Abstract

Conventional sampling techniques may not be able to meet the ever-increasing demand for increased bandwidth from modern communications and radar signals. Optical time-stretched sampling has been considered an effective solution for wideband microwave signal processing. Here, we demonstrate a significantly increased stretching factor in the photonic time-stretched sampling of a fast microwave waveform. The microwave waveform to be sampled is intensity modulated on a chirped optical pulse generated jointly by a mode-locked laser and a length of dispersion compensating fiber. The pulse is then injected into an optical dispersive loop that includes an erbium-doped fiber amplifier and is stretched by a linearly chirped fiber Bragg grating multiple times in the loop. A record stretching factor of 36 is achieved based on an equivalent group delay dispersion coefficient of 12,000ps/nm. This result could help address the new challenges imposed on signal processors to operate at a very high sampling rate.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Signal-to-noise ratio improvement of photonic time-stretch coherent radar enabling high-sensitivity ultrabroad W-band operation

Na Qian, Weiwen Zou, Siteng Zhang, and Jianping Chen
Opt. Lett. 43(23) 5869-5872 (2018)

High-speed ultrawideband photonically enabled compressed sensing of sparse radio frequency signals

Bryan T. Bosworth and Mark A. Foster
Opt. Lett. 38(22) 4892-4895 (2013)

References

  • View by:
  • |
  • |
  • |

  1. P. W. Juodawlkis, J. J. Hargreaves, R. D. Younger, G. W. Titi, J. C. Twichell, “Optical down-sampling of wide-band microwave signals,” J. Lightwave Technol. 21, 3116–3124 (2003).
    [Crossref]
  2. B. C. Pile, G. W. Taylor, “Performance of subsampled analog optical links,” J. Lightwave Technol. 30, 1299–1305 (2012).
    [Crossref]
  3. A. Feldster, Y. P. Shapira, M. Horowitz, A. Rosenthal, S. Zach, L. Singer, “Optical under-sampling and reconstruction of several bandwidth-limited signals,” J. Lightwave Technol. 27, 1027–1033 (2009).
    [Crossref]
  4. M. B. Airola, S. R. O’Connor, M. L. Dennis, T. R. Clark, “Experimental demonstration of a photonic analog-to-digital converter architecture with pseudorandom sampling,” IEEE Photon. Technol. Lett. 20, 2171–2173 (2008).
    [Crossref]
  5. G. C. Valley, G. A. Sefler, T. J. Shaw, “Compressive sensing of sparse radio frequency signals using optical mixing,” Opt. Lett. 37, 4675–4677 (2012).
    [Crossref]
  6. F. Coppinger, A. Bhushan, B. Jalali, “Photonic time stretch and its application to analog-to-digital conversion,” IEEE Trans. Microwave Theory Tech. 47, 1309–1314 (1999).
    [Crossref]
  7. F. Coppinger, A. Bhushan, B. Jalali, “Time magnification of electrical signals using chirped optical pulses,” Electron. Lett. 34, 399–400 (1998).
    [Crossref]
  8. H. Chi, Y. Chen, Y. Mei, X. Jin, S. Zheng, X. Zhang, “Microwave spectrum sensing based on photonic time stretch and compressive sampling,” Opt. Lett. 38, 136–138 (2013).
    [Crossref]
  9. Y. Chen, H. Chi, T. Jin, S. Zheng, X. Jin, X. Zhang, “Sub-Nyquist sampled analog-to-digital conversion based on photonic time stretch and compressive sensing with optical random mixing,” J. Lightwave Technol. 31, 3395–3401 (2013).
    [Crossref]
  10. B. W. Buckley, A. M. Madni, B. Jalali, “Coherent time-stretch transformation for real-time capture of wideband signals,” Opt. Express 21, 21618–21627 (2013).
    [Crossref]
  11. Y. Han, B. Jalali, “Continuous-time time-stretched analog-to-digital converter array implemented using virtual time gating,” IEEE Trans. Circuits Syst. I, Reg. Papers 52, 1502–1507 (2005).
    [Crossref]
  12. M. H. Asghari, B. Jalali, “Anamorphic transformation and its application to time–bandwidth compression,” Appl. Opt. 52, 6735–6743 (2013).
    [Crossref]
  13. M. H. Asghari, B. Jalali, “Experimental demonstration of optical real-time data compression,” Appl. Phys. Lett. 104, 111101 (2014).
    [Crossref]
  14. J. Chou, O. Boyraz, D. Solli, B. Jalali, “Femtosecond real-time single-shot digitizer,” Appl. Phys. Lett. 91, 161105 (2007).
    [Crossref]
  15. J. Yao, “Photonic generation of microwave arbitrary waveforms,” Opt. Commun. 284, 3723–3736 (2011).
    [Crossref]
  16. X. Dong, P. Shum, N. Ngo, C. Chan, J. Ng, C. Zhao, “A largely tunable CFBG-based dispersion compensator with fixed center wavelength,” Opt. Express 11, 2970–2974 (2003).
    [Crossref]
  17. T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15, 1277–1294 (1997).
    [Crossref]
  18. J. D. Schwartz, J. Azaña, D. V. Plant, “Experimental demonstration of real-time spectrum analysis using dispersive microstrip,” IEEE Microwave Wireless Compon. Lett. 16, 215–217 (2006).
    [Crossref]
  19. M. A. Laso, T. Lopetegi, M. J. Erro, D. Benito, M. J. Garde, M. A. Muriel, M. Sorolla, M. Guglielmi, “Real-time spectrum analysis in microstrip technology,” IEEE Trans. Microwave Theory Tech. 51, 705–717 (2003).
    [Crossref]
  20. B. Nikfal, S. Gupta, C. Caloz, “Increased group-delay slope loop system for enhanced-resolution analog signal processing,” IEEE Trans. Microwave Theory Tech. 59, 1622–1628 (2011).
    [Crossref]
  21. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).
  22. D. B. Hunter, R. A. Minasian, “Photonic signal processing of microwave signals using an active-fiber Bragg-grating-pair structure,” IEEE Trans. Microwave Theory Tech. 45, 1463–1466 (1997).
    [Crossref]

