Abstract

The cost and power consumption of optical transmitters are now hampering further increases in total transmission capacity within and between data centers. Photonic integrated circuits (PICs) based on silicon (Si) photonics with wavelength-division multiplexing (WDM) technologies are promising solutions. However, due to the inefficient light emission characteristics of Si, incorporating III-V compound semiconductor lasers into PICs via a heterogeneous integration scheme is desirable. In addition, optimizing the bandgap of the III-V material used for each laser in a WDM transmitter becomes important because of recent strict requirements for optical transmitters in terms of data speed and operating temperature. Given these circumstances, applying a direct-bonding scheme is very difficult because it requires multiple bonding steps to bond different-bandgap III-V materials that are individually grown on different wafers. Here, to achieve wideband WDM operation with a single wafer, we employ a selective area growth technique that allows us to control the bandgap of multi-quantum wells (MQWs) on a thin InP layer directly bonded to silicon (InP-on-insulator). The InP-on-insulator platform allows for epitaxial growth without the fundamental difficulties associated with lattice mismatch or antiphase boundaries. High crystal quality is achieved by keeping the total III-V layer thickness less than the critical thickness (430 nm) and compensating for the thermally induced strain in the MQWs. By carrying out one selective MQW growth, we successfully fabricated an eight-channel directly modulated membrane laser array with lasing wavelengths ranging from 1272.3 to 1310.5 nm. The fabricated lasers were directly modulated at 56-Gbit/s with pulse amplitude modulation with four-amplitude-level signal. This heterogeneous integration approach paves the way to establishing III-V/Si WDM-PICs for future data-center networks.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. R. H. Fuchs, E. J. Bruce, R. J. Ram, and R. E. Kirchain, “Process-based cost modeling of photonics manufacture: the cost competitiveness of monolithic integration of a 1550-nm DFB laser and an electroabsorptive modulator on an InP platform,” J. Lightwave Technol. 24, 3175–3186 (2006).
    [Crossref]
  2. T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on slicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11, 232–240 (2005).
    [Crossref]
  3. Y. Arakawa, T. Nakamura, Y. Urino, and T. Fujita, “Silicon photonics for next generation system integration platform,” IEEE Commun. Mag. 51(3), 72–77 (2013).
    [Crossref]
  4. D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. M. Fédéli, J. M. Hartmann, J. H. Schmid, D. X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
    [Crossref]
  5. D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97, 1166–1185 (2009).
    [Crossref]
  6. M. Sugo, H. Mori, M. Tachikawa, Y. Itoh, and M. Yamamoto, “Room-temperature operation of an InGaAsP double-heterostructure laser emitting at 1.55  µm on a Si substrate,” Appl. Phys. Lett. 57, 593–595 (1990).
    [Crossref]
  7. B. Shi, H. Zhao, L. Wang, B. Song, S. T. Suran Brunelli, and J. Klamkin, “Continuous-wave electrically pumped 1550  nm lasers epitaxially grown on on-axis (001) silicon,” Optica 6, 1507–1514 (2019).
    [Crossref]
  8. S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
    [Crossref]
  9. A. Y. Liu, J. Peters, X. Huang, D. Jung, J. Norman, M. L. Lee, A. C. Gossard, and J. E. Bowers, “Electrically pumped continuous-wave 1.3  µm quantum-dot lasers epitaxially grown on on-axis (001) GaP/Si,” Opt. Lett. 42, 338–341 (2017).
    [Crossref]
  10. H. Schmid, M. Borg, K. Moselund, L. Gignac, C. M. Breslin, J. Bruley, D. Cutaia, and H. Riel, “Template-assisted selective epitaxy of III-V nanoscale devices for co-planar heterogeneous integration with Si,” Appl. Phys. Lett. 106, 233101 (2015).
    [Crossref]
  11. L. Czornomaz, E. Uccelli, M. Sousa, V. Deshpande, V. Djara, D. Caimi, M. D. Rossell, R. Erni, and J. Fompeyrine, “Confined epitaxial lateral overgrowth (CELO): a novel concept for scalable integration of CMOS-compatible InGaAs-on-insulator MOSFETs on large-area Si substrates,” in Symposium on VLSI Technology (VLSI Technology) (2015), pp. T172–T173.
  12. Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9, 837–842 (2015).
    [Crossref]
  13. B. F. Mayer, S. Wirths, S. Mauthe, P. Staudinger, M. Sousa, J. Winiger, H. Schmid, and K. E. Moselund, “Microcavity lasers on silicon by template-assisted selective epitaxy of microsubstrates,” IEEE Photon. Technol. Lett. 31, 1021–1024 (2019).
    [Crossref]
  14. Y. Han, Z. Yan, W. K. Ng, Y. Xue, K. S. Wong, and K. M. Lau, “Bufferless 1.5  µm III-V lasers grown on Si-photonics 220  nm silicon-on-insulator platforms,” Optica 7, 148–153 (2020).
    [Crossref]
  15. K. Tanabe, K. Watanabe, and Y. Arakawa, “III-V/Si hybrid photonic devices by direct fusion bonding,” Sci. Rep. 2, 349 (2012).
    [Crossref]
  16. S. Matsuo, K. Tateno, T. Nakahara, H. Tsuda, and T. Kurokawa, “Use of polyimide bonding for hybrid integration of a vertical cavity surface emitting laser on a silicon substrate,” Electron. Lett. 33, 1148–1149 (1997).
    [Crossref]
  17. A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14, 9203–9210 (2006).
    [Crossref]
  18. T. Komljenovic, S. Srinivasan, E. Norberg, M. Davenport, G. Fish, and J. E. Bowers, “Widely tunable narrow-linewidth monolithically integrated external-cavity semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 21, 214–222 (2015).
    [Crossref]
  19. S. Keyvaninia, S. Verstuyft, L. Van Landschoot, F. Lelarge, G.-H. Duan, S. Messaoudene, J. M. Fedeli, T. De Vries, B. Smalbrugge, E. J. Geluk, J. Bolk, M. Smit, G. Morthier, D. Van Thourhout, and G. Roelkens, “Heterogeneously integrated III-V/silicon distributed feedback lasers,” Opt. Lett. 38, 5434 (2013).
    [Crossref]
  20. J. Zhang, B. Haq, J. O’Callaghan, A. Gocalinska, E. Pelucchi, A. J. Trindade, B. Corbett, G. Morthier, and G. Roelkens, “Transfer-printing-based integration of a III-V-on-silicon distributed feedback laser,” Opt. Express 26, 8821–8830 (2018).
    [Crossref]
  21. R. Loi, J. O’Callaghan, B. Roycroft, C. Robert, A. Fecioru, A. J. Trindade, A. Gocalinska, E. Pelucchi, C. A. Bower, and B. Corbett, “Transfer printing of AlGaInAs/InP etched facet lasers to Si substrates,” IEEE Photon. J. 8, 1504810 (2016).
    [Crossref]
  22. V. Cristofori, F. Da Ros, O. Ozolins, M. E. Chaibi, L. Bramerie, Y. Ding, X. Pang, A. Shen, A. Gallet, G. H. Duan, K. Hassan, S. Olivier, S. Popov, G. Jacobsen, L. K. Oxenløwe, and C. Peucheret, “25-Gb/s transmission over 2.5-km SSMF by silicon MRR enhanced 1.55-µm III-V/SOI DML,” IEEE Photon. Technol. Lett. 29, 960–963 (2017).
    [Crossref]
  23. E. Haglund, P. Westbergh, J. S. Gustavsson, E. P. Haglund, A. Larsson, M. Geen, and A. Joel, “30  GHz bandwidth 850  nm VCSEL with sub-100  fJ/bit energy dissipation at 25–50  Gbit/s,” Electron. Lett. 51, 1096–1098 (2015).
    [Crossref]
  24. D. M. Kuchta, A. V. Rylyakov, C. L. Schow, J. E. Proesel, C. W. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “A 50  Gb/s NRZ modulated 850  nm VCSEL transmitter operating error free to 90°C,” J. Lightwave Technol. 33, 802–810 (2015).
    [Crossref]
  25. A. Caliman, A. Mereuta, P. Wolf, A. Sirbu, V. Iakovlev, D. Bimberg, and E. Kapon, “25  Gbps direct modulation and 10  km data transmission with 1310  nm waveband wafer fused VCSELs,” Opt. Express 24, 16329–16335 (2016).
    [Crossref]
  26. S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13  fJ of energy consumed per bit transmitted,” Nat. Photonics 4, 648–654 (2010).
    [Crossref]
  27. T. Fujii, K. Takeda, N. P. Diamantopoulos, E. Kanno, K. Hasebe, H. Nishi, R. Nakao, T. Kakitsuka, and S. Matsuo, “Heterogeneously integrated membrane lasers on Si substrate for low operating energy optical links,” IEEE J. Sel. Top. Quantum Electron. 24, 1500408 (2018).
    [Crossref]
  28. S. Matsuo, T. Fujii, K. Hasebe, K. Takeda, T. Sato, and T. Kakitsuka, “Directly modulated buried heterostructure DFB laser on SiO2/Si substrate fabricated by regrowth of InP using bonded active layer,” Opt. Express 22, 12139–12147 (2014).
    [Crossref]
  29. H. Nishi, T. Fujii, K. Takeda, K. Hasebe, T. Kakitsuka, T. Tsuchizawa, T. Yamamoto, K. Yamada, and S. Matsuo, “Membrane distributed-reflector laser integrated with SiOx-based spot-size converter on Si substrate,” Opt. Express 24, 18346–18352 (2016).
    [Crossref]
  30. S. Matsuo and T. Kakitsuka, “Low-operating-energy directly modulated lasers for short-distance optical interconnects,” Adv. Opt. Photon. 10, 567–643 (2018).
    [Crossref]
  31. T. Fujii, T. Sato, K. Takeda, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Epitaxial growth of InP to bury directly bonded thin active layer on SiO2/Si substrate for fabricating distributed feedback lasers on silicon,” IET Optoelectron. 9, 151–157 (2015).
    [Crossref]
  32. “IEEE Standard for Ethernet–Amendment 10: Media Access Control Parameters, Physical Layers, and Management Parameters for 200  Gb/s and 400  Gb/s Operation,” IEEE 802.3 bs (2017).
  33. T. Fujii, H. Nishi, K. Takeda, E. Kanno, K. Hasebe, T. Kakitsuka, T. Yamamoto, H. Fukuda, T. Tsuchizawa, and S. Matsuo, “1.3-µm directly modulated membrane laser array employing epitaxial growth of InGaAlAs MQW on InP/SiO2/Si substrate,” in European Conference on Optical Communication (ECOC) (2016), paper Th3A.2.
  34. T. Sasaki, M. Kitamura, and I. Mito, “Selective metalorganic vapor phase epitaxial growth of InGaAsP/InP layers with bandgap energy control in InGaAs/InGaAsP multiple-quantum well structures,” J. Cryst. Growth 132, 435–443 (1993).
    [Crossref]
  35. K. Kudo, Y. Furushima, T. Nakazaki, and M. Yamaguchi, “Densely arrayed eight-wavelength semiconductor lasers fabricated by microarray selective epitaxy,” IEEE J. Sel. Top. Quantum Electron. 5, 428–434 (1999).
    [Crossref]
  36. A. A. Sirenko, A. Kazimirov, R. Huang, D. H. Bilderback, S. O’Malley, V. Gupta, K. Bacher, L. J. P. Ketelsen, and A. Ougazzaden, “Microbeam high-resolution x-ray diffraction in strained InGaAlAs-based multiple quantum well laser structures grown selectively on masked InP substrates,” J. Appl. Phys. 97, 063512 (2005).
    [Crossref]
  37. Y. Yoshikuni and G. Motosugi, “Multielectrode distributed feedback laser for pure frequency modulation and chirping suppressed amplitude modulation,” J. Lightwave Technol. 5, 516–522 (1987).
    [Crossref]
  38. Y. Matsui, R. Schatz, T. Pham, W. A. Ling, G. Carey, H. M. Daghighian, D. Adams, T. Sudo, and C. Roxlo, “55  GHz bandwidth distributed reflector laser,” J. Lightwave Technol. 35, 397–403 (2017).
    [Crossref]
  39. N.-P. Diamantopoulos, T. Fujii, H. Nishi, K. Takeda, T. Kakitsuka, and S. Matsuo, “Energy-efficient 100-Gbps PAM transmissions using a 1.3-µm membrane DML-on-silicon,” in Photonics in Switching and Computing (PSC) (2018).
  40. E. Yablonovitch, T. Gmitter, J. P. Harbison, and R. Bhat, “Extreme selectivity in the lift-off of epitaxial GaAs films,” Appl. Phys. Lett. 51, 2222–2224 (1987).
    [Crossref]
  41. B. Aspar, E. Jalaguier, A. Mas, C. Locatelli, O. Rayssac, H. Moriceau, S. Pocas, A. M. Papon, J. F. Michaud, and M. Bruel, “Smart-cut process using metallic bonding: application to transfer of Si, GaAs, InP thin films,” Electron. Lett. 35, 1024–1025 (1999).
    [Crossref]
  42. A. Fontcuberta i Morral, J. M. Zahler, H. A. Atwater, S. P. Ahrenkiel, and M. W. Wanlass, “InGaAs/InP double heterostructures on InP/Si templates fabricated by wafer bonding and hydrogen-induced exfoliation,” Appl. Phys. Lett. 83, 5413 (2003).
    [Crossref]
  43. T. Aihara, T. Hiraki, K. Takeda, T. Fujii, T. Kakitsuka, T. Tsuchizawa, and S. Matsuo, “Membrane buried-heterostructure DFB laser with an optically coupled III-V/Si waveguide,” Opt. Express 27, 36438–36448 (2019).
    [Crossref]
  44. K. Takeda, T. Fujii, A. Shinya, T. Tsuchizawa, H. Nishi, E. Kuramochi, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Si nanowire waveguide coupled current-driven photonic-crystal lasers,” in Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) (2017), Vol. 1185.

