Abstract

When a narrowband laser pulse evolves into a broadband pulse, for example, via transmission through a photonic crystal fiber, the resulting continuum usually exhibits massive shot-to-shot pulse-shape fluctuations. The continuum’s extreme complexity prevents its single-shot measurement, with the best estimates so far resulting from an average over many pulses. Here we solve this problem using cross-correlation frequency-resolved optical gating, achieving the necessary large spectral range using a polarization-gating geometry and the necessary large temporal range by significantly tilting the reference pulse. Furthermore, we have also discovered that we can simultaneously cancel the previously unavoidable longitudinal geometrical smearing by using a carefully chosen combination of pulse tilt and beam-crossing angle, thus simultaneously achieving the required temporal resolution. We hence make a complete measurement of an individual complex continuum pulse generated in photonic crystal fiber. By enabling measurement of single optical rogue waves, this technique could provide insight and perhaps even lead to the prediction of when mathematically similar, destructive oceanic rogue waves may occur.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Generation of intense supercontinuum in condensed media

Chih-Hsuan Lu, Yu-Jung Tsou, Hong-Yu Chen, Bo-Han Chen, Yu-Chen Cheng, Shang-Da Yang, Ming-Chang Chen, Chia-Chen Hsu, and A. H. Kung
Optica 1(6) 400-406 (2014)

Toward single-shot measurement of a broadband ultrafast continuum

Dongjoo Lee, Pablo Gabolde, and Rick Trebino
J. Opt. Soc. Am. B 25(6) A34-A40 (2008)

