Abstract

Of all oxides, lithium niobate (LiNbO3) is the gold standard electro-optical material in fiber-optic transmission systems. Modulators based on diffused waveguides in bulk LiNbO3 substrates are, however, relatively large. In contrast, ring modulators based on silicon-on-insulator are of interest for chip-scale electro-optical modulation, but unstrained crystalline silicon does not exhibit a linear electro-optic effect, so modulation is based on alternative mechanisms such as the plasma dispersion effect. Here, we present a hybrid silicon and LiNbO3 electro-optical ring modulator operating at gigahertz frequencies. The modulator consists of a 15 μm radius silicon microring and an ion-sliced LiNbO3 thin film bonded together via benzocyclobutene. Fabricated devices operating in the TE optical mode exhibit an optical loaded quality factor of 14,000 and a resonance tuning of 3.3pm/V. The small-signal electrical-to-optical 3 dB bandwidth is measured to be 5 GHz. Digital modulation with an extinction ratio greater than 3 dB is demonstrated up to 9Gb/s. High-speed and low-tuning-power chip-scale modulators that exploit the high-index contrast of silicon with the second-order susceptibility of LiNbO3 are envisioned.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Compact electric field sensors based on indirect bonding of lithium niobate to silicon microrings

Li Chen and Ronald M. Reano
Opt. Express 20(4) 4032-4038 (2012)

Nanophotonic lithium niobate electro-optic modulators

Cheng Wang, Mian Zhang, Brian Stern, Michal Lipson, and Marko Lončar
Opt. Express 26(2) 1547-1555 (2018)

Mid-infrared integrated waveguide modulators based on silicon-on-lithium-niobate photonics

Jeff Chiles and Sasan Fathpour
Optica 1(5) 350-355 (2014)