2014 (1)

M. H. Asghari, B. Jalali, “Experimental demonstration of optical real-time data compression,” Appl. Phys. Lett. 104, 111101 (2014).
[Crossref]

2013 (4)

2012 (2)

2011 (2)

J. Yao, “Photonic generation of microwave arbitrary waveforms,” Opt. Commun. 284, 3723–3736 (2011).
[Crossref]

B. Nikfal, S. Gupta, C. Caloz, “Increased group-delay slope loop system for enhanced-resolution analog signal processing,” IEEE Trans. Microwave Theory Tech. 59, 1622–1628 (2011).
[Crossref]

2009 (1)

2008 (1)

M. B. Airola, S. R. O’Connor, M. L. Dennis, T. R. Clark, “Experimental demonstration of a photonic analog-to-digital converter architecture with pseudorandom sampling,” IEEE Photon. Technol. Lett. 20, 2171–2173 (2008).
[Crossref]

2007 (1)

J. Chou, O. Boyraz, D. Solli, B. Jalali, “Femtosecond real-time single-shot digitizer,” Appl. Phys. Lett. 91, 161105 (2007).
[Crossref]

2006 (1)

J. D. Schwartz, J. Azaña, D. V. Plant, “Experimental demonstration of real-time spectrum analysis using dispersive microstrip,” IEEE Microwave Wireless Compon. Lett. 16, 215–217 (2006).
[Crossref]

2005 (1)

Y. Han, B. Jalali, “Continuous-time time-stretched analog-to-digital converter array implemented using virtual time gating,” IEEE Trans. Circuits Syst. I, Reg. Papers 52, 1502–1507 (2005).
[Crossref]

2003 (3)

1999 (1)

