Abstract

The ability to create dynamic, tailored optical potentials has become important across fields ranging from biology to quantum science. We demonstrate a method for the creation of arbitrary optical tweezer potentials using the broadband spectral profile of a superluminescent diode combined with the chromatic aberration of a lens. A tunable filter, typically used for ultrafast laser pulse shaping, allows us to manipulate the broad spectral profile and therefore the optical tweezer potentials formed by focusing of this light. We characterize these potentials by measuring the Brownian motion of levitated nanoparticles in vacuum and also demonstrate interferometric detection and feedback cooling of the particle’s motion. This simple and cost-effective technique will enable wide application and allow rapid modulation of the optical potential landscape in excess of megahertz frequencies.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Fölling, S. Trotzky, P. Cheinet, M. Feld, R. Saers, A. Widera, T. Müller, and I. Bloch, “Direct observation of second-order atom tunnelling,” Nature 448, 1029–1032 (2007).
    [Crossref]
  2. M. Woerdemann, C. Alpmann, M. Esseling, and C. Denz, “Advanced optical trapping by complex beam shaping,” Laser Photon. Rev. 7, 839–854 (2013).
    [Crossref]
  3. G. Gauthier, I. Lenton, N. M. Parry, M. Baker, M. J. Davis, H. Rubinsztein-Dunlop, and T. W. Neely, “Direct imaging of a digital-micromirror device for configurable microscopic optical potentials,” Optica 3, 1136–1143 (2016).
    [Crossref]
  4. D. Stuart and A. Kuhn, “Single-atom trapping and transport in DMD-controlled optical tweezers,” New J. Phys. 20, 023013 (2018).
    [Crossref]
  5. J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207, 169–175 (2002).
    [Crossref]
  6. E. Schonbrun, R. Piestun, P. Jordan, J. Cooper, K. D. Wulff, J. Courtial, and M. Padgett, “3D interferometric optical tweezers using a single spatial light modulator,” Opt. Express 13, 3777–3786 (2005).
    [Crossref]
  7. V. Boyer, R. M. Godun, G. Smirne, D. Cassettari, C. M. Chandrashekar, A. B. Deb, Z. J. Laczik, and C. J. Foot, “Dynamic manipulation of Bose–Einstein condensates with a spatial light modulator,” Phys. Rev. A 73, 031402 (2006).
    [Crossref]
  8. D. Preece, R. Warren, R. M. L. Evans, G. M. Gibson, M. J. Padgett, J. M. Cooper, and M. Tassieri, “Optical tweezers: wideband microrheology,” J. Opt. 13, 044022 (2011).
    [Crossref]
  9. H. Zhang and K. Liu, “Optical tweezers for single cells,” J. R. Soc. Interface 5, 671–690 (2008).
    [Crossref]
  10. F. Tebbenjohanns, M. Frimmer, V. Jain, D. Windey, and L. Novotny, “Motional sideband asymmetry of a nanoparticle optically levitated in free space,” Phys. Rev. Lett. 124, 013603 (2020).
    [Crossref]
  11. U. Delić, M. Reisenbauer, K. Dare, D. Grass, V. Vuletić, N. Kiesel, and M. Aspelmeyer, “Cooling of a levitated nanoparticle to the motional quantum ground state,” Science 367, 892–895 (2020).
    [Crossref]
  12. A. Bérut, A. Arakelyan, A. Petrosyan, S. Ciliberto, R. Dillenschneider, and E. Lutz, “Experimental verification of Landauer’s principle linking information and thermodynamics,” Nature 483, 187–189 (2012).
    [Crossref]
  13. B. Agate, C. T. A. Brown, W. Sibbett, and K. Dholakia, “Femtosecond optical tweezers for in-situ control of two-photon fluorescence,” Opt. Express 12, 3011–3017 (2004).
    [Crossref]
  14. P. Li, K. Shi, and Z. Liu, “Manipulation and spectroscopy of a single particle by use of white-light optical tweezers,” Opt. Lett. 30, 156–158 (2005).
    [Crossref]
  15. P. Fischer, A. E. Carruthers, K. Volke-Sepulveda, E. M. Wright, C. Brown, W. Sibbett, and K. Dholakia, “Enhanced optical guiding of colloidal particles using a supercontinuum light source,” Opt. Express 14, 5792–5802 (2006).
    [Crossref]
  16. J. E. Morris, A. E. Carruthers, M. Mazilu, P. J. Reece, T. Cizmar, P. Fischer, and K. Dholakia, “Optical micromanipulation using supercontinuum Laguerre–Gaussian and Gaussian beams,” Opt. Express 16, 10117–10129 (2008).
    [Crossref]
  17. A. J. Wright, J. M. Girkin, G. M. Gibson, J. Leach, and M. J. Padgett, “Transfer of orbital angular momentum from a super-continuum, white-light beam,” Opt. Express 16, 9495–9500 (2008).
    [Crossref]
  18. L. Gong, B. Gu, G. Rui, Y. Cui, Z. Zhu, and Q. Zhan, “Optical forces of focused femtosecond laser pulses on nonlinear optical Rayleigh particles,” Photon. Res. 6, 138–143 (2018).
    [Crossref]
  19. R. Cahill, P. P. Maaskant, M. Akhter, and B. Corbett, “High power surface emitting InGaN superluminescent light-emitting diodes,” Appl. Phys. Lett. 115, 171102 (2019).
    [Crossref]
  20. T. H. Ko, D. C. Adler, J. G. Fujimoto, D. Mamedov, V. Prokhorov, V. Shidlovski, and S. Yakubovich, “Ultrahigh resolution optical coherence tomography imaging with a broadband superluminescent diode light source,” Opt. Express 12, 2112–2119 (2004).
    [Crossref]
  21. K. Böhm, P. Marten, K. Petermann, E. Weidel, and R. Ulrich, “Low-drift fibre gyro using a superluminescent diode,” Electron. Lett. 17, 352–353 (1981).
    [Crossref]
  22. S. E. S. Spesyvtseva and K. Dholakia, “Trapping in a material world,” ACS Photon. 3, 719–736 (2016).
    [Crossref]
  23. L. Novotny and B. Hecht, Principles of Nano-Optics, 2nd ed. (Cambridge University, 2012).
  24. J. Gieseler, B. Deutsch, R. Quidant, and L. Novotny, “Subkelvin parametric feedback cooling of a laser-trapped nanoparticle,” Phys. Rev. Lett. 109, 103603 (2012).
    [Crossref]
  25. T. Li, S. Kheifets, and M. G. Raizen, “Millikelvin cooling of an optically trapped microsphere in vacuum,” Nat. Phys. 7, 527–530 (2011).
    [Crossref]
  26. J. Vovrosh, M. Rashid, D. Hempston, J. Bateman, M. Paternostro, and H. Ulbricht, “Parametric feedback cooling of levitated optomechanics in a parabolic mirror trap,” J. Opt. Soc. Am. B 34, 1421–1428 (2017).
    [Crossref]
  27. J. Agostinelli, G. Harvey, T. Stone, and C. Gabel, “Optical pulse shaping with a grating pair,” Appl. Opt. 18, 2500–2504 (1979).
    [Crossref]
  28. A. T. M. A. Rahman, A. C. Frangeskou, M. S. Kim, S. Bose, G. W. Morley, and P. F. Barker, “Burning and graphitization of optically levitated nanodiamonds in vacuum,” Sci. Rep. 6, 21633 (2016).
    [Crossref]
  29. F. Ricci, R. A. Rica, M. Spasenović, J. Gieseler, L. Rondin, L. Novotny, and R. Quidant, “Optically levitated nanoparticle as a model system for stochastic bistable dynamics,” Nat. Commun. 8, 1–7 (2017).
    [Crossref]
  30. A. T. M. A. Rahman and P. Barker, “Laser refrigeration, alignment and rotation of levitated Yb:YLF nanocrystals,” Nat. Photonics 11, 634–638 (2017).
    [Crossref]
  31. A. T. M. A. Rahman, A. C. Frangeskou, P. F. Barker, and G. W. Morley, “An analytical model for the detection of levitated nanoparticles in optomechanics,” Rev. Sci. Instrum. 89, 023109 (2018).
    [Crossref]
  32. G. Ranjit, D. P. Atherton, J. H. Stutz, M. Cunningham, and A. A. Geraci, “Attonewton force detection using microspheres in a dual-beam optical trap in high vacuum,” Phys. Rev. A 91, 051805 (2015).
    [Crossref]
  33. K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75, 2787–2809 (2004).
    [Crossref]
  34. V. Jain, J. Gieseler, C. Moritz, C. Dellago, R. Quidant, and L. Novotny, “Direct measurement of photon recoil from a levitated nanoparticle,” Phys. Rev. Lett. 116, 243601 (2016).
    [Crossref]
  35. L. Rondin, J. Gieseler, F. Ricci, R. Quidant, C. Dellago, and L. Novotny, “Direct measurement of Kramers turnover with a levitated nanoparticle,” Nat. Nanotechnol. 12, 1130–1133 (2017).
    [Crossref]
  36. O. Romero-Isart, “Coherent inflation for large quantum superpositions of levitated microspheres,” New J. Phys. 19, 123029 (2017).
    [Crossref]
  37. L. Novotny, “Radiation damping of a polarizable particle,” Phys. Rev. A 96, 032108 (2017).
    [Crossref]

