Abstract

Standard solar cells heat up under sunlight. The resulting increased temperature of the solar cell has adverse consequences on both its efficiency and its reliability. We introduce a general approach to radiatively lower the operating temperature of a solar cell through sky access, while maintaining its solar absorption. We first present an ideal scheme for the radiative cooling of solar cells. For an example case of a bare crystalline silicon solar cell, we show that the ideal scheme can passively lower its operating temperature by 18.3 K. We then demonstrate a microphotonic design based on real material properties that approaches the performance of the ideal scheme. We also show that the radiative cooling effect is substantial, even in the presence of significant convection and conduction and parasitic solar absorption in the cooling layer, provided that we design the cooling layer to be sufficiently thin.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W.  Shockley, H. J.  Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32, 510–519 (1961).
    [CrossRef]
  2. R.  Santbergen, R.  van Zolingen, “The absorption factor of crystalline silicon PV cells: a numerical and experimental study,” Sol. Energy Mater. Sol. Cells 92, 432–444 (2008).
    [CrossRef]
  3. R.  Santbergen, J.  Goud, M.  Zeman, J.  van Roosmalen, R.  van Zolingen, “The AM1.5 absorption factor of thin-film solar cells,” Sol. Energy Mater. Sol. Cells 94, 715–723 (2010).
    [CrossRef]
  4. J.  Ingersoll, “Simplified calculation of solar cell temperatures in terrestrial photovoltaic arrays,” J. Sol. Energy Eng. 108, 95–101 (1986).
    [CrossRef]
  5. A.  Jones, C.  Underwood, “A thermal model for photovoltaic systems,” Sol. Energy 70, 349–359 (2001).
    [CrossRef]
  6. M. W.  Davis, A. H.  Fanney, B. P.  Dougherty, “Prediction of building integrated photovoltaic cell temperatures,” J. Sol. Energy Eng. 123, 200–210 (2001).
    [CrossRef]
  7. E.  Skoplaki, J.  Palyvos, “On the temperature dependence of photovoltaic module electrical performance: a review of efficiency/power correlations,” Sol. Energy 83, 614–624 (2009).
    [CrossRef]
  8. D.  Otth, R. E.  Ross, “Assessing photovoltaic module degradation and lifetime from long term environmental tests,” Proceedings of the 1983 Institute of Environmental Sciences 29th Annual Meeting, Los Angeles, CA, April19–21 1983, pp. 121–126.
  9. A.  Luque, G.  Araújo, Solar Cells and Optics for Photovoltaic Concentration, Adam Hilger Series on Optics and Optoelectronics (Institute of Physics Publishing, 1989).
  10. H.  Teo, P.  Lee, M.  Hawlader, “An active cooling system for photovoltaic modules,” Appl. Energy 90, 309–315 (2012).
    [CrossRef]
  11. G.  Mittelman, A.  Kribus, A.  Dayan, “Solar cooling with concentrating photovoltaic/thermal (CPVT) systems,” Energy Convers. Manage. 48, 2481–2490 (2007).
    [CrossRef]
  12. A.  Akbarzadeh, T.  Wadowski, “Heat pipe-based cooling systems for photovoltaic cells under concentrated solar radiation,” Appl. Therm. Eng. 16, 81–87 (1996).
    [CrossRef]
  13. A.  Royne, C.  Dey, D.  Mills, “Cooling of photovoltaic cells under concentrated illumination: a critical review,” Sol. Energy Mater. Sol. Cells 86, 451–483 (2005).
    [CrossRef]
  14. F.  Trombe, “Perspectives sur l’utilisation des rayonnements solaires et terrestres dans certaines régions du monde,” Rev. Gen. Therm. 6, 1285–1314 (1967).
  15. S.  Catalanotti, V.  Cuomo, G.  Piro, D.  Ruggi, V.  Silvestrini, G.  Troise, “The radiative cooling of selective surfaces,” Sol. Energy 17, 83–89 (1975).
    [CrossRef]
  16. B.  Bartoli, S.  Catalanotti, B.  Coluzzi, V.  Cuomo, V.  Silvestrini, G.  Troise, “Nocturnal and diurnal performances of selective radiators,” Appl. Energy 3, 267–286 (1977).
    [CrossRef]
  17. A.  Harrison, M.  Walton, “Radiative cooling of TiO2 white paint,” Sol. Energy 20, 185–188 (1978).
    [CrossRef]
  18. C. G.  Granqvist, A.  Hjortsberg, “Letter to the editor,” Sol. Energy 24, 216 (1980).
    [CrossRef]
  19. C. G.  Granqvist, “Radiative cooling to low temperatures: general considerations and application to selectively emitting SiO films,” J. Appl. Phys. 52, 4205–4220 (1981).
    [CrossRef]
  20. P.  Berdahl, “Radiative cooling with MgO and/or LiF layers,” Appl. Opt. 23, 370–372 (1984).
    [CrossRef]
  21. G.  Smith, “Amplified radiative cooling via optimised combinations of aperture geometry and spectral emittance profiles of surfaces and the atmosphere,” Sol. Energy Mater. Sol. Cells 93, 1696–1701 (2009).
    [CrossRef]
  22. A. R.  Gentle, G. B.  Smith, “Radiative heat pumping from the Earth using surface phonon resonant nanoparticles,” Nano Lett. 10, 373–379 (2010).
    [CrossRef]
  23. A.  Gentle, J.  Aguilar, G.  Smith, “Optimized cool roofs: integrating albedo and thermal emittance with R-value,” Sol. Energy Mater. Sol. Cells 95, 3207–3215 (2011).
    [CrossRef]
  24. T. M.  Nilsson, G. A.  Niklasson, C. G.  Granqvist, “A solar reflecting material for radiative cooling applications: ZnS pigmented polyethylene,” Sol. Energy Mater. Sol. Cells 28, 175–193 (1992).
    [CrossRef]
  25. T. M.  Nilsson, G. A.  Niklasson, “Radiative cooling during the day: simulations and experiments on pigmented polyethylene cover foils,” Sol. Energy Mater. Sol. Cells 37, 93–118 (1995).
    [CrossRef]
  26. E.  Rephaeli, A.  Raman, S.  Fan, “Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling,” Nano Lett. 13, 1457–1461 (2013).
  27. L.  Zhu, A.  Raman, S.  Fan, “Color-preserving daytime radiative cooling,” Appl. Phys. Lett. 103, 223902 (2013).
    [CrossRef]
  28. T.  Saga, “Advances in crystalline silicon solar cell technology for industrial mass production,” NPG Asia Mater. 2, 96–102 (2010).
    [CrossRef]
  29. A.  Goetzberger, J.  Knobloch, B.  Voss, “High efficiency solar cells,” in Crystalline Silicon Solar Cells (Wiley, 1998), Chap. 6, p. 122.
  30. C.  Fu, Z.  Zhang, “Nanoscale radiation heat transfer for silicon at different doping levels,” Int. J. Heat Mass Transfer 49, 1703–1718 (2006).
    [CrossRef]
  31. V.  Liu, S.  Fan, “S4: A free electromagnetic solver for layered periodic structures,” Comput. Phys. Commun. 183, 2233–2244 (2012).
    [CrossRef]
  32. S. D.  Lord, “A new software tool for computing Earth’s atmospheric transmission of near- and far-infrared radiation,” NASA Technical Memorandum 103957 (1992).
  33. Gemini Observatory, IR Transmission Spectra, http://www.gemini.edu/?q=node/10789 .
  34. W.  Haynes, CRC Handbook of Chemistry and Physics, 94th ed. (Taylor & Francis, 2013).
  35. United States Department of Energy, United States Residential-Scale 30-Meter Wind Maps, http://apps2.eere.energy.gov/wind/windexchange/windmaps/residential_scale.asp .
  36. E.  Peterson, J. P.  Hennessey, “On the use of power laws for estimates of wind power potential,” J. Appl. Meteorol. 17, 390–394 (1978).
    [CrossRef]
  37. C. R.  Kurkjian, W. R.  Prindle, “Perspectives on the history of glass composition,” J. Am. Ceram. Soc. 81, 795–813 (1998).
    [CrossRef]
  38. C.-M.  Hsu, S. T.  Connor, M. X.  Tang, Y.  Cui, “Wafer-scale silicon nanopillars and nanocones by Langmuir–Blodgett assembly and etching,” Appl. Phys. Lett. 93, 133109 (2008).
    [CrossRef]
  39. S.  Wang, B. D.  Weil, Y.  Li, K. X.  Wang, E.  Garnett, S.  Fan, Y.  Cui, “Large-area free-standing ultrathin single-crystal silicon as processable materials,” Nano Lett. 13, 4393–4398 (2013).
    [CrossRef]
  40. H.  Toyota, K.  Takahara, “Fabrication of microcone array for antireflection structured surface using metal dotted pattern,” Jpn. J. Appl. Phys. 40, L747–L749 (2001).
    [CrossRef]
  41. Y.-B.  Park, H.  Im, M.  Im, Y.-K.  Choi, “Self-cleaning effect of highly water-repellent microshell structures for solar cell applications,” J. Mater. Chem. 21, 633 (2011).
    [CrossRef]
  42. J.  Zhu, C.-M.  Hsu, Z.  Yu, S.  Fan, Y.  Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett. 10, 1979–1984 (2010).
    [CrossRef]
  43. M.  Nosonovsky, B.  Bhushan, “Roughness-induced superhydrophobicity: a way to design non-adhesive surfaces,” J. Phys. Condens. Matter 20, 225009 (2008).
    [CrossRef]
  44. E.  Hosono, S.  Fujihara, I.  Honma, H.  Zhou, “Superhydrophobic perpendicular nanopin film by the bottom-up process,” J. Am. Chem. Soc. 127, 13458–13459 (2005).
    [CrossRef]

