Abstract

Nyquist pulses, which are defined as impulse responses of a Nyquist filter, can be used to simultaneously achieve an ultrahigh data rate and spectral efficiency (SE). Coherent Nyquist optical time-division multiplexing transmission increases SE, but the optical signal-to-noise ratio (OSNR) is limited by the amplitude of the original CW beam. To further improve transmission performance, here we describe a new pulsed laser that can emit an optical Nyquist pulse train at a repetition rate of 40 GHz. The Nyquist laser is based on a regeneratively and harmonically mode-locked erbium fiber laser that has a special spectral filter to generate a Nyquist pulse as the output pulse. The pulse width was approximately 3 ps, and the oscillation wavelength was 1.55 μm. The spectral profile of the Nyquist pulse can be changed by changing the spectral curvature of the filter with a roll-off factor, α, between 0 and 1. A Fabry–Perot etalon was also installed in the laser cavity to select longitudinal modes with a free spectral range of 40 GHz, resulting in the suppression of the mode hopping in the regenerative mode locking. A numerical analysis is also presented to explain the generation of a stable Nyquist pulse from the laser. The Nyquist laser is important not only for the direct generation of high-OSNR pulses but also for scientific advances, proving that pulse shapes that differ significantly from the conventional hyperbolic-secant and Gaussian pulse shapes can exist stably in a cavity.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Nakazawa, K. Kikuchi, and T. Miyazaki, eds., High Spectral Density Optical Transmission Technologies (Springer, 2010).
  2. D. Qian, M.-F. Huang, E. Ip, Y. Huang, Y. Shao, J. Hu, and T. Wang, “101.7  Tb/s (370 × 294  Gb/s) PDM-128QAM-OFDM transmission over 3 × 55  km SSMF using pilot-based phase noise mitigation,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference (Optical Society of America, 2011), paper PDPB5.
  3. Y. Koizumi, K. Toyoda, M. Yoshida, and M. Nakazawa, “1024 QAM (60  Gbit/s) single-carrier coherent optical transmission over 150  km,” Opt. Express 20, 12508–12514 (2012).
    [CrossRef]
  4. S. Beppu, K. Kasai, M. Yoshida, and M. Nakazawa, “2048 QAM (66  Gbit/s) single-carrier coherent optical transmission over 150  km with a potential SE of 15.3  bit/s/Hz,” in Optical Fiber Communication Conference (Optical Society of America, 2014), paper W1A.6.
  5. M. Nakazawa, T. Hirooka, P. Ruan, and P. Guan, “Ultrahigh-speed ‘orthogonal’ TDM transmission with an optical Nyquist pulse train,” Opt. Express 20, 1129–1140 (2012).
    [CrossRef]
  6. T. Hirooka, P. Ruan, P. Guan, and M. Nakazawa, “Highly dispersion-tolerant 160 Gbaud optical Nyquist pulse TDM transmission over 525  km,” Opt. Express 20, 15001–15008 (2012).
    [CrossRef]
  7. T. Hirooka and M. Nakazawa, “Linear and nonlinear propagation of optical Nyquist pulses in fibers,” Opt. Express 20, 19836–19849 (2012).
    [CrossRef]