2020 (1)

2019 (3)

2018 (3)

2017 (3)

Y. Matsui, R. Schatz, T. Pham, W. A. Ling, G. Carey, H. M. Daghighian, D. Adams, T. Sudo, and C. Roxlo, “55  GHz bandwidth distributed reflector laser,” J. Lightwave Technol. 35, 397–403 (2017).
[Crossref]

V. Cristofori, F. Da Ros, O. Ozolins, M. E. Chaibi, L. Bramerie, Y. Ding, X. Pang, A. Shen, A. Gallet, G. H. Duan, K. Hassan, S. Olivier, S. Popov, G. Jacobsen, L. K. Oxenløwe, and C. Peucheret, “25-Gb/s transmission over 2.5-km SSMF by silicon MRR enhanced 1.55-µm III-V/SOI DML,” IEEE Photon. Technol. Lett. 29, 960–963 (2017).
[Crossref]

A. Y. Liu, J. Peters, X. Huang, D. Jung, J. Norman, M. L. Lee, A. C. Gossard, and J. E. Bowers, “Electrically pumped continuous-wave 1.3  µm quantum-dot lasers epitaxially grown on on-axis (001) GaP/Si,” Opt. Lett. 42, 338–341 (2017).
[Crossref]

2016 (5)

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. M. Fédéli, J. M. Hartmann, J. H. Schmid, D. X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

R. Loi, J. O’Callaghan, B. Roycroft, C. Robert, A. Fecioru, A. J. Trindade, A. Gocalinska, E. Pelucchi, C. A. Bower, and B. Corbett, “Transfer printing of AlGaInAs/InP etched facet lasers to Si substrates,” IEEE Photon. J. 8, 1504810 (2016).
[Crossref]

A. Caliman, A. Mereuta, P. Wolf, A. Sirbu, V. Iakovlev, D. Bimberg, and E. Kapon, “25  Gbps direct modulation and 10  km data transmission with 1310  nm waveband wafer fused VCSELs,” Opt. Express 24, 16329–16335 (2016).
[Crossref]

H. Nishi, T. Fujii, K. Takeda, K. Hasebe, T. Kakitsuka, T. Tsuchizawa, T. Yamamoto, K. Yamada, and S. Matsuo, “Membrane distributed-reflector laser integrated with SiOx-based spot-size converter on Si substrate,” Opt. Express 24, 18346–18352 (2016).
[Crossref]

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

2015 (6)

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9, 837–842 (2015).
[Crossref]

E. Haglund, P. Westbergh, J. S. Gustavsson, E. P. Haglund, A. Larsson, M. Geen, and A. Joel, “30  GHz bandwidth 850  nm VCSEL with sub-100  fJ/bit energy dissipation at 25–50  Gbit/s,” Electron. Lett. 51, 1096–1098 (2015).
[Crossref]

T. Komljenovic, S. Srinivasan, E. Norberg, M. Davenport, G. Fish, and J. E. Bowers, “Widely tunable narrow-linewidth monolithically integrated external-cavity semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 21, 214–222 (2015).
[Crossref]

D. M. Kuchta, A. V. Rylyakov, C. L. Schow, J. E. Proesel, C. W. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “A 50  Gb/s NRZ modulated 850  nm VCSEL transmitter operating error free to 90°C,” J. Lightwave Technol. 33, 802–810 (2015).
[Crossref]

T. Fujii, T. Sato, K. Takeda, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Epitaxial growth of InP to bury directly bonded thin active layer on SiO2/Si substrate for fabricating distributed feedback lasers on silicon,” IET Optoelectron. 9, 151–157 (2015).
[Crossref]

H. Schmid, M. Borg, K. Moselund, L. Gignac, C. M. Breslin, J. Bruley, D. Cutaia, and H. Riel, “Template-assisted selective epitaxy of III-V nanoscale devices for co-planar heterogeneous integration with Si,” Appl. Phys. Lett. 106, 233101 (2015).
[Crossref]

2014 (1)

2013 (2)

2012 (1)

K. Tanabe, K. Watanabe, and Y. Arakawa, “III-V/Si hybrid photonic devices by direct fusion bonding,” Sci. Rep. 2, 349 (2012).
[Crossref]

2010 (1)

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13  fJ of energy consumed per bit transmitted,” Nat. Photonics 4, 648–654 (2010).
[Crossref]

2009 (1)

D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97, 1166–1185 (2009).
[Crossref]

2006 (2)

2005 (2)

A. A. Sirenko, A. Kazimirov, R. Huang, D. H. Bilderback, S. O’Malley, V. Gupta, K. Bacher, L. J. P. Ketelsen, and A. Ougazzaden, “Microbeam high-resolution x-ray diffraction in strained InGaAlAs-based multiple quantum well laser structures grown selectively on masked InP substrates,” J. Appl. Phys. 97, 063512 (2005).
[Crossref]

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on slicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11, 232–240 (2005).
[Crossref]

2003 (1)

