16, 1659–1668 (2008).
    [Crossref]
  20. W. Monch, Semiconductor Surfaces and Interfaces (Springer-Verlag, 2001).
  21. H. Chen, X. Luo, A. W. Poon, “Cavity-enhanced photocurrent generation by 1.55  μm wavelengths linear absorption in a p-i-n diode embedded silicon microring resonator,” Appl. Phys. Lett. 95, 171111 (2009).
    [Crossref]
  22. J. D. B. Bradley, P. E. Jessop, A. P. Knights, “Silicon waveguide integrated optical power monitor with enhanced sensitivity at 1550  nm,” Appl. Phys. Lett. 86, 241103 (2005).
    [Crossref]
  23. M. W. Geis, S. J. Spector, M. E. Grein, R. T. Schulein, J. U. Yoon, D. M. Lennon, S. Deneault, F. Gan, F. X. Kaertner, T. M. Lyszczarz, “CMOS-compatible all-Si high-speed waveguide photodiodes with high responsivity in near-infrared communication band,” IEEE Photon. Technol. Lett. 19, 152–154 (2007).
    [Crossref]
  24. E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. S. Hosseini, A. Biberman, M. R. Watts, “An ultralow power athermal silicon modulator,” Nat. Commun. 5, 4008 (2014).
    [Crossref]
  25. L. W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergman, M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014).

2014 (6)

F. Morichetti, S. Grillanda, A. Melloni, “Toward feedback-controlled integrated photonics,” IEEE Photon. J. 6, 1–6 (2014).
[Crossref]

K. Padmaraju, D. F. Logan, T. Shiraishi, J. J. Ackert, A. P. Knights, K. Bergman, “Wavelength locking and thermally stabilizing microring resonators using dithering signals,” J. Lightwave Technol. 32, 505–512 (2014).
[Crossref]

J. A. Cox, A. L. Lentine, D. C. Trotter, A. L. Starbuck, “Control of integrated micro-resonator wavelength via balanced homodyne locking,” Opt. Express 22, 11279–11289 (2014).
[Crossref]

F. Morichetti, S. Grillanda, M. Carminati, G. Ferrari, M. Sampietro, M. J. Strain, M. Sorel, A. Melloni, “Non-invasive on-chip light observation by contactless waveguide conductivity monitoring,” IEEE J. Sel. Top. Quantum Electron. 20, 1–10 (2014).
[Crossref]

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. S. Hosseini, A. Biberman, M. R. Watts, “An ultralow power athermal silicon modulator,” Nat. Commun. 5, 4008 (2014).
[Crossref]

L. W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergman, M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014).

2013 (5)

K. Padmaraju, D. F. Logan, X. Zhu, J. J. Ackert, A. P. Knights, K. Bergman, “Integrated thermal stabilization of a microring modulator,” Opt. Express 21, 14342–14350 (2013).
[Crossref]

W. A. Zortman, A. L. Lentine, D. C. Trotter, M. R. Watts, “Bit-error-rate monitoring for active wavelength control of resonant modulators,” IEEE Micro 33, 42–52 (2013).
[Crossref]

D. A. B. Miller, “Designing linear optical components,” Opt. Photon. News 24(12), 38 (2013).
[Crossref]

D. A. B. Miller, “Self-configuring universal linear optical component,” Photon. Res. 1, 1–15 (2013).
[Crossref]

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493, 195–199 (2013).
[Crossref]

2012 (3)

K. Padmaraju, J. Chan, L. Chen, M. Lipson, K. Bergman, “Thermal stabilization of a microring modulator using feedback control,” Opt. Express 20, 27999–28008 (2012).
[Crossref]

J. K. Doylend, A. P. Knights, “The evolution of silicon photonics as an enabling technology for optical interconnection,” Laser Photon. Rev. 6, 504–525 (2012).

T. Baehr-Jones, T. Pinguet, P. Lo Guo-Qiang, S. Danziger, D. Prather, M. Hochberg, “Myths and rumours of silicon photonics,” Nat. Photonics 6, 206–208 (2012).
[Crossref]

2010 (1)

2009 (1)

H. Chen, X. Luo, A. W. Poon, “Cavity-enhanced photocurrent generation by 1.55  μm wavelengths linear absorption in a p-i-n diode embedded silicon microring resonator,” Appl. Phys. Lett. 95, 171111 (2009).
[Crossref]

2008 (2)