  8. D. O. Otuya, K. Kasai, T. Hirooka, M. Yoshida, and M. Nakazawa, “1.92  Tbit/s, 64 QAM coherent Nyquist pulse transmission over 150  km with a spectral efficiency of 7.5  bit/s/Hz,” in Optical Fiber Communication Conference (Optical Society of America, 2014), paper W1A.4.
  9. M. Nakazawa, E. Yoshida, and Y. Kimura, “Ultrastable harmonically and regeneratively modelocked polarization-maintaining erbium-doped fiber ring laser,” Electron. Lett. 30, 1603–1605 (1994).
    [CrossRef]
  10. H. A. Haus, “Mode-locking of lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 1173–1185 (2000).
    [CrossRef]
  11. L. F. Mollenauer and R. H. Stolen, “The soliton laser,” Opt. Lett. 9, 13–15 (1984).
    [CrossRef]
  12. F. Ouellette and M. Piche, “Pulse shaping and passive mode-locking with a nonlinear Michelson interferometer,” Opt. Commun. 60, 99–103 (1986).
    [CrossRef]
  13. E. P. Ippen, H. A. Haus, and L. Y. Liu, “Additive pulse modelocking,” J. Opt. Soc. Am. B 6, 1736–1745 (1989).
    [CrossRef]
  14. D. E. Spence, P. N. Kean, and W. Sibbett, “60-fsec pulse generation from a self-mode-locked Ti: sapphire laser,” Opt. Lett. 16, 42–44 (1991).
    [CrossRef]
  15. D. J. Kuizenga and A. E. Siegman, “FM and AM mode locking of the homogeneous laser—part I: theory,” IEEE J. Quantum Electron. QE-6, 694–708 (1970).
    [CrossRef]
  16. D. J. Kuizenga and A. E. Siegman, “FM and AM mode locking of the homogeneous laser—part II: experimental results in a Nd:YAG laser with internal FM modulation,” IEEE J. Quantum Electron. QE-6, 709–715 (1970).
    [CrossRef]
  17. H. A. Haus, “A theory of forced mode locking,” IEEE J. Quantum Electron. QE-11, 323–330 (1975).
    [CrossRef]
  18. H. Nyquist, “Certain topics in telegraph transmission theory,” Trans. Am. Inst. Electr. Eng. 47, 617–644 (1928).
    [CrossRef]
  19. G. Baxter, S. Frisken, D. Abakoumov, H. Zhou, I. Clarke, A. Bartos, and S. Poole, “Highly programmable wavelength selective switch based on liquid crystal on silicon switching elements,” in Optical Fiber Communication Conference (Optical Society of America, 2006), paper OTuF2.
  20. J. Schröder, S. Coen, T. Sylvestre, and B. J. Eggleton, “Dark and bright pulse passive mode-locked laser with in-cavity pulse-shaper,” Opt. Express 18, 22715–22721 (2010).
    [CrossRef]
  21. N. K. Metzger, W. Lubeigt, D. Burns, M. Griffith, L. Laycock, A. A. Lagatsky, C. T. A. Brown, and W. Sibbett, “Ultrashort-pulse laser with an intracavity phase shaping element,” Opt. Express 18, 8123–8134 (2010).
    [CrossRef]
  22. M. Yoshida, K. Kasai, and M. Nakazawa, “Mode-hop-free, optical frequency tunable 40  GHz mode-locked fiber laser,” IEEE J. Quantum Electron. 43, 704–708 (2007).
    [CrossRef]
  23. M. Nakazawa, E. Yoshida, and K. Tamura, “Ideal phase-locked loop (PLL) operation of a 10  GHz erbium-doped fiber laser using regenerative modelocking as an optical voltage controlled oscillator,” Electron. Lett. 33, 1318–1320 (1997).
    [CrossRef]