F. Coppinger, A. Bhushan, B. Jalali, “Photonic time stretch and its application to analog-to-digital conversion,” IEEE Trans. Microwave Theory Tech. 47, 1309–1314 (1999).
[Crossref]

1998 (1)

F. Coppinger, A. Bhushan, B. Jalali, “Time magnification of electrical signals using chirped optical pulses,” Electron. Lett. 34, 399–400 (1998).
[Crossref]

1997 (2)

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15, 1277–1294 (1997).
[Crossref]

D. B. Hunter, R. A. Minasian, “Photonic signal processing of microwave signals using an active-fiber Bragg-grating-pair structure,” IEEE Trans. Microwave Theory Tech. 45, 1463–1466 (1997).
[Crossref]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).

Airola, M. B.

M. B. Airola, S. R. O’Connor, M. L. Dennis, T. R. Clark, “Experimental demonstration of a photonic analog-to-digital converter architecture with pseudorandom sampling,” IEEE Photon. Technol. Lett. 20, 2171–2173 (2008).
[Crossref]

Asghari, M. H.

M. H. Asghari, B. Jalali, “Experimental demonstration of optical real-time data compression,” Appl. Phys. Lett. 104, 111101 (2014).
[Crossref]

M. H. Asghari, B. Jalali, “Anamorphic transformation and its application to time–bandwidth compression,” Appl. Opt. 52, 6735–6743 (2013).
[Crossref]

Azaña, J.

J. D. Schwartz, J. Azaña, D. V. Plant, “Experimental demonstration of real-time spectrum analysis using dispersive microstrip,” IEEE Microwave Wireless Compon. Lett. 16, 215–217 (2006).
[Crossref]

Benito, D.

M. A. Laso, T. Lopetegi, M. J. Erro, D. Benito, M. J. Garde, M. A. Muriel, M. Sorolla, M. Guglielmi, “Real-time spectrum analysis in microstrip technology,” IEEE Trans. Microwave Theory Tech. 51, 705–717 (2003).
[Crossref]

Bhushan, A.

F. Coppinger, A. Bhushan, B. Jalali, “Photonic time stretch and its application to analog-to-digital conversion,” IEEE Trans. Microwave Theory Tech. 47, 1309–1314 (1999).
[Crossref]

F. Coppinger, A. Bhushan, B. Jalali, “Time magnification of electrical signals using chirped optical pulses,” Electron. Lett. 34, 399–400 (1998).
[Crossref]

Boyraz, O.

J. Chou, O. Boyraz, D. Solli, B. Jalali, “Femtosecond real-time single-shot digitizer,” Appl. Phys. Lett. 91, 161105 (2007).
[Crossref]

Buckley, B. W.

Caloz, C.

B. Nikfal, S. Gupta, C. Caloz, “Increased group-delay slope loop system for enhanced-resolution analog signal processing,” IEEE Trans. Microwave Theory Tech. 59, 1622–1628 (2011).
[Crossref]

Chan, C.

Chen, Y.

Chi, H.

Chou, J.

J. Chou, O. Boyraz, D. Solli, B. Jalali, “Femtosecond real-time single-shot digitizer,” Appl. Phys. Lett. 91, 161105 (2007).
[Crossref]

Clark, T. R.

M. B. Airola, S. R. O’Connor, M. L. Dennis, T. R. Clark, “Experimental demonstration of a photonic analog-to-digital converter architecture with pseudorandom sampling,” IEEE Photon. Technol. Lett. 20, 2171–2173 (2008).
[Crossref]

Coppinger, F.

F. Coppinger, A. Bhushan, B. Jalali, “Photonic time stretch and its application to analog-to-digital conversion,” IEEE Trans. Microwave Theory Tech. 47, 1309–1314 (1999).
[Crossref]

F. Coppinger, A. Bhushan, B. Jalali, “Time magnification of electrical signals using chirped optical pulses,” Electron. Lett. 34, 399–400 (1998).
[Crossref]

Dennis, M. L.