References

  • View by:
  • |
  • |
  • |

  1. E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
    [Crossref]
  2. G. T. Reed, G. Mashanovich, F. Y. Gardes, D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
    [Crossref]
  3. D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97, 1166–1185 (2009).
    [Crossref]
  4. A. Biberman, S. Manipatruni, N. Ophir, L. Chen, M. Lipson, K. Bergman, “First demonstration of long-haul transmission using silicon microring modulators,” Opt. Express 18, 15544–15552 (2010).
    [Crossref]
  5. M. Streshinsky, A. Ayazi, Z. Xuan, A. E.-J. Lim, G.-Q. Lo, T. Baehr-Jones, M. Hochberg, “Highly linear silicon traveling wave Mach-Zehnder carrier depletion modulator based on differential drive,” Opt. Express 21, 3818–3825 (2013).
    [Crossref]
  6. S. S. Djordjevic, L. W. Luo, S. Ibrahim, N. K. Fontaine, C. B. Poitras, B. Guan, L. Zhou, K. Okamoto, Z. Ding, M. Lipson, S. J. B. Yoo, “Fully reconfigurable silicon photonic lattice filters with four cascaded unit cells,” IEEE Photon. Technol. Lett. 23, 42–44 (2011).
    [Crossref]
  7. Q. Xu, B. Schmidt, S. Pradhan, M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
    [Crossref]
  8. G. Li, X. Zheng, J. Yao, H. Thacker, I. Shubin, Y. Luo, K. Raj, J. E. Cunningham, A. V. Krishnamoorthy, “25  Gb/s 1V-driving CMOS ring modulator with integrated thermal tuning,” Opt. Express 19, 20435–20443 (2011).
    [Crossref]
  9. R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441, 199–202 (2006).
    [Crossref]
  10. B. Chmielak, M. Waldow, C. Matheisen, C. Ripperda, J. Bolten, T. Wahlbrink, M. Nagel, F. Merget, H. Kurz, “Pockels effect based fully integrated, strained silicon electro-optic modulator,” Opt. Express 19, 17212–17219 (2011).
    [Crossref]
  11. B. Chmielak, C. Matheisen, C. Ripperda, J. Bolten, T. Wahlbrink, M. Waldow, H. Kurz, “Investigation of local strain distribution and linear electro-optic effect in strained silicon waveguides,” Opt. Express 21, 25324–25332 (2013).
    [Crossref]
  12. Y. S. Lee, G.-D. Kim, W.-J. Kim, S.-S. Lee, W.-G. Lee, W. H. Steier, “Hybrid Si-LiNbO3 microring electro-optically tunable resonators for active photonic devices,” Opt. Lett. 36, 1119–1121 (2011).
    [Crossref]
  13. L. Chen, R. M. Reano, “Compact electric field sensors based on indirect bonding of lithium niobate to silicon microrings,” Opt. Express 20, 4032–4038 (2012).
    [Crossref]
  14. L. Chen, M. G. Wood, R. M. Reano, “12.5  pm/V hybrid silicon and lithium niobate optical microring resonator with integrated electrodes,” Opt. Express 21, 27003–27010 (2013).
    [Crossref]
  15. K. K. Wong, Properties of Lithium Niobate (INSPEC, 2002).
  16. M. E. Mills, P. Townsend, D. Castillo, S. Martin, A. Achen, “Benzocyclobutene (DVS-BCB) polymer as an interlayer dielectric (ILD) material,” Microelectron. Eng. 33, 327–334 (1997).
    [Crossref]
  17. S. M. Sze, K. K. Ng, Physics of Semiconductor Devices (Wiley, 1981).
  18. M. G. Wood, L. Chen, J. R. Burr, R. M. Reano, “Optimization of electron beam patterned hydrogen silsesquioxane mask edge roughness for low-loss silicon waveguides,” J. Nanophoton. 8, 083098 (2014).
    [Crossref]
  19. A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1, 407–410 (2007).
    [Crossref]
  20. M. Wood, P. Sun, R. M. Reano, “Compact cantilever couplers for low-loss fiber coupling to silicon photonic integrated circuits,” Opt. Express 20, 164–172 (2012).
    [Crossref]
  21. P. Sun, R. M. Reano, “Cantilever couplers for intra-chip coupling to silicon photonic integrated circuits,” Opt. Express 17, 4565–4574 (2009).
    [Crossref]
  22. R. Ding, T. Baehr-Jones, Y. Liu, R. Bojko, J. Witzens, S. Huang, J. Luo, S. Benight, P. Sullivan, J.-M. Fedeli, M. Fournier, L. Dalton, A. Jen, M. Hochberg, “Demonstration of a low VπL modulator with GHz bandwidth based on electro-optic polymer-clad silicon slot waveguides,” Opt. Express 18, 15618–15623 (2010).
    [Crossref]
  23. J. L. Nightingale, R. A. Becker, R. C. Willis, J. S. Vrhel, “Characterization of frequency dispersion in Ti-diffused lithium niobate optical devices,” Appl. Phys. Lett. 51, 716–718 (1987).
    [Crossref]
  24. R. L. Jungerman, C. A. Flory, “Low-frequency acoustic anomalies in lithium niobate Mach-Zehnder interferometers,” Appl. Phys. Lett. 53, 1477–1479 (1988).
    [Crossref]
  25. W. K. Burns, M. M. Howerton, R. P. Moeller, R. Krähenbühl, R. W. McElhanon, A. S. Greenblatt, “Low drive voltage, broad-band LiNbO3 modulators with and without etched ridges,” J. Lightwave Technol. 17, 2551–2555 (1999).
    [Crossref]
  26. A. Vorobiev, J. Berge, S. Gevorgian, M. Löffler, E. Olsson, “Effect of interface roughness on acoustic loss in tunable thin film bulk acoustic wave resonators,” J. Appl. Phys. 110, 024116 (2011).
    [Crossref]
  27. M. Yoshida, S. Okamoto, T. Omiya, K. Kasai, M. Nakazawa, “256 QAM digital coherent optical transmission using Raman amplifiers,” IEICE Trans. Commun. E 94-B, 417–424 (2011).
    [Crossref]
  28. Z. Ren, P. J. Heard, J. M. Marshall, P. A. Thomas, S. Yu, “Etching characteristics of LiNbO3 in reactive ion etching and inductively coupled plasma,” J. Appl. Phys. 103, 034109 (2008).
    [Crossref]
  29. M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11, 148–154 (2011).
    [Crossref]
  30. M. Wächter, C. Matheisen, M. Waldow, T. Wahlbrink, J. Bolten, M. Nagel, H. Kurz, “Optical generation of terahertz and second-harmonic light in plasma-activated silicon nanophotonic structures,” Appl. Phys. Lett. 97, 161107 (2010).
    [Crossref]
  31. K. Banaszek, A. B. U’Ren, I. A. Walmsley, “Generation of correlated photons in controlled spatial modes by down conversion in nonlinear waveguides,” Opt. Lett. 26, 1367–1369 (2001).
    [Crossref]

2014 (1)

M. G. Wood, L. Chen, J. R. Burr, R. M. Reano, “Optimization of electron beam patterned hydrogen silsesquioxane mask edge roughness for low-loss silicon waveguides,” J. Nanophoton. 8, 083098 (2014).
[Crossref]

2013 (3)

2012 (2)

2011 (7)

A. Vorobiev, J. Berge, S. Gevorgian, M. Löffler, E. Olsson, “Effect of interface roughness on acoustic loss in tunable thin film bulk acoustic wave resonators,” J. Appl. Phys. 110, 024116 (2011).
[Crossref]

M. Yoshida, S. Okamoto, T. Omiya, K. Kasai, M. Nakazawa, “256 QAM digital coherent optical transmission using Raman amplifiers,” IEICE Trans. Commun. E 94-B, 417–424 (2011).
[Crossref]

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11, 148–154 (2011).
[Crossref]