2013 (3)

E.  Rephaeli, A.  Raman, S.  Fan, “Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling,” Nano Lett. 13, 1457–1461 (2013).

L.  Zhu, A.  Raman, S.  Fan, “Color-preserving daytime radiative cooling,” Appl. Phys. Lett. 103, 223902 (2013).
[CrossRef]

S.  Wang, B. D.  Weil, Y.  Li, K. X.  Wang, E.  Garnett, S.  Fan, Y.  Cui, “Large-area free-standing ultrathin single-crystal silicon as processable materials,” Nano Lett. 13, 4393–4398 (2013).
[CrossRef]

2012 (2)

V.  Liu, S.  Fan, “S4: A free electromagnetic solver for layered periodic structures,” Comput. Phys. Commun. 183, 2233–2244 (2012).
[CrossRef]

H.  Teo, P.  Lee, M.  Hawlader, “An active cooling system for photovoltaic modules,” Appl. Energy 90, 309–315 (2012).
[CrossRef]

2011 (2)

Y.-B.  Park, H.  Im, M.  Im, Y.-K.  Choi, “Self-cleaning effect of highly water-repellent microshell structures for solar cell applications,” J. Mater. Chem. 21, 633 (2011).
[CrossRef]

A.  Gentle, J.  Aguilar, G.  Smith, “Optimized cool roofs: integrating albedo and thermal emittance with R-value,” Sol. Energy Mater. Sol. Cells 95, 3207–3215 (2011).
[CrossRef]

2010 (4)

A. R.  Gentle, G. B.  Smith, “Radiative heat pumping from the Earth using surface phonon resonant nanoparticles,” Nano Lett. 10, 373–379 (2010).
[CrossRef]

T.  Saga, “Advances in crystalline silicon solar cell technology for industrial mass production,” NPG Asia Mater. 2, 96–102 (2010).
[CrossRef]

J.  Zhu, C.-M.  Hsu, Z.  Yu, S.  Fan, Y.  Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett. 10, 1979–1984 (2010).
[CrossRef]

R.  Santbergen, J.  Goud, M.  Zeman, J.  van Roosmalen, R.  van Zolingen, “The AM1.5 absorption factor of thin-film solar cells,” Sol. Energy Mater. Sol. Cells 94, 715–723 (2010).
[CrossRef]

2009 (2)

E.  Skoplaki, J.  Palyvos, “On the temperature dependence of photovoltaic module electrical performance: a review of efficiency/power correlations,” Sol. Energy 83, 614–624 (2009).
[CrossRef]

G.  Smith, “Amplified radiative cooling via optimised combinations of aperture geometry and spectral emittance profiles of surfaces and the atmosphere,” Sol. Energy Mater. Sol. Cells 93, 1696–1701 (2009).
[CrossRef]

2008 (3)

M.  Nosonovsky, B.  Bhushan, “Roughness-induced superhydrophobicity: a way to design non-adhesive surfaces,” J. Phys. Condens. Matter 20, 225009 (2008).
[CrossRef]

R.  Santbergen, R.  van Zolingen, “The absorption factor of crystalline silicon PV cells: a numerical and experimental study,” Sol. Energy Mater. Sol. Cells 92, 432–444 (2008).
[CrossRef]

C.-M.  Hsu, S. T.  Connor, M. X.  Tang, Y.  Cui, “Wafer-scale silicon nanopillars and nanocones by Langmuir–Blodgett assembly and etching,” Appl. Phys. Lett. 93, 133109 (2008).
[CrossRef]

2007 (1)

G.  Mittelman, A.  Kribus, A.  Dayan, “Solar cooling with concentrating photovoltaic/thermal (CPVT) systems,” Energy Convers. Manage. 48, 2481–2490 (2007).
[CrossRef]

2006 (1)

C.  Fu, Z.  Zhang, “Nanoscale radiation heat transfer for silicon at different doping levels,” Int. J. Heat Mass Transfer 49, 1703–1718 (2006).
[CrossRef]