References

  • View by:
  • |
  • |
  • |

  1. R. R. Alfano, S. L. Shapiro, “Emission in the region 4000 to 7000 Å via four-photon coupling in glass,” Phys. Rev. Lett. 24, 584–587 (1970).
    [Crossref]
  2. J. K. Ranka, R. S. Windeler, A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800  nm,” Opt. Lett. 25, 25–27 (2000).
    [Crossref]
  3. D. Wildanger, E. Rittweger, L. Kastrup, S. W. Hell, “STED microscopy with a supercontinuum laser source,” Opt. Express 16, 9614–9621 (2008).
    [Crossref]
  4. G. Humbert, W. Wadsworth, S. Leon-Saval, J. Knight, T. Birks, P. St. J. Russell, M. Lederer, D. Kopf, K. Wiesauer, E. Breuer, D. Stifter, “Supercontinuum generation system for optical coherence tomography based on tapered photonic crystal fibre,” Opt. Express 14, 1596–1603 (2006).
    [Crossref]
  5. T. Udem, R. Holzwarth, T. W. Hansch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
    [Crossref]
  6. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
    [Crossref]
  7. H. Kubota, K. R. Tamura, M. Nakazawa, “Analyses of coherence-maintained ultrashort optical pulse trains and supercontinuum generation in the presence of soliton-amplified spontaneous-emission interaction,” J. Opt. Soc. Am. B 16, 2223–2232 (1999).
    [Crossref]
  8. A. L. Gaeta, “Nonlinear propagation and continuum generation in microstructured optical fibers,” Opt. Lett. 27, 924–926 (2002).
    [Crossref]
  9. J. M. Dudley, G. Genty, S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
    [Crossref]
  10. B. Wetzel, A. Stefani, L. Larger, P. A. Lacourt, J. M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Sci. Rep. 2, 882 (2012).
    [Crossref]
  11. U. Møller, S. T. Sørensen, C. Jakobsen, J. Johansen, P. M. Moselund, C. L. Thomsen, O. Bang, “Power dependence of supercontinuum noise in uniform and tapered PCFs,” Opt. Express 20, 2851–2857 (2012).
    [Crossref]
  12. S. T. Sørensen, C. Larsen, U. Møller, P. M. Moselund, C. L. Thomsen, O. Bang, “Influence of pump power and modulation instability gain spectrum on seeded supercontinuum and rogue wave generation,” J. Opt. Soc. Am. B 29, 2875–2885 (2012).
    [Crossref]
  13. S. T. Sørensen, C. Larsen, U. Møller, P. M. Moselund, C. L. Thomsen, O. Bang, “The role of phase coherence in seeded supercontinuum generation,” Opt. Express 20, 22886–22894 (2012).
    [Crossref]
  14. T. Godin, B. Wetzel, T. Sylvestre, L. Larger, A. Kudlinski, A. Mussot, A. Ben Salem, M. Zghal, G. Genty, F. Dias, J. M. Dudley, “Real time noise and wavelength correlations in octave-spanning supercontinuum generation,” Opt. Express 21, 18452–18460 (2013).
    [Crossref]
  15. Q. Cao, X. Gu, E. Zeek, M. Kimmel, R. Trebino, J. Dudley, R. S. Windeler, “Measurement of the intensity and phase of supercontinuum from an 8-mm-long microstructure fiber,” Appl. Phys. B 77, 239–244 (2003).
    [Crossref]
  16. J. Dudley, X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O’Shea, R. Trebino, S. Coen, R. Windeler, “Cross-correlation frequency resolved optical gating analysis of broadband continuum generation in photonic crystal fiber: simulations and experiments,” Opt. Express 10, 1215–1221 (2002).
    [Crossref]
  17. X. Gu, M. Kimmel, A. Shreenath, R. Trebino, J. Dudley, S. Coen, R. Windeler, “Experimental studies of the coherence of microstructure-fiber supercontinuum,” Opt. Express 11, 2697–2703 (2003).
    [Crossref]
  18. X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O’Shea, A. P. Shreenath, R. Trebino, R. S. Windeler, “Frequency-resolved optical gating and single-shot spectral measurements reveal fine structure in microstructure-fiber continuum,” Opt. Lett. 27, 1174–1176 (2002).
    [Crossref]
  19. D. Lee, P. Gabolde, R. Trebino, “Toward single-shot measurement of a broadband ultrafast continuum,” J. Opt. Soc. Am. B 25, A34–A40 (2008).
    [Crossref]
  20. J. Liu, Y. Feng, H. Li, P. Lu, H. Pan, J. Wu, H. Zeng, “Supercontinuum pulse measurement by molecular alignment based cross-correlation frequency resolved optical gating,” Opt. Express 19, 40–46 (2011).
    [Crossref]
  21. B. Tsermaa, B.-K. Yang, M.-W. Kim, J.-S. Kim, “Characterization of supercontinuum and ultraviolet pulses by using XFROG,” J. Opt. Soc. Korea 13, 158–165 (2009).
    [Crossref]
  22. M. Rhodes, G. Steinmeyer, J. Ratner, R. Trebino, “Pulse-shape instabilities and their measurement,” Laser Photon. Rev. 7, 557–565 (2013).
    [Crossref]
  23. J. Ratner, G. Steinmeyer, T. C. Wong, R. Bartels, R. Trebino, “Coherent artifact in modern pulse measurements,” Opt. Lett. 37, 2874–2876 (2012).
    [Crossref]
  24. M. Hopkin, “Sea snapshots will map frequency of freak waves,” Nature 430, 492 (2004).
    [Crossref]
  25. D. R. Solli, C. Ropers, P. Koonath, B. Jalali, “Optical rogue waves,” Nature 450, 1054–1057 (2007).
    [Crossref]
  26. J. M. Dudley, G. Genty, B. J. Eggleton, “Harnessing and control of optical rogue waves in supercontinuum generation,” Opt. Express 16, 3644–3651 (2008).
    [Crossref]
  27. N. Akhmediev, A. Ankiewicz, J. M. Soto-Crespo, J. M. Dudley, “Rogue wave early warning through spectral measurements?” Phys. Lett. A 375, 541–544 (2011).
    [Crossref]
  28. D. R. Solli, C. Ropers, B. Jalali, “Active control of rogue waves for stimulated supercontinuum generation,” Phys. Rev. Lett. 101, 233902 (2008).
    [Crossref]
  29. L. Xu, E. Zeek, R. Trebino, “Simulations of frequency-resolved optical gating for measuring very complex pulses,” J. Opt. Soc. Am. B 25, A70–A80 (2008).
    [Crossref]
  30. R. Wyatt, E. E. Marinero, “Versatile single-shot background-free pulse duration measurement technique, for pulses of subnanosecond to picosecond duration,” Appl. Phys. 25, 297–301 (1981).
    [Crossref]
  31. T. C. Wong, R. Trebino, “Single-frame measurement of complex laser pulses tens of picoseconds long using pulse-front tilt in cross-correlation frequency-resolved optical gating,” J. Opt. Soc. Am. B 30, 2781–2786 (2013).
    [Crossref]
  32. R. Trebino, Frequency-Resolved Optical Gating: the Measurement of Ultrashort Laser Pulses (Kluwer Academic, 2002).