M. Gnan, S. Thoms, D. S. Macintyre, R. M. De La Rue, M. Sorel, “Fabrication of low-loss photonic wires in silicon-on-insulator using hydrogen silsesquioxane electron-beam resist,” Electron. Lett. 44, 115–116 (2008).
[Crossref]

T. Baehr-Jones, M. Hochberg, A. Scherer, “Photodetection in silicon beyond the band edge with surface states,” Opt. Express 16, 1659–1668 (2008).
[Crossref]

2007 (3)

F. Xia, L. Sekaric, Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1, 65–71 (2007).
[Crossref]

R. Chau, B. Doyle, S. Datta, J. Kavalieros, K. Zhang, “Integrated nanoelectronics for the future,” Nat. Mater. 6, 810–812 (2007).
[Crossref]

M. W. Geis, S. J. Spector, M. E. Grein, R. T. Schulein, J. U. Yoon, D. M. Lennon, S. Deneault, F. Gan, F. X. Kaertner, T. M. Lyszczarz, “CMOS-compatible all-Si high-speed waveguide photodiodes with high responsivity in near-infrared communication band,” IEEE Photon. Technol. Lett. 19, 152–154 (2007).
[Crossref]

2005 (1)

J. D. B. Bradley, P. E. Jessop, A. P. Knights, “Silicon waveguide integrated optical power monitor with enhanced sensitivity at 1550  nm,” Appl. Phys. Lett. 86, 241103 (2005).
[Crossref]

1997 (1)

R. Gonzalez, B. M. Gordon, M. A. Horowitz, “Supply and threshold voltage scaling for low power CMOS,” IEEE J. Solid-State Circuits 32, 1210–1216 (1997).
[Crossref]

Ackert, J. J.

Baehr-Jones, T.

T. Baehr-Jones, T. Pinguet, P. Lo Guo-Qiang, S. Danziger, D. Prather, M. Hochberg, “Myths and rumours of silicon photonics,” Nat. Photonics 6, 206–208 (2012).
[Crossref]

T. Baehr-Jones, M. Hochberg, A. Scherer, “Photodetection in silicon beyond the band edge with surface states,” Opt. Express 16, 1659–1668 (2008).
[Crossref]

Bergman, K.

Bianchi, D.

P. Ciccarella, M. Carminati, G. Ferrari, D. Bianchi, S. Grillanda, F. Morichetti, A. Melloni, M. Sampietro are preparing a manuscript to be called “Impedance sensing CMOS chip for non-invasive light detection in integrated photonics.”

Biberman, A.

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. S. Hosseini, A. Biberman, M. R. Watts, “An ultralow power athermal silicon modulator,” Nat. Commun. 5, 4008 (2014).
[Crossref]

Bradley, J. D. B.

J. D. B. Bradley, P. E. Jessop, A. P. Knights, “Silicon waveguide integrated optical power monitor with enhanced sensitivity at 1550  nm,” Appl. Phys. Lett. 86, 241103 (2005).
[Crossref]

Carminati, M.

F. Morichetti, S. Grillanda, M. Carminati, G. Ferrari, M. Sampietro, M. J. Strain, M. Sorel, A. Melloni, “Non-invasive on-chip light observation by contactless waveguide conductivity monitoring,” IEEE J. Sel. Top. Quantum Electron. 20, 1–10 (2014).
[Crossref]

P. Ciccarella, M. Carminati, G. Ferrari, D. Bianchi, S. Grillanda, F. Morichetti, A. Melloni, M. Sampietro are preparing a manuscript to be called “Impedance sensing CMOS chip for non-invasive light detection in integrated photonics.”

Chan, J.

Chau, R.

R. Chau, B. Doyle, S. Datta, J. Kavalieros, K. Zhang, “Integrated nanoelectronics for the future,” Nat. Mater. 6, 810–812 (2007).
[Crossref]

Chen, C. P.

L. W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergman, M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014).

Chen, H.

H. Chen, X. Luo, A. W. Poon, “Cavity-enhanced photocurrent generation by 1.55  μm wavelengths linear absorption in a p-i-n diode embedded silicon microring resonator,” Appl. Phys. Lett. 95, 171111 (2009).
[Crossref]

Chen, L.

Ciccarella, P.

P. Ciccarella, M. Carminati, G. Ferrari, D. Bianchi, S. Grillanda, F. Morichetti, A. Melloni, M. Sampietro are preparing a manuscript to be called “Impedance sensing CMOS chip for non-invasive light detection in integrated photonics.”

Cox, J. A.

Danziger, S.