2020 (2)

F. Tebbenjohanns, M. Frimmer, V. Jain, D. Windey, and L. Novotny, “Motional sideband asymmetry of a nanoparticle optically levitated in free space,” Phys. Rev. Lett. 124, 013603 (2020).
[Crossref]

U. Delić, M. Reisenbauer, K. Dare, D. Grass, V. Vuletić, N. Kiesel, and M. Aspelmeyer, “Cooling of a levitated nanoparticle to the motional quantum ground state,” Science 367, 892–895 (2020).
[Crossref]

2019 (1)

R. Cahill, P. P. Maaskant, M. Akhter, and B. Corbett, “High power surface emitting InGaN superluminescent light-emitting diodes,” Appl. Phys. Lett. 115, 171102 (2019).
[Crossref]

2018 (3)

L. Gong, B. Gu, G. Rui, Y. Cui, Z. Zhu, and Q. Zhan, “Optical forces of focused femtosecond laser pulses on nonlinear optical Rayleigh particles,” Photon. Res. 6, 138–143 (2018).
[Crossref]

A. T. M. A. Rahman, A. C. Frangeskou, P. F. Barker, and G. W. Morley, “An analytical model for the detection of levitated nanoparticles in optomechanics,” Rev. Sci. Instrum. 89, 023109 (2018).
[Crossref]

D. Stuart and A. Kuhn, “Single-atom trapping and transport in DMD-controlled optical tweezers,” New J. Phys. 20, 023013 (2018).
[Crossref]

2017 (6)

F. Ricci, R. A. Rica, M. Spasenović, J. Gieseler, L. Rondin, L. Novotny, and R. Quidant, “Optically levitated nanoparticle as a model system for stochastic bistable dynamics,” Nat. Commun. 8, 1–7 (2017).
[Crossref]

A. T. M. A. Rahman and P. Barker, “Laser refrigeration, alignment and rotation of levitated Yb:YLF nanocrystals,” Nat. Photonics 11, 634–638 (2017).
[Crossref]

L. Rondin, J. Gieseler, F. Ricci, R. Quidant, C. Dellago, and L. Novotny, “Direct measurement of Kramers turnover with a levitated nanoparticle,” Nat. Nanotechnol. 12, 1130–1133 (2017).
[Crossref]

O. Romero-Isart, “Coherent inflation for large quantum superpositions of levitated microspheres,” New J. Phys. 19, 123029 (2017).
[Crossref]

L. Novotny, “Radiation damping of a polarizable particle,” Phys. Rev. A 96, 032108 (2017).
[Crossref]

J. Vovrosh, M. Rashid, D. Hempston, J. Bateman, M. Paternostro, and H. Ulbricht, “Parametric feedback cooling of levitated optomechanics in a parabolic mirror trap,” J. Opt. Soc. Am. B 34, 1421–1428 (2017).
[Crossref]

2016 (4)

S. E. S. Spesyvtseva and K. Dholakia, “Trapping in a material world,” ACS Photon. 3, 719–736 (2016).
[Crossref]

A. T. M. A. Rahman, A. C. Frangeskou, M. S. Kim, S. Bose, G. W. Morley, and P. F. Barker, “Burning and graphitization of optically levitated nanodiamonds in vacuum,” Sci. Rep. 6, 21633 (2016).
[Crossref]

V. Jain, J. Gieseler, C. Moritz, C. Dellago, R. Quidant, and L. Novotny, “Direct measurement of photon recoil from a levitated nanoparticle,” Phys. Rev. Lett. 116, 243601 (2016).
[Crossref]

G. Gauthier, I. Lenton, N. M. Parry, M. Baker, M. J. Davis, H. Rubinsztein-Dunlop, and T. W. Neely, “Direct imaging of a digital-micromirror device for configurable microscopic optical potentials,” Optica 3, 1136–1143 (2016).
[Crossref]

2015 (1)

G. Ranjit, D. P. Atherton, J. H. Stutz, M. Cunningham, and A. A. Geraci, “Attonewton force detection using microspheres in a dual-beam optical trap in high vacuum,” Phys. Rev. A 91, 051805 (2015).
[Crossref]

2013 (1)

M. Woerdemann, C. Alpmann, M. Esseling, and C. Denz, “Advanced optical trapping by complex beam shaping,” Laser Photon. Rev. 7, 839–854 (2013).
[Crossref]

2012 (2)

A. Bérut, A. Arakelyan, A. Petrosyan, S. Ciliberto, R. Dillenschneider, and E. Lutz, “Experimental verification of Landauer’s principle linking information and thermodynamics,” Nature 483, 187–189 (2012).
[Crossref]