2013 (3)

2012 (5)

2011 (2)

J. Liu, Y. Feng, H. Li, P. Lu, H. Pan, J. Wu, H. Zeng, “Supercontinuum pulse measurement by molecular alignment based cross-correlation frequency resolved optical gating,” Opt. Express 19, 40–46 (2011).
[Crossref]

N. Akhmediev, A. Ankiewicz, J. M. Soto-Crespo, J. M. Dudley, “Rogue wave early warning through spectral measurements?” Phys. Lett. A 375, 541–544 (2011).
[Crossref]

2009 (1)

2008 (5)

2007 (1)

D. R. Solli, C. Ropers, P. Koonath, B. Jalali, “Optical rogue waves,” Nature 450, 1054–1057 (2007).
[Crossref]

2006 (2)

2004 (1)

M. Hopkin, “Sea snapshots will map frequency of freak waves,” Nature 430, 492 (2004).
[Crossref]

2003 (2)

Q. Cao, X. Gu, E. Zeek, M. Kimmel, R. Trebino, J. Dudley, R. S. Windeler, “Measurement of the intensity and phase of supercontinuum from an 8-mm-long microstructure fiber,” Appl. Phys. B 77, 239–244 (2003).
[Crossref]

X. Gu, M. Kimmel, A. Shreenath, R. Trebino, J. Dudley, S. Coen, R. Windeler, “Experimental studies of the coherence of microstructure-fiber supercontinuum,” Opt. Express 11, 2697–2703 (2003).
[Crossref]

2002 (4)

2000 (2)

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[Crossref]

J. K. Ranka, R. S. Windeler, A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800  nm,” Opt. Lett. 25, 25–27 (2000).
[Crossref]

1999 (1)

1981 (1)

R. Wyatt, E. E. Marinero, “Versatile single-shot background-free pulse duration measurement technique, for pulses of subnanosecond to picosecond duration,” Appl. Phys. 25, 297–301 (1981).
[Crossref]

1970 (1)

R. R. Alfano, S. L. Shapiro, “Emission in the region 4000 to 7000 Å via four-photon coupling in glass,” Phys. Rev. Lett. 24, 584–587 (1970).
[Crossref]

Akhmediev, N.

N. Akhmediev, A. Ankiewicz, J. M. Soto-Crespo, J. M. Dudley, “Rogue wave early warning through spectral measurements?” Phys. Lett. A 375, 541–544 (2011).
[Crossref]

Alfano, R. R.

R. R. Alfano, S. L. Shapiro, “Emission in the region 4000 to 7000 Å via four-photon coupling in glass,” Phys. Rev. Lett. 24, 584–587 (1970).
[Crossref]

Ankiewicz, A.

N. Akhmediev, A. Ankiewicz, J. M. Soto-Crespo, J. M. Dudley, “Rogue wave early warning through spectral measurements?” Phys. Lett. A 375, 541–544 (2011).
[Crossref]

Bang, O.

Bartels, R.

Ben Salem, A.

Birks, T.

Breuer, E.

Cao, Q.

Q. Cao, X. Gu, E. Zeek, M. Kimmel, R. Trebino, J. Dudley, R. S. Windeler, “Measurement of the intensity and phase of supercontinuum from an 8-mm-long microstructure fiber,” Appl. Phys. B 77, 239–244 (2003).
[Crossref]

Coen, S.

Cundiff, S. T.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[Crossref]

Dias, F.

T. Godin, B. Wetzel, T. Sylvestre, L. Larger, A. Kudlinski, A. Mussot, A. Ben Salem, M. Zghal, G. Genty, F. Dias, J. M. Dudley, “Real time noise and wavelength correlations in octave-spanning supercontinuum generation,” Opt. Express 21, 18452–18460 (2013).
[Crossref]

B. Wetzel, A. Stefani, L. Larger, P. A. Lacourt, J. M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Sci. Rep. 2, 882 (2012).
[Crossref]

Diddams, S. A.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[Crossref]

Dudley, J.

Dudley, J. M.