M. B. Airola, S. R. O’Connor, M. L. Dennis, T. R. Clark, “Experimental demonstration of a photonic analog-to-digital converter architecture with pseudorandom sampling,” IEEE Photon. Technol. Lett. 20, 2171–2173 (2008).
[Crossref]

Dong, X.

Erdogan, T.

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15, 1277–1294 (1997).
[Crossref]

Erro, M. J.

M. A. Laso, T. Lopetegi, M. J. Erro, D. Benito, M. J. Garde, M. A. Muriel, M. Sorolla, M. Guglielmi, “Real-time spectrum analysis in microstrip technology,” IEEE Trans. Microwave Theory Tech. 51, 705–717 (2003).
[Crossref]

Feldster, A.

Garde, M. J.

M. A. Laso, T. Lopetegi, M. J. Erro, D. Benito, M. J. Garde, M. A. Muriel, M. Sorolla, M. Guglielmi, “Real-time spectrum analysis in microstrip technology,” IEEE Trans. Microwave Theory Tech. 51, 705–717 (2003).
[Crossref]

Guglielmi, M.

M. A. Laso, T. Lopetegi, M. J. Erro, D. Benito, M. J. Garde, M. A. Muriel, M. Sorolla, M. Guglielmi, “Real-time spectrum analysis in microstrip technology,” IEEE Trans. Microwave Theory Tech. 51, 705–717 (2003).
[Crossref]

Gupta, S.

B. Nikfal, S. Gupta, C. Caloz, “Increased group-delay slope loop system for enhanced-resolution analog signal processing,” IEEE Trans. Microwave Theory Tech. 59, 1622–1628 (2011).
[Crossref]

Han, Y.

Y. Han, B. Jalali, “Continuous-time time-stretched analog-to-digital converter array implemented using virtual time gating,” IEEE Trans. Circuits Syst. I, Reg. Papers 52, 1502–1507 (2005).
[Crossref]

Hargreaves, J. J.

Horowitz, M.

Hunter, D. B.

D. B. Hunter, R. A. Minasian, “Photonic signal processing of microwave signals using an active-fiber Bragg-grating-pair structure,” IEEE Trans. Microwave Theory Tech. 45, 1463–1466 (1997).
[Crossref]

Jalali, B.

M. H. Asghari, B. Jalali, “Experimental demonstration of optical real-time data compression,” Appl. Phys. Lett. 104, 111101 (2014).
[Crossref]

M. H. Asghari, B. Jalali, “Anamorphic transformation and its application to time–bandwidth compression,” Appl. Opt. 52, 6735–6743 (2013).
[Crossref]

B. W. Buckley, A. M. Madni, B. Jalali, “Coherent time-stretch transformation for real-time capture of wideband signals,” Opt. Express 21, 21618–21627 (2013).
[Crossref]

J. Chou, O. Boyraz, D. Solli, B. Jalali, “Femtosecond real-time single-shot digitizer,” Appl. Phys. Lett. 91, 161105 (2007).
[Crossref]

Y. Han, B. Jalali, “Continuous-time time-stretched analog-to-digital converter array implemented using virtual time gating,” IEEE Trans. Circuits Syst. I, Reg. Papers 52, 1502–1507 (2005).
[Crossref]

F. Coppinger, A. Bhushan, B. Jalali, “Photonic time stretch and its application to analog-to-digital conversion,” IEEE Trans. Microwave Theory Tech. 47, 1309–1314 (1999).
[Crossref]

F. Coppinger, A. Bhushan, B. Jalali, “Time magnification of electrical signals using chirped optical pulses,” Electron. Lett. 34, 399–400 (1998).
[Crossref]

Jin, T.

Jin, X.

Juodawlkis, P. W.

Laso, M. A.

M. A. Laso, T. Lopetegi, M. J. Erro, D. Benito, M. J. Garde, M. A. Muriel, M. Sorolla, M. Guglielmi, “Real-time spectrum analysis in microstrip technology,” IEEE Trans. Microwave Theory Tech. 51, 705–717 (2003).
[Crossref]

Lopetegi, T.