A. Fontcuberta i Morral, J. M. Zahler, H. A. Atwater, S. P. Ahrenkiel, and M. W. Wanlass, “InGaAs/InP double heterostructures on InP/Si templates fabricated by wafer bonding and hydrogen-induced exfoliation,” Appl. Phys. Lett. 83, 5413 (2003).
[Crossref]

1999 (2)

K. Kudo, Y. Furushima, T. Nakazaki, and M. Yamaguchi, “Densely arrayed eight-wavelength semiconductor lasers fabricated by microarray selective epitaxy,” IEEE J. Sel. Top. Quantum Electron. 5, 428–434 (1999).
[Crossref]

B. Aspar, E. Jalaguier, A. Mas, C. Locatelli, O. Rayssac, H. Moriceau, S. Pocas, A. M. Papon, J. F. Michaud, and M. Bruel, “Smart-cut process using metallic bonding: application to transfer of Si, GaAs, InP thin films,” Electron. Lett. 35, 1024–1025 (1999).
[Crossref]

1997 (1)

S. Matsuo, K. Tateno, T. Nakahara, H. Tsuda, and T. Kurokawa, “Use of polyimide bonding for hybrid integration of a vertical cavity surface emitting laser on a silicon substrate,” Electron. Lett. 33, 1148–1149 (1997).
[Crossref]

1993 (1)

T. Sasaki, M. Kitamura, and I. Mito, “Selective metalorganic vapor phase epitaxial growth of InGaAsP/InP layers with bandgap energy control in InGaAs/InGaAsP multiple-quantum well structures,” J. Cryst. Growth 132, 435–443 (1993).
[Crossref]

1990 (1)

M. Sugo, H. Mori, M. Tachikawa, Y. Itoh, and M. Yamamoto, “Room-temperature operation of an InGaAsP double-heterostructure laser emitting at 1.55  µm on a Si substrate,” Appl. Phys. Lett. 57, 593–595 (1990).
[Crossref]

1987 (2)

E. Yablonovitch, T. Gmitter, J. P. Harbison, and R. Bhat, “Extreme selectivity in the lift-off of epitaxial GaAs films,” Appl. Phys. Lett. 51, 2222–2224 (1987).
[Crossref]

Y. Yoshikuni and G. Motosugi, “Multielectrode distributed feedback laser for pure frequency modulation and chirping suppressed amplitude modulation,” J. Lightwave Technol. 5, 516–522 (1987).
[Crossref]

Absil, P.

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9, 837–842 (2015).
[Crossref]

Adams, D.

Ahrenkiel, S. P.

A. Fontcuberta i Morral, J. M. Zahler, H. A. Atwater, S. P. Ahrenkiel, and M. W. Wanlass, “InGaAs/InP double heterostructures on InP/Si templates fabricated by wafer bonding and hydrogen-induced exfoliation,” Appl. Phys. Lett. 83, 5413 (2003).
[Crossref]

Aihara, T.

Arakawa, Y.

Y. Arakawa, T. Nakamura, Y. Urino, and T. Fujita, “Silicon photonics for next generation system integration platform,” IEEE Commun. Mag. 51(3), 72–77 (2013).
[Crossref]

K. Tanabe, K. Watanabe, and Y. Arakawa, “III-V/Si hybrid photonic devices by direct fusion bonding,” Sci. Rep. 2, 349 (2012).
[Crossref]

Aspar, B.

B. Aspar, E. Jalaguier, A. Mas, C. Locatelli, O. Rayssac, H. Moriceau, S. Pocas, A. M. Papon, J. F. Michaud, and M. Bruel, “Smart-cut process using metallic bonding: application to transfer of Si, GaAs, InP thin films,” Electron. Lett. 35, 1024–1025 (1999).
[Crossref]

Atwater, H. A.

A. Fontcuberta i Morral, J. M. Zahler, H. A. Atwater, S. P. Ahrenkiel, and M. W. Wanlass, “InGaAs/InP double heterostructures on InP/Si templates fabricated by wafer bonding and hydrogen-induced exfoliation,” Appl. Phys. Lett. 83, 5413 (2003).
[Crossref]

Bacher, K.

A. A. Sirenko, A. Kazimirov, R. Huang, D. H. Bilderback, S. O’Malley, V. Gupta, K. Bacher, L. J. P. Ketelsen, and A. Ougazzaden, “Microbeam high-resolution x-ray diffraction in strained InGaAlAs-based multiple quantum well laser structures grown selectively on masked InP substrates,” J. Appl. Phys. 97, 063512 (2005).
[Crossref]

Baks, C. W.

Bhat, R.

E. Yablonovitch, T. Gmitter, J. P. Harbison, and R. Bhat, “Extreme selectivity in the lift-off of epitaxial GaAs films,” Appl. Phys. Lett. 51, 2222–2224 (1987).
[Crossref]

Bilderback, D. H.

A. A. Sirenko, A. Kazimirov, R. Huang, D. H. Bilderback, S. O’Malley, V. Gupta, K. Bacher, L. J. P. Ketelsen, and A. Ougazzaden, “Microbeam high-resolution x-ray diffraction in strained InGaAlAs-based multiple quantum well laser structures grown selectively on masked InP substrates,” J. Appl. Phys. 97, 063512 (2005).
[Crossref]

Bimberg, D.

Boeuf, F.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. M. Fédéli, J. M. Hartmann, J. H. Schmid, D. X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

Bolk, J.

Borg, M.

H. Schmid, M. Borg, K. Moselund, L. Gignac, C. M. Breslin, J. Bruley, D. Cutaia, and H. Riel, “Template-assisted selective epitaxy of III-V nanoscale devices for co-planar heterogeneous integration with Si,” Appl. Phys. Lett. 106, 233101 (2015).
[Crossref]

Bower, C. A.

R. Loi, J. O’Callaghan, B. Roycroft, C. Robert, A. Fecioru, A. J. Trindade, A. Gocalinska, E. Pelucchi, C. A. Bower, and B. Corbett, “Transfer printing of AlGaInAs/InP etched facet lasers to Si substrates,” IEEE Photon. J. 8, 1504810 (2016).
[Crossref]

Bowers, J. E.

A. Y. Liu, J. Peters, X. Huang, D. Jung, J. Norman, M. L. Lee, A. C. Gossard, and J. E. Bowers, “Electrically pumped continuous-wave 1.3  µm quantum-dot lasers epitaxially grown on on-axis (001) GaP/Si,” Opt. Lett. 42, 338–341 (2017).
[Crossref]

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. M. Fédéli, J. M. Hartmann, J. H. Schmid, D. X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

T. Komljenovic, S. Srinivasan, E. Norberg, M. Davenport, G. Fish, and J. E. Bowers, “Widely tunable narrow-linewidth monolithically integrated external-cavity semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 21, 214–222 (2015).
[Crossref]

A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14, 9203–9210 (2006).
[Crossref]

Bramerie, L.

V. Cristofori, F. Da Ros, O. Ozolins, M. E. Chaibi, L. Bramerie, Y. Ding, X. Pang, A. Shen, A. Gallet, G. H. Duan, K. Hassan, S. Olivier, S. Popov, G. Jacobsen, L. K. Oxenløwe, and C. Peucheret, “25-Gb/s transmission over 2.5-km SSMF by silicon MRR enhanced 1.55-µm III-V/SOI DML,” IEEE Photon. Technol. Lett. 29, 960–963 (2017).
[Crossref]

Breslin, C. M.

H. Schmid, M. Borg, K. Moselund, L. Gignac, C. M. Breslin, J. Bruley, D. Cutaia, and H. Riel, “Template-assisted selective epitaxy of III-V nanoscale devices for co-planar heterogeneous integration with Si,” Appl. Phys. Lett. 106, 233101 (2015).
[Crossref]

Bruce, E. J.

Bruel, M.

B. Aspar, E. Jalaguier, A. Mas, C. Locatelli, O. Rayssac, H. Moriceau, S. Pocas, A. M. Papon, J. F. Michaud, and M. Bruel, “Smart-cut process using metallic bonding: application to transfer of Si, GaAs, InP thin films,” Electron. Lett. 35, 1024–1025 (1999).
[Crossref]

Bruley, J.

H. Schmid, M. Borg, K. Moselund, L. Gignac, C. M. Breslin, J. Bruley, D. Cutaia, and H. Riel, “Template-assisted selective epitaxy of III-V nanoscale devices for co-planar heterogeneous integration with Si,” Appl. Phys. Lett. 106, 233101 (2015).
[Crossref]

Caimi, D.

L. Czornomaz, E. Uccelli, M. Sousa, V. Deshpande, V. Djara, D. Caimi, M. D. Rossell, R. Erni, and J. Fompeyrine, “Confined epitaxial lateral overgrowth (CELO): a novel concept for scalable integration of CMOS-compatible InGaAs-on-insulator MOSFETs on large-area Si substrates,” in Symposium on VLSI Technology (VLSI Technology) (2015), pp. T172–T173.

Caliman, A.

Carey, G.

Cassan, E.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. M. Fédéli, J. M. Hartmann, J. H. Schmid, D. X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

Chaibi, M. E.

V. Cristofori, F. Da Ros, O. Ozolins, M. E. Chaibi, L. Bramerie, Y. Ding, X. Pang, A. Shen, A. Gallet, G. H. Duan, K. Hassan, S. Olivier, S. Popov, G. Jacobsen, L. K. Oxenløwe, and C. Peucheret, “25-Gb/s transmission over 2.5-km SSMF by silicon MRR enhanced 1.55-µm III-V/SOI DML,” IEEE Photon. Technol. Lett. 29, 960–963 (2017).
[Crossref]

Chen, S.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Cohen, O.

Corbett, B.