T. Godin, B. Wetzel, T. Sylvestre, L. Larger, A. Kudlinski, A. Mussot, A. Ben Salem, M. Zghal, G. Genty, F. Dias, J. M. Dudley, “Real time noise and wavelength correlations in octave-spanning supercontinuum generation,” Opt. Express 21, 18452–18460 (2013).
[Crossref]

B. Wetzel, A. Stefani, L. Larger, P. A. Lacourt, J. M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Sci. Rep. 2, 882 (2012).
[Crossref]

N. Akhmediev, A. Ankiewicz, J. M. Soto-Crespo, J. M. Dudley, “Rogue wave early warning through spectral measurements?” Phys. Lett. A 375, 541–544 (2011).
[Crossref]

J. M. Dudley, G. Genty, B. J. Eggleton, “Harnessing and control of optical rogue waves in supercontinuum generation,” Opt. Express 16, 3644–3651 (2008).
[Crossref]

J. M. Dudley, G. Genty, S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

Eggleton, B. J.

Feng, Y.

Gabolde, P.

Gaeta, A. L.

Genty, G.

T. Godin, B. Wetzel, T. Sylvestre, L. Larger, A. Kudlinski, A. Mussot, A. Ben Salem, M. Zghal, G. Genty, F. Dias, J. M. Dudley, “Real time noise and wavelength correlations in octave-spanning supercontinuum generation,” Opt. Express 21, 18452–18460 (2013).
[Crossref]

B. Wetzel, A. Stefani, L. Larger, P. A. Lacourt, J. M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Sci. Rep. 2, 882 (2012).
[Crossref]

J. M. Dudley, G. Genty, B. J. Eggleton, “Harnessing and control of optical rogue waves in supercontinuum generation,” Opt. Express 16, 3644–3651 (2008).
[Crossref]

J. M. Dudley, G. Genty, S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

Godin, T.

Gu, X.

Hall, J. L.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[Crossref]

Hansch, T. W.

T. Udem, R. Holzwarth, T. W. Hansch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[Crossref]

Hell, S. W.

Holzwarth, R.

T. Udem, R. Holzwarth, T. W. Hansch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[Crossref]

Hopkin, M.

M. Hopkin, “Sea snapshots will map frequency of freak waves,” Nature 430, 492 (2004).
[Crossref]

Humbert, G.

Jakobsen, C.

Jalali, B.

D. R. Solli, C. Ropers, B. Jalali, “Active control of rogue waves for stimulated supercontinuum generation,” Phys. Rev. Lett. 101, 233902 (2008).
[Crossref]

D. R. Solli, C. Ropers, P. Koonath, B. Jalali, “Optical rogue waves,” Nature 450, 1054–1057 (2007).
[Crossref]

Johansen, J.

Jones, D. J.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[Crossref]

Kastrup, L.

Kim, J.-S.

Kim, M.-W.

Kimmel, M.

Knight, J.

Koonath, P.

D. R. Solli, C. Ropers, P. Koonath, B. Jalali, “Optical rogue waves,” Nature 450, 1054–1057 (2007).
[Crossref]

Kopf, D.

Kubota, H.

Kudlinski, A.

T. Godin, B. Wetzel, T. Sylvestre, L. Larger, A. Kudlinski, A. Mussot, A. Ben Salem, M. Zghal, G. Genty, F. Dias, J. M. Dudley, “Real time noise and wavelength correlations in octave-spanning supercontinuum generation,” Opt. Express 21, 18452–18460 (2013).
[Crossref]

B. Wetzel, A. Stefani, L. Larger, P. A. Lacourt, J. M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Sci. Rep. 2, 882 (2012).
[Crossref]

Lacourt, P. A.

B. Wetzel, A. Stefani, L. Larger, P. A. Lacourt, J. M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Sci. Rep. 2, 882 (2012).
[Crossref]

Larger, L.

T. Godin, B. Wetzel, T. Sylvestre, L. Larger, A. Kudlinski, A. Mussot, A. Ben Salem, M. Zghal, G. Genty, F. Dias, J. M. Dudley, “Real time noise and wavelength correlations in octave-spanning supercontinuum generation,” Opt. Express 21, 18452–18460 (2013).
[Crossref]

B. Wetzel, A. Stefani, L. Larger, P. A. Lacourt, J. M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Sci. Rep. 2, 882 (2012).
[Crossref]

Larsen, C.