2012

2010

2007

M. Yoshida, K. Kasai, and M. Nakazawa, “Mode-hop-free, optical frequency tunable 40  GHz mode-locked fiber laser,” IEEE J. Quantum Electron. 43, 704–708 (2007).
[CrossRef]

2000

H. A. Haus, “Mode-locking of lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 1173–1185 (2000).
[CrossRef]

1997

M. Nakazawa, E. Yoshida, and K. Tamura, “Ideal phase-locked loop (PLL) operation of a 10  GHz erbium-doped fiber laser using regenerative modelocking as an optical voltage controlled oscillator,” Electron. Lett. 33, 1318–1320 (1997).
[CrossRef]

1994

M. Nakazawa, E. Yoshida, and Y. Kimura, “Ultrastable harmonically and regeneratively modelocked polarization-maintaining erbium-doped fiber ring laser,” Electron. Lett. 30, 1603–1605 (1994).
[CrossRef]

1991

1989

1986

F. Ouellette and M. Piche, “Pulse shaping and passive mode-locking with a nonlinear Michelson interferometer,” Opt. Commun. 60, 99–103 (1986).
[CrossRef]

1984

1975

H. A. Haus, “A theory of forced mode locking,” IEEE J. Quantum Electron. QE-11, 323–330 (1975).
[CrossRef]

1970

D. J. Kuizenga and A. E. Siegman, “FM and AM mode locking of the homogeneous laser—part I: theory,” IEEE J. Quantum Electron. QE-6, 694–708 (1970).
[CrossRef]

D. J. Kuizenga and A. E. Siegman, “FM and AM mode locking of the homogeneous laser—part II: experimental results in a Nd:YAG laser with internal FM modulation,” IEEE J. Quantum Electron. QE-6, 709–715 (1970).
[CrossRef]

1928

H. Nyquist, “Certain topics in telegraph transmission theory,” Trans. Am. Inst. Electr. Eng. 47, 617–644 (1928).
[CrossRef]

Abakoumov, D.

G. Baxter, S. Frisken, D. Abakoumov, H. Zhou, I. Clarke, A. Bartos, and S. Poole, “Highly programmable wavelength selective switch based on liquid crystal on silicon switching elements,” in Optical Fiber Communication Conference (Optical Society of America, 2006), paper OTuF2.

Bartos, A.

G. Baxter, S. Frisken, D. Abakoumov, H. Zhou, I. Clarke, A. Bartos, and S. Poole, “Highly programmable wavelength selective switch based on liquid crystal on silicon switching elements,” in Optical Fiber Communication Conference (Optical Society of America, 2006), paper OTuF2.

Baxter, G.

G. Baxter, S. Frisken, D. Abakoumov, H. Zhou, I. Clarke, A. Bartos, and S. Poole, “Highly programmable wavelength selective switch based on liquid crystal on silicon switching elements,” in Optical Fiber Communication Conference (Optical Society of America, 2006), paper OTuF2.

Beppu, S.

S. Beppu, K. Kasai, M. Yoshida, and M. Nakazawa, “2048 QAM (66  Gbit/s) single-carrier coherent optical transmission over 150  km with a potential SE of 15.3  bit/s/Hz,” in Optical Fiber Communication Conference (Optical Society of America, 2014), paper W1A.6.

Brown, C. T. A.

Burns, D.

Clarke, I.

G. Baxter, S. Frisken, D. Abakoumov, H. Zhou, I. Clarke, A. Bartos, and S. Poole, “Highly programmable wavelength selective switch based on liquid crystal on silicon switching elements,” in Optical Fiber Communication Conference (Optical Society of America, 2006), paper OTuF2.

Coen, S.

Eggleton, B. J.

Frisken, S.

G. Baxter, S. Frisken, D. Abakoumov, H. Zhou, I. Clarke, A. Bartos, and S. Poole, “Highly programmable wavelength selective switch based on liquid crystal on silicon switching elements,” in Optical Fiber Communication Conference (Optical Society of America, 2006), paper OTuF2.

Griffith, M.

Guan, P.

Haus, H. A.

H. A. Haus, “Mode-locking of lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 1173–1185 (2000).
[CrossRef]

E. P. Ippen, H. A. Haus, and L. Y. Liu, “Additive pulse modelocking,” J. Opt. Soc. Am. B 6, 1736–1745 (1989).
[CrossRef]

H. A. Haus, “A theory of forced mode locking,” IEEE J. Quantum Electron. QE-11, 323–330 (1975).
[CrossRef]

Hirooka, T.

Hu, J.

D. Qian, M.-F. Huang, E. Ip, Y. Huang, Y. Shao, J. Hu, and T. Wang, “101.7  Tb/s (370 × 294  Gb/s) PDM-128QAM-OFDM transmission over 3 × 55  km SSMF using pilot-based phase noise mitigation,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference (Optical Society of America, 2011), paper PDPB5.