B. Chmielak, M. Waldow, C. Matheisen, C. Ripperda, J. Bolten, T. Wahlbrink, M. Nagel, F. Merget, H. Kurz, “Pockels effect based fully integrated, strained silicon electro-optic modulator,” Opt. Express 19, 17212–17219 (2011).
[Crossref]

Y. S. Lee, G.-D. Kim, W.-J. Kim, S.-S. Lee, W.-G. Lee, W. H. Steier, “Hybrid Si-LiNbO3 microring electro-optically tunable resonators for active photonic devices,” Opt. Lett. 36, 1119–1121 (2011).
[Crossref]

S. S. Djordjevic, L. W. Luo, S. Ibrahim, N. K. Fontaine, C. B. Poitras, B. Guan, L. Zhou, K. Okamoto, Z. Ding, M. Lipson, S. J. B. Yoo, “Fully reconfigurable silicon photonic lattice filters with four cascaded unit cells,” IEEE Photon. Technol. Lett. 23, 42–44 (2011).
[Crossref]

G. Li, X. Zheng, J. Yao, H. Thacker, I. Shubin, Y. Luo, K. Raj, J. E. Cunningham, A. V. Krishnamoorthy, “25  Gb/s 1V-driving CMOS ring modulator with integrated thermal tuning,” Opt. Express 19, 20435–20443 (2011).
[Crossref]

2010 (4)

2009 (2)

P. Sun, R. M. Reano, “Cantilever couplers for intra-chip coupling to silicon photonic integrated circuits,” Opt. Express 17, 4565–4574 (2009).
[Crossref]

D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97, 1166–1185 (2009).
[Crossref]

2008 (1)

Z. Ren, P. J. Heard, J. M. Marshall, P. A. Thomas, S. Yu, “Etching characteristics of LiNbO3 in reactive ion etching and inductively coupled plasma,” J. Appl. Phys. 103, 034109 (2008).
[Crossref]

2007 (1)

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1, 407–410 (2007).
[Crossref]

2006 (1)

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441, 199–202 (2006).
[Crossref]

2005 (1)

Q. Xu, B. Schmidt, S. Pradhan, M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
[Crossref]

2001 (1)

2000 (1)

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[Crossref]

1999 (1)

1997 (1)

M. E. Mills, P. Townsend, D. Castillo, S. Martin, A. Achen, “Benzocyclobutene (DVS-BCB) polymer as an interlayer dielectric (ILD) material,” Microelectron. Eng. 33, 327–334 (1997).
[Crossref]

1988 (1)

R. L. Jungerman, C. A. Flory, “Low-frequency acoustic anomalies in lithium niobate Mach-Zehnder interferometers,” Appl. Phys. Lett. 53, 1477–1479 (1988).
[Crossref]

1987 (1)

J. L. Nightingale, R. A. Becker, R. C. Willis, J. S. Vrhel, “Characterization of frequency dispersion in Ti-diffused lithium niobate optical devices,” Appl. Phys. Lett. 51, 716–718 (1987).
[Crossref]

Achen, A.

M. E. Mills, P. Townsend, D. Castillo, S. Martin, A. Achen, “Benzocyclobutene (DVS-BCB) polymer as an interlayer dielectric (ILD) material,” Microelectron. Eng. 33, 327–334 (1997).
[Crossref]

Andersen, K. N.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441, 199–202 (2006).
[Crossref]

Attanasio, D. V.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[Crossref]

Ayazi, A.

Baehr-Jones, T.

Banaszek, K.

Becker, R. A.

J. L. Nightingale, R. A. Becker, R. C. Willis, J. S. Vrhel, “Characterization of frequency dispersion in Ti-diffused lithium niobate optical devices,” Appl. Phys. Lett. 51, 716–718 (1987).
[Crossref]

Benight, S.

Berge, J.

A. Vorobiev, J. Berge, S. Gevorgian, M. Löffler, E. Olsson, “Effect of interface roughness on acoustic loss in tunable thin film bulk acoustic wave resonators,” J. Appl. Phys. 110, 024116 (2011).
[Crossref]

Bergman, K.

Bianco, F.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11, 148–154 (2011).
[Crossref]

Biberman, A.

Bjarklev, A.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441, 199–202 (2006).
[Crossref]

Bojko, R.

Bolten, J.

Borel, P. I.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441, 199–202 (2006).
[Crossref]

Borga, E.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11, 148–154 (2011).
[Crossref]

Bossi, D. E.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[Crossref]

Burns, W. K.

Burr, J. R.

M. G. Wood, L. Chen, J. R. Burr, R. M. Reano, “Optimization of electron beam patterned hydrogen silsesquioxane mask edge roughness for low-loss silicon waveguides,” J. Nanophoton. 8, 083098 (2014).
[Crossref]

Castillo, D.

M. E. Mills, P. Townsend, D. Castillo, S. Martin, A. Achen, “Benzocyclobutene (DVS-BCB) polymer as an interlayer dielectric (ILD) material,” Microelectron. Eng. 33, 327–334 (1997).
[Crossref]

Cazzanelli, M.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11, 148–154 (2011).
[Crossref]

Chen, L.