Lederer, M.

Lee, D.

Leon-Saval, S.

Li, H.

Liu, J.

Lu, P.

Marinero, E. E.

R. Wyatt, E. E. Marinero, “Versatile single-shot background-free pulse duration measurement technique, for pulses of subnanosecond to picosecond duration,” Appl. Phys. 25, 297–301 (1981).
[Crossref]

Merolla, J. M.

B. Wetzel, A. Stefani, L. Larger, P. A. Lacourt, J. M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Sci. Rep. 2, 882 (2012).
[Crossref]

Møller, U.

Moselund, P. M.

Mussot, A.

T. Godin, B. Wetzel, T. Sylvestre, L. Larger, A. Kudlinski, A. Mussot, A. Ben Salem, M. Zghal, G. Genty, F. Dias, J. M. Dudley, “Real time noise and wavelength correlations in octave-spanning supercontinuum generation,” Opt. Express 21, 18452–18460 (2013).
[Crossref]

B. Wetzel, A. Stefani, L. Larger, P. A. Lacourt, J. M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Sci. Rep. 2, 882 (2012).
[Crossref]

Nakazawa, M.

O’Shea, P.

Pan, H.

Ranka, J. K.

J. K. Ranka, R. S. Windeler, A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800  nm,” Opt. Lett. 25, 25–27 (2000).
[Crossref]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[Crossref]

Ratner, J.

M. Rhodes, G. Steinmeyer, J. Ratner, R. Trebino, “Pulse-shape instabilities and their measurement,” Laser Photon. Rev. 7, 557–565 (2013).
[Crossref]

J. Ratner, G. Steinmeyer, T. C. Wong, R. Bartels, R. Trebino, “Coherent artifact in modern pulse measurements,” Opt. Lett. 37, 2874–2876 (2012).
[Crossref]

Rhodes, M.

M. Rhodes, G. Steinmeyer, J. Ratner, R. Trebino, “Pulse-shape instabilities and their measurement,” Laser Photon. Rev. 7, 557–565 (2013).
[Crossref]

Rittweger, E.

Ropers, C.

D. R. Solli, C. Ropers, B. Jalali, “Active control of rogue waves for stimulated supercontinuum generation,” Phys. Rev. Lett. 101, 233902 (2008).
[Crossref]

D. R. Solli, C. Ropers, P. Koonath, B. Jalali, “Optical rogue waves,” Nature 450, 1054–1057 (2007).
[Crossref]

Russell, P. St. J.

Shapiro, S. L.

R. R. Alfano, S. L. Shapiro, “Emission in the region 4000 to 7000 Å via four-photon coupling in glass,” Phys. Rev. Lett. 24, 584–587 (1970).
[Crossref]

Shreenath, A.

Shreenath, A. P.

Solli, D. R.

D. R. Solli, C. Ropers, B. Jalali, “Active control of rogue waves for stimulated supercontinuum generation,” Phys. Rev. Lett. 101, 233902 (2008).
[Crossref]

D. R. Solli, C. Ropers, P. Koonath, B. Jalali, “Optical rogue waves,” Nature 450, 1054–1057 (2007).
[Crossref]

Sørensen, S. T.

Soto-Crespo, J. M.

N. Akhmediev, A. Ankiewicz, J. M. Soto-Crespo, J. M. Dudley, “Rogue wave early warning through spectral measurements?” Phys. Lett. A 375, 541–544 (2011).
[Crossref]

Stefani, A.

B. Wetzel, A. Stefani, L. Larger, P. A. Lacourt, J. M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Sci. Rep. 2, 882 (2012).
[Crossref]

Steinmeyer, G.

M. Rhodes, G. Steinmeyer, J. Ratner, R. Trebino, “Pulse-shape instabilities and their measurement,” Laser Photon. Rev. 7, 557–565 (2013).
[Crossref]

J. Ratner, G. Steinmeyer, T. C. Wong, R. Bartels, R. Trebino, “Coherent artifact in modern pulse measurements,” Opt. Lett. 37, 2874–2876 (2012).
[Crossref]

Stentz, A.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[Crossref]

Stentz, A. J.

Stifter, D.

Sylvestre, T.