J. Zhang, B. Haq, J. O’Callaghan, A. Gocalinska, E. Pelucchi, A. J. Trindade, B. Corbett, G. Morthier, and G. Roelkens, “Transfer-printing-based integration of a III-V-on-silicon distributed feedback laser,” Opt. Express 26, 8821–8830 (2018).
[Crossref]

R. Loi, J. O’Callaghan, B. Roycroft, C. Robert, A. Fecioru, A. J. Trindade, A. Gocalinska, E. Pelucchi, C. A. Bower, and B. Corbett, “Transfer printing of AlGaInAs/InP etched facet lasers to Si substrates,” IEEE Photon. J. 8, 1504810 (2016).
[Crossref]

Cristofori, V.

V. Cristofori, F. Da Ros, O. Ozolins, M. E. Chaibi, L. Bramerie, Y. Ding, X. Pang, A. Shen, A. Gallet, G. H. Duan, K. Hassan, S. Olivier, S. Popov, G. Jacobsen, L. K. Oxenløwe, and C. Peucheret, “25-Gb/s transmission over 2.5-km SSMF by silicon MRR enhanced 1.55-µm III-V/SOI DML,” IEEE Photon. Technol. Lett. 29, 960–963 (2017).
[Crossref]

Cutaia, D.

H. Schmid, M. Borg, K. Moselund, L. Gignac, C. M. Breslin, J. Bruley, D. Cutaia, and H. Riel, “Template-assisted selective epitaxy of III-V nanoscale devices for co-planar heterogeneous integration with Si,” Appl. Phys. Lett. 106, 233101 (2015).
[Crossref]

Czornomaz, L.

L. Czornomaz, E. Uccelli, M. Sousa, V. Deshpande, V. Djara, D. Caimi, M. D. Rossell, R. Erni, and J. Fompeyrine, “Confined epitaxial lateral overgrowth (CELO): a novel concept for scalable integration of CMOS-compatible InGaAs-on-insulator MOSFETs on large-area Si substrates,” in Symposium on VLSI Technology (VLSI Technology) (2015), pp. T172–T173.

Da Ros, F.

V. Cristofori, F. Da Ros, O. Ozolins, M. E. Chaibi, L. Bramerie, Y. Ding, X. Pang, A. Shen, A. Gallet, G. H. Duan, K. Hassan, S. Olivier, S. Popov, G. Jacobsen, L. K. Oxenløwe, and C. Peucheret, “25-Gb/s transmission over 2.5-km SSMF by silicon MRR enhanced 1.55-µm III-V/SOI DML,” IEEE Photon. Technol. Lett. 29, 960–963 (2017).
[Crossref]

Daghighian, H. M.

Davenport, M.

T. Komljenovic, S. Srinivasan, E. Norberg, M. Davenport, G. Fish, and J. E. Bowers, “Widely tunable narrow-linewidth monolithically integrated external-cavity semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 21, 214–222 (2015).
[Crossref]

De Vries, T.

Deshpande, V.

L. Czornomaz, E. Uccelli, M. Sousa, V. Deshpande, V. Djara, D. Caimi, M. D. Rossell, R. Erni, and J. Fompeyrine, “Confined epitaxial lateral overgrowth (CELO): a novel concept for scalable integration of CMOS-compatible InGaAs-on-insulator MOSFETs on large-area Si substrates,” in Symposium on VLSI Technology (VLSI Technology) (2015), pp. T172–T173.

Diamantopoulos, N. P.

T. Fujii, K. Takeda, N. P. Diamantopoulos, E. Kanno, K. Hasebe, H. Nishi, R. Nakao, T. Kakitsuka, and S. Matsuo, “Heterogeneously integrated membrane lasers on Si substrate for low operating energy optical links,” IEEE J. Sel. Top. Quantum Electron. 24, 1500408 (2018).
[Crossref]

Diamantopoulos, N.-P.

N.-P. Diamantopoulos, T. Fujii, H. Nishi, K. Takeda, T. Kakitsuka, and S. Matsuo, “Energy-efficient 100-Gbps PAM transmissions using a 1.3-µm membrane DML-on-silicon,” in Photonics in Switching and Computing (PSC) (2018).

Ding, Y.

V. Cristofori, F. Da Ros, O. Ozolins, M. E. Chaibi, L. Bramerie, Y. Ding, X. Pang, A. Shen, A. Gallet, G. H. Duan, K. Hassan, S. Olivier, S. Popov, G. Jacobsen, L. K. Oxenløwe, and C. Peucheret, “25-Gb/s transmission over 2.5-km SSMF by silicon MRR enhanced 1.55-µm III-V/SOI DML,” IEEE Photon. Technol. Lett. 29, 960–963 (2017).
[Crossref]

Djara, V.

L. Czornomaz, E. Uccelli, M. Sousa, V. Deshpande, V. Djara, D. Caimi, M. D. Rossell, R. Erni, and J. Fompeyrine, “Confined epitaxial lateral overgrowth (CELO): a novel concept for scalable integration of CMOS-compatible InGaAs-on-insulator MOSFETs on large-area Si substrates,” in Symposium on VLSI Technology (VLSI Technology) (2015), pp. T172–T173.

Duan, G. H.

V. Cristofori, F. Da Ros, O. Ozolins, M. E. Chaibi, L. Bramerie, Y. Ding, X. Pang, A. Shen, A. Gallet, G. H. Duan, K. Hassan, S. Olivier, S. Popov, G. Jacobsen, L. K. Oxenløwe, and C. Peucheret, “25-Gb/s transmission over 2.5-km SSMF by silicon MRR enhanced 1.55-µm III-V/SOI DML,” IEEE Photon. Technol. Lett. 29, 960–963 (2017).
[Crossref]

Duan, G.-H.

Elliott, S. N.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Erni, R.

L. Czornomaz, E. Uccelli, M. Sousa, V. Deshpande, V. Djara, D. Caimi, M. D. Rossell, R. Erni, and J. Fompeyrine, “Confined epitaxial lateral overgrowth (CELO): a novel concept for scalable integration of CMOS-compatible InGaAs-on-insulator MOSFETs on large-area Si substrates,” in Symposium on VLSI Technology (VLSI Technology) (2015), pp. T172–T173.

Fang, A. W.

Fecioru, A.

R. Loi, J. O’Callaghan, B. Roycroft, C. Robert, A. Fecioru, A. J. Trindade, A. Gocalinska, E. Pelucchi, C. A. Bower, and B. Corbett, “Transfer printing of AlGaInAs/InP etched facet lasers to Si substrates,” IEEE Photon. J. 8, 1504810 (2016).
[Crossref]

Fedeli, J. M.

Fédéli, J. M.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. M. Fédéli, J. M. Hartmann, J. H. Schmid, D. X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

Fish, G.

T. Komljenovic, S. Srinivasan, E. Norberg, M. Davenport, G. Fish, and J. E. Bowers, “Widely tunable narrow-linewidth monolithically integrated external-cavity semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 21, 214–222 (2015).
[Crossref]

Fompeyrine, J.

L. Czornomaz, E. Uccelli, M. Sousa, V. Deshpande, V. Djara, D. Caimi, M. D. Rossell, R. Erni, and J. Fompeyrine, “Confined epitaxial lateral overgrowth (CELO): a novel concept for scalable integration of CMOS-compatible InGaAs-on-insulator MOSFETs on large-area Si substrates,” in Symposium on VLSI Technology (VLSI Technology) (2015), pp. T172–T173.

Fontcuberta i Morral, A.

A. Fontcuberta i Morral, J. M. Zahler, H. A. Atwater, S. P. Ahrenkiel, and M. W. Wanlass, “InGaAs/InP double heterostructures on InP/Si templates fabricated by wafer bonding and hydrogen-induced exfoliation,” Appl. Phys. Lett. 83, 5413 (2003).
[Crossref]

Fuchs, E. R. H.

Fujii, T.

T. Aihara, T. Hiraki, K. Takeda, T. Fujii, T. Kakitsuka, T. Tsuchizawa, and S. Matsuo, “Membrane buried-heterostructure DFB laser with an optically coupled III-V/Si waveguide,” Opt. Express 27, 36438–36448 (2019).
[Crossref]

T. Fujii, K. Takeda, N. P. Diamantopoulos, E. Kanno, K. Hasebe, H. Nishi, R. Nakao, T. Kakitsuka, and S. Matsuo, “Heterogeneously integrated membrane lasers on Si substrate for low operating energy optical links,” IEEE J. Sel. Top. Quantum Electron. 24, 1500408 (2018).
[Crossref]

H. Nishi, T. Fujii, K. Takeda, K. Hasebe, T. Kakitsuka, T. Tsuchizawa, T. Yamamoto, K. Yamada, and S. Matsuo, “Membrane distributed-reflector laser integrated with SiOx-based spot-size converter on Si substrate,” Opt. Express 24, 18346–18352 (2016).
[Crossref]

T. Fujii, T. Sato, K. Takeda, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Epitaxial growth of InP to bury directly bonded thin active layer on SiO2/Si substrate for fabricating distributed feedback lasers on silicon,” IET Optoelectron. 9, 151–157 (2015).
[Crossref]

S. Matsuo, T. Fujii, K. Hasebe, K. Takeda, T. Sato, and T. Kakitsuka, “Directly modulated buried heterostructure DFB laser on SiO2/Si substrate fabricated by regrowth of InP using bonded active layer,” Opt. Express 22, 12139–12147 (2014).
[Crossref]

T. Fujii, H. Nishi, K. Takeda, E. Kanno, K. Hasebe, T. Kakitsuka, T. Yamamoto, H. Fukuda, T. Tsuchizawa, and S. Matsuo, “1.3-µm directly modulated membrane laser array employing epitaxial growth of InGaAlAs MQW on InP/SiO2/Si substrate,” in European Conference on Optical Communication (ECOC) (2016), paper Th3A.2.