T. Baehr-Jones, T. Pinguet, P. Lo Guo-Qiang, S. Danziger, D. Prather, M. Hochberg, “Myths and rumours of silicon photonics,” Nat. Photonics 6, 206–208 (2012).
[Crossref]

Datta, S.

R. Chau, B. Doyle, S. Datta, J. Kavalieros, K. Zhang, “Integrated nanoelectronics for the future,” Nat. Mater. 6, 810–812 (2007).
[Crossref]

De La Rue, R. M.

M. Gnan, S. Thoms, D. S. Macintyre, R. M. De La Rue, M. Sorel, “Fabrication of low-loss photonic wires in silicon-on-insulator using hydrogen silsesquioxane electron-beam resist,” Electron. Lett. 44, 115–116 (2008).
[Crossref]

Deneault, S.

M. W. Geis, S. J. Spector, M. E. Grein, R. T. Schulein, J. U. Yoon, D. M. Lennon, S. Deneault, F. Gan, F. X. Kaertner, T. M. Lyszczarz, “CMOS-compatible all-Si high-speed waveguide photodiodes with high responsivity in near-infrared communication band,” IEEE Photon. Technol. Lett. 19, 152–154 (2007).
[Crossref]

Doyle, B.

R. Chau, B. Doyle, S. Datta, J. Kavalieros, K. Zhang, “Integrated nanoelectronics for the future,” Nat. Mater. 6, 810–812 (2007).
[Crossref]

Doylend, J. K.

J. K. Doylend, A. P. Knights, “The evolution of silicon photonics as an enabling technology for optical interconnection,” Laser Photon. Rev. 6, 504–525 (2012).

Ferrari, G.

F. Morichetti, S. Grillanda, M. Carminati, G. Ferrari, M. Sampietro, M. J. Strain, M. Sorel, A. Melloni, “Non-invasive on-chip light observation by contactless waveguide conductivity monitoring,” IEEE J. Sel. Top. Quantum Electron. 20, 1–10 (2014).
[Crossref]

P. Ciccarella, M. Carminati, G. Ferrari, D. Bianchi, S. Grillanda, F. Morichetti, A. Melloni, M. Sampietro are preparing a manuscript to be called “Impedance sensing CMOS chip for non-invasive light detection in integrated photonics.”

Gabrielli, L. H.

L. W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergman, M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014).

Gan, F.

M. W. Geis, S. J. Spector, M. E. Grein, R. T. Schulein, J. U. Yoon, D. M. Lennon, S. Deneault, F. Gan, F. X. Kaertner, T. M. Lyszczarz, “CMOS-compatible all-Si high-speed waveguide photodiodes with high responsivity in near-infrared communication band,” IEEE Photon. Technol. Lett. 19, 152–154 (2007).
[Crossref]

Geis, M. W.

M. W. Geis, S. J. Spector, M. E. Grein, R. T. Schulein, J. U. Yoon, D. M. Lennon, S. Deneault, F. Gan, F. X. Kaertner, T. M. Lyszczarz, “CMOS-compatible all-Si high-speed waveguide photodiodes with high responsivity in near-infrared communication band,” IEEE Photon. Technol. Lett. 19, 152–154 (2007).
[Crossref]

Gnan, M.

M. Gnan, S. Thoms, D. S. Macintyre, R. M. De La Rue, M. Sorel, “Fabrication of low-loss photonic wires in silicon-on-insulator using hydrogen silsesquioxane electron-beam resist,” Electron. Lett. 44, 115–116 (2008).
[Crossref]

Gondarenko, A.

Gonzalez, R.

R. Gonzalez, B. M. Gordon, M. A. Horowitz, “Supply and threshold voltage scaling for low power CMOS,” IEEE J. Solid-State Circuits 32, 1210–1216 (1997).
[Crossref]

Gordon, B. M.

R. Gonzalez, B. M. Gordon, M. A. Horowitz, “Supply and threshold voltage scaling for low power CMOS,” IEEE J. Solid-State Circuits 32, 1210–1216 (1997).
[Crossref]

Grein, M. E.

M. W. Geis, S. J. Spector, M. E. Grein, R. T. Schulein, J. U. Yoon, D. M. Lennon, S. Deneault, F. Gan, F. X. Kaertner, T. M. Lyszczarz, “CMOS-compatible all-Si high-speed waveguide photodiodes with high responsivity in near-infrared communication band,” IEEE Photon. Technol. Lett. 19, 152–154 (2007).
[Crossref]

Grillanda, S.