T. Godin, B. Wetzel, T. Sylvestre, L. Larger, A. Kudlinski, A. Mussot, A. Ben Salem, M. Zghal, G. Genty, F. Dias, J. M. Dudley, “Real time noise and wavelength correlations in octave-spanning supercontinuum generation,” Opt. Express 21, 18452–18460 (2013).
[Crossref]

B. Wetzel, A. Stefani, L. Larger, P. A. Lacourt, J. M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Sci. Rep. 2, 882 (2012).
[Crossref]

Tamura, K. R.

Thomsen, C. L.

Trebino, R.

M. Rhodes, G. Steinmeyer, J. Ratner, R. Trebino, “Pulse-shape instabilities and their measurement,” Laser Photon. Rev. 7, 557–565 (2013).
[Crossref]

T. C. Wong, R. Trebino, “Single-frame measurement of complex laser pulses tens of picoseconds long using pulse-front tilt in cross-correlation frequency-resolved optical gating,” J. Opt. Soc. Am. B 30, 2781–2786 (2013).
[Crossref]

J. Ratner, G. Steinmeyer, T. C. Wong, R. Bartels, R. Trebino, “Coherent artifact in modern pulse measurements,” Opt. Lett. 37, 2874–2876 (2012).
[Crossref]

L. Xu, E. Zeek, R. Trebino, “Simulations of frequency-resolved optical gating for measuring very complex pulses,” J. Opt. Soc. Am. B 25, A70–A80 (2008).
[Crossref]

D. Lee, P. Gabolde, R. Trebino, “Toward single-shot measurement of a broadband ultrafast continuum,” J. Opt. Soc. Am. B 25, A34–A40 (2008).
[Crossref]

X. Gu, M. Kimmel, A. Shreenath, R. Trebino, J. Dudley, S. Coen, R. Windeler, “Experimental studies of the coherence of microstructure-fiber supercontinuum,” Opt. Express 11, 2697–2703 (2003).
[Crossref]

Q. Cao, X. Gu, E. Zeek, M. Kimmel, R. Trebino, J. Dudley, R. S. Windeler, “Measurement of the intensity and phase of supercontinuum from an 8-mm-long microstructure fiber,” Appl. Phys. B 77, 239–244 (2003).
[Crossref]

J. Dudley, X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O’Shea, R. Trebino, S. Coen, R. Windeler, “Cross-correlation frequency resolved optical gating analysis of broadband continuum generation in photonic crystal fiber: simulations and experiments,” Opt. Express 10, 1215–1221 (2002).
[Crossref]

X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O’Shea, A. P. Shreenath, R. Trebino, R. S. Windeler, “Frequency-resolved optical gating and single-shot spectral measurements reveal fine structure in microstructure-fiber continuum,” Opt. Lett. 27, 1174–1176 (2002).
[Crossref]

R. Trebino, Frequency-Resolved Optical Gating: the Measurement of Ultrashort Laser Pulses (Kluwer Academic, 2002).

Tsermaa, B.

Udem, T.

T. Udem, R. Holzwarth, T. W. Hansch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[Crossref]

Wadsworth, W.

Wetzel, B.

T. Godin, B. Wetzel, T. Sylvestre, L. Larger, A. Kudlinski, A. Mussot, A. Ben Salem, M. Zghal, G. Genty, F. Dias, J. M. Dudley, “Real time noise and wavelength correlations in octave-spanning supercontinuum generation,” Opt. Express 21, 18452–18460 (2013).
[Crossref]

B. Wetzel, A. Stefani, L. Larger, P. A. Lacourt, J. M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Sci. Rep. 2, 882 (2012).
[Crossref]

Wiesauer, K.

Wildanger, D.

Windeler, R.

Windeler, R. S.

Q. Cao, X. Gu, E. Zeek, M. Kimmel, R. Trebino, J. Dudley, R. S. Windeler, “Measurement of the intensity and phase of supercontinuum from an 8-mm-long microstructure fiber,” Appl. Phys. B 77, 239–244 (2003).
[Crossref]

X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O’Shea, A. P. Shreenath, R. Trebino, R. S. Windeler, “Frequency-resolved optical gating and single-shot spectral measurements reveal fine structure in microstructure-fiber continuum,” Opt. Lett. 27, 1174–1176 (2002).
[Crossref]

J. K. Ranka, R. S. Windeler, A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800  nm,” Opt. Lett. 25, 25–27 (2000).
[Crossref]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[Crossref]

Wong, T. C.