M. A. Laso, T. Lopetegi, M. J. Erro, D. Benito, M. J. Garde, M. A. Muriel, M. Sorolla, M. Guglielmi, “Real-time spectrum analysis in microstrip technology,” IEEE Trans. Microwave Theory Tech. 51, 705–717 (2003).
[Crossref]

Madni, A. M.

Mei, Y.

Minasian, R. A.

D. B. Hunter, R. A. Minasian, “Photonic signal processing of microwave signals using an active-fiber Bragg-grating-pair structure,” IEEE Trans. Microwave Theory Tech. 45, 1463–1466 (1997).
[Crossref]

Muriel, M. A.

M. A. Laso, T. Lopetegi, M. J. Erro, D. Benito, M. J. Garde, M. A. Muriel, M. Sorolla, M. Guglielmi, “Real-time spectrum analysis in microstrip technology,” IEEE Trans. Microwave Theory Tech. 51, 705–717 (2003).
[Crossref]

Ng, J.

Ngo, N.

Nikfal, B.

B. Nikfal, S. Gupta, C. Caloz, “Increased group-delay slope loop system for enhanced-resolution analog signal processing,” IEEE Trans. Microwave Theory Tech. 59, 1622–1628 (2011).
[Crossref]

O’Connor, S. R.

M. B. Airola, S. R. O’Connor, M. L. Dennis, T. R. Clark, “Experimental demonstration of a photonic analog-to-digital converter architecture with pseudorandom sampling,” IEEE Photon. Technol. Lett. 20, 2171–2173 (2008).
[Crossref]

Pile, B. C.

Plant, D. V.

J. D. Schwartz, J. Azaña, D. V. Plant, “Experimental demonstration of real-time spectrum analysis using dispersive microstrip,” IEEE Microwave Wireless Compon. Lett. 16, 215–217 (2006).
[Crossref]

Rosenthal, A.

Schwartz, J. D.

J. D. Schwartz, J. Azaña, D. V. Plant, “Experimental demonstration of real-time spectrum analysis using dispersive microstrip,” IEEE Microwave Wireless Compon. Lett. 16, 215–217 (2006).
[Crossref]

Sefler, G. A.

Shapira, Y. P.

Shaw, T. J.

Shum, P.

Singer, L.

Solli, D.

J. Chou, O. Boyraz, D. Solli, B. Jalali, “Femtosecond real-time single-shot digitizer,” Appl. Phys. Lett. 91, 161105 (2007).
[Crossref]

Sorolla, M.

M. A. Laso, T. Lopetegi, M. J. Erro, D. Benito, M. J. Garde, M. A. Muriel, M. Sorolla, M. Guglielmi, “Real-time spectrum analysis in microstrip technology,” IEEE Trans. Microwave Theory Tech. 51, 705–717 (2003).
[Crossref]

Taylor, G. W.

Titi, G. W.

Twichell, J. C.

Valley, G. C.

Yao, J.

J. Yao, “Photonic generation of microwave arbitrary waveforms,” Opt. Commun. 284, 3723–3736 (2011).
[Crossref]

Younger, R. D.

Zach, S.

Zhang, X.

Zhao, C.

Zheng, S.

Appl. Opt. (1)

Appl. Phys. Lett. (2)

M. H. Asghari, B. Jalali, “Experimental demonstration of optical real-time data compression,” Appl. Phys. Lett. 104, 111101 (2014).
[Crossref]

J. Chou, O. Boyraz, D. Solli, B. Jalali, “Femtosecond real-time single-shot digitizer,” Appl. Phys. Lett. 91, 161105 (2007).
[Crossref]

Electron. Lett. (1)

F. Coppinger, A. Bhushan, B. Jalali, “Time magnification of electrical signals using chirped optical pulses,” Electron. Lett. 34, 399–400 (1998).
[Crossref]

IEEE Microwave Wireless Compon. Lett. (1)