Huang, M.-F.

D. Qian, M.-F. Huang, E. Ip, Y. Huang, Y. Shao, J. Hu, and T. Wang, “101.7  Tb/s (370 × 294  Gb/s) PDM-128QAM-OFDM transmission over 3 × 55  km SSMF using pilot-based phase noise mitigation,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference (Optical Society of America, 2011), paper PDPB5.

Huang, Y.

D. Qian, M.-F. Huang, E. Ip, Y. Huang, Y. Shao, J. Hu, and T. Wang, “101.7  Tb/s (370 × 294  Gb/s) PDM-128QAM-OFDM transmission over 3 × 55  km SSMF using pilot-based phase noise mitigation,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference (Optical Society of America, 2011), paper PDPB5.

Ip, E.

D. Qian, M.-F. Huang, E. Ip, Y. Huang, Y. Shao, J. Hu, and T. Wang, “101.7  Tb/s (370 × 294  Gb/s) PDM-128QAM-OFDM transmission over 3 × 55  km SSMF using pilot-based phase noise mitigation,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference (Optical Society of America, 2011), paper PDPB5.

Ippen, E. P.

Kasai, K.

M. Yoshida, K. Kasai, and M. Nakazawa, “Mode-hop-free, optical frequency tunable 40  GHz mode-locked fiber laser,” IEEE J. Quantum Electron. 43, 704–708 (2007).
[CrossRef]

S. Beppu, K. Kasai, M. Yoshida, and M. Nakazawa, “2048 QAM (66  Gbit/s) single-carrier coherent optical transmission over 150  km with a potential SE of 15.3  bit/s/Hz,” in Optical Fiber Communication Conference (Optical Society of America, 2014), paper W1A.6.

D. O. Otuya, K. Kasai, T. Hirooka, M. Yoshida, and M. Nakazawa, “1.92  Tbit/s, 64 QAM coherent Nyquist pulse transmission over 150  km with a spectral efficiency of 7.5  bit/s/Hz,” in Optical Fiber Communication Conference (Optical Society of America, 2014), paper W1A.4.

Kean, P. N.

Kimura, Y.

M. Nakazawa, E. Yoshida, and Y. Kimura, “Ultrastable harmonically and regeneratively modelocked polarization-maintaining erbium-doped fiber ring laser,” Electron. Lett. 30, 1603–1605 (1994).
[CrossRef]

Koizumi, Y.

Kuizenga, D. J.

D. J. Kuizenga and A. E. Siegman, “FM and AM mode locking of the homogeneous laser—part II: experimental results in a Nd:YAG laser with internal FM modulation,” IEEE J. Quantum Electron. QE-6, 709–715 (1970).
[CrossRef]

D. J. Kuizenga and A. E. Siegman, “FM and AM mode locking of the homogeneous laser—part I: theory,” IEEE J. Quantum Electron. QE-6, 694–708 (1970).
[CrossRef]

Lagatsky, A. A.

Laycock, L.

Liu, L. Y.

Lubeigt, W.

Metzger, N. K.

Mollenauer, L. F.

Nakazawa, M.

T. Hirooka and M. Nakazawa, “Linear and nonlinear propagation of optical Nyquist pulses in fibers,” Opt. Express 20, 19836–19849 (2012).
[CrossRef]

T. Hirooka, P. Ruan, P. Guan, and M. Nakazawa, “Highly dispersion-tolerant 160 Gbaud optical Nyquist pulse TDM transmission over 525  km,” Opt. Express 20, 15001–15008 (2012).
[CrossRef]

Y. Koizumi, K. Toyoda, M. Yoshida, and M. Nakazawa, “1024 QAM (60  Gbit/s) single-carrier coherent optical transmission over 150  km,” Opt. Express 20, 12508–12514 (2012).
[CrossRef]