Wu, J.

Wyatt, R.

R. Wyatt, E. E. Marinero, “Versatile single-shot background-free pulse duration measurement technique, for pulses of subnanosecond to picosecond duration,” Appl. Phys. 25, 297–301 (1981).
[Crossref]

Xu, L.

Yang, B.-K.

Zeek, E.

Zeng, H.

Zghal, M.

Appl. Phys. (1)

R. Wyatt, E. E. Marinero, “Versatile single-shot background-free pulse duration measurement technique, for pulses of subnanosecond to picosecond duration,” Appl. Phys. 25, 297–301 (1981).
[Crossref]

Appl. Phys. B (1)

Q. Cao, X. Gu, E. Zeek, M. Kimmel, R. Trebino, J. Dudley, R. S. Windeler, “Measurement of the intensity and phase of supercontinuum from an 8-mm-long microstructure fiber,” Appl. Phys. B 77, 239–244 (2003).
[Crossref]

J. Opt. Soc. Am. B (5)

J. Opt. Soc. Korea (1)

Laser Photon. Rev. (1)

M. Rhodes, G. Steinmeyer, J. Ratner, R. Trebino, “Pulse-shape instabilities and their measurement,” Laser Photon. Rev. 7, 557–565 (2013).
[Crossref]

Nature (3)

M. Hopkin, “Sea snapshots will map frequency of freak waves,” Nature 430, 492 (2004).
[Crossref]

D. R. Solli, C. Ropers, P. Koonath, B. Jalali, “Optical rogue waves,” Nature 450, 1054–1057 (2007).
[Crossref]

T. Udem, R. Holzwarth, T. W. Hansch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[Crossref]

Opt. Express (9)

S. T. Sørensen, C. Larsen, U. Møller, P. M. Moselund, C. L. Thomsen, O. Bang, “The role of phase coherence in seeded supercontinuum generation,” Opt. Express 20, 22886–22894 (2012).
[Crossref]

T. Godin, B. Wetzel, T. Sylvestre, L. Larger, A. Kudlinski, A. Mussot, A. Ben Salem, M. Zghal, G. Genty, F. Dias, J. M. Dudley, “Real time noise and wavelength correlations in octave-spanning supercontinuum generation,” Opt. Express 21, 18452–18460 (2013).
[Crossref]

J. Dudley, X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O’Shea, R. Trebino, S. Coen, R. Windeler, “Cross-correlation frequency resolved optical gating analysis of broadband continuum generation in photonic crystal fiber: simulations and experiments,” Opt. Express 10, 1215–1221 (2002).
[Crossref]

X. Gu, M. Kimmel, A. Shreenath, R. Trebino, J. Dudley, S. Coen, R. Windeler, “Experimental studies of the coherence of microstructure-fiber supercontinuum,” Opt. Express 11, 2697–2703 (2003).
[Crossref]

D. Wildanger, E. Rittweger, L. Kastrup, S. W. Hell, “STED microscopy with a supercontinuum laser source,” Opt. Express 16, 9614–9621 (2008).
[Crossref]

G. Humbert, W. Wadsworth, S. Leon-Saval, J. Knight, T. Birks, P. St. J. Russell, M. Lederer, D. Kopf, K. Wiesauer, E. Breuer, D. Stifter, “Supercontinuum generation system for optical coherence tomography based on tapered photonic crystal fibre,” Opt. Express 14, 1596–1603 (2006).
[Crossref]

J. M. Dudley, G. Genty, B. J. Eggleton, “Harnessing and control of optical rogue waves in supercontinuum generation,” Opt. Express 16, 3644–3651 (2008).
[Crossref]

J. Liu, Y. Feng, H. Li, P. Lu, H. Pan, J. Wu, H. Zeng, “Supercontinuum pulse measurement by molecular alignment based cross-correlation frequency resolved optical gating,” Opt. Express 19, 40–46 (2011).
[Crossref]

U. Møller, S. T. Sørensen, C. Jakobsen, J. Johansen, P. M. Moselund, C. L. Thomsen, O. Bang, “Power dependence of supercontinuum noise in uniform and tapered PCFs,” Opt. Express 20, 2851–2857 (2012).
[Crossref]

Opt. Lett. (4)

Phys. Lett. A (1)