Chmielak, B.

Cunningham, J. E.

Dalton, L.

Degl’Innocenti, R.

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1, 407–410 (2007).
[Crossref]

Degoli, E.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11, 148–154 (2011).
[Crossref]

Ding, R.

Ding, Z.

S. S. Djordjevic, L. W. Luo, S. Ibrahim, N. K. Fontaine, C. B. Poitras, B. Guan, L. Zhou, K. Okamoto, Z. Ding, M. Lipson, S. J. B. Yoo, “Fully reconfigurable silicon photonic lattice filters with four cascaded unit cells,” IEEE Photon. Technol. Lett. 23, 42–44 (2011).
[Crossref]

Djordjevic, S. S.

S. S. Djordjevic, L. W. Luo, S. Ibrahim, N. K. Fontaine, C. B. Poitras, B. Guan, L. Zhou, K. Okamoto, Z. Ding, M. Lipson, S. J. B. Yoo, “Fully reconfigurable silicon photonic lattice filters with four cascaded unit cells,” IEEE Photon. Technol. Lett. 23, 42–44 (2011).
[Crossref]

Fage-Pedersen, J.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441, 199–202 (2006).
[Crossref]

Fedeli, J.-M.

Flory, C. A.

R. L. Jungerman, C. A. Flory, “Low-frequency acoustic anomalies in lithium niobate Mach-Zehnder interferometers,” Appl. Phys. Lett. 53, 1477–1479 (1988).
[Crossref]

Fontaine, N. K.

S. S. Djordjevic, L. W. Luo, S. Ibrahim, N. K. Fontaine, C. B. Poitras, B. Guan, L. Zhou, K. Okamoto, Z. Ding, M. Lipson, S. J. B. Yoo, “Fully reconfigurable silicon photonic lattice filters with four cascaded unit cells,” IEEE Photon. Technol. Lett. 23, 42–44 (2011).
[Crossref]

Fournier, M.

Frandsen, L. H.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441, 199–202 (2006).
[Crossref]

Fritz, D. J.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[Crossref]

Gardes, F. Y.

G. T. Reed, G. Mashanovich, F. Y. Gardes, D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
[Crossref]

Gevorgian, S.

A. Vorobiev, J. Berge, S. Gevorgian, M. Löffler, E. Olsson, “Effect of interface roughness on acoustic loss in tunable thin film bulk acoustic wave resonators,” J. Appl. Phys. 110, 024116 (2011).
[Crossref]

Ghulinyan, M.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11, 148–154 (2011).
[Crossref]

Greenblatt, A. S.

Guan, B.

S. S. Djordjevic, L. W. Luo, S. Ibrahim, N. K. Fontaine, C. B. Poitras, B. Guan, L. Zhou, K. Okamoto, Z. Ding, M. Lipson, S. J. B. Yoo, “Fully reconfigurable silicon photonic lattice filters with four cascaded unit cells,” IEEE Photon. Technol. Lett. 23, 42–44 (2011).
[Crossref]

Guarino, A.

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1, 407–410 (2007).
[Crossref]

Günter, P.

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1, 407–410 (2007).
[Crossref]

Hallemeier, P. F.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[Crossref]

Hansen, O.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441, 199–202 (2006).
[Crossref]

Heard, P. J.

Z. Ren, P. J. Heard, J. M. Marshall, P. A. Thomas, S. Yu, “Etching characteristics of LiNbO3 in reactive ion etching and inductively coupled plasma,” J. Appl. Phys. 103, 034109 (2008).
[Crossref]

Hochberg, M.

Howerton, M. M.

Huang, S.

Ibrahim, S.

S. S. Djordjevic, L. W. Luo, S. Ibrahim, N. K. Fontaine, C. B. Poitras, B. Guan, L. Zhou, K. Okamoto, Z. Ding, M. Lipson, S. J. B. Yoo, “Fully reconfigurable silicon photonic lattice filters with four cascaded unit cells,” IEEE Photon. Technol. Lett. 23, 42–44 (2011).
[Crossref]

Jacobsen, R. S.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441, 199–202 (2006).
[Crossref]

Jen, A.

Jungerman, R. L.

R. L. Jungerman, C. A. Flory, “Low-frequency acoustic anomalies in lithium niobate Mach-Zehnder interferometers,” Appl. Phys. Lett. 53, 1477–1479 (1988).
[Crossref]

Kasai, K.

M. Yoshida, S. Okamoto, T. Omiya, K. Kasai, M. Nakazawa, “256 QAM digital coherent optical transmission using Raman amplifiers,” IEICE Trans. Commun. E 94-B, 417–424 (2011).
[Crossref]

Kim, G.-D.

Kim, W.-J.

Kissa, K. M.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[Crossref]

Krähenbühl, R.

Krishnamoorthy, A. V.

Kristensen, M.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441, 199–202 (2006).
[Crossref]

Kurz, H.