M. Nakazawa, T. Hirooka, P. Ruan, and P. Guan, “Ultrahigh-speed ‘orthogonal’ TDM transmission with an optical Nyquist pulse train,” Opt. Express 20, 1129–1140 (2012).
[CrossRef]

M. Yoshida, K. Kasai, and M. Nakazawa, “Mode-hop-free, optical frequency tunable 40  GHz mode-locked fiber laser,” IEEE J. Quantum Electron. 43, 704–708 (2007).
[CrossRef]

M. Nakazawa, E. Yoshida, and K. Tamura, “Ideal phase-locked loop (PLL) operation of a 10  GHz erbium-doped fiber laser using regenerative modelocking as an optical voltage controlled oscillator,” Electron. Lett. 33, 1318–1320 (1997).
[CrossRef]

M. Nakazawa, E. Yoshida, and Y. Kimura, “Ultrastable harmonically and regeneratively modelocked polarization-maintaining erbium-doped fiber ring laser,” Electron. Lett. 30, 1603–1605 (1994).
[CrossRef]

D. O. Otuya, K. Kasai, T. Hirooka, M. Yoshida, and M. Nakazawa, “1.92  Tbit/s, 64 QAM coherent Nyquist pulse transmission over 150  km with a spectral efficiency of 7.5  bit/s/Hz,” in Optical Fiber Communication Conference (Optical Society of America, 2014), paper W1A.4.

S. Beppu, K. Kasai, M. Yoshida, and M. Nakazawa, “2048 QAM (66  Gbit/s) single-carrier coherent optical transmission over 150  km with a potential SE of 15.3  bit/s/Hz,” in Optical Fiber Communication Conference (Optical Society of America, 2014), paper W1A.6.

Nyquist, H.

H. Nyquist, “Certain topics in telegraph transmission theory,” Trans. Am. Inst. Electr. Eng. 47, 617–644 (1928).
[CrossRef]

Otuya, D. O.

D. O. Otuya, K. Kasai, T. Hirooka, M. Yoshida, and M. Nakazawa, “1.92  Tbit/s, 64 QAM coherent Nyquist pulse transmission over 150  km with a spectral efficiency of 7.5  bit/s/Hz,” in Optical Fiber Communication Conference (Optical Society of America, 2014), paper W1A.4.

Ouellette, F.

F. Ouellette and M. Piche, “Pulse shaping and passive mode-locking with a nonlinear Michelson interferometer,” Opt. Commun. 60, 99–103 (1986).
[CrossRef]

Piche, M.

F. Ouellette and M. Piche, “Pulse shaping and passive mode-locking with a nonlinear Michelson interferometer,” Opt. Commun. 60, 99–103 (1986).
[CrossRef]

Poole, S.

G. Baxter, S. Frisken, D. Abakoumov, H. Zhou, I. Clarke, A. Bartos, and S. Poole, “Highly programmable wavelength selective switch based on liquid crystal on silicon switching elements,” in Optical Fiber Communication Conference (Optical Society of America, 2006), paper OTuF2.

Qian, D.

D. Qian, M.-F. Huang, E. Ip, Y. Huang, Y. Shao, J. Hu, and T. Wang, “101.7  Tb/s (370 × 294  Gb/s) PDM-128QAM-OFDM transmission over 3 × 55  km SSMF using pilot-based phase noise mitigation,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference (Optical Society of America, 2011), paper PDPB5.

Ruan, P.

Schröder, J.

Shao, Y.

D. Qian, M.-F. Huang, E. Ip, Y. Huang, Y. Shao, J. Hu, and T. Wang, “101.7  Tb/s (370 × 294  Gb/s) PDM-128QAM-OFDM transmission over 3 × 55  km SSMF using pilot-based phase noise mitigation,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference (Optical Society of America, 2011), paper PDPB5.

Sibbett, W.

Siegman, A. E.