F. Morichetti, S. Grillanda, A. Melloni, “Toward feedback-controlled integrated photonics,” IEEE Photon. J. 6, 1–6 (2014).
[Crossref]

F. Morichetti, S. Grillanda, M. Carminati, G. Ferrari, M. Sampietro, M. J. Strain, M. Sorel, A. Melloni, “Non-invasive on-chip light observation by contactless waveguide conductivity monitoring,” IEEE J. Sel. Top. Quantum Electron. 20, 1–10 (2014).
[Crossref]

P. Ciccarella, M. Carminati, G. Ferrari, D. Bianchi, S. Grillanda, F. Morichetti, A. Melloni, M. Sampietro are preparing a manuscript to be called “Impedance sensing CMOS chip for non-invasive light detection in integrated photonics.”

Guha, B.

Hochberg, M.

T. Baehr-Jones, T. Pinguet, P. Lo Guo-Qiang, S. Danziger, D. Prather, M. Hochberg, “Myths and rumours of silicon photonics,” Nat. Photonics 6, 206–208 (2012).
[Crossref]

T. Baehr-Jones, M. Hochberg, A. Scherer, “Photodetection in silicon beyond the band edge with surface states,” Opt. Express 16, 1659–1668 (2008).
[Crossref]

Horowitz, M. A.

R. Gonzalez, B. M. Gordon, M. A. Horowitz, “Supply and threshold voltage scaling for low power CMOS,” IEEE J. Solid-State Circuits 32, 1210–1216 (1997).
[Crossref]

Hosseini, E. S.

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. S. Hosseini, A. Biberman, M. R. Watts, “An ultralow power athermal silicon modulator,” Nat. Commun. 5, 4008 (2014).
[Crossref]

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493, 195–199 (2013).
[Crossref]

Jessop, P. E.

J. D. B. Bradley, P. E. Jessop, A. P. Knights, “Silicon waveguide integrated optical power monitor with enhanced sensitivity at 1550  nm,” Appl. Phys. Lett. 86, 241103 (2005).
[Crossref]

Kaertner, F. X.

M. W. Geis, S. J. Spector, M. E. Grein, R. T. Schulein, J. U. Yoon, D. M. Lennon, S. Deneault, F. Gan, F. X. Kaertner, T. M. Lyszczarz, “CMOS-compatible all-Si high-speed waveguide photodiodes with high responsivity in near-infrared communication band,” IEEE Photon. Technol. Lett. 19, 152–154 (2007).
[Crossref]

Kavalieros, J.

R. Chau, B. Doyle, S. Datta, J. Kavalieros, K. Zhang, “Integrated nanoelectronics for the future,” Nat. Mater. 6, 810–812 (2007).
[Crossref]

Knights, A. P.

K. Padmaraju, D. F. Logan, T. Shiraishi, J. J. Ackert, A. P. Knights, K. Bergman, “Wavelength locking and thermally stabilizing microring resonators using dithering signals,” J. Lightwave Technol. 32, 505–512 (2014).
[Crossref]

K. Padmaraju, D. F. Logan, X. Zhu, J. J. Ackert, A. P. Knights, K. Bergman, “Integrated thermal stabilization of a microring modulator,” Opt. Express 21, 14342–14350 (2013).
[Crossref]

J. K. Doylend, A. P. Knights, “The evolution of silicon photonics as an enabling technology for optical interconnection,” Laser Photon. Rev. 6, 504–525 (2012).

J. D. B. Bradley, P. E. Jessop, A. P. Knights, “Silicon waveguide integrated optical power monitor with enhanced sensitivity at 1550  nm,” Appl. Phys. Lett. 86, 241103 (2005).
[Crossref]

Lennon, D. M.

M. W. Geis, S. J. Spector, M. E. Grein, R. T. Schulein, J. U. Yoon, D. M. Lennon, S. Deneault, F. Gan, F. X. Kaertner, T. M. Lyszczarz, “CMOS-compatible all-Si high-speed waveguide photodiodes with high responsivity in near-infrared communication band,” IEEE Photon. Technol. Lett. 19, 152–154 (2007).
[Crossref]

Lentine, A. L.

J. A. Cox, A. L. Lentine, D. C. Trotter, A. L. Starbuck, “Control of integrated micro-resonator wavelength via balanced homodyne locking,” Opt. Express 22, 11279–11289 (2014).
[Crossref]

W. A. Zortman, A. L. Lentine, D. C. Trotter, M. R. Watts, “Bit-error-rate monitoring for active wavelength control of resonant modulators,” IEEE Micro 33, 42–52 (2013).
[Crossref]

Lipson, M.