Lafaw, D. A.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[Crossref]

Lavrinenko, A. V.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441, 199–202 (2006).
[Crossref]

Lee, S.-S.

Lee, W.-G.

Lee, Y. S.

Li, G.

Lim, A. E.-J.

Lipson, M.

S. S. Djordjevic, L. W. Luo, S. Ibrahim, N. K. Fontaine, C. B. Poitras, B. Guan, L. Zhou, K. Okamoto, Z. Ding, M. Lipson, S. J. B. Yoo, “Fully reconfigurable silicon photonic lattice filters with four cascaded unit cells,” IEEE Photon. Technol. Lett. 23, 42–44 (2011).
[Crossref]

A. Biberman, S. Manipatruni, N. Ophir, L. Chen, M. Lipson, K. Bergman, “First demonstration of long-haul transmission using silicon microring modulators,” Opt. Express 18, 15544–15552 (2010).
[Crossref]

Q. Xu, B. Schmidt, S. Pradhan, M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
[Crossref]

Liu, Y.

Lo, G.-Q.

Löffler, M.

A. Vorobiev, J. Berge, S. Gevorgian, M. Löffler, E. Olsson, “Effect of interface roughness on acoustic loss in tunable thin film bulk acoustic wave resonators,” J. Appl. Phys. 110, 024116 (2011).
[Crossref]

Luo, J.

Luo, L. W.

S. S. Djordjevic, L. W. Luo, S. Ibrahim, N. K. Fontaine, C. B. Poitras, B. Guan, L. Zhou, K. Okamoto, Z. Ding, M. Lipson, S. J. B. Yoo, “Fully reconfigurable silicon photonic lattice filters with four cascaded unit cells,” IEEE Photon. Technol. Lett. 23, 42–44 (2011).
[Crossref]

Luo, Y.

Luppi, E.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11, 148–154 (2011).
[Crossref]

Maack, D.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[Crossref]

Manipatruni, S.

Marshall, J. M.

Z. Ren, P. J. Heard, J. M. Marshall, P. A. Thomas, S. Yu, “Etching characteristics of LiNbO3 in reactive ion etching and inductively coupled plasma,” J. Appl. Phys. 103, 034109 (2008).
[Crossref]

Martin, S.

M. E. Mills, P. Townsend, D. Castillo, S. Martin, A. Achen, “Benzocyclobutene (DVS-BCB) polymer as an interlayer dielectric (ILD) material,” Microelectron. Eng. 33, 327–334 (1997).
[Crossref]

Mashanovich, G.

G. T. Reed, G. Mashanovich, F. Y. Gardes, D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
[Crossref]

Matheisen, C.

McBrien, G. J.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[Crossref]

McElhanon, R. W.

Merget, F.

Miller, D. A. B.

D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97, 1166–1185 (2009).
[Crossref]

Mills, M. E.

M. E. Mills, P. Townsend, D. Castillo, S. Martin, A. Achen, “Benzocyclobutene (DVS-BCB) polymer as an interlayer dielectric (ILD) material,” Microelectron. Eng. 33, 327–334 (1997).
[Crossref]

Modotto, D.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11, 148–154 (2011).
[Crossref]

Moeller, R. P.

Moulin, G.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441, 199–202 (2006).
[Crossref]

Murphy, E. J.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[Crossref]

Nagel, M.

B. Chmielak, M. Waldow, C. Matheisen, C. Ripperda, J. Bolten, T. Wahlbrink, M. Nagel, F. Merget, H. Kurz, “Pockels effect based fully integrated, strained silicon electro-optic modulator,” Opt. Express 19, 17212–17219 (2011).
[Crossref]

M. Wächter, C. Matheisen, M. Waldow, T. Wahlbrink, J. Bolten, M. Nagel, H. Kurz, “Optical generation of terahertz and second-harmonic light in plasma-activated silicon nanophotonic structures,” Appl. Phys. Lett. 97, 161107 (2010).
[Crossref]

Nakazawa, M.

M. Yoshida, S. Okamoto, T. Omiya, K. Kasai, M. Nakazawa, “256 QAM digital coherent optical transmission using Raman amplifiers,” IEICE Trans. Commun. E 94-B, 417–424 (2011).
[Crossref]

Ng, K. K.

S. M. Sze, K. K. Ng, Physics of Semiconductor Devices (Wiley, 1981).

Nightingale, J. L.

J. L. Nightingale, R. A. Becker, R. C. Willis, J. S. Vrhel, “Characterization of frequency dispersion in Ti-diffused lithium niobate optical devices,” Appl. Phys. Lett. 51, 716–718 (1987).
[Crossref]

Okamoto, K.

S. S. Djordjevic, L. W. Luo, S. Ibrahim, N. K. Fontaine, C. B. Poitras, B. Guan, L. Zhou, K. Okamoto, Z. Ding, M. Lipson, S. J. B. Yoo, “Fully reconfigurable silicon photonic lattice filters with four cascaded unit cells,” IEEE Photon. Technol. Lett. 23, 42–44 (2011).
[Crossref]

Okamoto, S.