N.-P. Diamantopoulos, T. Fujii, H. Nishi, K. Takeda, T. Kakitsuka, and S. Matsuo, “Energy-efficient 100-Gbps PAM transmissions using a 1.3-µm membrane DML-on-silicon,” in Photonics in Switching and Computing (PSC) (2018).

K. Takeda, T. Fujii, A. Shinya, T. Tsuchizawa, H. Nishi, E. Kuramochi, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Si nanowire waveguide coupled current-driven photonic-crystal lasers,” in Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) (2017), Vol. 1185.

Fujita, T.

Y. Arakawa, T. Nakamura, Y. Urino, and T. Fujita, “Silicon photonics for next generation system integration platform,” IEEE Commun. Mag. 51(3), 72–77 (2013).
[Crossref]

Fukuda, H.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on slicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11, 232–240 (2005).
[Crossref]

T. Fujii, H. Nishi, K. Takeda, E. Kanno, K. Hasebe, T. Kakitsuka, T. Yamamoto, H. Fukuda, T. Tsuchizawa, and S. Matsuo, “1.3-µm directly modulated membrane laser array employing epitaxial growth of InGaAlAs MQW on InP/SiO2/Si substrate,” in European Conference on Optical Communication (ECOC) (2016), paper Th3A.2.

Furushima, Y.

K. Kudo, Y. Furushima, T. Nakazaki, and M. Yamaguchi, “Densely arrayed eight-wavelength semiconductor lasers fabricated by microarray selective epitaxy,” IEEE J. Sel. Top. Quantum Electron. 5, 428–434 (1999).
[Crossref]

Gallet, A.

V. Cristofori, F. Da Ros, O. Ozolins, M. E. Chaibi, L. Bramerie, Y. Ding, X. Pang, A. Shen, A. Gallet, G. H. Duan, K. Hassan, S. Olivier, S. Popov, G. Jacobsen, L. K. Oxenløwe, and C. Peucheret, “25-Gb/s transmission over 2.5-km SSMF by silicon MRR enhanced 1.55-µm III-V/SOI DML,” IEEE Photon. Technol. Lett. 29, 960–963 (2017).
[Crossref]

Geen, M.

E. Haglund, P. Westbergh, J. S. Gustavsson, E. P. Haglund, A. Larsson, M. Geen, and A. Joel, “30  GHz bandwidth 850  nm VCSEL with sub-100  fJ/bit energy dissipation at 25–50  Gbit/s,” Electron. Lett. 51, 1096–1098 (2015).
[Crossref]

Geluk, E. J.

Gignac, L.

H. Schmid, M. Borg, K. Moselund, L. Gignac, C. M. Breslin, J. Bruley, D. Cutaia, and H. Riel, “Template-assisted selective epitaxy of III-V nanoscale devices for co-planar heterogeneous integration with Si,” Appl. Phys. Lett. 106, 233101 (2015).
[Crossref]

Gmitter, T.

E. Yablonovitch, T. Gmitter, J. P. Harbison, and R. Bhat, “Extreme selectivity in the lift-off of epitaxial GaAs films,” Appl. Phys. Lett. 51, 2222–2224 (1987).
[Crossref]

Gocalinska, A.

J. Zhang, B. Haq, J. O’Callaghan, A. Gocalinska, E. Pelucchi, A. J. Trindade, B. Corbett, G. Morthier, and G. Roelkens, “Transfer-printing-based integration of a III-V-on-silicon distributed feedback laser,” Opt. Express 26, 8821–8830 (2018).
[Crossref]

R. Loi, J. O’Callaghan, B. Roycroft, C. Robert, A. Fecioru, A. J. Trindade, A. Gocalinska, E. Pelucchi, C. A. Bower, and B. Corbett, “Transfer printing of AlGaInAs/InP etched facet lasers to Si substrates,” IEEE Photon. J. 8, 1504810 (2016).
[Crossref]

Gossard, A. C.

Guo, W.

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9, 837–842 (2015).
[Crossref]

Gupta, V.

A. A. Sirenko, A. Kazimirov, R. Huang, D. H. Bilderback, S. O’Malley, V. Gupta, K. Bacher, L. J. P. Ketelsen, and A. Ougazzaden, “Microbeam high-resolution x-ray diffraction in strained InGaAlAs-based multiple quantum well laser structures grown selectively on masked InP substrates,” J. Appl. Phys. 97, 063512 (2005).
[Crossref]

Gustavsson, J. S.

E. Haglund, P. Westbergh, J. S. Gustavsson, E. P. Haglund, A. Larsson, M. Geen, and A. Joel, “30  GHz bandwidth 850  nm VCSEL with sub-100  fJ/bit energy dissipation at 25–50  Gbit/s,” Electron. Lett. 51, 1096–1098 (2015).
[Crossref]

D. M. Kuchta, A. V. Rylyakov, C. L. Schow, J. E. Proesel, C. W. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “A 50  Gb/s NRZ modulated 850  nm VCSEL transmitter operating error free to 90°C,” J. Lightwave Technol. 33, 802–810 (2015).
[Crossref]

Haglund, E.

E. Haglund, P. Westbergh, J. S. Gustavsson, E. P. Haglund, A. Larsson, M. Geen, and A. Joel, “30  GHz bandwidth 850  nm VCSEL with sub-100  fJ/bit energy dissipation at 25–50  Gbit/s,” Electron. Lett. 51, 1096–1098 (2015).
[Crossref]

Haglund, E. P.

E. Haglund, P. Westbergh, J. S. Gustavsson, E. P. Haglund, A. Larsson, M. Geen, and A. Joel, “30  GHz bandwidth 850  nm VCSEL with sub-100  fJ/bit energy dissipation at 25–50  Gbit/s,” Electron. Lett. 51, 1096–1098 (2015).
[Crossref]

Han, Y.

Haq, B.

Harbison, J. P.

E. Yablonovitch, T. Gmitter, J. P. Harbison, and R. Bhat, “Extreme selectivity in the lift-off of epitaxial GaAs films,” Appl. Phys. Lett. 51, 2222–2224 (1987).
[Crossref]

Hartmann, J. M.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. M. Fédéli, J. M. Hartmann, J. H. Schmid, D. X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

Hasebe, K.

T. Fujii, K. Takeda, N. P. Diamantopoulos, E. Kanno, K. Hasebe, H. Nishi, R. Nakao, T. Kakitsuka, and S. Matsuo, “Heterogeneously integrated membrane lasers on Si substrate for low operating energy optical links,” IEEE J. Sel. Top. Quantum Electron. 24, 1500408 (2018).
[Crossref]

H. Nishi, T. Fujii, K. Takeda, K. Hasebe, T. Kakitsuka, T. Tsuchizawa, T. Yamamoto, K. Yamada, and S. Matsuo, “Membrane distributed-reflector laser integrated with SiOx-based spot-size converter on Si substrate,” Opt. Express 24, 18346–18352 (2016).
[Crossref]

T. Fujii, T. Sato, K. Takeda, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Epitaxial growth of InP to bury directly bonded thin active layer on SiO2/Si substrate for fabricating distributed feedback lasers on silicon,” IET Optoelectron. 9, 151–157 (2015).
[Crossref]

S. Matsuo, T. Fujii, K. Hasebe, K. Takeda, T. Sato, and T. Kakitsuka, “Directly modulated buried heterostructure DFB laser on SiO2/Si substrate fabricated by regrowth of InP using bonded active layer,” Opt. Express 22, 12139–12147 (2014).
[Crossref]

T. Fujii, H. Nishi, K. Takeda, E. Kanno, K. Hasebe, T. Kakitsuka, T. Yamamoto, H. Fukuda, T. Tsuchizawa, and S. Matsuo, “1.3-µm directly modulated membrane laser array employing epitaxial growth of InGaAlAs MQW on InP/SiO2/Si substrate,” in European Conference on Optical Communication (ECOC) (2016), paper Th3A.2.

K. Takeda, T. Fujii, A. Shinya, T. Tsuchizawa, H. Nishi, E. Kuramochi, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Si nanowire waveguide coupled current-driven photonic-crystal lasers,” in Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) (2017), Vol. 1185.

Hassan, K.

V. Cristofori, F. Da Ros, O. Ozolins, M. E. Chaibi, L. Bramerie, Y. Ding, X. Pang, A. Shen, A. Gallet, G. H. Duan, K. Hassan, S. Olivier, S. Popov, G. Jacobsen, L. K. Oxenløwe, and C. Peucheret, “25-Gb/s transmission over 2.5-km SSMF by silicon MRR enhanced 1.55-µm III-V/SOI DML,” IEEE Photon. Technol. Lett. 29, 960–963 (2017).
[Crossref]

Hiraki, T.

Huang, R.

A. A. Sirenko, A. Kazimirov, R. Huang, D. H. Bilderback, S. O’Malley, V. Gupta, K. Bacher, L. J. P. Ketelsen, and A. Ougazzaden, “Microbeam high-resolution x-ray diffraction in strained InGaAlAs-based multiple quantum well laser structures grown selectively on masked InP substrates,” J. Appl. Phys. 97, 063512 (2005).
[Crossref]

Huang, X.

Iakovlev, V.

Itabashi, S.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on slicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11, 232–240 (2005).
[Crossref]

Itoh, Y.