Lo Guo-Qiang, P.

T. Baehr-Jones, T. Pinguet, P. Lo Guo-Qiang, S. Danziger, D. Prather, M. Hochberg, “Myths and rumours of silicon photonics,” Nat. Photonics 6, 206–208 (2012).
[Crossref]

Logan, D. F.

Luo, L. W.

L. W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergman, M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014).

Luo, X.

H. Chen, X. Luo, A. W. Poon, “Cavity-enhanced photocurrent generation by 1.55  μm wavelengths linear absorption in a p-i-n diode embedded silicon microring resonator,” Appl. Phys. Lett. 95, 171111 (2009).
[Crossref]

Lyszczarz, T. M.

M. W. Geis, S. J. Spector, M. E. Grein, R. T. Schulein, J. U. Yoon, D. M. Lennon, S. Deneault, F. Gan, F. X. Kaertner, T. M. Lyszczarz, “CMOS-compatible all-Si high-speed waveguide photodiodes with high responsivity in near-infrared communication band,” IEEE Photon. Technol. Lett. 19, 152–154 (2007).
[Crossref]

Macintyre, D. S.

M. Gnan, S. Thoms, D. S. Macintyre, R. M. De La Rue, M. Sorel, “Fabrication of low-loss photonic wires in silicon-on-insulator using hydrogen silsesquioxane electron-beam resist,” Electron. Lett. 44, 115–116 (2008).
[Crossref]

Melloni, A.

F. Morichetti, S. Grillanda, M. Carminati, G. Ferrari, M. Sampietro, M. J. Strain, M. Sorel, A. Melloni, “Non-invasive on-chip light observation by contactless waveguide conductivity monitoring,” IEEE J. Sel. Top. Quantum Electron. 20, 1–10 (2014).
[Crossref]

F. Morichetti, S. Grillanda, A. Melloni, “Toward feedback-controlled integrated photonics,” IEEE Photon. J. 6, 1–6 (2014).
[Crossref]

P. Ciccarella, M. Carminati, G. Ferrari, D. Bianchi, S. Grillanda, F. Morichetti, A. Melloni, M. Sampietro are preparing a manuscript to be called “Impedance sensing CMOS chip for non-invasive light detection in integrated photonics.”

Miller, D. A. B.

D. A. B. Miller, “Designing linear optical components,” Opt. Photon. News 24(12), 38 (2013).
[Crossref]

D. A. B. Miller, “Self-configuring universal linear optical component,” Photon. Res. 1, 1–15 (2013).
[Crossref]

Monch, W.

W. Monch, Semiconductor Surfaces and Interfaces (Springer-Verlag, 2001).

Morichetti, F.

F. Morichetti, S. Grillanda, A. Melloni, “Toward feedback-controlled integrated photonics,” IEEE Photon. J. 6, 1–6 (2014).
[Crossref]

F. Morichetti, S. Grillanda, M. Carminati, G. Ferrari, M. Sampietro, M. J. Strain, M. Sorel, A. Melloni, “Non-invasive on-chip light observation by contactless waveguide conductivity monitoring,” IEEE J. Sel. Top. Quantum Electron. 20, 1–10 (2014).
[Crossref]

P. Ciccarella, M. Carminati, G. Ferrari, D. Bianchi, S. Grillanda, F. Morichetti, A. Melloni, M. Sampietro are preparing a manuscript to be called “Impedance sensing CMOS chip for non-invasive light detection in integrated photonics.”

Ophir, N.

L. W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergman, M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014).

Padmaraju, K.

Pinguet, T.

T. Baehr-Jones, T. Pinguet, P. Lo Guo-Qiang, S. Danziger, D. Prather, M. Hochberg, “Myths and rumours of silicon photonics,” Nat. Photonics 6, 206–208 (2012).
[Crossref]

Poitras, C. B.

L. W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergman, M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014).

Poon, A. W.

H. Chen, X. Luo, A. W. Poon, “Cavity-enhanced photocurrent generation by 1.55  μm wavelengths linear absorption in a p-i-n diode embedded silicon microring resonator,” Appl. Phys. Lett. 95, 171111 (2009).
[Crossref]

Prather, D.

T. Baehr-Jones, T. Pinguet, P. Lo Guo-Qiang, S. Danziger, D. Prather, M. Hochberg, “Myths and rumours of silicon photonics,” Nat. Photonics 6, 206–208 (2012).
[Crossref]

Sampietro, M.