2005 (2)

E.  Hosono, S.  Fujihara, I.  Honma, H.  Zhou, “Superhydrophobic perpendicular nanopin film by the bottom-up process,” J. Am. Chem. Soc. 127, 13458–13459 (2005).
[CrossRef]

A.  Royne, C.  Dey, D.  Mills, “Cooling of photovoltaic cells under concentrated illumination: a critical review,” Sol. Energy Mater. Sol. Cells 86, 451–483 (2005).
[CrossRef]

2001 (3)

A.  Jones, C.  Underwood, “A thermal model for photovoltaic systems,” Sol. Energy 70, 349–359 (2001).
[CrossRef]

M. W.  Davis, A. H.  Fanney, B. P.  Dougherty, “Prediction of building integrated photovoltaic cell temperatures,” J. Sol. Energy Eng. 123, 200–210 (2001).
[CrossRef]

H.  Toyota, K.  Takahara, “Fabrication of microcone array for antireflection structured surface using metal dotted pattern,” Jpn. J. Appl. Phys. 40, L747–L749 (2001).
[CrossRef]

1998 (1)

C. R.  Kurkjian, W. R.  Prindle, “Perspectives on the history of glass composition,” J. Am. Ceram. Soc. 81, 795–813 (1998).
[CrossRef]

1996 (1)

A.  Akbarzadeh, T.  Wadowski, “Heat pipe-based cooling systems for photovoltaic cells under concentrated solar radiation,” Appl. Therm. Eng. 16, 81–87 (1996).
[CrossRef]

1995 (1)

T. M.  Nilsson, G. A.  Niklasson, “Radiative cooling during the day: simulations and experiments on pigmented polyethylene cover foils,” Sol. Energy Mater. Sol. Cells 37, 93–118 (1995).
[CrossRef]

1992 (1)

T. M.  Nilsson, G. A.  Niklasson, C. G.  Granqvist, “A solar reflecting material for radiative cooling applications: ZnS pigmented polyethylene,” Sol. Energy Mater. Sol. Cells 28, 175–193 (1992).
[CrossRef]

1986 (1)

J.  Ingersoll, “Simplified calculation of solar cell temperatures in terrestrial photovoltaic arrays,” J. Sol. Energy Eng. 108, 95–101 (1986).
[CrossRef]

1984 (1)

1981 (1)

C. G.  Granqvist, “Radiative cooling to low temperatures: general considerations and application to selectively emitting SiO films,” J. Appl. Phys. 52, 4205–4220 (1981).
[CrossRef]

1980 (1)

C. G.  Granqvist, A.  Hjortsberg, “Letter to the editor,” Sol. Energy 24, 216 (1980).
[CrossRef]

1978 (2)

A.  Harrison, M.  Walton, “Radiative cooling of TiO2 white paint,” Sol. Energy 20, 185–188 (1978).
[CrossRef]

E.  Peterson, J. P.  Hennessey, “On the use of power laws for estimates of wind power potential,” J. Appl. Meteorol. 17, 390–394 (1978).
[CrossRef]

1977 (1)

B.  Bartoli, S.  Catalanotti, B.  Coluzzi, V.  Cuomo, V.  Silvestrini, G.  Troise, “Nocturnal and diurnal performances of selective radiators,” Appl. Energy 3, 267–286 (1977).
[CrossRef]

1975 (1)

S.  Catalanotti, V.  Cuomo, G.  Piro, D.  Ruggi, V.  Silvestrini, G.  Troise, “The radiative cooling of selective surfaces,” Sol. Energy 17, 83–89 (1975).
[CrossRef]

1967 (1)

F.  Trombe, “Perspectives sur l’utilisation des rayonnements solaires et terrestres dans certaines régions du monde,” Rev. Gen. Therm. 6, 1285–1314 (1967).

1961 (1)

W.  Shockley, H. J.  Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32, 510–519 (1961).
[CrossRef]

Aguilar, J.

A.  Gentle, J.  Aguilar, G.  Smith, “Optimized cool roofs: integrating albedo and thermal emittance with R-value,” Sol. Energy Mater. Sol. Cells 95, 3207–3215 (2011).
[CrossRef]

Akbarzadeh, A.

A.  Akbarzadeh, T.  Wadowski, “Heat pipe-based cooling systems for photovoltaic cells under concentrated solar radiation,” Appl. Therm. Eng. 16, 81–87 (1996).
[CrossRef]

Araújo, G.

A.  Luque, G.  Araújo, Solar Cells and Optics for Photovoltaic Concentration, Adam Hilger Series on Optics and Optoelectronics (Institute of Physics Publishing, 1989).

Bartoli, B.

B.  Bartoli, S.  Catalanotti, B.  Coluzzi, V.  Cuomo, V.  Silvestrini, G.  Troise, “Nocturnal and diurnal performances of selective radiators,” Appl. Energy 3, 267–286 (1977).
[CrossRef]

Berdahl, P.

Bhushan, B.

M.  Nosonovsky, B.  Bhushan, “Roughness-induced superhydrophobicity: a way to design non-adhesive surfaces,” J. Phys. Condens. Matter 20, 225009 (2008).
[CrossRef]

Catalanotti, S.

B.  Bartoli, S.  Catalanotti, B.  Coluzzi, V.  Cuomo, V.  Silvestrini, G.  Troise, “Nocturnal and diurnal performances of selective radiators,” Appl. Energy 3, 267–286 (1977).
[CrossRef]

S.  Catalanotti, V.  Cuomo, G.  Piro, D.  Ruggi, V.  Silvestrini, G.  Troise, “The radiative cooling of selective surfaces,” Sol. Energy 17, 83–89 (1975).
[CrossRef]

Choi, Y.-K.

Y.-B.  Park, H.  Im, M.  Im, Y.-K.  Choi, “Self-cleaning effect of highly water-repellent microshell structures for solar cell applications,” J. Mater. Chem. 21, 633 (2011).
[CrossRef]

Coluzzi, B.

B.  Bartoli, S.  Catalanotti, B.  Coluzzi, V.  Cuomo, V.  Silvestrini, G.  Troise, “Nocturnal and diurnal performances of selective radiators,” Appl. Energy 3, 267–286 (1977).
[CrossRef]

Connor, S. T.

C.-M.  Hsu, S. T.  Connor, M. X.  Tang, Y.  Cui, “Wafer-scale silicon nanopillars and nanocones by Langmuir–Blodgett assembly and etching,” Appl. Phys. Lett. 93, 133109 (2008).
[CrossRef]

Cui, Y.