N. Akhmediev, A. Ankiewicz, J. M. Soto-Crespo, J. M. Dudley, “Rogue wave early warning through spectral measurements?” Phys. Lett. A 375, 541–544 (2011).
[Crossref]

Phys. Rev. Lett. (2)

D. R. Solli, C. Ropers, B. Jalali, “Active control of rogue waves for stimulated supercontinuum generation,” Phys. Rev. Lett. 101, 233902 (2008).
[Crossref]

R. R. Alfano, S. L. Shapiro, “Emission in the region 4000 to 7000 Å via four-photon coupling in glass,” Phys. Rev. Lett. 24, 584–587 (1970).
[Crossref]

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

Sci. Rep. (1)

B. Wetzel, A. Stefani, L. Larger, P. A. Lacourt, J. M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Sci. Rep. 2, 882 (2012).
[Crossref]

Science (1)

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[Crossref]

Other (1)

R. Trebino, Frequency-Resolved Optical Gating: the Measurement of Ultrashort Laser Pulses (Kluwer Academic, 2002).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Illustration of the temporal range calculation for single-shot XFROG [see Eqs. (1) and (2)]. (a) Typical device with an untilted reference pulse. The unknown and reference pulses are shown in blue and red, respectively, with arrows showing their propagation directions. The relative delay between the pulses varies transversely, and imaging the beam-crossing region onto a camera achieves single-shot operation. (b) Proposed approach using a reference pulse with pulse-front tilt to increase the temporal range. The tilt angle is α.
Fig. 2.
Fig. 2. Illustration of longitudinal geometrical smearing in single-shot XFROG. (a) General case with arbitrary internal crossing angle, θ, and PFT angle, α. The rectangle with thickness L represents the nonlinear medium. The reference and unknown pulses are shown in red and rainbow colors, respectively, with an arrow indicating their propagation direction. The signal pulse propagates along the same direction as the unknown pulse (the gray dashed line). In this direction, the reference pulse gates the green part (the center) of the unknown pulse at the front of the medium and the red part (the left) of the unknown pulse at the back of the medium. Thus, each transverse position contains signal light created by a range of delays, rather than a single delay. This range is the longitudinal smearing, δtPFT. (b) The ideal choice of internal crossing angle, θ=2α, removes the longitudinal smearing completely while maintaining a large delay range. The reference pulse overlaps with the same part of the unknown pulse at each transverse position throughout the medium. The PFT angle, α, here remains the same as in part (a).
Fig. 3.
Fig. 3. Illustration of how to create PFT and calculate the resulting PFT angle in the nonlinear medium. The PFT angle in glass is smaller than the angle in air after the grating due to the larger size of the refracted beam and the slower phase velocity. The drawing is not to scale, and the angles are slightly exaggerated for clarity.
Fig. 4.
Fig. 4. 3D schematic of the experimental apparatus of PG XFROG with PFT in the reference pulse. The red and orange represent the reference pulse and the SC, respectively. The reference pulse gates the SC in the nonlinear medium, which is imaged onto the camera in the vertical direction, mapping time delay to spatial position. The spectrometer consists of a transmission grating and cylindrical lens that generate the spectrum of the gated SC pulse in the horizontal direction.
Fig. 5.
Fig. 5. Single-shot PG XFROG measurement of SC generated from a 23.1 mm long NL-2.8-850 photonic crystal fiber. (a) Measured XFROG trace (2048×2048 array) after background subtraction, (b) retrieved XFROG trace with rms error of 0.85%, (c) temporal intensity (red) and phase (blue) of the retrieved SC, and (d) spectral intensity (green) and phase (violet) of the retrieved SC with the same-shot spectrum (black).
Fig. 6.
Fig. 6. Single-shot PG XFROG measurement of SC generated from a 32.2 mm long NL-2.8-850 photonic crystal fiber. (a) Measured XFROG trace (2048×2048 array) after background subtraction, (b) retrieved XFROG trace with a G-error of 0.57%, (c) temporal intensity (red) and phase (blue) of the retrieved SC, and (d) spectral intensity (green) and phase (violet) of the retrieved SC.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ΔT=dctanθ,
ΔTPFT=dctan(αθ),
δtPFT=Lc(1cosαcos(αθ)),
tanα=(b/n)/(dM(cosθ2/cosθ1))=sinγcosθ1/nMcosθ2,

Metrics