D. J. Kuizenga and A. E. Siegman, “FM and AM mode locking of the homogeneous laser—part I: theory,” IEEE J. Quantum Electron. QE-6, 694–708 (1970).
[CrossRef]

D. J. Kuizenga and A. E. Siegman, “FM and AM mode locking of the homogeneous laser—part II: experimental results in a Nd:YAG laser with internal FM modulation,” IEEE J. Quantum Electron. QE-6, 709–715 (1970).
[CrossRef]

Spence, D. E.

Stolen, R. H.

Sylvestre, T.

Tamura, K.

M. Nakazawa, E. Yoshida, and K. Tamura, “Ideal phase-locked loop (PLL) operation of a 10  GHz erbium-doped fiber laser using regenerative modelocking as an optical voltage controlled oscillator,” Electron. Lett. 33, 1318–1320 (1997).
[CrossRef]

Toyoda, K.

Wang, T.

D. Qian, M.-F. Huang, E. Ip, Y. Huang, Y. Shao, J. Hu, and T. Wang, “101.7  Tb/s (370 × 294  Gb/s) PDM-128QAM-OFDM transmission over 3 × 55  km SSMF using pilot-based phase noise mitigation,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference (Optical Society of America, 2011), paper PDPB5.

Yoshida, E.

M. Nakazawa, E. Yoshida, and K. Tamura, “Ideal phase-locked loop (PLL) operation of a 10  GHz erbium-doped fiber laser using regenerative modelocking as an optical voltage controlled oscillator,” Electron. Lett. 33, 1318–1320 (1997).
[CrossRef]

M. Nakazawa, E. Yoshida, and Y. Kimura, “Ultrastable harmonically and regeneratively modelocked polarization-maintaining erbium-doped fiber ring laser,” Electron. Lett. 30, 1603–1605 (1994).
[CrossRef]

Yoshida, M.

Y. Koizumi, K. Toyoda, M. Yoshida, and M. Nakazawa, “1024 QAM (60  Gbit/s) single-carrier coherent optical transmission over 150  km,” Opt. Express 20, 12508–12514 (2012).
[CrossRef]

M. Yoshida, K. Kasai, and M. Nakazawa, “Mode-hop-free, optical frequency tunable 40  GHz mode-locked fiber laser,” IEEE J. Quantum Electron. 43, 704–708 (2007).
[CrossRef]

S. Beppu, K. Kasai, M. Yoshida, and M. Nakazawa, “2048 QAM (66  Gbit/s) single-carrier coherent optical transmission over 150  km with a potential SE of 15.3  bit/s/Hz,” in Optical Fiber Communication Conference (Optical Society of America, 2014), paper W1A.6.

D. O. Otuya, K. Kasai, T. Hirooka, M. Yoshida, and M. Nakazawa, “1.92  Tbit/s, 64 QAM coherent Nyquist pulse transmission over 150  km with a spectral efficiency of 7.5  bit/s/Hz,” in Optical Fiber Communication Conference (Optical Society of America, 2014), paper W1A.4.

Zhou, H.

G. Baxter, S. Frisken, D. Abakoumov, H. Zhou, I. Clarke, A. Bartos, and S. Poole, “Highly programmable wavelength selective switch based on liquid crystal on silicon switching elements,” in Optical Fiber Communication Conference (Optical Society of America, 2006), paper OTuF2.

Electron. Lett.

M. Nakazawa, E. Yoshida, and Y. Kimura, “Ultrastable harmonically and regeneratively modelocked polarization-maintaining erbium-doped fiber ring laser,” Electron. Lett. 30, 1603–1605 (1994).
[CrossRef]

M. Nakazawa, E. Yoshida, and K. Tamura, “Ideal phase-locked loop (PLL) operation of a 10  GHz erbium-doped fiber laser using regenerative modelocking as an optical voltage controlled oscillator,” Electron. Lett. 33, 1318–1320 (1997).
[CrossRef]

IEEE J. Quantum Electron.