J. Gieseler, B. Deutsch, R. Quidant, and L. Novotny, “Subkelvin parametric feedback cooling of a laser-trapped nanoparticle,” Phys. Rev. Lett. 109, 103603 (2012).
[Crossref]

2011 (2)

T. Li, S. Kheifets, and M. G. Raizen, “Millikelvin cooling of an optically trapped microsphere in vacuum,” Nat. Phys. 7, 527–530 (2011).
[Crossref]

D. Preece, R. Warren, R. M. L. Evans, G. M. Gibson, M. J. Padgett, J. M. Cooper, and M. Tassieri, “Optical tweezers: wideband microrheology,” J. Opt. 13, 044022 (2011).
[Crossref]

2008 (3)

2007 (1)

S. Fölling, S. Trotzky, P. Cheinet, M. Feld, R. Saers, A. Widera, T. Müller, and I. Bloch, “Direct observation of second-order atom tunnelling,” Nature 448, 1029–1032 (2007).
[Crossref]

2006 (2)

V. Boyer, R. M. Godun, G. Smirne, D. Cassettari, C. M. Chandrashekar, A. B. Deb, Z. J. Laczik, and C. J. Foot, “Dynamic manipulation of Bose–Einstein condensates with a spatial light modulator,” Phys. Rev. A 73, 031402 (2006).
[Crossref]

P. Fischer, A. E. Carruthers, K. Volke-Sepulveda, E. M. Wright, C. Brown, W. Sibbett, and K. Dholakia, “Enhanced optical guiding of colloidal particles using a supercontinuum light source,” Opt. Express 14, 5792–5802 (2006).
[Crossref]

2005 (2)

2004 (3)

2002 (1)

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207, 169–175 (2002).
[Crossref]

1981 (1)

K. Böhm, P. Marten, K. Petermann, E. Weidel, and R. Ulrich, “Low-drift fibre gyro using a superluminescent diode,” Electron. Lett. 17, 352–353 (1981).
[Crossref]

1979 (1)

Adler, D. C.

Agate, B.

Agostinelli, J.

Akhter, M.

R. Cahill, P. P. Maaskant, M. Akhter, and B. Corbett, “High power surface emitting InGaN superluminescent light-emitting diodes,” Appl. Phys. Lett. 115, 171102 (2019).
[Crossref]

Alpmann, C.

M. Woerdemann, C. Alpmann, M. Esseling, and C. Denz, “Advanced optical trapping by complex beam shaping,” Laser Photon. Rev. 7, 839–854 (2013).
[Crossref]

Arakelyan, A.

A. Bérut, A. Arakelyan, A. Petrosyan, S. Ciliberto, R. Dillenschneider, and E. Lutz, “Experimental verification of Landauer’s principle linking information and thermodynamics,” Nature 483, 187–189 (2012).
[Crossref]

Aspelmeyer, M.

U. Delić, M. Reisenbauer, K. Dare, D. Grass, V. Vuletić, N. Kiesel, and M. Aspelmeyer, “Cooling of a levitated nanoparticle to the motional quantum ground state,” Science 367, 892–895 (2020).
[Crossref]

Atherton, D. P.

G. Ranjit, D. P. Atherton, J. H. Stutz, M. Cunningham, and A. A. Geraci, “Attonewton force detection using microspheres in a dual-beam optical trap in high vacuum,” Phys. Rev. A 91, 051805 (2015).
[Crossref]

Baker, M.

Barker, P.

A. T. M. A. Rahman and P. Barker, “Laser refrigeration, alignment and rotation of levitated Yb:YLF nanocrystals,” Nat. Photonics 11, 634–638 (2017).
[Crossref]

Barker, P. F.

A. T. M. A. Rahman, A. C. Frangeskou, P. F. Barker, and G. W. Morley, “An analytical model for the detection of levitated nanoparticles in optomechanics,” Rev. Sci. Instrum. 89, 023109 (2018).
[Crossref]

A. T. M. A. Rahman, A. C. Frangeskou, M. S. Kim, S. Bose, G. W. Morley, and P. F. Barker, “Burning and graphitization of optically levitated nanodiamonds in vacuum,” Sci. Rep. 6, 21633 (2016).
[Crossref]

Bateman, J.

Bérut, A.

A. Bérut, A. Arakelyan, A. Petrosyan, S. Ciliberto, R. Dillenschneider, and E. Lutz, “Experimental verification of Landauer’s principle linking information and thermodynamics,” Nature 483, 187–189 (2012).
[Crossref]

Bloch, I.

S. Fölling, S. Trotzky, P. Cheinet, M. Feld, R. Saers, A. Widera, T. Müller, and I. Bloch, “Direct observation of second-order atom tunnelling,” Nature 448, 1029–1032 (2007).
[Crossref]

Block, S. M.

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75, 2787–2809 (2004).
[Crossref]

Böhm, K.

K. Böhm, P. Marten, K. Petermann, E. Weidel, and R. Ulrich, “Low-drift fibre gyro using a superluminescent diode,” Electron. Lett. 17, 352–353 (1981).
[Crossref]

Bose, S.

A. T. M. A. Rahman, A. C. Frangeskou, M. S. Kim, S. Bose, G. W. Morley, and P. F. Barker, “Burning and graphitization of optically levitated nanodiamonds in vacuum,” Sci. Rep. 6, 21633 (2016).
[Crossref]

Boyer, V.

V. Boyer, R. M. Godun, G. Smirne, D. Cassettari, C. M. Chandrashekar, A. B. Deb, Z. J. Laczik, and C. J. Foot, “Dynamic manipulation of Bose–Einstein condensates with a spatial light modulator,” Phys. Rev. A 73, 031402 (2006).
[Crossref]

Brown, C.

Brown, C. T. A.

Cahill, R.

R. Cahill, P. P. Maaskant, M. Akhter, and B. Corbett, “High power surface emitting InGaN superluminescent light-emitting diodes,” Appl. Phys. Lett. 115, 171102 (2019).
[Crossref]

Carruthers, A. E.

Cassettari, D.

V. Boyer, R. M. Godun, G. Smirne, D. Cassettari, C. M. Chandrashekar, A. B. Deb, Z. J. Laczik, and C. J. Foot, “Dynamic manipulation of Bose–Einstein condensates with a spatial light modulator,” Phys. Rev. A 73, 031402 (2006).
[Crossref]

Chandrashekar, C. M.

V. Boyer, R. M. Godun, G. Smirne, D. Cassettari, C. M. Chandrashekar, A. B. Deb, Z. J. Laczik, and C. J. Foot, “Dynamic manipulation of Bose–Einstein condensates with a spatial light modulator,” Phys. Rev. A 73, 031402 (2006).
[Crossref]

Cheinet, P.

S. Fölling, S. Trotzky, P. Cheinet, M. Feld, R. Saers, A. Widera, T. Müller, and I. Bloch, “Direct observation of second-order atom tunnelling,” Nature 448, 1029–1032 (2007).
[Crossref]

Ciliberto, S.

A. Bérut, A. Arakelyan, A. Petrosyan, S. Ciliberto, R. Dillenschneider, and E. Lutz, “Experimental verification of Landauer’s principle linking information and thermodynamics,” Nature 483, 187–189 (2012).
[Crossref]

Cizmar, T.