M. Yoshida, S. Okamoto, T. Omiya, K. Kasai, M. Nakazawa, “256 QAM digital coherent optical transmission using Raman amplifiers,” IEICE Trans. Commun. E 94-B, 417–424 (2011).
[Crossref]

Olsson, E.

A. Vorobiev, J. Berge, S. Gevorgian, M. Löffler, E. Olsson, “Effect of interface roughness on acoustic loss in tunable thin film bulk acoustic wave resonators,” J. Appl. Phys. 110, 024116 (2011).
[Crossref]

Omiya, T.

M. Yoshida, S. Okamoto, T. Omiya, K. Kasai, M. Nakazawa, “256 QAM digital coherent optical transmission using Raman amplifiers,” IEICE Trans. Commun. E 94-B, 417–424 (2011).
[Crossref]

Ophir, N.

Ossicini, S.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11, 148–154 (2011).
[Crossref]

Ou, H.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441, 199–202 (2006).
[Crossref]

Pavesi, L.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11, 148–154 (2011).
[Crossref]

Peucheret, C.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441, 199–202 (2006).
[Crossref]

Pierobon, R.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11, 148–154 (2011).
[Crossref]

Poberaj, G.

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1, 407–410 (2007).
[Crossref]

Poitras, C. B.

S. S. Djordjevic, L. W. Luo, S. Ibrahim, N. K. Fontaine, C. B. Poitras, B. Guan, L. Zhou, K. Okamoto, Z. Ding, M. Lipson, S. J. B. Yoo, “Fully reconfigurable silicon photonic lattice filters with four cascaded unit cells,” IEEE Photon. Technol. Lett. 23, 42–44 (2011).
[Crossref]

Pradhan, S.

Q. Xu, B. Schmidt, S. Pradhan, M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
[Crossref]

Pucker, G.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11, 148–154 (2011).
[Crossref]

Raj, K.

Reano, R. M.

Reed, G. T.

G. T. Reed, G. Mashanovich, F. Y. Gardes, D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
[Crossref]

Ren, Z.

Z. Ren, P. J. Heard, J. M. Marshall, P. A. Thomas, S. Yu, “Etching characteristics of LiNbO3 in reactive ion etching and inductively coupled plasma,” J. Appl. Phys. 103, 034109 (2008).
[Crossref]

Rezzonico, D.

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1, 407–410 (2007).
[Crossref]

Ripperda, C.

Schmidt, B.

Q. Xu, B. Schmidt, S. Pradhan, M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
[Crossref]

Shubin, I.

Steier, W. H.

Streshinsky, M.

Sullivan, P.

Sun, P.

Sze, S. M.

S. M. Sze, K. K. Ng, Physics of Semiconductor Devices (Wiley, 1981).

Thacker, H.

Thomas, P. A.

Z. Ren, P. J. Heard, J. M. Marshall, P. A. Thomas, S. Yu, “Etching characteristics of LiNbO3 in reactive ion etching and inductively coupled plasma,” J. Appl. Phys. 103, 034109 (2008).
[Crossref]

Thomson, D. J.

G. T. Reed, G. Mashanovich, F. Y. Gardes, D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
[Crossref]

Townsend, P.

M. E. Mills, P. Townsend, D. Castillo, S. Martin, A. Achen, “Benzocyclobutene (DVS-BCB) polymer as an interlayer dielectric (ILD) material,” Microelectron. Eng. 33, 327–334 (1997).
[Crossref]

U’Ren, A. B.

Véniard, V.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11, 148–154 (2011).
[Crossref]

Vorobiev, A.

A. Vorobiev, J. Berge, S. Gevorgian, M. Löffler, E. Olsson, “Effect of interface roughness on acoustic loss in tunable thin film bulk acoustic wave resonators,” J. Appl. Phys. 110, 024116 (2011).
[Crossref]

Vrhel, J. S.

J. L. Nightingale, R. A. Becker, R. C. Willis, J. S. Vrhel, “Characterization of frequency dispersion in Ti-diffused lithium niobate optical devices,” Appl. Phys. Lett. 51, 716–718 (1987).
[Crossref]

Wabnitz, S.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11, 148–154 (2011).
[Crossref]

Wächter, M.

M. Wächter, C. Matheisen, M. Waldow, T. Wahlbrink, J. Bolten, M. Nagel, H. Kurz, “Optical generation of terahertz and second-harmonic light in plasma-activated silicon nanophotonic structures,” Appl. Phys. Lett. 97, 161107 (2010).
[Crossref]

Wahlbrink, T.

Waldow, M.

Walmsley, I. A.

Willis, R. C.

J. L. Nightingale, R. A. Becker, R. C. Willis, J. S. Vrhel, “Characterization of frequency dispersion in Ti-diffused lithium niobate optical devices,” Appl. Phys. Lett. 51, 716–718 (1987).
[Crossref]

Witzens, J.