F. Morichetti, S. Grillanda, M. Carminati, G. Ferrari, M. Sampietro, M. J. Strain, M. Sorel, A. Melloni, “Non-invasive on-chip light observation by contactless waveguide conductivity monitoring,” IEEE J. Sel. Top. Quantum Electron. 20, 1–10 (2014).
[Crossref]

P. Ciccarella, M. Carminati, G. Ferrari, D. Bianchi, S. Grillanda, F. Morichetti, A. Melloni, M. Sampietro are preparing a manuscript to be called “Impedance sensing CMOS chip for non-invasive light detection in integrated photonics.”

Scherer, A.

Schulein, R. T.

M. W. Geis, S. J. Spector, M. E. Grein, R. T. Schulein, J. U. Yoon, D. M. Lennon, S. Deneault, F. Gan, F. X. Kaertner, T. M. Lyszczarz, “CMOS-compatible all-Si high-speed waveguide photodiodes with high responsivity in near-infrared communication band,” IEEE Photon. Technol. Lett. 19, 152–154 (2007).
[Crossref]

Sekaric, L.

F. Xia, L. Sekaric, Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1, 65–71 (2007).
[Crossref]

Shiraishi, T.

Sorace-Agaskar, C. M.

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. S. Hosseini, A. Biberman, M. R. Watts, “An ultralow power athermal silicon modulator,” Nat. Commun. 5, 4008 (2014).
[Crossref]

Sorel, M.

F. Morichetti, S. Grillanda, M. Carminati, G. Ferrari, M. Sampietro, M. J. Strain, M. Sorel, A. Melloni, “Non-invasive on-chip light observation by contactless waveguide conductivity monitoring,” IEEE J. Sel. Top. Quantum Electron. 20, 1–10 (2014).
[Crossref]

M. Gnan, S. Thoms, D. S. Macintyre, R. M. De La Rue, M. Sorel, “Fabrication of low-loss photonic wires in silicon-on-insulator using hydrogen silsesquioxane electron-beam resist,” Electron. Lett. 44, 115–116 (2008).
[Crossref]

Spector, S. J.

M. W. Geis, S. J. Spector, M. E. Grein, R. T. Schulein, J. U. Yoon, D. M. Lennon, S. Deneault, F. Gan, F. X. Kaertner, T. M. Lyszczarz, “CMOS-compatible all-Si high-speed waveguide photodiodes with high responsivity in near-infrared communication band,” IEEE Photon. Technol. Lett. 19, 152–154 (2007).
[Crossref]

Starbuck, A. L.

Strain, M. J.

F. Morichetti, S. Grillanda, M. Carminati, G. Ferrari, M. Sampietro, M. J. Strain, M. Sorel, A. Melloni, “Non-invasive on-chip light observation by contactless waveguide conductivity monitoring,” IEEE J. Sel. Top. Quantum Electron. 20, 1–10 (2014).
[Crossref]

Sun, J.

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. S. Hosseini, A. Biberman, M. R. Watts, “An ultralow power athermal silicon modulator,” Nat. Commun. 5, 4008 (2014).
[Crossref]

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493, 195–199 (2013).
[Crossref]

Thoms, S.

M. Gnan, S. Thoms, D. S. Macintyre, R. M. De La Rue, M. Sorel, “Fabrication of low-loss photonic wires in silicon-on-insulator using hydrogen silsesquioxane electron-beam resist,” Electron. Lett. 44, 115–116 (2008).
[Crossref]

Timurdogan, E.

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. S. Hosseini, A. Biberman, M. R. Watts, “An ultralow power athermal silicon modulator,” Nat. Commun. 5, 4008 (2014).
[Crossref]

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493, 195–199 (2013).
[Crossref]

Trotter, D. C.

J. A. Cox, A. L. Lentine, D. C. Trotter, A. L. Starbuck, “Control of integrated micro-resonator wavelength via balanced homodyne locking,” Opt. Express 22, 11279–11289 (2014).
[Crossref]

W. A. Zortman, A. L. Lentine, D. C. Trotter, M. R. Watts, “Bit-error-rate monitoring for active wavelength control of resonant modulators,” IEEE Micro 33, 42–52 (2013).
[Crossref]

Vlasov, Y.

F. Xia, L. Sekaric, Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1, 65–71 (2007).
[Crossref]

Watts, M. R.