Cooper, J.

Cooper, J. M.

D. Preece, R. Warren, R. M. L. Evans, G. M. Gibson, M. J. Padgett, J. M. Cooper, and M. Tassieri, “Optical tweezers: wideband microrheology,” J. Opt. 13, 044022 (2011).
[Crossref]

Corbett, B.

R. Cahill, P. P. Maaskant, M. Akhter, and B. Corbett, “High power surface emitting InGaN superluminescent light-emitting diodes,” Appl. Phys. Lett. 115, 171102 (2019).
[Crossref]

Courtial, J.

Cui, Y.

Cunningham, M.

G. Ranjit, D. P. Atherton, J. H. Stutz, M. Cunningham, and A. A. Geraci, “Attonewton force detection using microspheres in a dual-beam optical trap in high vacuum,” Phys. Rev. A 91, 051805 (2015).
[Crossref]

Curtis, J. E.

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207, 169–175 (2002).
[Crossref]

Dare, K.

U. Delić, M. Reisenbauer, K. Dare, D. Grass, V. Vuletić, N. Kiesel, and M. Aspelmeyer, “Cooling of a levitated nanoparticle to the motional quantum ground state,” Science 367, 892–895 (2020).
[Crossref]

Davis, M. J.

Deb, A. B.

V. Boyer, R. M. Godun, G. Smirne, D. Cassettari, C. M. Chandrashekar, A. B. Deb, Z. J. Laczik, and C. J. Foot, “Dynamic manipulation of Bose–Einstein condensates with a spatial light modulator,” Phys. Rev. A 73, 031402 (2006).
[Crossref]

Delic, U.

U. Delić, M. Reisenbauer, K. Dare, D. Grass, V. Vuletić, N. Kiesel, and M. Aspelmeyer, “Cooling of a levitated nanoparticle to the motional quantum ground state,” Science 367, 892–895 (2020).
[Crossref]

Dellago, C.

L. Rondin, J. Gieseler, F. Ricci, R. Quidant, C. Dellago, and L. Novotny, “Direct measurement of Kramers turnover with a levitated nanoparticle,” Nat. Nanotechnol. 12, 1130–1133 (2017).
[Crossref]

V. Jain, J. Gieseler, C. Moritz, C. Dellago, R. Quidant, and L. Novotny, “Direct measurement of photon recoil from a levitated nanoparticle,” Phys. Rev. Lett. 116, 243601 (2016).
[Crossref]

Denz, C.

M. Woerdemann, C. Alpmann, M. Esseling, and C. Denz, “Advanced optical trapping by complex beam shaping,” Laser Photon. Rev. 7, 839–854 (2013).
[Crossref]

Deutsch, B.

J. Gieseler, B. Deutsch, R. Quidant, and L. Novotny, “Subkelvin parametric feedback cooling of a laser-trapped nanoparticle,” Phys. Rev. Lett. 109, 103603 (2012).
[Crossref]

Dholakia, K.

Dillenschneider, R.

A. Bérut, A. Arakelyan, A. Petrosyan, S. Ciliberto, R. Dillenschneider, and E. Lutz, “Experimental verification of Landauer’s principle linking information and thermodynamics,” Nature 483, 187–189 (2012).
[Crossref]

Esseling, M.

M. Woerdemann, C. Alpmann, M. Esseling, and C. Denz, “Advanced optical trapping by complex beam shaping,” Laser Photon. Rev. 7, 839–854 (2013).
[Crossref]

Evans, R. M. L.

D. Preece, R. Warren, R. M. L. Evans, G. M. Gibson, M. J. Padgett, J. M. Cooper, and M. Tassieri, “Optical tweezers: wideband microrheology,” J. Opt. 13, 044022 (2011).
[Crossref]

Feld, M.

S. Fölling, S. Trotzky, P. Cheinet, M. Feld, R. Saers, A. Widera, T. Müller, and I. Bloch, “Direct observation of second-order atom tunnelling,” Nature 448, 1029–1032 (2007).
[Crossref]

Fischer, P.

Fölling, S.

S. Fölling, S. Trotzky, P. Cheinet, M. Feld, R. Saers, A. Widera, T. Müller, and I. Bloch, “Direct observation of second-order atom tunnelling,” Nature 448, 1029–1032 (2007).
[Crossref]

Foot, C. J.

V. Boyer, R. M. Godun, G. Smirne, D. Cassettari, C. M. Chandrashekar, A. B. Deb, Z. J. Laczik, and C. J. Foot, “Dynamic manipulation of Bose–Einstein condensates with a spatial light modulator,” Phys. Rev. A 73, 031402 (2006).
[Crossref]

Frangeskou, A. C.

A. T. M. A. Rahman, A. C. Frangeskou, P. F. Barker, and G. W. Morley, “An analytical model for the detection of levitated nanoparticles in optomechanics,” Rev. Sci. Instrum. 89, 023109 (2018).
[Crossref]

A. T. M. A. Rahman, A. C. Frangeskou, M. S. Kim, S. Bose, G. W. Morley, and P. F. Barker, “Burning and graphitization of optically levitated nanodiamonds in vacuum,” Sci. Rep. 6, 21633 (2016).
[Crossref]

Frimmer, M.

F. Tebbenjohanns, M. Frimmer, V. Jain, D. Windey, and L. Novotny, “Motional sideband asymmetry of a nanoparticle optically levitated in free space,” Phys. Rev. Lett. 124, 013603 (2020).
[Crossref]

Fujimoto, J. G.

Gabel, C.

Gauthier, G.

Geraci, A. A.

G. Ranjit, D. P. Atherton, J. H. Stutz, M. Cunningham, and A. A. Geraci, “Attonewton force detection using microspheres in a dual-beam optical trap in high vacuum,” Phys. Rev. A 91, 051805 (2015).
[Crossref]

Gibson, G. M.

D. Preece, R. Warren, R. M. L. Evans, G. M. Gibson, M. J. Padgett, J. M. Cooper, and M. Tassieri, “Optical tweezers: wideband microrheology,” J. Opt. 13, 044022 (2011).
[Crossref]

A. J. Wright, J. M. Girkin, G. M. Gibson, J. Leach, and M. J. Padgett, “Transfer of orbital angular momentum from a super-continuum, white-light beam,” Opt. Express 16, 9495–9500 (2008).
[Crossref]

Gieseler, J.

F. Ricci, R. A. Rica, M. Spasenović, J. Gieseler, L. Rondin, L. Novotny, and R. Quidant, “Optically levitated nanoparticle as a model system for stochastic bistable dynamics,” Nat. Commun. 8, 1–7 (2017).
[Crossref]

L. Rondin, J. Gieseler, F. Ricci, R. Quidant, C. Dellago, and L. Novotny, “Direct measurement of Kramers turnover with a levitated nanoparticle,” Nat. Nanotechnol. 12, 1130–1133 (2017).
[Crossref]

V. Jain, J. Gieseler, C. Moritz, C. Dellago, R. Quidant, and L. Novotny, “Direct measurement of photon recoil from a levitated nanoparticle,” Phys. Rev. Lett. 116, 243601 (2016).
[Crossref]

J. Gieseler, B. Deutsch, R. Quidant, and L. Novotny, “Subkelvin parametric feedback cooling of a laser-trapped nanoparticle,” Phys. Rev. Lett. 109, 103603 (2012).
[Crossref]

Girkin, J. M.