Wong, K. K.

K. K. Wong, Properties of Lithium Niobate (INSPEC, 2002).

Wood, M.

Wood, M. G.

M. G. Wood, L. Chen, J. R. Burr, R. M. Reano, “Optimization of electron beam patterned hydrogen silsesquioxane mask edge roughness for low-loss silicon waveguides,” J. Nanophoton. 8, 083098 (2014).
[Crossref]

L. Chen, M. G. Wood, R. M. Reano, “12.5  pm/V hybrid silicon and lithium niobate optical microring resonator with integrated electrodes,” Opt. Express 21, 27003–27010 (2013).
[Crossref]

Wooten, E. L.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[Crossref]

Xu, Q.

Q. Xu, B. Schmidt, S. Pradhan, M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
[Crossref]

Xuan, Z.

Yao, J.

Yi-Yan, A.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[Crossref]

Yoo, S. J. B.

S. S. Djordjevic, L. W. Luo, S. Ibrahim, N. K. Fontaine, C. B. Poitras, B. Guan, L. Zhou, K. Okamoto, Z. Ding, M. Lipson, S. J. B. Yoo, “Fully reconfigurable silicon photonic lattice filters with four cascaded unit cells,” IEEE Photon. Technol. Lett. 23, 42–44 (2011).
[Crossref]

Yoshida, M.

M. Yoshida, S. Okamoto, T. Omiya, K. Kasai, M. Nakazawa, “256 QAM digital coherent optical transmission using Raman amplifiers,” IEICE Trans. Commun. E 94-B, 417–424 (2011).
[Crossref]

Yu, S.

Z. Ren, P. J. Heard, J. M. Marshall, P. A. Thomas, S. Yu, “Etching characteristics of LiNbO3 in reactive ion etching and inductively coupled plasma,” J. Appl. Phys. 103, 034109 (2008).
[Crossref]

Zheng, X.

Zhou, L.

S. S. Djordjevic, L. W. Luo, S. Ibrahim, N. K. Fontaine, C. B. Poitras, B. Guan, L. Zhou, K. Okamoto, Z. Ding, M. Lipson, S. J. B. Yoo, “Fully reconfigurable silicon photonic lattice filters with four cascaded unit cells,” IEEE Photon. Technol. Lett. 23, 42–44 (2011).
[Crossref]

Zsigri, B.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441, 199–202 (2006).
[Crossref]

Appl. Phys. Lett. (3)

J. L. Nightingale, R. A. Becker, R. C. Willis, J. S. Vrhel, “Characterization of frequency dispersion in Ti-diffused lithium niobate optical devices,” Appl. Phys. Lett. 51, 716–718 (1987).
[Crossref]

R. L. Jungerman, C. A. Flory, “Low-frequency acoustic anomalies in lithium niobate Mach-Zehnder interferometers,” Appl. Phys. Lett. 53, 1477–1479 (1988).
[Crossref]

M. Wächter, C. Matheisen, M. Waldow, T. Wahlbrink, J. Bolten, M. Nagel, H. Kurz, “Optical generation of terahertz and second-harmonic light in plasma-activated silicon nanophotonic structures,” Appl. Phys. Lett. 97, 161107 (2010).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[Crossref]

IEEE Photon. Technol. Lett. (1)

S. S. Djordjevic, L. W. Luo, S. Ibrahim, N. K. Fontaine, C. B. Poitras, B. Guan, L. Zhou, K. Okamoto, Z. Ding, M. Lipson, S. J. B. Yoo, “Fully reconfigurable silicon photonic lattice filters with four cascaded unit cells,” IEEE Photon. Technol. Lett. 23, 42–44 (2011).
[Crossref]

IEICE Trans. Commun. E (1)

M. Yoshida, S. Okamoto, T. Omiya, K. Kasai, M. Nakazawa, “256 QAM digital coherent optical transmission using Raman amplifiers,” IEICE Trans. Commun. E 94-B, 417–424 (2011).
[Crossref]

J. Appl. Phys. (2)

Z. Ren, P. J. Heard, J. M. Marshall, P. A. Thomas, S. Yu, “Etching characteristics of LiNbO3 in reactive ion etching and inductively coupled plasma,” J. Appl. Phys. 103, 034109 (2008).
[Crossref]

A. Vorobiev, J. Berge, S. Gevorgian, M. Löffler, E. Olsson, “Effect of interface roughness on acoustic loss in tunable thin film bulk acoustic wave resonators,” J. Appl. Phys. 110, 024116 (2011).
[Crossref]

J. Lightwave Technol. (1)

J. Nanophoton. (1)

M. G. Wood, L. Chen, J. R. Burr, R. M. Reano, “Optimization of electron beam patterned hydrogen silsesquioxane mask edge roughness for low-loss silicon waveguides,” J. Nanophoton. 8, 083098 (2014).
[Crossref]

Microelectron. Eng. (1)