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. S. Hosseini, A. Biberman, M. R. Watts, “An ultralow power athermal silicon modulator,” Nat. Commun. 5, 4008 (2014).
[Crossref]

W. A. Zortman, A. L. Lentine, D. C. Trotter, M. R. Watts, “Bit-error-rate monitoring for active wavelength control of resonant modulators,” IEEE Micro 33, 42–52 (2013).
[Crossref]

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493, 195–199 (2013).
[Crossref]

Xia, F.

F. Xia, L. Sekaric, Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1, 65–71 (2007).
[Crossref]

Yaacobi, A.

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493, 195–199 (2013).
[Crossref]

Yoon, J. U.

M. W. Geis, S. J. Spector, M. E. Grein, R. T. Schulein, J. U. Yoon, D. M. Lennon, S. Deneault, F. Gan, F. X. Kaertner, T. M. Lyszczarz, “CMOS-compatible all-Si high-speed waveguide photodiodes with high responsivity in near-infrared communication band,” IEEE Photon. Technol. Lett. 19, 152–154 (2007).
[Crossref]

Zhang, K.

R. Chau, B. Doyle, S. Datta, J. Kavalieros, K. Zhang, “Integrated nanoelectronics for the future,” Nat. Mater. 6, 810–812 (2007).
[Crossref]

Zhu, X.

Zortman, W. A.

W. A. Zortman, A. L. Lentine, D. C. Trotter, M. R. Watts, “Bit-error-rate monitoring for active wavelength control of resonant modulators,” IEEE Micro 33, 42–52 (2013).
[Crossref]

Appl. Phys. Lett. (2)

H. Chen, X. Luo, A. W. Poon, “Cavity-enhanced photocurrent generation by 1.55  μm wavelengths linear absorption in a p-i-n diode embedded silicon microring resonator,” Appl. Phys. Lett. 95, 171111 (2009).
[Crossref]

J. D. B. Bradley, P. E. Jessop, A. P. Knights, “Silicon waveguide integrated optical power monitor with enhanced sensitivity at 1550  nm,” Appl. Phys. Lett. 86, 241103 (2005).
[Crossref]

Electron. Lett. (1)

M. Gnan, S. Thoms, D. S. Macintyre, R. M. De La Rue, M. Sorel, “Fabrication of low-loss photonic wires in silicon-on-insulator using hydrogen silsesquioxane electron-beam resist,” Electron. Lett. 44, 115–116 (2008).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

F. Morichetti, S. Grillanda, M. Carminati, G. Ferrari, M. Sampietro, M. J. Strain, M. Sorel, A. Melloni, “Non-invasive on-chip light observation by contactless waveguide conductivity monitoring,” IEEE J. Sel. Top. Quantum Electron. 20, 1–10 (2014).
[Crossref]

IEEE J. Solid-State Circuits (1)

R. Gonzalez, B. M. Gordon, M. A. Horowitz, “Supply and threshold voltage scaling for low power CMOS,” IEEE J. Solid-State Circuits 32, 1210–1216 (1997).
[Crossref]

IEEE Micro (1)

W. A. Zortman, A. L. Lentine, D. C. Trotter, M. R. Watts, “Bit-error-rate monitoring for active wavelength control of resonant modulators,” IEEE Micro 33, 42–52 (2013).
[Crossref]

IEEE Photon. J. (1)

F. Morichetti, S. Grillanda, A. Melloni, “Toward feedback-controlled integrated photonics,” IEEE Photon. J. 6, 1–6 (2014).
[Crossref]

IEEE Photon. Technol. Lett. (1)

M. W. Geis, S. J. Spector, M. E. Grein, R. T. Schulein, J. U. Yoon, D. M. Lennon, S. Deneault, F. Gan, F. X. Kaertner, T. M. Lyszczarz, “CMOS-compatible all-Si high-speed waveguide photodiodes with high responsivity in near-infrared communication band,” IEEE Photon. Technol. Lett. 19, 152–154 (2007).
[Crossref]

J. Lightwave Technol. (1)

Laser Photon. Rev. (1)

J. K. Doylend, A. P. Knights, “The evolution of silicon photonics as an enabling technology for optical interconnection,” Laser Photon. Rev. 6, 504–525 (2012).

Nat. Commun. (2)

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. S. Hosseini, A. Biberman, M. R. Watts, “An ultralow power athermal silicon modulator,” Nat. Commun. 5, 4008 (2014).
[Crossref]

L. W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergman, M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014).