S.  Wang, B. D.  Weil, Y.  Li, K. X.  Wang, E.  Garnett, S.  Fan, Y.  Cui, “Large-area free-standing ultrathin single-crystal silicon as processable materials,” Nano Lett. 13, 4393–4398 (2013).
[CrossRef]

J.  Zhu, C.-M.  Hsu, Z.  Yu, S.  Fan, Y.  Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett. 10, 1979–1984 (2010).
[CrossRef]

C.-M.  Hsu, S. T.  Connor, M. X.  Tang, Y.  Cui, “Wafer-scale silicon nanopillars and nanocones by Langmuir–Blodgett assembly and etching,” Appl. Phys. Lett. 93, 133109 (2008).
[CrossRef]

Cuomo, V.

B.  Bartoli, S.  Catalanotti, B.  Coluzzi, V.  Cuomo, V.  Silvestrini, G.  Troise, “Nocturnal and diurnal performances of selective radiators,” Appl. Energy 3, 267–286 (1977).
[CrossRef]

S.  Catalanotti, V.  Cuomo, G.  Piro, D.  Ruggi, V.  Silvestrini, G.  Troise, “The radiative cooling of selective surfaces,” Sol. Energy 17, 83–89 (1975).
[CrossRef]

Davis, M. W.

M. W.  Davis, A. H.  Fanney, B. P.  Dougherty, “Prediction of building integrated photovoltaic cell temperatures,” J. Sol. Energy Eng. 123, 200–210 (2001).
[CrossRef]

Dayan, A.

G.  Mittelman, A.  Kribus, A.  Dayan, “Solar cooling with concentrating photovoltaic/thermal (CPVT) systems,” Energy Convers. Manage. 48, 2481–2490 (2007).
[CrossRef]

Dey, C.

A.  Royne, C.  Dey, D.  Mills, “Cooling of photovoltaic cells under concentrated illumination: a critical review,” Sol. Energy Mater. Sol. Cells 86, 451–483 (2005).
[CrossRef]

Dougherty, B. P.

M. W.  Davis, A. H.  Fanney, B. P.  Dougherty, “Prediction of building integrated photovoltaic cell temperatures,” J. Sol. Energy Eng. 123, 200–210 (2001).
[CrossRef]

Fan, S.

L.  Zhu, A.  Raman, S.  Fan, “Color-preserving daytime radiative cooling,” Appl. Phys. Lett. 103, 223902 (2013).
[CrossRef]

E.  Rephaeli, A.  Raman, S.  Fan, “Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling,” Nano Lett. 13, 1457–1461 (2013).

S.  Wang, B. D.  Weil, Y.  Li, K. X.  Wang, E.  Garnett, S.  Fan, Y.  Cui, “Large-area free-standing ultrathin single-crystal silicon as processable materials,” Nano Lett. 13, 4393–4398 (2013).
[CrossRef]

V.  Liu, S.  Fan, “S4: A free electromagnetic solver for layered periodic structures,” Comput. Phys. Commun. 183, 2233–2244 (2012).
[CrossRef]

J.  Zhu, C.-M.  Hsu, Z.  Yu, S.  Fan, Y.  Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett. 10, 1979–1984 (2010).
[CrossRef]

Fanney, A. H.

M. W.  Davis, A. H.  Fanney, B. P.  Dougherty, “Prediction of building integrated photovoltaic cell temperatures,” J. Sol. Energy Eng. 123, 200–210 (2001).
[CrossRef]

Fu, C.

C.  Fu, Z.  Zhang, “Nanoscale radiation heat transfer for silicon at different doping levels,” Int. J. Heat Mass Transfer 49, 1703–1718 (2006).
[CrossRef]

Fujihara, S.

E.  Hosono, S.  Fujihara, I.  Honma, H.  Zhou, “Superhydrophobic perpendicular nanopin film by the bottom-up process,” J. Am. Chem. Soc. 127, 13458–13459 (2005).
[CrossRef]

Garnett, E.

S.  Wang, B. D.  Weil, Y.  Li, K. X.  Wang, E.  Garnett, S.  Fan, Y.  Cui, “Large-area free-standing ultrathin single-crystal silicon as processable materials,” Nano Lett. 13, 4393–4398 (2013).
[CrossRef]

Gentle, A.

A.  Gentle, J.  Aguilar, G.  Smith, “Optimized cool roofs: integrating albedo and thermal emittance with R-value,” Sol. Energy Mater. Sol. Cells 95, 3207–3215 (2011).
[CrossRef]

Gentle, A. R.

A. R.  Gentle, G. B.  Smith, “Radiative heat pumping from the Earth using surface phonon resonant nanoparticles,” Nano Lett. 10, 373–379 (2010).
[CrossRef]

Goetzberger, A.

A.  Goetzberger, J.  Knobloch, B.  Voss, “High efficiency solar cells,” in Crystalline Silicon Solar Cells (Wiley, 1998), Chap. 6, p. 122.

Goud, J.

R.  Santbergen, J.  Goud, M.  Zeman, J.  van Roosmalen, R.  van Zolingen, “The AM1.5 absorption factor of thin-film solar cells,” Sol. Energy Mater. Sol. Cells 94, 715–723 (2010).
[CrossRef]

Granqvist, C. G.

T. M.  Nilsson, G. A.  Niklasson, C. G.  Granqvist, “A solar reflecting material for radiative cooling applications: ZnS pigmented polyethylene,” Sol. Energy Mater. Sol. Cells 28, 175–193 (1992).
[CrossRef]

C. G.  Granqvist, “Radiative cooling to low temperatures: general considerations and application to selectively emitting SiO films,” J. Appl. Phys. 52, 4205–4220 (1981).
[CrossRef]

C. G.  Granqvist, A.  Hjortsberg, “Letter to the editor,” Sol. Energy 24, 216 (1980).
[CrossRef]

Harrison, A.

A.  Harrison, M.  Walton, “Radiative cooling of TiO2 white paint,” Sol. Energy 20, 185–188 (1978).
[CrossRef]

Hawlader, M.

H.  Teo, P.  Lee, M.  Hawlader, “An active cooling system for photovoltaic modules,” Appl. Energy 90, 309–315 (2012).
[CrossRef]

Haynes, W.

W.  Haynes, CRC Handbook of Chemistry and Physics, 94th ed. (Taylor & Francis, 2013).

Hennessey, J. P.

E.  Peterson, J. P.  Hennessey, “On the use of power laws for estimates of wind power potential,” J. Appl. Meteorol. 17, 390–394 (1978).
[CrossRef]

Hjortsberg, A.

C. G.  Granqvist, A.  Hjortsberg, “Letter to the editor,” Sol. Energy 24, 216 (1980).
[CrossRef]

Honma, I.

E.  Hosono, S.  Fujihara, I.  Honma, H.  Zhou, “Superhydrophobic perpendicular nanopin film by the bottom-up process,” J. Am. Chem. Soc. 127, 13458–13459 (2005).
[CrossRef]

Hosono, E.

E.  Hosono, S.  Fujihara, I.  Honma, H.  Zhou, “Superhydrophobic perpendicular nanopin film by the bottom-up process,” J. Am. Chem. Soc. 127, 13458–13459 (2005).
[CrossRef]

Hsu, C.-M.