Godun, R. M.

V. Boyer, R. M. Godun, G. Smirne, D. Cassettari, C. M. Chandrashekar, A. B. Deb, Z. J. Laczik, and C. J. Foot, “Dynamic manipulation of Bose–Einstein condensates with a spatial light modulator,” Phys. Rev. A 73, 031402 (2006).
[Crossref]

Gong, L.

Grass, D.

U. Delić, M. Reisenbauer, K. Dare, D. Grass, V. Vuletić, N. Kiesel, and M. Aspelmeyer, “Cooling of a levitated nanoparticle to the motional quantum ground state,” Science 367, 892–895 (2020).
[Crossref]

Grier, D. G.

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207, 169–175 (2002).
[Crossref]

Gu, B.

Harvey, G.

Hecht, B.

L. Novotny and B. Hecht, Principles of Nano-Optics, 2nd ed. (Cambridge University, 2012).

Hempston, D.

Jain, V.

F. Tebbenjohanns, M. Frimmer, V. Jain, D. Windey, and L. Novotny, “Motional sideband asymmetry of a nanoparticle optically levitated in free space,” Phys. Rev. Lett. 124, 013603 (2020).
[Crossref]

V. Jain, J. Gieseler, C. Moritz, C. Dellago, R. Quidant, and L. Novotny, “Direct measurement of photon recoil from a levitated nanoparticle,” Phys. Rev. Lett. 116, 243601 (2016).
[Crossref]

Jordan, P.

Kheifets, S.

T. Li, S. Kheifets, and M. G. Raizen, “Millikelvin cooling of an optically trapped microsphere in vacuum,” Nat. Phys. 7, 527–530 (2011).
[Crossref]

Kiesel, N.

U. Delić, M. Reisenbauer, K. Dare, D. Grass, V. Vuletić, N. Kiesel, and M. Aspelmeyer, “Cooling of a levitated nanoparticle to the motional quantum ground state,” Science 367, 892–895 (2020).
[Crossref]

Kim, M. S.

A. T. M. A. Rahman, A. C. Frangeskou, M. S. Kim, S. Bose, G. W. Morley, and P. F. Barker, “Burning and graphitization of optically levitated nanodiamonds in vacuum,” Sci. Rep. 6, 21633 (2016).
[Crossref]

Ko, T. H.

Koss, B. A.

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207, 169–175 (2002).
[Crossref]

Kuhn, A.

D. Stuart and A. Kuhn, “Single-atom trapping and transport in DMD-controlled optical tweezers,” New J. Phys. 20, 023013 (2018).
[Crossref]

Laczik, Z. J.

V. Boyer, R. M. Godun, G. Smirne, D. Cassettari, C. M. Chandrashekar, A. B. Deb, Z. J. Laczik, and C. J. Foot, “Dynamic manipulation of Bose–Einstein condensates with a spatial light modulator,” Phys. Rev. A 73, 031402 (2006).
[Crossref]

Leach, J.

Lenton, I.

Li, P.

Li, T.

T. Li, S. Kheifets, and M. G. Raizen, “Millikelvin cooling of an optically trapped microsphere in vacuum,” Nat. Phys. 7, 527–530 (2011).
[Crossref]

Liu, K.

H. Zhang and K. Liu, “Optical tweezers for single cells,” J. R. Soc. Interface 5, 671–690 (2008).
[Crossref]

Liu, Z.

Lutz, E.

A. Bérut, A. Arakelyan, A. Petrosyan, S. Ciliberto, R. Dillenschneider, and E. Lutz, “Experimental verification of Landauer’s principle linking information and thermodynamics,” Nature 483, 187–189 (2012).
[Crossref]

Maaskant, P. P.

R. Cahill, P. P. Maaskant, M. Akhter, and B. Corbett, “High power surface emitting InGaN superluminescent light-emitting diodes,” Appl. Phys. Lett. 115, 171102 (2019).
[Crossref]

Mamedov, D.

Marten, P.

K. Böhm, P. Marten, K. Petermann, E. Weidel, and R. Ulrich, “Low-drift fibre gyro using a superluminescent diode,” Electron. Lett. 17, 352–353 (1981).
[Crossref]

Mazilu, M.

Moritz, C.

V. Jain, J. Gieseler, C. Moritz, C. Dellago, R. Quidant, and L. Novotny, “Direct measurement of photon recoil from a levitated nanoparticle,” Phys. Rev. Lett. 116, 243601 (2016).
[Crossref]

Morley, G. W.

A. T. M. A. Rahman, A. C. Frangeskou, P. F. Barker, and G. W. Morley, “An analytical model for the detection of levitated nanoparticles in optomechanics,” Rev. Sci. Instrum. 89, 023109 (2018).
[Crossref]

A. T. M. A. Rahman, A. C. Frangeskou, M. S. Kim, S. Bose, G. W. Morley, and P. F. Barker, “Burning and graphitization of optically levitated nanodiamonds in vacuum,” Sci. Rep. 6, 21633 (2016).
[Crossref]

Morris, J. E.

Müller, T.

S. Fölling, S. Trotzky, P. Cheinet, M. Feld, R. Saers, A. Widera, T. Müller, and I. Bloch, “Direct observation of second-order atom tunnelling,” Nature 448, 1029–1032 (2007).
[Crossref]

Neely, T. W.

Neuman, K. C.

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75, 2787–2809 (2004).
[Crossref]

Novotny, L.

F. Tebbenjohanns, M. Frimmer, V. Jain, D. Windey, and L. Novotny, “Motional sideband asymmetry of a nanoparticle optically levitated in free space,” Phys. Rev. Lett. 124, 013603 (2020).
[Crossref]

F. Ricci, R. A. Rica, M. Spasenović, J. Gieseler, L. Rondin, L. Novotny, and R. Quidant, “Optically levitated nanoparticle as a model system for stochastic bistable dynamics,” Nat. Commun. 8, 1–7 (2017).
[Crossref]

L. Rondin, J. Gieseler, F. Ricci, R. Quidant, C. Dellago, and L. Novotny, “Direct measurement of Kramers turnover with a levitated nanoparticle,” Nat. Nanotechnol. 12, 1130–1133 (2017).
[Crossref]

L. Novotny, “Radiation damping of a polarizable particle,” Phys. Rev. A 96, 032108 (2017).
[Crossref]

V. Jain, J. Gieseler, C. Moritz, C. Dellago, R. Quidant, and L. Novotny, “Direct measurement of photon recoil from a levitated nanoparticle,” Phys. Rev. Lett. 116, 243601 (2016).
[Crossref]

J. Gieseler, B. Deutsch, R. Quidant, and L. Novotny, “Subkelvin parametric feedback cooling of a laser-trapped nanoparticle,” Phys. Rev. Lett. 109, 103603 (2012).
[Crossref]

L. Novotny and B. Hecht, Principles of Nano-Optics, 2nd ed. (Cambridge University, 2012).

Padgett, M.