M. Sugo, H. Mori, M. Tachikawa, Y. Itoh, and M. Yamamoto, “Room-temperature operation of an InGaAsP double-heterostructure laser emitting at 1.55  µm on a Si substrate,” Appl. Phys. Lett. 57, 593–595 (1990).
[Crossref]

Jacobsen, G.

V. Cristofori, F. Da Ros, O. Ozolins, M. E. Chaibi, L. Bramerie, Y. Ding, X. Pang, A. Shen, A. Gallet, G. H. Duan, K. Hassan, S. Olivier, S. Popov, G. Jacobsen, L. K. Oxenløwe, and C. Peucheret, “25-Gb/s transmission over 2.5-km SSMF by silicon MRR enhanced 1.55-µm III-V/SOI DML,” IEEE Photon. Technol. Lett. 29, 960–963 (2017).
[Crossref]

Jalaguier, E.

B. Aspar, E. Jalaguier, A. Mas, C. Locatelli, O. Rayssac, H. Moriceau, S. Pocas, A. M. Papon, J. F. Michaud, and M. Bruel, “Smart-cut process using metallic bonding: application to transfer of Si, GaAs, InP thin films,” Electron. Lett. 35, 1024–1025 (1999).
[Crossref]

Jiang, Q.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Joel, A.

E. Haglund, P. Westbergh, J. S. Gustavsson, E. P. Haglund, A. Larsson, M. Geen, and A. Joel, “30  GHz bandwidth 850  nm VCSEL with sub-100  fJ/bit energy dissipation at 25–50  Gbit/s,” Electron. Lett. 51, 1096–1098 (2015).
[Crossref]

Jones, R.

Jung, D.

Kakitsuka, T.

T. Aihara, T. Hiraki, K. Takeda, T. Fujii, T. Kakitsuka, T. Tsuchizawa, and S. Matsuo, “Membrane buried-heterostructure DFB laser with an optically coupled III-V/Si waveguide,” Opt. Express 27, 36438–36448 (2019).
[Crossref]

S. Matsuo and T. Kakitsuka, “Low-operating-energy directly modulated lasers for short-distance optical interconnects,” Adv. Opt. Photon. 10, 567–643 (2018).
[Crossref]

T. Fujii, K. Takeda, N. P. Diamantopoulos, E. Kanno, K. Hasebe, H. Nishi, R. Nakao, T. Kakitsuka, and S. Matsuo, “Heterogeneously integrated membrane lasers on Si substrate for low operating energy optical links,” IEEE J. Sel. Top. Quantum Electron. 24, 1500408 (2018).
[Crossref]

H. Nishi, T. Fujii, K. Takeda, K. Hasebe, T. Kakitsuka, T. Tsuchizawa, T. Yamamoto, K. Yamada, and S. Matsuo, “Membrane distributed-reflector laser integrated with SiOx-based spot-size converter on Si substrate,” Opt. Express 24, 18346–18352 (2016).
[Crossref]

T. Fujii, T. Sato, K. Takeda, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Epitaxial growth of InP to bury directly bonded thin active layer on SiO2/Si substrate for fabricating distributed feedback lasers on silicon,” IET Optoelectron. 9, 151–157 (2015).
[Crossref]

S. Matsuo, T. Fujii, K. Hasebe, K. Takeda, T. Sato, and T. Kakitsuka, “Directly modulated buried heterostructure DFB laser on SiO2/Si substrate fabricated by regrowth of InP using bonded active layer,” Opt. Express 22, 12139–12147 (2014).
[Crossref]

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13  fJ of energy consumed per bit transmitted,” Nat. Photonics 4, 648–654 (2010).
[Crossref]

T. Fujii, H. Nishi, K. Takeda, E. Kanno, K. Hasebe, T. Kakitsuka, T. Yamamoto, H. Fukuda, T. Tsuchizawa, and S. Matsuo, “1.3-µm directly modulated membrane laser array employing epitaxial growth of InGaAlAs MQW on InP/SiO2/Si substrate,” in European Conference on Optical Communication (ECOC) (2016), paper Th3A.2.

N.-P. Diamantopoulos, T. Fujii, H. Nishi, K. Takeda, T. Kakitsuka, and S. Matsuo, “Energy-efficient 100-Gbps PAM transmissions using a 1.3-µm membrane DML-on-silicon,” in Photonics in Switching and Computing (PSC) (2018).

K. Takeda, T. Fujii, A. Shinya, T. Tsuchizawa, H. Nishi, E. Kuramochi, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Si nanowire waveguide coupled current-driven photonic-crystal lasers,” in Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) (2017), Vol. 1185.

Kanno, E.

T. Fujii, K. Takeda, N. P. Diamantopoulos, E. Kanno, K. Hasebe, H. Nishi, R. Nakao, T. Kakitsuka, and S. Matsuo, “Heterogeneously integrated membrane lasers on Si substrate for low operating energy optical links,” IEEE J. Sel. Top. Quantum Electron. 24, 1500408 (2018).
[Crossref]

T. Fujii, H. Nishi, K. Takeda, E. Kanno, K. Hasebe, T. Kakitsuka, T. Yamamoto, H. Fukuda, T. Tsuchizawa, and S. Matsuo, “1.3-µm directly modulated membrane laser array employing epitaxial growth of InGaAlAs MQW on InP/SiO2/Si substrate,” in European Conference on Optical Communication (ECOC) (2016), paper Th3A.2.

Kapon, E.

Kawaguchi, Y.

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13  fJ of energy consumed per bit transmitted,” Nat. Photonics 4, 648–654 (2010).
[Crossref]

Kazimirov, A.

A. A. Sirenko, A. Kazimirov, R. Huang, D. H. Bilderback, S. O’Malley, V. Gupta, K. Bacher, L. J. P. Ketelsen, and A. Ougazzaden, “Microbeam high-resolution x-ray diffraction in strained InGaAlAs-based multiple quantum well laser structures grown selectively on masked InP substrates,” J. Appl. Phys. 97, 063512 (2005).
[Crossref]

Ketelsen, L. J. P.

A. A. Sirenko, A. Kazimirov, R. Huang, D. H. Bilderback, S. O’Malley, V. Gupta, K. Bacher, L. J. P. Ketelsen, and A. Ougazzaden, “Microbeam high-resolution x-ray diffraction in strained InGaAlAs-based multiple quantum well laser structures grown selectively on masked InP substrates,” J. Appl. Phys. 97, 063512 (2005).
[Crossref]

Keyvaninia, S.

Kirchain, R. E.

Kitamura, M.

T. Sasaki, M. Kitamura, and I. Mito, “Selective metalorganic vapor phase epitaxial growth of InGaAsP/InP layers with bandgap energy control in InGaAs/InGaAsP multiple-quantum well structures,” J. Cryst. Growth 132, 435–443 (1993).
[Crossref]

Klamkin, J.

Komljenovic, T.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. M. Fédéli, J. M. Hartmann, J. H. Schmid, D. X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

T. Komljenovic, S. Srinivasan, E. Norberg, M. Davenport, G. Fish, and J. E. Bowers, “Widely tunable narrow-linewidth monolithically integrated external-cavity semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 21, 214–222 (2015).
[Crossref]

Kuchta, D. M.

Kudo, K.

K. Kudo, Y. Furushima, T. Nakazaki, and M. Yamaguchi, “Densely arrayed eight-wavelength semiconductor lasers fabricated by microarray selective epitaxy,” IEEE J. Sel. Top. Quantum Electron. 5, 428–434 (1999).
[Crossref]

Kuramochi, E.

K. Takeda, T. Fujii, A. Shinya, T. Tsuchizawa, H. Nishi, E. Kuramochi, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Si nanowire waveguide coupled current-driven photonic-crystal lasers,” in Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) (2017), Vol. 1185.

Kurokawa, T.

S. Matsuo, K. Tateno, T. Nakahara, H. Tsuda, and T. Kurokawa, “Use of polyimide bonding for hybrid integration of a vertical cavity surface emitting laser on a silicon substrate,” Electron. Lett. 33, 1148–1149 (1997).
[Crossref]

Larsson, A.

E. Haglund, P. Westbergh, J. S. Gustavsson, E. P. Haglund, A. Larsson, M. Geen, and A. Joel, “30  GHz bandwidth 850  nm VCSEL with sub-100  fJ/bit energy dissipation at 25–50  Gbit/s,” Electron. Lett. 51, 1096–1098 (2015).
[Crossref]

D. M. Kuchta, A. V. Rylyakov, C. L. Schow, J. E. Proesel, C. W. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “A 50  Gb/s NRZ modulated 850  nm VCSEL transmitter operating error free to 90°C,” J. Lightwave Technol. 33, 802–810 (2015).
[Crossref]

Lau, K. M.

Lee, M. L.

Lelarge, F.

Li, W.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Ling, W. A.

Liu, A. Y.

Liu, H.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Locatelli, C.

B. Aspar, E. Jalaguier, A. Mas, C. Locatelli, O. Rayssac, H. Moriceau, S. Pocas, A. M. Papon, J. F. Michaud, and M. Bruel, “Smart-cut process using metallic bonding: application to transfer of Si, GaAs, InP thin films,” Electron. Lett. 35, 1024–1025 (1999).
[Crossref]

Loi, R.

R. Loi, J. O’Callaghan, B. Roycroft, C. Robert, A. Fecioru, A. J. Trindade, A. Gocalinska, E. Pelucchi, C. A. Bower, and B. Corbett, “Transfer printing of AlGaInAs/InP etched facet lasers to Si substrates,” IEEE Photon. J. 8, 1504810 (2016).
[Crossref]

Marris-Morini, D.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. M. Fédéli, J. M. Hartmann, J. H. Schmid, D. X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

Mas, A.