J.  Zhu, C.-M.  Hsu, Z.  Yu, S.  Fan, Y.  Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett. 10, 1979–1984 (2010).
[CrossRef]

C.-M.  Hsu, S. T.  Connor, M. X.  Tang, Y.  Cui, “Wafer-scale silicon nanopillars and nanocones by Langmuir–Blodgett assembly and etching,” Appl. Phys. Lett. 93, 133109 (2008).
[CrossRef]

Im, H.

Y.-B.  Park, H.  Im, M.  Im, Y.-K.  Choi, “Self-cleaning effect of highly water-repellent microshell structures for solar cell applications,” J. Mater. Chem. 21, 633 (2011).
[CrossRef]

Im, M.

Y.-B.  Park, H.  Im, M.  Im, Y.-K.  Choi, “Self-cleaning effect of highly water-repellent microshell structures for solar cell applications,” J. Mater. Chem. 21, 633 (2011).
[CrossRef]

Ingersoll, J.

J.  Ingersoll, “Simplified calculation of solar cell temperatures in terrestrial photovoltaic arrays,” J. Sol. Energy Eng. 108, 95–101 (1986).
[CrossRef]

Jones, A.

A.  Jones, C.  Underwood, “A thermal model for photovoltaic systems,” Sol. Energy 70, 349–359 (2001).
[CrossRef]

Knobloch, J.

A.  Goetzberger, J.  Knobloch, B.  Voss, “High efficiency solar cells,” in Crystalline Silicon Solar Cells (Wiley, 1998), Chap. 6, p. 122.

Kribus, A.

G.  Mittelman, A.  Kribus, A.  Dayan, “Solar cooling with concentrating photovoltaic/thermal (CPVT) systems,” Energy Convers. Manage. 48, 2481–2490 (2007).
[CrossRef]

Kurkjian, C. R.

C. R.  Kurkjian, W. R.  Prindle, “Perspectives on the history of glass composition,” J. Am. Ceram. Soc. 81, 795–813 (1998).
[CrossRef]

Lee, P.

H.  Teo, P.  Lee, M.  Hawlader, “An active cooling system for photovoltaic modules,” Appl. Energy 90, 309–315 (2012).
[CrossRef]

Li, Y.

S.  Wang, B. D.  Weil, Y.  Li, K. X.  Wang, E.  Garnett, S.  Fan, Y.  Cui, “Large-area free-standing ultrathin single-crystal silicon as processable materials,” Nano Lett. 13, 4393–4398 (2013).
[CrossRef]

Liu, V.

V.  Liu, S.  Fan, “S4: A free electromagnetic solver for layered periodic structures,” Comput. Phys. Commun. 183, 2233–2244 (2012).
[CrossRef]

Lord, S. D.

S. D.  Lord, “A new software tool for computing Earth’s atmospheric transmission of near- and far-infrared radiation,” NASA Technical Memorandum 103957 (1992).

Luque, A.

A.  Luque, G.  Araújo, Solar Cells and Optics for Photovoltaic Concentration, Adam Hilger Series on Optics and Optoelectronics (Institute of Physics Publishing, 1989).

Mills, D.

A.  Royne, C.  Dey, D.  Mills, “Cooling of photovoltaic cells under concentrated illumination: a critical review,” Sol. Energy Mater. Sol. Cells 86, 451–483 (2005).
[CrossRef]

Mittelman, G.

G.  Mittelman, A.  Kribus, A.  Dayan, “Solar cooling with concentrating photovoltaic/thermal (CPVT) systems,” Energy Convers. Manage. 48, 2481–2490 (2007).
[CrossRef]

Niklasson, G. A.

T. M.  Nilsson, G. A.  Niklasson, “Radiative cooling during the day: simulations and experiments on pigmented polyethylene cover foils,” Sol. Energy Mater. Sol. Cells 37, 93–118 (1995).
[CrossRef]

T. M.  Nilsson, G. A.  Niklasson, C. G.  Granqvist, “A solar reflecting material for radiative cooling applications: ZnS pigmented polyethylene,” Sol. Energy Mater. Sol. Cells 28, 175–193 (1992).
[CrossRef]

Nilsson, T. M.

T. M.  Nilsson, G. A.  Niklasson, “Radiative cooling during the day: simulations and experiments on pigmented polyethylene cover foils,” Sol. Energy Mater. Sol. Cells 37, 93–118 (1995).
[CrossRef]

T. M.  Nilsson, G. A.  Niklasson, C. G.  Granqvist, “A solar reflecting material for radiative cooling applications: ZnS pigmented polyethylene,” Sol. Energy Mater. Sol. Cells 28, 175–193 (1992).
[CrossRef]

Nosonovsky, M.

M.  Nosonovsky, B.  Bhushan, “Roughness-induced superhydrophobicity: a way to design non-adhesive surfaces,” J. Phys. Condens. Matter 20, 225009 (2008).
[CrossRef]

Otth, D.

D.  Otth, R. E.  Ross, “Assessing photovoltaic module degradation and lifetime from long term environmental tests,” Proceedings of the 1983 Institute of Environmental Sciences 29th Annual Meeting, Los Angeles, CA, April19–21 1983, pp. 121–126.

Palyvos, J.

E.  Skoplaki, J.  Palyvos, “On the temperature dependence of photovoltaic module electrical performance: a review of efficiency/power correlations,” Sol. Energy 83, 614–624 (2009).
[CrossRef]

Park, Y.-B.

Y.-B.  Park, H.  Im, M.  Im, Y.-K.  Choi, “Self-cleaning effect of highly water-repellent microshell structures for solar cell applications,” J. Mater. Chem. 21, 633 (2011).
[CrossRef]

Peterson, E.

E.  Peterson, J. P.  Hennessey, “On the use of power laws for estimates of wind power potential,” J. Appl. Meteorol. 17, 390–394 (1978).
[CrossRef]

Piro, G.

S.  Catalanotti, V.  Cuomo, G.  Piro, D.  Ruggi, V.  Silvestrini, G.  Troise, “The radiative cooling of selective surfaces,” Sol. Energy 17, 83–89 (1975).
[CrossRef]

Prindle, W. R.

C. R.  Kurkjian, W. R.  Prindle, “Perspectives on the history of glass composition,” J. Am. Ceram. Soc. 81, 795–813 (1998).
[CrossRef]

Queisser, H. J.

W.  Shockley, H. J.  Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32, 510–519 (1961).
[CrossRef]

Raman, A.

E.  Rephaeli, A.  Raman, S.  Fan, “Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling,” Nano Lett. 13, 1457–1461 (2013).

L.  Zhu, A.  Raman, S.  Fan, “Color-preserving daytime radiative cooling,” Appl. Phys. Lett. 103, 223902 (2013).
[CrossRef]

Rephaeli, E.

E.  Rephaeli, A.  Raman, S.  Fan, “Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling,” Nano Lett. 13, 1457–1461 (2013).