Padgett, M. J.

D. Preece, R. Warren, R. M. L. Evans, G. M. Gibson, M. J. Padgett, J. M. Cooper, and M. Tassieri, “Optical tweezers: wideband microrheology,” J. Opt. 13, 044022 (2011).
[Crossref]

A. J. Wright, J. M. Girkin, G. M. Gibson, J. Leach, and M. J. Padgett, “Transfer of orbital angular momentum from a super-continuum, white-light beam,” Opt. Express 16, 9495–9500 (2008).
[Crossref]

Parry, N. M.

Paternostro, M.

Petermann, K.

K. Böhm, P. Marten, K. Petermann, E. Weidel, and R. Ulrich, “Low-drift fibre gyro using a superluminescent diode,” Electron. Lett. 17, 352–353 (1981).
[Crossref]

Petrosyan, A.

A. Bérut, A. Arakelyan, A. Petrosyan, S. Ciliberto, R. Dillenschneider, and E. Lutz, “Experimental verification of Landauer’s principle linking information and thermodynamics,” Nature 483, 187–189 (2012).
[Crossref]

Piestun, R.

Preece, D.

D. Preece, R. Warren, R. M. L. Evans, G. M. Gibson, M. J. Padgett, J. M. Cooper, and M. Tassieri, “Optical tweezers: wideband microrheology,” J. Opt. 13, 044022 (2011).
[Crossref]

Prokhorov, V.

Quidant, R.

F. Ricci, R. A. Rica, M. Spasenović, J. Gieseler, L. Rondin, L. Novotny, and R. Quidant, “Optically levitated nanoparticle as a model system for stochastic bistable dynamics,” Nat. Commun. 8, 1–7 (2017).
[Crossref]

L. Rondin, J. Gieseler, F. Ricci, R. Quidant, C. Dellago, and L. Novotny, “Direct measurement of Kramers turnover with a levitated nanoparticle,” Nat. Nanotechnol. 12, 1130–1133 (2017).
[Crossref]

V. Jain, J. Gieseler, C. Moritz, C. Dellago, R. Quidant, and L. Novotny, “Direct measurement of photon recoil from a levitated nanoparticle,” Phys. Rev. Lett. 116, 243601 (2016).
[Crossref]

J. Gieseler, B. Deutsch, R. Quidant, and L. Novotny, “Subkelvin parametric feedback cooling of a laser-trapped nanoparticle,” Phys. Rev. Lett. 109, 103603 (2012).
[Crossref]

Rahman, A. T. M. A.

A. T. M. A. Rahman, A. C. Frangeskou, P. F. Barker, and G. W. Morley, “An analytical model for the detection of levitated nanoparticles in optomechanics,” Rev. Sci. Instrum. 89, 023109 (2018).
[Crossref]

A. T. M. A. Rahman and P. Barker, “Laser refrigeration, alignment and rotation of levitated Yb:YLF nanocrystals,” Nat. Photonics 11, 634–638 (2017).
[Crossref]

A. T. M. A. Rahman, A. C. Frangeskou, M. S. Kim, S. Bose, G. W. Morley, and P. F. Barker, “Burning and graphitization of optically levitated nanodiamonds in vacuum,” Sci. Rep. 6, 21633 (2016).
[Crossref]

Raizen, M. G.

T. Li, S. Kheifets, and M. G. Raizen, “Millikelvin cooling of an optically trapped microsphere in vacuum,” Nat. Phys. 7, 527–530 (2011).
[Crossref]

Ranjit, G.

G. Ranjit, D. P. Atherton, J. H. Stutz, M. Cunningham, and A. A. Geraci, “Attonewton force detection using microspheres in a dual-beam optical trap in high vacuum,” Phys. Rev. A 91, 051805 (2015).
[Crossref]

Rashid, M.

Reece, P. J.

Reisenbauer, M.

U. Delić, M. Reisenbauer, K. Dare, D. Grass, V. Vuletić, N. Kiesel, and M. Aspelmeyer, “Cooling of a levitated nanoparticle to the motional quantum ground state,” Science 367, 892–895 (2020).
[Crossref]

Rica, R. A.

F. Ricci, R. A. Rica, M. Spasenović, J. Gieseler, L. Rondin, L. Novotny, and R. Quidant, “Optically levitated nanoparticle as a model system for stochastic bistable dynamics,” Nat. Commun. 8, 1–7 (2017).
[Crossref]

Ricci, F.

F. Ricci, R. A. Rica, M. Spasenović, J. Gieseler, L. Rondin, L. Novotny, and R. Quidant, “Optically levitated nanoparticle as a model system for stochastic bistable dynamics,” Nat. Commun. 8, 1–7 (2017).
[Crossref]

L. Rondin, J. Gieseler, F. Ricci, R. Quidant, C. Dellago, and L. Novotny, “Direct measurement of Kramers turnover with a levitated nanoparticle,” Nat. Nanotechnol. 12, 1130–1133 (2017).
[Crossref]

Romero-Isart, O.

O. Romero-Isart, “Coherent inflation for large quantum superpositions of levitated microspheres,” New J. Phys. 19, 123029 (2017).
[Crossref]

Rondin, L.

L. Rondin, J. Gieseler, F. Ricci, R. Quidant, C. Dellago, and L. Novotny, “Direct measurement of Kramers turnover with a levitated nanoparticle,” Nat. Nanotechnol. 12, 1130–1133 (2017).
[Crossref]

F. Ricci, R. A. Rica, M. Spasenović, J. Gieseler, L. Rondin, L. Novotny, and R. Quidant, “Optically levitated nanoparticle as a model system for stochastic bistable dynamics,” Nat. Commun. 8, 1–7 (2017).
[Crossref]

Rubinsztein-Dunlop, H.

Rui, G.

Saers, R.

S. Fölling, S. Trotzky, P. Cheinet, M. Feld, R. Saers, A. Widera, T. Müller, and I. Bloch, “Direct observation of second-order atom tunnelling,” Nature 448, 1029–1032 (2007).
[Crossref]

Schonbrun, E.

Shi, K.

Shidlovski, V.

Sibbett, W.

Smirne, G.

V. Boyer, R. M. Godun, G. Smirne, D. Cassettari, C. M. Chandrashekar, A. B. Deb, Z. J. Laczik, and C. J. Foot, “Dynamic manipulation of Bose–Einstein condensates with a spatial light modulator,” Phys. Rev. A 73, 031402 (2006).
[Crossref]

Spasenovic, M.

F. Ricci, R. A. Rica, M. Spasenović, J. Gieseler, L. Rondin, L. Novotny, and R. Quidant, “Optically levitated nanoparticle as a model system for stochastic bistable dynamics,” Nat. Commun. 8, 1–7 (2017).
[Crossref]

Spesyvtseva, S. E. S.