B. Aspar, E. Jalaguier, A. Mas, C. Locatelli, O. Rayssac, H. Moriceau, S. Pocas, A. M. Papon, J. F. Michaud, and M. Bruel, “Smart-cut process using metallic bonding: application to transfer of Si, GaAs, InP thin films,” Electron. Lett. 35, 1024–1025 (1999).
[Crossref]

Mashanovich, G. Z.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. M. Fédéli, J. M. Hartmann, J. H. Schmid, D. X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

Matsui, Y.

Matsuo, S.

T. Aihara, T. Hiraki, K. Takeda, T. Fujii, T. Kakitsuka, T. Tsuchizawa, and S. Matsuo, “Membrane buried-heterostructure DFB laser with an optically coupled III-V/Si waveguide,” Opt. Express 27, 36438–36448 (2019).
[Crossref]

S. Matsuo and T. Kakitsuka, “Low-operating-energy directly modulated lasers for short-distance optical interconnects,” Adv. Opt. Photon. 10, 567–643 (2018).
[Crossref]

T. Fujii, K. Takeda, N. P. Diamantopoulos, E. Kanno, K. Hasebe, H. Nishi, R. Nakao, T. Kakitsuka, and S. Matsuo, “Heterogeneously integrated membrane lasers on Si substrate for low operating energy optical links,” IEEE J. Sel. Top. Quantum Electron. 24, 1500408 (2018).
[Crossref]

H. Nishi, T. Fujii, K. Takeda, K. Hasebe, T. Kakitsuka, T. Tsuchizawa, T. Yamamoto, K. Yamada, and S. Matsuo, “Membrane distributed-reflector laser integrated with SiOx-based spot-size converter on Si substrate,” Opt. Express 24, 18346–18352 (2016).
[Crossref]

T. Fujii, T. Sato, K. Takeda, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Epitaxial growth of InP to bury directly bonded thin active layer on SiO2/Si substrate for fabricating distributed feedback lasers on silicon,” IET Optoelectron. 9, 151–157 (2015).
[Crossref]

S. Matsuo, T. Fujii, K. Hasebe, K. Takeda, T. Sato, and T. Kakitsuka, “Directly modulated buried heterostructure DFB laser on SiO2/Si substrate fabricated by regrowth of InP using bonded active layer,” Opt. Express 22, 12139–12147 (2014).
[Crossref]

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13  fJ of energy consumed per bit transmitted,” Nat. Photonics 4, 648–654 (2010).
[Crossref]

S. Matsuo, K. Tateno, T. Nakahara, H. Tsuda, and T. Kurokawa, “Use of polyimide bonding for hybrid integration of a vertical cavity surface emitting laser on a silicon substrate,” Electron. Lett. 33, 1148–1149 (1997).
[Crossref]

T. Fujii, H. Nishi, K. Takeda, E. Kanno, K. Hasebe, T. Kakitsuka, T. Yamamoto, H. Fukuda, T. Tsuchizawa, and S. Matsuo, “1.3-µm directly modulated membrane laser array employing epitaxial growth of InGaAlAs MQW on InP/SiO2/Si substrate,” in European Conference on Optical Communication (ECOC) (2016), paper Th3A.2.

N.-P. Diamantopoulos, T. Fujii, H. Nishi, K. Takeda, T. Kakitsuka, and S. Matsuo, “Energy-efficient 100-Gbps PAM transmissions using a 1.3-µm membrane DML-on-silicon,” in Photonics in Switching and Computing (PSC) (2018).

K. Takeda, T. Fujii, A. Shinya, T. Tsuchizawa, H. Nishi, E. Kuramochi, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Si nanowire waveguide coupled current-driven photonic-crystal lasers,” in Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) (2017), Vol. 1185.

Mauthe, S.

B. F. Mayer, S. Wirths, S. Mauthe, P. Staudinger, M. Sousa, J. Winiger, H. Schmid, and K. E. Moselund, “Microcavity lasers on silicon by template-assisted selective epitaxy of microsubstrates,” IEEE Photon. Technol. Lett. 31, 1021–1024 (2019).
[Crossref]

Mayer, B. F.

B. F. Mayer, S. Wirths, S. Mauthe, P. Staudinger, M. Sousa, J. Winiger, H. Schmid, and K. E. Moselund, “Microcavity lasers on silicon by template-assisted selective epitaxy of microsubstrates,” IEEE Photon. Technol. Lett. 31, 1021–1024 (2019).
[Crossref]

Merckling, C.

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9, 837–842 (2015).
[Crossref]

Mereuta, A.

Messaoudene, S.

Michaud, J. F.

B. Aspar, E. Jalaguier, A. Mas, C. Locatelli, O. Rayssac, H. Moriceau, S. Pocas, A. M. Papon, J. F. Michaud, and M. Bruel, “Smart-cut process using metallic bonding: application to transfer of Si, GaAs, InP thin films,” Electron. Lett. 35, 1024–1025 (1999).
[Crossref]

Miller, D. A. B.

D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97, 1166–1185 (2009).
[Crossref]

Mito, I.

T. Sasaki, M. Kitamura, and I. Mito, “Selective metalorganic vapor phase epitaxial growth of InGaAsP/InP layers with bandgap energy control in InGaAs/InGaAsP multiple-quantum well structures,” J. Cryst. Growth 132, 435–443 (1993).
[Crossref]

Mori, H.

M. Sugo, H. Mori, M. Tachikawa, Y. Itoh, and M. Yamamoto, “Room-temperature operation of an InGaAsP double-heterostructure laser emitting at 1.55  µm on a Si substrate,” Appl. Phys. Lett. 57, 593–595 (1990).
[Crossref]

Moriceau, H.

B. Aspar, E. Jalaguier, A. Mas, C. Locatelli, O. Rayssac, H. Moriceau, S. Pocas, A. M. Papon, J. F. Michaud, and M. Bruel, “Smart-cut process using metallic bonding: application to transfer of Si, GaAs, InP thin films,” Electron. Lett. 35, 1024–1025 (1999).
[Crossref]

Morita, H.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on slicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11, 232–240 (2005).
[Crossref]

Morthier, G.

Moselund, K.

H. Schmid, M. Borg, K. Moselund, L. Gignac, C. M. Breslin, J. Bruley, D. Cutaia, and H. Riel, “Template-assisted selective epitaxy of III-V nanoscale devices for co-planar heterogeneous integration with Si,” Appl. Phys. Lett. 106, 233101 (2015).
[Crossref]

Moselund, K. E.

B. F. Mayer, S. Wirths, S. Mauthe, P. Staudinger, M. Sousa, J. Winiger, H. Schmid, and K. E. Moselund, “Microcavity lasers on silicon by template-assisted selective epitaxy of microsubstrates,” IEEE Photon. Technol. Lett. 31, 1021–1024 (2019).
[Crossref]

Motosugi, G.

Y. Yoshikuni and G. Motosugi, “Multielectrode distributed feedback laser for pure frequency modulation and chirping suppressed amplitude modulation,” J. Lightwave Technol. 5, 516–522 (1987).
[Crossref]

Nakahara, T.

S. Matsuo, K. Tateno, T. Nakahara, H. Tsuda, and T. Kurokawa, “Use of polyimide bonding for hybrid integration of a vertical cavity surface emitting laser on a silicon substrate,” Electron. Lett. 33, 1148–1149 (1997).
[Crossref]

Nakamura, T.

Y. Arakawa, T. Nakamura, Y. Urino, and T. Fujita, “Silicon photonics for next generation system integration platform,” IEEE Commun. Mag. 51(3), 72–77 (2013).
[Crossref]

Nakao, R.

T. Fujii, K. Takeda, N. P. Diamantopoulos, E. Kanno, K. Hasebe, H. Nishi, R. Nakao, T. Kakitsuka, and S. Matsuo, “Heterogeneously integrated membrane lasers on Si substrate for low operating energy optical links,” IEEE J. Sel. Top. Quantum Electron. 24, 1500408 (2018).
[Crossref]

Nakazaki, T.

K. Kudo, Y. Furushima, T. Nakazaki, and M. Yamaguchi, “Densely arrayed eight-wavelength semiconductor lasers fabricated by microarray selective epitaxy,” IEEE J. Sel. Top. Quantum Electron. 5, 428–434 (1999).
[Crossref]

Nedeljkovic, M.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. M. Fédéli, J. M. Hartmann, J. H. Schmid, D. X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

Ng, W. K.

Nishi, H.

T. Fujii, K. Takeda, N. P. Diamantopoulos, E. Kanno, K. Hasebe, H. Nishi, R. Nakao, T. Kakitsuka, and S. Matsuo, “Heterogeneously integrated membrane lasers on Si substrate for low operating energy optical links,” IEEE J. Sel. Top. Quantum Electron. 24, 1500408 (2018).
[Crossref]

H. Nishi, T. Fujii, K. Takeda, K. Hasebe, T. Kakitsuka, T. Tsuchizawa, T. Yamamoto, K. Yamada, and S. Matsuo, “Membrane distributed-reflector laser integrated with SiOx-based spot-size converter on Si substrate,” Opt. Express 24, 18346–18352 (2016).
[Crossref]

T. Fujii, H. Nishi, K. Takeda, E. Kanno, K. Hasebe, T. Kakitsuka, T. Yamamoto, H. Fukuda, T. Tsuchizawa, and S. Matsuo, “1.3-µm directly modulated membrane laser array employing epitaxial growth of InGaAlAs MQW on InP/SiO2/Si substrate,” in European Conference on Optical Communication (ECOC) (2016), paper Th3A.2.