J. D. Schwartz, J. Azaña, D. V. Plant, “Experimental demonstration of real-time spectrum analysis using dispersive microstrip,” IEEE Microwave Wireless Compon. Lett. 16, 215–217 (2006).
[Crossref]

IEEE Photon. Technol. Lett. (1)

M. B. Airola, S. R. O’Connor, M. L. Dennis, T. R. Clark, “Experimental demonstration of a photonic analog-to-digital converter architecture with pseudorandom sampling,” IEEE Photon. Technol. Lett. 20, 2171–2173 (2008).
[Crossref]

IEEE Trans. Circuits Syst. I, Reg. Papers (1)

Y. Han, B. Jalali, “Continuous-time time-stretched analog-to-digital converter array implemented using virtual time gating,” IEEE Trans. Circuits Syst. I, Reg. Papers 52, 1502–1507 (2005).
[Crossref]

IEEE Trans. Microwave Theory Tech. (4)

F. Coppinger, A. Bhushan, B. Jalali, “Photonic time stretch and its application to analog-to-digital conversion,” IEEE Trans. Microwave Theory Tech. 47, 1309–1314 (1999).
[Crossref]

D. B. Hunter, R. A. Minasian, “Photonic signal processing of microwave signals using an active-fiber Bragg-grating-pair structure,” IEEE Trans. Microwave Theory Tech. 45, 1463–1466 (1997).
[Crossref]

M. A. Laso, T. Lopetegi, M. J. Erro, D. Benito, M. J. Garde, M. A. Muriel, M. Sorolla, M. Guglielmi, “Real-time spectrum analysis in microstrip technology,” IEEE Trans. Microwave Theory Tech. 51, 705–717 (2003).
[Crossref]

B. Nikfal, S. Gupta, C. Caloz, “Increased group-delay slope loop system for enhanced-resolution analog signal processing,” IEEE Trans. Microwave Theory Tech. 59, 1622–1628 (2011).
[Crossref]

J. Lightwave Technol. (5)

Opt. Commun. (1)

J. Yao, “Photonic generation of microwave arbitrary waveforms,” Opt. Commun. 284, 3723–3736 (2011).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Other (1)

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Schematic of the time-stretched sampling system. MLL, mode-locked laser; OBPF, optical bandpass filter; DCF, dispersion compensating fiber; EDFA, erbium-doped fiber amplifier; MZM, Mach–Zehnder modulator; ATT, attenuator; LCFBG, linearly chirped fiber Bragg grating; PD, photodetector; AWG, arbitrary waveform generator; SG, signal generator; OSC, oscilloscope.
Fig. 2.
Fig. 2. Modulation process. (a) An 18 GHz microwave signal generated by the SG (solid blue line) and a gate signal generated by the AWG (black), (b) the waveform applied to the MZM (blue) and the MLL pulse train after predispersion and filtering (red), (c) the resulting optical pulse train carrying the microwave waveform with a reduced repetition rate.
Fig. 3.
Fig. 3. Waveform of the modulated MLL pulse measured at the output of the MZM.
Fig. 4.
Fig. 4. Measured optical waveform at the output of the recirculating dispersive loop.
Fig. 5.
Fig. 5. Output waveforms after different numbers of round trips. (a) One round trip, (b) two round trips, (c) three round trips, (d) four round trips, (e) five round trips, (f) six round trips, (g) seven round trips, and (h) eight round trips. Note that the time scale is 1ns/division in (a)–(c) and 5ns/division in (d)–(h).
Fig. 6.
Fig. 6. Electrical spectra of the measured time-stretched waveforms for different numbers of round trips. (a)–(h) correspond to the waveforms given in Figs. 5(a)5(h).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

HLCFBG(ω)=exp(jβC2ω2),
Eo(N)=(22)N+1gNEi(ω)HN(ω),
Hloop(ω)=Eo(N)Ei=22exp(jNβC2ω2).
M=1+NβC/βD,

Metrics