M. Yoshida, K. Kasai, and M. Nakazawa, “Mode-hop-free, optical frequency tunable 40  GHz mode-locked fiber laser,” IEEE J. Quantum Electron. 43, 704–708 (2007).
[CrossRef]

D. J. Kuizenga and A. E. Siegman, “FM and AM mode locking of the homogeneous laser—part I: theory,” IEEE J. Quantum Electron. QE-6, 694–708 (1970).
[CrossRef]

D. J. Kuizenga and A. E. Siegman, “FM and AM mode locking of the homogeneous laser—part II: experimental results in a Nd:YAG laser with internal FM modulation,” IEEE J. Quantum Electron. QE-6, 709–715 (1970).
[CrossRef]

H. A. Haus, “A theory of forced mode locking,” IEEE J. Quantum Electron. QE-11, 323–330 (1975).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

H. A. Haus, “Mode-locking of lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 1173–1185 (2000).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Commun.

F. Ouellette and M. Piche, “Pulse shaping and passive mode-locking with a nonlinear Michelson interferometer,” Opt. Commun. 60, 99–103 (1986).
[CrossRef]

Opt. Express

Opt. Lett.

Trans. Am. Inst. Electr. Eng.

H. Nyquist, “Certain topics in telegraph transmission theory,” Trans. Am. Inst. Electr. Eng. 47, 617–644 (1928).
[CrossRef]

Other

G. Baxter, S. Frisken, D. Abakoumov, H. Zhou, I. Clarke, A. Bartos, and S. Poole, “Highly programmable wavelength selective switch based on liquid crystal on silicon switching elements,” in Optical Fiber Communication Conference (Optical Society of America, 2006), paper OTuF2.

M. Nakazawa, K. Kikuchi, and T. Miyazaki, eds., High Spectral Density Optical Transmission Technologies (Springer, 2010).

D. Qian, M.-F. Huang, E. Ip, Y. Huang, Y. Shao, J. Hu, and T. Wang, “101.7  Tb/s (370 × 294  Gb/s) PDM-128QAM-OFDM transmission over 3 × 55  km SSMF using pilot-based phase noise mitigation,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference (Optical Society of America, 2011), paper PDPB5.

S. Beppu, K. Kasai, M. Yoshida, and M. Nakazawa, “2048 QAM (66  Gbit/s) single-carrier coherent optical transmission over 150  km with a potential SE of 15.3  bit/s/Hz,” in Optical Fiber Communication Conference (Optical Society of America, 2014), paper W1A.6.

D. O. Otuya, K. Kasai, T. Hirooka, M. Yoshida, and M. Nakazawa, “1.92  Tbit/s, 64 QAM coherent Nyquist pulse transmission over 150  km with a spectral efficiency of 7.5  bit/s/Hz,” in Optical Fiber Communication Conference (Optical Society of America, 2014), paper W1A.4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1.
Fig. 1.

(a) Experimental setup of the Nyquist laser and (b) average cavity dispersion characteristics. A LiNbO 3 Mach–Zehnder intensity modulator and a single LCoS spectral filter were installed in the cavity. A PLL operation was also adopted to keep the repetition rate at 40 GHz. PM-SMF, polarization-maintaining single-mode fiber; PZT, piezoelectric transducer; AMP, amplifier; DBM, double-balanced mixer.

Fig. 2.
Fig. 2.

Output characteristics of Nyquist laser. (a) The output power of the Nyquist laser as a function of the pump power and (b) the electrical spectrum of the output pulse train detected with a high-speed photodetector.

Fig. 3.
Fig. 3.

Output waveform characteristics of Nyquist pulse when α = 0 . (a) The output spectral profile, (b) the spectral filter profile generated by the LCoS, and (c) the obtained sinc-like Nyquist pulse.

Fig. 4.
Fig. 4.

Output waveform characteristics of the Nyquist pulse when α was 0.2. (a) The output spectral profile, (b) the spectral filter profile generated by the LCoS, and (c) the obtained Nyquist pulse.

Fig. 5.
Fig. 5.