Ross, R. E.

D.  Otth, R. E.  Ross, “Assessing photovoltaic module degradation and lifetime from long term environmental tests,” Proceedings of the 1983 Institute of Environmental Sciences 29th Annual Meeting, Los Angeles, CA, April19–21 1983, pp. 121–126.

Royne, A.

A.  Royne, C.  Dey, D.  Mills, “Cooling of photovoltaic cells under concentrated illumination: a critical review,” Sol. Energy Mater. Sol. Cells 86, 451–483 (2005).
[CrossRef]

Ruggi, D.

S.  Catalanotti, V.  Cuomo, G.  Piro, D.  Ruggi, V.  Silvestrini, G.  Troise, “The radiative cooling of selective surfaces,” Sol. Energy 17, 83–89 (1975).
[CrossRef]

Saga, T.

T.  Saga, “Advances in crystalline silicon solar cell technology for industrial mass production,” NPG Asia Mater. 2, 96–102 (2010).
[CrossRef]

Santbergen, R.

R.  Santbergen, J.  Goud, M.  Zeman, J.  van Roosmalen, R.  van Zolingen, “The AM1.5 absorption factor of thin-film solar cells,” Sol. Energy Mater. Sol. Cells 94, 715–723 (2010).
[CrossRef]

R.  Santbergen, R.  van Zolingen, “The absorption factor of crystalline silicon PV cells: a numerical and experimental study,” Sol. Energy Mater. Sol. Cells 92, 432–444 (2008).
[CrossRef]

Shockley, W.

W.  Shockley, H. J.  Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32, 510–519 (1961).
[CrossRef]

Silvestrini, V.

B.  Bartoli, S.  Catalanotti, B.  Coluzzi, V.  Cuomo, V.  Silvestrini, G.  Troise, “Nocturnal and diurnal performances of selective radiators,” Appl. Energy 3, 267–286 (1977).
[CrossRef]

S.  Catalanotti, V.  Cuomo, G.  Piro, D.  Ruggi, V.  Silvestrini, G.  Troise, “The radiative cooling of selective surfaces,” Sol. Energy 17, 83–89 (1975).
[CrossRef]

Skoplaki, E.

E.  Skoplaki, J.  Palyvos, “On the temperature dependence of photovoltaic module electrical performance: a review of efficiency/power correlations,” Sol. Energy 83, 614–624 (2009).
[CrossRef]

Smith, G.

A.  Gentle, J.  Aguilar, G.  Smith, “Optimized cool roofs: integrating albedo and thermal emittance with R-value,” Sol. Energy Mater. Sol. Cells 95, 3207–3215 (2011).
[CrossRef]

G.  Smith, “Amplified radiative cooling via optimised combinations of aperture geometry and spectral emittance profiles of surfaces and the atmosphere,” Sol. Energy Mater. Sol. Cells 93, 1696–1701 (2009).
[CrossRef]

Smith, G. B.

A. R.  Gentle, G. B.  Smith, “Radiative heat pumping from the Earth using surface phonon resonant nanoparticles,” Nano Lett. 10, 373–379 (2010).
[CrossRef]

Takahara, K.

H.  Toyota, K.  Takahara, “Fabrication of microcone array for antireflection structured surface using metal dotted pattern,” Jpn. J. Appl. Phys. 40, L747–L749 (2001).
[CrossRef]

Tang, M. X.

C.-M.  Hsu, S. T.  Connor, M. X.  Tang, Y.  Cui, “Wafer-scale silicon nanopillars and nanocones by Langmuir–Blodgett assembly and etching,” Appl. Phys. Lett. 93, 133109 (2008).
[CrossRef]

Teo, H.

H.  Teo, P.  Lee, M.  Hawlader, “An active cooling system for photovoltaic modules,” Appl. Energy 90, 309–315 (2012).
[CrossRef]

Toyota, H.

H.  Toyota, K.  Takahara, “Fabrication of microcone array for antireflection structured surface using metal dotted pattern,” Jpn. J. Appl. Phys. 40, L747–L749 (2001).
[CrossRef]

Troise, G.

B.  Bartoli, S.  Catalanotti, B.  Coluzzi, V.  Cuomo, V.  Silvestrini, G.  Troise, “Nocturnal and diurnal performances of selective radiators,” Appl. Energy 3, 267–286 (1977).
[CrossRef]

S.  Catalanotti, V.  Cuomo, G.  Piro, D.  Ruggi, V.  Silvestrini, G.  Troise, “The radiative cooling of selective surfaces,” Sol. Energy 17, 83–89 (1975).
[CrossRef]

Trombe, F.

F.  Trombe, “Perspectives sur l’utilisation des rayonnements solaires et terrestres dans certaines régions du monde,” Rev. Gen. Therm. 6, 1285–1314 (1967).

Underwood, C.

A.  Jones, C.  Underwood, “A thermal model for photovoltaic systems,” Sol. Energy 70, 349–359 (2001).
[CrossRef]

van Roosmalen, J.

R.  Santbergen, J.  Goud, M.  Zeman, J.  van Roosmalen, R.  van Zolingen, “The AM1.5 absorption factor of thin-film solar cells,” Sol. Energy Mater. Sol. Cells 94, 715–723 (2010).
[CrossRef]

van Zolingen, R.

R.  Santbergen, J.  Goud, M.  Zeman, J.  van Roosmalen, R.  van Zolingen, “The AM1.5 absorption factor of thin-film solar cells,” Sol. Energy Mater. Sol. Cells 94, 715–723 (2010).
[CrossRef]

R.  Santbergen, R.  van Zolingen, “The absorption factor of crystalline silicon PV cells: a numerical and experimental study,” Sol. Energy Mater. Sol. Cells 92, 432–444 (2008).
[CrossRef]

Voss, B.

A.  Goetzberger, J.  Knobloch, B.  Voss, “High efficiency solar cells,” in Crystalline Silicon Solar Cells (Wiley, 1998), Chap. 6, p. 122.

Wadowski, T.

A.  Akbarzadeh, T.  Wadowski, “Heat pipe-based cooling systems for photovoltaic cells under concentrated solar radiation,” Appl. Therm. Eng. 16, 81–87 (1996).
[CrossRef]

Walton, M.

A.  Harrison, M.  Walton, “Radiative cooling of TiO2 white paint,” Sol. Energy 20, 185–188 (1978).
[CrossRef]

Wang, K. X.

S.  Wang, B. D.  Weil, Y.  Li, K. X.  Wang, E.  Garnett, S.  Fan, Y.  Cui, “Large-area free-standing ultrathin single-crystal silicon as processable materials,” Nano Lett. 13, 4393–4398 (2013).
[CrossRef]

Wang, S.

S.  Wang, B. D.  Weil, Y.  Li, K. X.  Wang, E.  Garnett, S.  Fan, Y.  Cui, “Large-area free-standing ultrathin single-crystal silicon as processable materials,” Nano Lett. 13, 4393–4398 (2013).
[CrossRef]

Weil, B. D.