Nat. Mater. (1)

R. Chau, B. Doyle, S. Datta, J. Kavalieros, K. Zhang, “Integrated nanoelectronics for the future,” Nat. Mater. 6, 810–812 (2007).
[Crossref]

Nat. Photonics (2)

T. Baehr-Jones, T. Pinguet, P. Lo Guo-Qiang, S. Danziger, D. Prather, M. Hochberg, “Myths and rumours of silicon photonics,” Nat. Photonics 6, 206–208 (2012).
[Crossref]

F. Xia, L. Sekaric, Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1, 65–71 (2007).
[Crossref]

Nature (1)

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493, 195–199 (2013).
[Crossref]

Opt. Express (5)

Opt. Photon. News (1)

D. A. B. Miller, “Designing linear optical components,” Opt. Photon. News 24(12), 38 (2013).
[Crossref]

Photon. Res. (1)

Other (2)

P. Ciccarella, M. Carminati, G. Ferrari, D. Bianchi, S. Grillanda, F. Morichetti, A. Melloni, M. Sampietro are preparing a manuscript to be called “Impedance sensing CMOS chip for non-invasive light detection in integrated photonics.”

W. Monch, Semiconductor Surfaces and Interfaces (Springer-Verlag, 2001).

Supplementary Material (1)

» Supplement 1: PDF (107 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. (a) Top-view photograph of the fabricated Si microring, where CLIPP and thermal actuator are integrated. (b) Cross-section of the Si core waveguide, with the CLIPP metal electrode deposited on top of the SiO2 cladding. (c) Longitudinal profile of the Si waveguide showing the CLIPP equivalent circuit in the electrical domain. The substrate resistance RS is negligible with respect to the other impedances of the circuit.
Fig. 2.
Fig. 2. (a) Schematic of the electronic integrated circuit that performs the readout of the CLIPP electric signal and manages control operations of the Si photonic microring resonator (such as wavelength tuning, locking, labeling, and swapping). (b) Photograph of the Si photonic chip (on the top) hosting the microring resonator that is wire-bonded to the CMOS electronic chip (in the bottom) containing all the CLIPP readout and microring control circuitry. Both the photonic and electronic chips are integrated onto the same printed circuit board.
Fig. 3.
Fig. 3. Tuning of the microring resonant wavelength assisted by the CLIPP. (a) Light-induced conductance variation ΔG measured by the CLIPP (Be=1Hz) and corresponding estimated optical power as a function of wavelength when the thermal actuator is off (blue line) and then switched on at Vh=2, 3, 4 V (red, green, and orange lines). (b) Automated tuning of the resonator wavelength to that of an external laser, here detuned by about 230 pm, assisted by the CLIPP (Be=100Hz); the inset shows the wavelength shift Δλ measured by the CLIPP as the heater voltage Vh is increased from 0 to 4 V.
Fig. 4.
Fig. 4. Generation and readout of the error signal of the feedback-controlled microring. (a) Normalized optical intensity measured by the CLIPP versus wavelength, with Ve=1V and fe=1MHz, when a dithering signal with amplitude Vd=100mV and frequency fd=160Hz is applied to the heater. (b) Error signal ε extracted by the CLIPP by further demodulating the optical power P at the frequency of the dithering signal fd for dithering amplitudes Vd=20, 50, and 100 mV.
Fig. 5.
Fig. 5. Locking the microring resonant wavelength to that of an external laser λl assisted by the CLIPP. Normalized optical intensity in the resonator measured by the CLIPP when the feedback control is on (blue lines) and off (red lines) in the presence of (a) a continuous wavelength sweep (here occurring in about 700 ms) and (b) an instantaneous wavelength shift of the external laser by 50 pm (corresponding to 98% of the resonator linewidth). The considered 50 pm wavelength shift is the same of a temperature variation of 0.7 K.
Fig. 6.
Fig. 6. Swapping the resonator wavelength between two optical signals at wavelengths λ1 (red arrow) and λ2 (green arrow) injected in the microring. A weak modulation tone with depth 2% is added to label each of the optical carriers: the tone centered on λ1 has frequency f1=10kHz (labeled with a red circle), whereas the tone around λ2 has frequency f2=11kHz (labeled with a green triangle). The optical intensity measured by the CLIPP in the resonator is reported as a function of the electrical power dissipated on the heater when the CLIPP signal is demodulated at frequencies (a) fe=1MHz, (b) fe+f1=1.010MHz, and (c) fe+f2=1.011MHz. When demodulating the CLIPP signal at frequency fe, the signals λ1 and λ2 are indistinguishable; in constrast, when readout operations are performed at frequency fe+f1 (fe+f2), the CLIPP is able to identify distinctively λ1 (λ2).

Metrics