Output waveform characteristics of the Nyquist pulse when α was 0.5. (a) The output spectral profile, (b) the spectral filter profile generated by the LCoS, and (c) the obtained Nyquist pulse. A small ringing on the wing still exists.

Fig. 6.
Fig. 6.

Output waveform characteristics of the Nyquist pulse when α was 0.8. (a) The output spectral profile, (b) the spectral filter profile generated by the LCoS, and (c) the obtained Nyquist pulse. The ringing on the wing has almost disappeared.

Fig. 7.
Fig. 7.

Output waveform characteristics of the Nyquist pulse when α was 1. (a) The output spectral profile, (b) the spectral filter profile generated by the LCoS, and (c) the obtained Nyquist pulse. It looks like an ordinary pulse profile.

Fig. 8.
Fig. 8.

Configuration of the Nyquist laser cavity used for numerical simulations.

Fig. 9.
Fig. 9.

Numerical results for the AM mode-locked Nyquist laser ( α = 0 ). (a) Filter profile, (b) transient evolution from ASE noise, (c) pulse waveform in the steady state (red) and the ideal Nyquist pulse waveform (black), (d) optical spectrum in the steady state (red) and the ideal Nyquist pulse spectrum (black).

Fig. 10.
Fig. 10.

Numerical results for the AM mode-locked Nyquist laser ( α = 0.5 ). (a) Filter profile, (b) transient evolution from ASE noise, (c) pulse waveform in the steady state (red) and the ideal Nyquist pulse waveform (black), (d) optical spectrum in the steady state (red) and the ideal Nyquist pulse spectrum (black).

Fig. 11.
Fig. 11.

Numerical results for the AM mode-locked Nyquist laser ( α = 1 ). (a) Filter profile, (b) transient evolution from ASE noise, (c) pulse waveform in the steady state (red) and the ideal Nyquist pulse waveform (black), (d) optical spectrum in the steady state (red) and the ideal Nyquist pulse spectrum (black).

Fig. 12.
Fig. 12.

Numerical results for the FM mode-locked Nyquist laser ( α = 0.5 , 0.8, 1) with anomalous dispersion ( 28.9 ps / km / nm ) in the cavity. (a) Transient evolution from ASE noise, (b) pulse waveform in the steady state (red) and the ideal Nyquist pulse waveform (black), and (c) optical spectrum in the steady state (red) and the ideal Nyquist pulse spectrum (black).

Fig. 13.
Fig. 13.

Numerical results for the FM mode-locked Nyquist laser ( α = 0.5 , 0.8, 1) with zero dispersion in the cavity. (a) Transient evolution from ASE noise, (b) pulse waveform in the steady state (red) and the ideal Nyquist pulse waveform (black), and (c) optical spectrum in the steady state (red) and the ideal Nyquist pulse spectrum (black).

Fig. 14.
Fig. 14.

Numerical results for the FM mode-locked Nyquist laser ( α = 0.5 , 0.8, 1) with normal dispersion ( 28.9 ps / km / nm ) in the cavity. (a) Transient evolution from ASE noise, (b) pulse waveform in the steady state (red) and the ideal Nyquist pulse waveform (black), and (c) optical spectrum in the steady state (red) and the ideal Nyquist pulse spectrum (black).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

R ( f ) = { T , 0 | f | 1 α 2 T T 2 { 1 sin [ π 2 α ( 2 T | f | 1 ) ] } , 1 α 2 T | f | 1 + α 2 T 0 , | f | 1 + α 2 T , r ( t ) = sin ( π t / T ) π t / T cos ( α π t / T ) 1 ( 2 α t / T ) 2 ,
d P s d z = ( P p / P p sat 1 ) σ s n P s 1 + 2 P s / P s sat + P p / P p sat ,
d P p d z = ( P s / P s sat + 1 ) σ p n P p 1 + 2 P s / P s sat + P p / P p sat .
P s sat = A eff , s h ν s σ s T , P p sat = A eff , p h ν p σ p T ,
G = P s ( L ) P s ( 0 ) ,

Metrics