S.  Wang, B. D.  Weil, Y.  Li, K. X.  Wang, E.  Garnett, S.  Fan, Y.  Cui, “Large-area free-standing ultrathin single-crystal silicon as processable materials,” Nano Lett. 13, 4393–4398 (2013).
[CrossRef]

Yu, Z.

J.  Zhu, C.-M.  Hsu, Z.  Yu, S.  Fan, Y.  Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett. 10, 1979–1984 (2010).
[CrossRef]

Zeman, M.

R.  Santbergen, J.  Goud, M.  Zeman, J.  van Roosmalen, R.  van Zolingen, “The AM1.5 absorption factor of thin-film solar cells,” Sol. Energy Mater. Sol. Cells 94, 715–723 (2010).
[CrossRef]

Zhang, Z.

C.  Fu, Z.  Zhang, “Nanoscale radiation heat transfer for silicon at different doping levels,” Int. J. Heat Mass Transfer 49, 1703–1718 (2006).
[CrossRef]

Zhou, H.

E.  Hosono, S.  Fujihara, I.  Honma, H.  Zhou, “Superhydrophobic perpendicular nanopin film by the bottom-up process,” J. Am. Chem. Soc. 127, 13458–13459 (2005).
[CrossRef]

Zhu, J.

J.  Zhu, C.-M.  Hsu, Z.  Yu, S.  Fan, Y.  Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett. 10, 1979–1984 (2010).
[CrossRef]

Zhu, L.

L.  Zhu, A.  Raman, S.  Fan, “Color-preserving daytime radiative cooling,” Appl. Phys. Lett. 103, 223902 (2013).
[CrossRef]

Appl. Energy (2)

H.  Teo, P.  Lee, M.  Hawlader, “An active cooling system for photovoltaic modules,” Appl. Energy 90, 309–315 (2012).
[CrossRef]

B.  Bartoli, S.  Catalanotti, B.  Coluzzi, V.  Cuomo, V.  Silvestrini, G.  Troise, “Nocturnal and diurnal performances of selective radiators,” Appl. Energy 3, 267–286 (1977).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

C.-M.  Hsu, S. T.  Connor, M. X.  Tang, Y.  Cui, “Wafer-scale silicon nanopillars and nanocones by Langmuir–Blodgett assembly and etching,” Appl. Phys. Lett. 93, 133109 (2008).
[CrossRef]

L.  Zhu, A.  Raman, S.  Fan, “Color-preserving daytime radiative cooling,” Appl. Phys. Lett. 103, 223902 (2013).
[CrossRef]

Appl. Therm. Eng. (1)

A.  Akbarzadeh, T.  Wadowski, “Heat pipe-based cooling systems for photovoltaic cells under concentrated solar radiation,” Appl. Therm. Eng. 16, 81–87 (1996).
[CrossRef]

Comput. Phys. Commun. (1)

V.  Liu, S.  Fan, “S4: A free electromagnetic solver for layered periodic structures,” Comput. Phys. Commun. 183, 2233–2244 (2012).
[CrossRef]

Energy Convers. Manage. (1)

G.  Mittelman, A.  Kribus, A.  Dayan, “Solar cooling with concentrating photovoltaic/thermal (CPVT) systems,” Energy Convers. Manage. 48, 2481–2490 (2007).
[CrossRef]

Int. J. Heat Mass Transfer (1)

C.  Fu, Z.  Zhang, “Nanoscale radiation heat transfer for silicon at different doping levels,” Int. J. Heat Mass Transfer 49, 1703–1718 (2006).
[CrossRef]

J. Am. Ceram. Soc. (1)

C. R.  Kurkjian, W. R.  Prindle, “Perspectives on the history of glass composition,” J. Am. Ceram. Soc. 81, 795–813 (1998).
[CrossRef]

J. Am. Chem. Soc. (1)

E.  Hosono, S.  Fujihara, I.  Honma, H.  Zhou, “Superhydrophobic perpendicular nanopin film by the bottom-up process,” J. Am. Chem. Soc. 127, 13458–13459 (2005).
[CrossRef]

J. Appl. Meteorol. (1)

E.  Peterson, J. P.  Hennessey, “On the use of power laws for estimates of wind power potential,” J. Appl. Meteorol. 17, 390–394 (1978).
[CrossRef]

J. Appl. Phys. (2)

C. G.  Granqvist, “Radiative cooling to low temperatures: general considerations and application to selectively emitting SiO films,” J. Appl. Phys. 52, 4205–4220 (1981).
[CrossRef]

W.  Shockley, H. J.  Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32, 510–519 (1961).
[CrossRef]

J. Mater. Chem. (1)

Y.-B.  Park, H.  Im, M.  Im, Y.-K.  Choi, “Self-cleaning effect of highly water-repellent microshell structures for solar cell applications,” J. Mater. Chem. 21, 633 (2011).
[CrossRef]

J. Phys. Condens. Matter (1)

M.  Nosonovsky, B.  Bhushan, “Roughness-induced superhydrophobicity: a way to design non-adhesive surfaces,” J. Phys. Condens. Matter 20, 225009 (2008).
[CrossRef]

J. Sol. Energy Eng. (2)

J.  Ingersoll, “Simplified calculation of solar cell temperatures in terrestrial photovoltaic arrays,” J. Sol. Energy Eng. 108, 95–101 (1986).
[CrossRef]

M. W.  Davis, A. H.  Fanney, B. P.  Dougherty, “Prediction of building integrated photovoltaic cell temperatures,” J. Sol. Energy Eng. 123, 200–210 (2001).
[CrossRef]

Jpn. J. Appl. Phys. (1)

H.  Toyota, K.  Takahara, “Fabrication of microcone array for antireflection structured surface using metal dotted pattern,” Jpn. J. Appl. Phys. 40, L747–L749 (2001).
[CrossRef]

Nano Lett. (4)

J.  Zhu, C.-M.  Hsu, Z.  Yu, S.  Fan, Y.  Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett. 10, 1979–1984 (2010).
[CrossRef]

S.  Wang, B. D.  Weil, Y.  Li, K. X.  Wang, E.  Garnett, S.  Fan, Y.  Cui, “Large-area free-standing ultrathin single-crystal silicon as processable materials,” Nano Lett. 13, 4393–4398 (2013).
[CrossRef]

A. R.  Gentle, G. B.  Smith, “Radiative heat pumping from the Earth using surface phonon resonant nanoparticles,” Nano Lett. 10, 373–379 (2010).
[CrossRef]

E.  Rephaeli, A.  Raman, S.  Fan, “Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling,” Nano Lett. 13, 1457–1461 (2013).