S. E. S. Spesyvtseva and K. Dholakia, “Trapping in a material world,” ACS Photon. 3, 719–736 (2016).
[Crossref]

Stone, T.

Stuart, D.

D. Stuart and A. Kuhn, “Single-atom trapping and transport in DMD-controlled optical tweezers,” New J. Phys. 20, 023013 (2018).
[Crossref]

Stutz, J. H.

G. Ranjit, D. P. Atherton, J. H. Stutz, M. Cunningham, and A. A. Geraci, “Attonewton force detection using microspheres in a dual-beam optical trap in high vacuum,” Phys. Rev. A 91, 051805 (2015).
[Crossref]

Tassieri, M.

D. Preece, R. Warren, R. M. L. Evans, G. M. Gibson, M. J. Padgett, J. M. Cooper, and M. Tassieri, “Optical tweezers: wideband microrheology,” J. Opt. 13, 044022 (2011).
[Crossref]

Tebbenjohanns, F.

F. Tebbenjohanns, M. Frimmer, V. Jain, D. Windey, and L. Novotny, “Motional sideband asymmetry of a nanoparticle optically levitated in free space,” Phys. Rev. Lett. 124, 013603 (2020).
[Crossref]

Trotzky, S.

S. Fölling, S. Trotzky, P. Cheinet, M. Feld, R. Saers, A. Widera, T. Müller, and I. Bloch, “Direct observation of second-order atom tunnelling,” Nature 448, 1029–1032 (2007).
[Crossref]

Ulbricht, H.

Ulrich, R.

K. Böhm, P. Marten, K. Petermann, E. Weidel, and R. Ulrich, “Low-drift fibre gyro using a superluminescent diode,” Electron. Lett. 17, 352–353 (1981).
[Crossref]

Volke-Sepulveda, K.

Vovrosh, J.

Vuletic, V.

U. Delić, M. Reisenbauer, K. Dare, D. Grass, V. Vuletić, N. Kiesel, and M. Aspelmeyer, “Cooling of a levitated nanoparticle to the motional quantum ground state,” Science 367, 892–895 (2020).
[Crossref]

Warren, R.

D. Preece, R. Warren, R. M. L. Evans, G. M. Gibson, M. J. Padgett, J. M. Cooper, and M. Tassieri, “Optical tweezers: wideband microrheology,” J. Opt. 13, 044022 (2011).
[Crossref]

Weidel, E.

K. Böhm, P. Marten, K. Petermann, E. Weidel, and R. Ulrich, “Low-drift fibre gyro using a superluminescent diode,” Electron. Lett. 17, 352–353 (1981).
[Crossref]

Widera, A.

S. Fölling, S. Trotzky, P. Cheinet, M. Feld, R. Saers, A. Widera, T. Müller, and I. Bloch, “Direct observation of second-order atom tunnelling,” Nature 448, 1029–1032 (2007).
[Crossref]

Windey, D.

F. Tebbenjohanns, M. Frimmer, V. Jain, D. Windey, and L. Novotny, “Motional sideband asymmetry of a nanoparticle optically levitated in free space,” Phys. Rev. Lett. 124, 013603 (2020).
[Crossref]

Woerdemann, M.

M. Woerdemann, C. Alpmann, M. Esseling, and C. Denz, “Advanced optical trapping by complex beam shaping,” Laser Photon. Rev. 7, 839–854 (2013).
[Crossref]

Wright, A. J.

Wright, E. M.

Wulff, K. D.

Yakubovich, S.

Zhan, Q.

Zhang, H.

H. Zhang and K. Liu, “Optical tweezers for single cells,” J. R. Soc. Interface 5, 671–690 (2008).
[Crossref]

Zhu, Z.

ACS Photon. (1)

S. E. S. Spesyvtseva and K. Dholakia, “Trapping in a material world,” ACS Photon. 3, 719–736 (2016).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

R. Cahill, P. P. Maaskant, M. Akhter, and B. Corbett, “High power surface emitting InGaN superluminescent light-emitting diodes,” Appl. Phys. Lett. 115, 171102 (2019).
[Crossref]

Electron. Lett. (1)

K. Böhm, P. Marten, K. Petermann, E. Weidel, and R. Ulrich, “Low-drift fibre gyro using a superluminescent diode,” Electron. Lett. 17, 352–353 (1981).
[Crossref]

J. Opt. (1)

D. Preece, R. Warren, R. M. L. Evans, G. M. Gibson, M. J. Padgett, J. M. Cooper, and M. Tassieri, “Optical tweezers: wideband microrheology,” J. Opt. 13, 044022 (2011).
[Crossref]

J. Opt. Soc. Am. B (1)

J. R. Soc. Interface (1)

H. Zhang and K. Liu, “Optical tweezers for single cells,” J. R. Soc. Interface 5, 671–690 (2008).
[Crossref]

Laser Photon. Rev. (1)

M. Woerdemann, C. Alpmann, M. Esseling, and C. Denz, “Advanced optical trapping by complex beam shaping,” Laser Photon. Rev. 7, 839–854 (2013).
[Crossref]

Nat. Commun. (1)

F. Ricci, R. A. Rica, M. Spasenović, J. Gieseler, L. Rondin, L. Novotny, and R. Quidant, “Optically levitated nanoparticle as a model system for stochastic bistable dynamics,” Nat. Commun. 8, 1–7 (2017).
[Crossref]

Nat. Nanotechnol. (1)

L. Rondin, J. Gieseler, F. Ricci, R. Quidant, C. Dellago, and L. Novotny, “Direct measurement of Kramers turnover with a levitated nanoparticle,” Nat. Nanotechnol. 12, 1130–1133 (2017).
[Crossref]

Nat. Photonics (1)

A. T. M. A. Rahman and P. Barker, “Laser refrigeration, alignment and rotation of levitated Yb:YLF nanocrystals,” Nat. Photonics 11, 634–638 (2017).
[Crossref]

Nat. Phys. (1)

T. Li, S. Kheifets, and M. G. Raizen, “Millikelvin cooling of an optically trapped microsphere in vacuum,” Nat. Phys. 7, 527–530 (2011).
[Crossref]

Nature (2)

S. Fölling, S. Trotzky, P. Cheinet, M. Feld, R. Saers, A. Widera, T. Müller, and I. Bloch, “Direct observation of second-order atom tunnelling,” Nature 448, 1029–1032 (2007).
[Crossref]

A. Bérut, A. Arakelyan, A. Petrosyan, S. Ciliberto, R. Dillenschneider, and E. Lutz, “Experimental verification of Landauer’s principle linking information and thermodynamics,” Nature 483, 187–189 (2012).
[Crossref]

New J. Phys. (2)

D. Stuart and A. Kuhn, “Single-atom trapping and transport in DMD-controlled optical tweezers,” New J. Phys. 20, 023013 (2018).
[Crossref]

O. Romero-Isart, “Coherent inflation for large quantum superpositions of levitated microspheres,” New J. Phys. 19, 123029 (2017).
[Crossref]

Opt. Commun. (1)