M. E. Mills, P. Townsend, D. Castillo, S. Martin, A. Achen, “Benzocyclobutene (DVS-BCB) polymer as an interlayer dielectric (ILD) material,” Microelectron. Eng. 33, 327–334 (1997).
[Crossref]

Nat. Mater. (1)

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11, 148–154 (2011).
[Crossref]

Nat. Photonics (2)

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1, 407–410 (2007).
[Crossref]

G. T. Reed, G. Mashanovich, F. Y. Gardes, D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
[Crossref]

Nature (2)

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441, 199–202 (2006).
[Crossref]

Q. Xu, B. Schmidt, S. Pradhan, M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
[Crossref]

Opt. Express (10)

G. Li, X. Zheng, J. Yao, H. Thacker, I. Shubin, Y. Luo, K. Raj, J. E. Cunningham, A. V. Krishnamoorthy, “25  Gb/s 1V-driving CMOS ring modulator with integrated thermal tuning,” Opt. Express 19, 20435–20443 (2011).
[Crossref]

L. Chen, R. M. Reano, “Compact electric field sensors based on indirect bonding of lithium niobate to silicon microrings,” Opt. Express 20, 4032–4038 (2012).
[Crossref]

L. Chen, M. G. Wood, R. M. Reano, “12.5  pm/V hybrid silicon and lithium niobate optical microring resonator with integrated electrodes,” Opt. Express 21, 27003–27010 (2013).
[Crossref]

M. Wood, P. Sun, R. M. Reano, “Compact cantilever couplers for low-loss fiber coupling to silicon photonic integrated circuits,” Opt. Express 20, 164–172 (2012).
[Crossref]

P. Sun, R. M. Reano, “Cantilever couplers for intra-chip coupling to silicon photonic integrated circuits,” Opt. Express 17, 4565–4574 (2009).
[Crossref]

R. Ding, T. Baehr-Jones, Y. Liu, R. Bojko, J. Witzens, S. Huang, J. Luo, S. Benight, P. Sullivan, J.-M. Fedeli, M. Fournier, L. Dalton, A. Jen, M. Hochberg, “Demonstration of a low VπL modulator with GHz bandwidth based on electro-optic polymer-clad silicon slot waveguides,” Opt. Express 18, 15618–15623 (2010).
[Crossref]

B. Chmielak, M. Waldow, C. Matheisen, C. Ripperda, J. Bolten, T. Wahlbrink, M. Nagel, F. Merget, H. Kurz, “Pockels effect based fully integrated, strained silicon electro-optic modulator,” Opt. Express 19, 17212–17219 (2011).
[Crossref]

B. Chmielak, C. Matheisen, C. Ripperda, J. Bolten, T. Wahlbrink, M. Waldow, H. Kurz, “Investigation of local strain distribution and linear electro-optic effect in strained silicon waveguides,” Opt. Express 21, 25324–25332 (2013).
[Crossref]

A. Biberman, S. Manipatruni, N. Ophir, L. Chen, M. Lipson, K. Bergman, “First demonstration of long-haul transmission using silicon microring modulators,” Opt. Express 18, 15544–15552 (2010).
[Crossref]

M. Streshinsky, A. Ayazi, Z. Xuan, A. E.-J. Lim, G.-Q. Lo, T. Baehr-Jones, M. Hochberg, “Highly linear silicon traveling wave Mach-Zehnder carrier depletion modulator based on differential drive,” Opt. Express 21, 3818–3825 (2013).
[Crossref]

Opt. Lett. (2)

Proc. IEEE (1)

D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97, 1166–1185 (2009).
[Crossref]

Other (2)

K. K. Wong, Properties of Lithium Niobate (INSPEC, 2002).

S. M. Sze, K. K. Ng, Physics of Semiconductor Devices (Wiley, 1981).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Schematic of the hybrid silicon and LiNbO3 ring modulator.
Fig. 2.
Fig. 2. Calculated optical TE mode distribution at 1550 nm wavelength (Ex component) and DC voltage-induced electric field vectors.
Fig. 3.
Fig. 3. (a) Scanning electron micrograph of the silicon microring resonator after slab patterning and doping; (b) top-view optical micrograph of the fabricated device.
Fig. 4.
Fig. 4. Measured optical transmission of a single resonance as a function of applied voltage.
Fig. 5.
Fig. 5. (a) RF S11 scattering parameter; (b) RC circuit model of the modulator.
Fig. 6.
Fig. 6. Electrical-to-optical modulation response.
Fig. 7.
Fig. 7. Measurement setup for digital characterization. EDFA, erbium-doped fiber amplifier.
Fig. 8.
Fig. 8. Measured (left column) and simulated (right column) optical eye: (a), (b) 1Gb/s; (c), (d) 4.5Gb/s; (e), (f) 5Gb/s; (g), (h) 9Gb/s. The red dashed line in the measurement indicates the reference level for zero optical input. The vertical scale is 500 μW per division.

Metrics