NPG Asia Mater. (1)

T.  Saga, “Advances in crystalline silicon solar cell technology for industrial mass production,” NPG Asia Mater. 2, 96–102 (2010).
[CrossRef]

Rev. Gen. Therm. (1)

F.  Trombe, “Perspectives sur l’utilisation des rayonnements solaires et terrestres dans certaines régions du monde,” Rev. Gen. Therm. 6, 1285–1314 (1967).

Sol. Energy (5)

S.  Catalanotti, V.  Cuomo, G.  Piro, D.  Ruggi, V.  Silvestrini, G.  Troise, “The radiative cooling of selective surfaces,” Sol. Energy 17, 83–89 (1975).
[CrossRef]

A.  Harrison, M.  Walton, “Radiative cooling of TiO2 white paint,” Sol. Energy 20, 185–188 (1978).
[CrossRef]

C. G.  Granqvist, A.  Hjortsberg, “Letter to the editor,” Sol. Energy 24, 216 (1980).
[CrossRef]

E.  Skoplaki, J.  Palyvos, “On the temperature dependence of photovoltaic module electrical performance: a review of efficiency/power correlations,” Sol. Energy 83, 614–624 (2009).
[CrossRef]

A.  Jones, C.  Underwood, “A thermal model for photovoltaic systems,” Sol. Energy 70, 349–359 (2001).
[CrossRef]

Sol. Energy Mater. Sol. Cells (7)

R.  Santbergen, R.  van Zolingen, “The absorption factor of crystalline silicon PV cells: a numerical and experimental study,” Sol. Energy Mater. Sol. Cells 92, 432–444 (2008).
[CrossRef]

R.  Santbergen, J.  Goud, M.  Zeman, J.  van Roosmalen, R.  van Zolingen, “The AM1.5 absorption factor of thin-film solar cells,” Sol. Energy Mater. Sol. Cells 94, 715–723 (2010).
[CrossRef]

A.  Royne, C.  Dey, D.  Mills, “Cooling of photovoltaic cells under concentrated illumination: a critical review,” Sol. Energy Mater. Sol. Cells 86, 451–483 (2005).
[CrossRef]

G.  Smith, “Amplified radiative cooling via optimised combinations of aperture geometry and spectral emittance profiles of surfaces and the atmosphere,” Sol. Energy Mater. Sol. Cells 93, 1696–1701 (2009).
[CrossRef]

A.  Gentle, J.  Aguilar, G.  Smith, “Optimized cool roofs: integrating albedo and thermal emittance with R-value,” Sol. Energy Mater. Sol. Cells 95, 3207–3215 (2011).
[CrossRef]

T. M.  Nilsson, G. A.  Niklasson, C. G.  Granqvist, “A solar reflecting material for radiative cooling applications: ZnS pigmented polyethylene,” Sol. Energy Mater. Sol. Cells 28, 175–193 (1992).
[CrossRef]

T. M.  Nilsson, G. A.  Niklasson, “Radiative cooling during the day: simulations and experiments on pigmented polyethylene cover foils,” Sol. Energy Mater. Sol. Cells 37, 93–118 (1995).
[CrossRef]

Other (7)

A.  Goetzberger, J.  Knobloch, B.  Voss, “High efficiency solar cells,” in Crystalline Silicon Solar Cells (Wiley, 1998), Chap. 6, p. 122.

S. D.  Lord, “A new software tool for computing Earth’s atmospheric transmission of near- and far-infrared radiation,” NASA Technical Memorandum 103957 (1992).

Gemini Observatory, IR Transmission Spectra, http://www.gemini.edu/?q=node/10789 .

W.  Haynes, CRC Handbook of Chemistry and Physics, 94th ed. (Taylor & Francis, 2013).

United States Department of Energy, United States Residential-Scale 30-Meter Wind Maps, http://apps2.eere.energy.gov/wind/windexchange/windmaps/residential_scale.asp .

D.  Otth, R. E.  Ross, “Assessing photovoltaic module degradation and lifetime from long term environmental tests,” Proceedings of the 1983 Institute of Environmental Sciences 29th Annual Meeting, Los Angeles, CA, April19–21 1983, pp. 121–126.

A.  Luque, G.  Araújo, Solar Cells and Optics for Photovoltaic Concentration, Adam Hilger Series on Optics and Optoelectronics (Institute of Physics Publishing, 1989).

Supplementary Material (1)

» Supplement 1: PDF (421 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

3D crystalline silicon solar cell structures. (a) Bare solar cell with 200-μm-thick uniform silicon layer, on top of an Al backreflector. (b) Thin visibly transparent ideal thermal emitter on top of the bare solar cell. (c) 5-mm-thick uniform silica layer on top of the bare solar cell. (d) 2D square lattice of silica pyramids and a 100-μm-thick uniform silica layer, on top of the bare solar cell.

Fig. 2.
Fig. 2.

Schematic of thermal simulation. h 1 and h 2 are the nonradiative heat exchange coefficients at the upper and lower surfaces, respectively. Ambient temperature is T amb .

Fig. 3.
Fig. 3.

Operating temperature of solar cells with the thermal emitter designs in Fig. 1, for different solar heating power. The nonradiative heat exchange coefficients are h 1 = 12 W / m 2 / K (corresponding to 3 m / s ), and h 2 = 6 W / m 2 / K (corresponding to 1 m / s ). The ambient temperatures at the top and the bottom are both 300 K.

Fig. 4.
Fig. 4.

Emissivity and absorptivity spectra of solar cells with different thermal emitter designs in Fig. 1, for normal direction and after averaging over polarizations. The temperature of solar cells is 300 K.

Fig. 5.
Fig. 5.

(a) Operating temperature of the solar cell under different emitter designs, for different h 1 , and fixed h 2 = 6 W / m 2 / K . (b) Operating temperature of the solar cell under different emitter designs, for different h 2 , and fixed h 1 = 12 W / m 2 / K . The ambient temperature at both sides of the solar cell is 300 K. The solar heating power is 800 W / m 2 .

Fig. 6.
Fig. 6.

Solar cell operating temperature, with a 5-mm-thick uniform silica layer (blue curve) and with the silica pyramid structure (green curve), where a constant absorbance at solar wavelengths has been artificially added to the material silica. h 1 = 12 m / s , h 2 = 6 m / s . The ambient temperatures at both sides of the solar cell is 300 K. The solar heating power is 800 W / m 2 .

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

P cooling ( T Emit ) = P rad ( T Emit ) P atm ( T amb ) ,
P rad ( T Emit ) = d Ω cos θ 0 d λ I B B ( T Emit , λ ) ϵ ( λ , Ω )
P atm ( T atm ) = d Ω cos θ 0 d λ I B B ( T amb , λ ) ϵ ( λ , Ω ) ϵ atm ( λ , Ω )
d d z [ κ ( z ) d T ( z ) d z ] + q ˙ ( z ) = 0 ,
κ ( z ) d T ( z ) d z | top = P cooling ( T Emit ) + h 1 ( T Emit T amb )
κ d T ( z ) d z | bottom = h 2 ( T bottom T amb )

Metrics