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207, 169–175 (2002).
[Crossref]

Opt. Express (6)

Opt. Lett. (1)

Optica (1)

Photon. Res. (1)

Phys. Rev. A (3)

V. Boyer, R. M. Godun, G. Smirne, D. Cassettari, C. M. Chandrashekar, A. B. Deb, Z. J. Laczik, and C. J. Foot, “Dynamic manipulation of Bose–Einstein condensates with a spatial light modulator,” Phys. Rev. A 73, 031402 (2006).
[Crossref]

G. Ranjit, D. P. Atherton, J. H. Stutz, M. Cunningham, and A. A. Geraci, “Attonewton force detection using microspheres in a dual-beam optical trap in high vacuum,” Phys. Rev. A 91, 051805 (2015).
[Crossref]

L. Novotny, “Radiation damping of a polarizable particle,” Phys. Rev. A 96, 032108 (2017).
[Crossref]

Phys. Rev. Lett. (3)

V. Jain, J. Gieseler, C. Moritz, C. Dellago, R. Quidant, and L. Novotny, “Direct measurement of photon recoil from a levitated nanoparticle,” Phys. Rev. Lett. 116, 243601 (2016).
[Crossref]

J. Gieseler, B. Deutsch, R. Quidant, and L. Novotny, “Subkelvin parametric feedback cooling of a laser-trapped nanoparticle,” Phys. Rev. Lett. 109, 103603 (2012).
[Crossref]

F. Tebbenjohanns, M. Frimmer, V. Jain, D. Windey, and L. Novotny, “Motional sideband asymmetry of a nanoparticle optically levitated in free space,” Phys. Rev. Lett. 124, 013603 (2020).
[Crossref]

Rev. Sci. Instrum. (2)

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75, 2787–2809 (2004).
[Crossref]

A. T. M. A. Rahman, A. C. Frangeskou, P. F. Barker, and G. W. Morley, “An analytical model for the detection of levitated nanoparticles in optomechanics,” Rev. Sci. Instrum. 89, 023109 (2018).
[Crossref]

Sci. Rep. (1)

A. T. M. A. Rahman, A. C. Frangeskou, M. S. Kim, S. Bose, G. W. Morley, and P. F. Barker, “Burning and graphitization of optically levitated nanodiamonds in vacuum,” Sci. Rep. 6, 21633 (2016).
[Crossref]

Science (1)

U. Delić, M. Reisenbauer, K. Dare, D. Grass, V. Vuletić, N. Kiesel, and M. Aspelmeyer, “Cooling of a levitated nanoparticle to the motional quantum ground state,” Science 367, 892–895 (2020).
[Crossref]

Other (1)

L. Novotny and B. Hecht, Principles of Nano-Optics, 2nd ed. (Cambridge University, 2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. (a) Simplified experimental schematic, where an aspheric lens made of lanthanum flint glass (D-ZLaF52LA) is used to form an optical tweezer trap for levitation. The left inset shows the spectral profile of the input light. The right inset is a sketch of the potential profile that can be generated using the chromatic aberration of the trapping lens and the filtered spectral profile of the trapping light (see text for details). (b) Profiles produced by (i) a broadband light source with a linewidth of ${\approx} 28\;{\rm nm} $, (ii) a laser source of linewidth $0.10\;{\rm nm} $, and (iii) a filtered profile obtained from the broadband source (i). (c) The potential wells associated with the spectral profiles of part (b). The minima of all potential profiles have been set to zero for the purpose of comparison. (d) The potential landscape in the $x{-}z$ plane for intensity profile iii of part (b). The potential profile iii of part (c) is along the thick dashed black line. Contour lines are equipotentials. In calculating the potentials, we use a silica nanosphere of $R = 50\;{\rm nm} $, a trapping power of 300 mW at the entrance of the lens, a lens diameter of 5 mm, and a beam diameter of 8 mm at the entrance of the lens. The lens has a focal shift of 150 nm per nm change in the wavelength.
Fig. 2.
Fig. 2. Optical layout used for levitation. The labelled components are $\lambda /2$, half-wave plate; M, mirror; BS, beam splitter; PBS, polarizing beam splitter; D, balanced photodiode; and L, lens. Dotted lines around components denote parts that are used for some of the experiments. The inset shows the home-built notch filter, which consists of a beam block, a mirror, and two identical gratings mounted parallel to each other. The linewidth and the center wavelength of the notch filter can be tuned by changing the width and the position of the block. For parametric feedback using the SLD, signals from the balanced photodiodes are fed to phase-locked loops (PLL). The output of the PLL, with suitable attenuation, is used as the input to the SLD current controller. See main text for more details.
Fig. 3.
Fig. 3. Spectral profile of an unfiltered and unamplified superluminescent diode and a single-mode Nd:YAG laser. Note that the laser has a significantly narrower linewidth than shown here. This is due to the finite resolution ($0.10\;{\rm nm} $) of our spectrometer.
Fig. 4.
Fig. 4. Levitation using the superluminescent diode. (a) The power spectral density along the three principle axes: the $z$ axis represents the direction of light propagation, the $y$ axis is parallel to the direction of the electric-field ($E$) polarization, and the $x$ axis is perpendicular to the $E$-field polarization. (b) The normalized position histograms along the three axes obtained from the calibrated time traces. (c) The potential profiles derived from the position histograms. (d) Potential profiles along the three axes for the same particle used in parts (a)–(c) but under laser levitation. The frequency along the $z$ axis was purposely made equal to that under the SLD levitation, part (a). This experiment was performed at ${\approx} 2 \; {\rm mBar}$. The red solid lines in parts (c) and (d) are quadratic functions. See main text for details.
Fig. 5.
Fig. 5. Parametric feedback cooling using the SLD when no spectral filtering is in use. (a) Power spectral densities (PSD) along the three axes. The top graphs show PSDs at 5 mBar when no feedback is applied, while the bottom graphs are the PSDs under parametric feedback cooling at ${\approx} 9 \times {10^{- 6}} \; {\rm mBar}$. (b) The center-of-mass temperature along the three translational axes as a function of pressure under parametric feedback cooling.
Fig. 6.
Fig. 6. Nonlinear optical potential. (a) SLD intensity profile after spectral filtering using a notch filter. (b) Black dots are the experimental optical potential in unit of Kelvin. Experimental $U(z)$ has been obtained from the position histogram along the $z$ axis. The red solid line represents a quadratic function. The blue dashed line shows the simulation results obtained using the procedure outlined in Section 2 using the spectral profile of part (a), particle radius $R = 50\;{\rm nm} $, obtained from the linewidth measurement by transferring the particle to the laser beam [28] and a trapping power of 150 mW in the focus. The green line is a polynomial fit using $U(z) = {a_0} + {a_1}z + {a_2}{z^2} + \ldots + {a_9}{z^9}$, where ${a_i}$ are the fitting parameters and $z$ is in nanometer. The inset shows the left (L) and right (R) wells that correspond to the peaks at 1058 nm and 1070 nm [(part (a)] and their sum (blue dashed line). See main text for more details.

Metrics