N.-P. Diamantopoulos, T. Fujii, H. Nishi, K. Takeda, T. Kakitsuka, and S. Matsuo, “Energy-efficient 100-Gbps PAM transmissions using a 1.3-µm membrane DML-on-silicon,” in Photonics in Switching and Computing (PSC) (2018).

K. Takeda, T. Fujii, A. Shinya, T. Tsuchizawa, H. Nishi, E. Kuramochi, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Si nanowire waveguide coupled current-driven photonic-crystal lasers,” in Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) (2017), Vol. 1185.

Norberg, E.

T. Komljenovic, S. Srinivasan, E. Norberg, M. Davenport, G. Fish, and J. E. Bowers, “Widely tunable narrow-linewidth monolithically integrated external-cavity semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 21, 214–222 (2015).
[Crossref]

Norman, J.

Notomi, M.

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13  fJ of energy consumed per bit transmitted,” Nat. Photonics 4, 648–654 (2010).
[Crossref]

K. Takeda, T. Fujii, A. Shinya, T. Tsuchizawa, H. Nishi, E. Kuramochi, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Si nanowire waveguide coupled current-driven photonic-crystal lasers,” in Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) (2017), Vol. 1185.

Nozaki, K.

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13  fJ of energy consumed per bit transmitted,” Nat. Photonics 4, 648–654 (2010).
[Crossref]

O’Brien, P.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. M. Fédéli, J. M. Hartmann, J. H. Schmid, D. X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

O’Callaghan, J.

J. Zhang, B. Haq, J. O’Callaghan, A. Gocalinska, E. Pelucchi, A. J. Trindade, B. Corbett, G. Morthier, and G. Roelkens, “Transfer-printing-based integration of a III-V-on-silicon distributed feedback laser,” Opt. Express 26, 8821–8830 (2018).
[Crossref]

R. Loi, J. O’Callaghan, B. Roycroft, C. Robert, A. Fecioru, A. J. Trindade, A. Gocalinska, E. Pelucchi, C. A. Bower, and B. Corbett, “Transfer printing of AlGaInAs/InP etched facet lasers to Si substrates,” IEEE Photon. J. 8, 1504810 (2016).
[Crossref]

O’Malley, S.

A. A. Sirenko, A. Kazimirov, R. Huang, D. H. Bilderback, S. O’Malley, V. Gupta, K. Bacher, L. J. P. Ketelsen, and A. Ougazzaden, “Microbeam high-resolution x-ray diffraction in strained InGaAlAs-based multiple quantum well laser structures grown selectively on masked InP substrates,” J. Appl. Phys. 97, 063512 (2005).
[Crossref]

Olivier, S.

V. Cristofori, F. Da Ros, O. Ozolins, M. E. Chaibi, L. Bramerie, Y. Ding, X. Pang, A. Shen, A. Gallet, G. H. Duan, K. Hassan, S. Olivier, S. Popov, G. Jacobsen, L. K. Oxenløwe, and C. Peucheret, “25-Gb/s transmission over 2.5-km SSMF by silicon MRR enhanced 1.55-µm III-V/SOI DML,” IEEE Photon. Technol. Lett. 29, 960–963 (2017).
[Crossref]

Ougazzaden, A.

A. A. Sirenko, A. Kazimirov, R. Huang, D. H. Bilderback, S. O’Malley, V. Gupta, K. Bacher, L. J. P. Ketelsen, and A. Ougazzaden, “Microbeam high-resolution x-ray diffraction in strained InGaAlAs-based multiple quantum well laser structures grown selectively on masked InP substrates,” J. Appl. Phys. 97, 063512 (2005).
[Crossref]

Oxenløwe, L. K.

V. Cristofori, F. Da Ros, O. Ozolins, M. E. Chaibi, L. Bramerie, Y. Ding, X. Pang, A. Shen, A. Gallet, G. H. Duan, K. Hassan, S. Olivier, S. Popov, G. Jacobsen, L. K. Oxenløwe, and C. Peucheret, “25-Gb/s transmission over 2.5-km SSMF by silicon MRR enhanced 1.55-µm III-V/SOI DML,” IEEE Photon. Technol. Lett. 29, 960–963 (2017).
[Crossref]

Ozolins, O.

V. Cristofori, F. Da Ros, O. Ozolins, M. E. Chaibi, L. Bramerie, Y. Ding, X. Pang, A. Shen, A. Gallet, G. H. Duan, K. Hassan, S. Olivier, S. Popov, G. Jacobsen, L. K. Oxenløwe, and C. Peucheret, “25-Gb/s transmission over 2.5-km SSMF by silicon MRR enhanced 1.55-µm III-V/SOI DML,” IEEE Photon. Technol. Lett. 29, 960–963 (2017).
[Crossref]

Pang, X.

V. Cristofori, F. Da Ros, O. Ozolins, M. E. Chaibi, L. Bramerie, Y. Ding, X. Pang, A. Shen, A. Gallet, G. H. Duan, K. Hassan, S. Olivier, S. Popov, G. Jacobsen, L. K. Oxenløwe, and C. Peucheret, “25-Gb/s transmission over 2.5-km SSMF by silicon MRR enhanced 1.55-µm III-V/SOI DML,” IEEE Photon. Technol. Lett. 29, 960–963 (2017).
[Crossref]

Paniccia, M. J.

Pantouvaki, M.

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9, 837–842 (2015).
[Crossref]

Papon, A. M.

B. Aspar, E. Jalaguier, A. Mas, C. Locatelli, O. Rayssac, H. Moriceau, S. Pocas, A. M. Papon, J. F. Michaud, and M. Bruel, “Smart-cut process using metallic bonding: application to transfer of Si, GaAs, InP thin films,” Electron. Lett. 35, 1024–1025 (1999).
[Crossref]

Park, H.

Pelucchi, E.

J. Zhang, B. Haq, J. O’Callaghan, A. Gocalinska, E. Pelucchi, A. J. Trindade, B. Corbett, G. Morthier, and G. Roelkens, “Transfer-printing-based integration of a III-V-on-silicon distributed feedback laser,” Opt. Express 26, 8821–8830 (2018).
[Crossref]

R. Loi, J. O’Callaghan, B. Roycroft, C. Robert, A. Fecioru, A. J. Trindade, A. Gocalinska, E. Pelucchi, C. A. Bower, and B. Corbett, “Transfer printing of AlGaInAs/InP etched facet lasers to Si substrates,” IEEE Photon. J. 8, 1504810 (2016).
[Crossref]

Peters, J.

Peucheret, C.

V. Cristofori, F. Da Ros, O. Ozolins, M. E. Chaibi, L. Bramerie, Y. Ding, X. Pang, A. Shen, A. Gallet, G. H. Duan, K. Hassan, S. Olivier, S. Popov, G. Jacobsen, L. K. Oxenløwe, and C. Peucheret, “25-Gb/s transmission over 2.5-km SSMF by silicon MRR enhanced 1.55-µm III-V/SOI DML,” IEEE Photon. Technol. Lett. 29, 960–963 (2017).
[Crossref]

Pham, T.

Pocas, S.

B. Aspar, E. Jalaguier, A. Mas, C. Locatelli, O. Rayssac, H. Moriceau, S. Pocas, A. M. Papon, J. F. Michaud, and M. Bruel, “Smart-cut process using metallic bonding: application to transfer of Si, GaAs, InP thin films,” Electron. Lett. 35, 1024–1025 (1999).
[Crossref]

Popov, S.

V. Cristofori, F. Da Ros, O. Ozolins, M. E. Chaibi, L. Bramerie, Y. Ding, X. Pang, A. Shen, A. Gallet, G. H. Duan, K. Hassan, S. Olivier, S. Popov, G. Jacobsen, L. K. Oxenløwe, and C. Peucheret, “25-Gb/s transmission over 2.5-km SSMF by silicon MRR enhanced 1.55-µm III-V/SOI DML,” IEEE Photon. Technol. Lett. 29, 960–963 (2017).
[Crossref]

Proesel, J. E.

Ram, R. J.

Rayssac, O.

B. Aspar, E. Jalaguier, A. Mas, C. Locatelli, O. Rayssac, H. Moriceau, S. Pocas, A. M. Papon, J. F. Michaud, and M. Bruel, “Smart-cut process using metallic bonding: application to transfer of Si, GaAs, InP thin films,” Electron. Lett. 35, 1024–1025 (1999).
[Crossref]

Reed, G. T.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. M. Fédéli, J. M. Hartmann, J. H. Schmid, D. X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

Riel, H.

H. Schmid, M. Borg, K. Moselund, L. Gignac, C. M. Breslin, J. Bruley, D. Cutaia, and H. Riel, “Template-assisted selective epitaxy of III-V nanoscale devices for co-planar heterogeneous integration with Si,” Appl. Phys. Lett. 106, 233101 (2015).
[Crossref]

Robert, C.

R. Loi, J. O’Callaghan, B. Roycroft, C. Robert, A. Fecioru, A. J. Trindade, A. Gocalinska, E. Pelucchi, C. A. Bower, and B. Corbett, “Transfer printing of AlGaInAs/InP etched facet lasers to Si substrates,” IEEE Photon. J. 8, 1504810 (2016).
[Crossref]

Roelkens, G.

Ross, I.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Rossell, M. D.

L. Czornomaz, E. Uccelli, M. Sousa, V. Deshpande, V. Djara, D. Caimi, M. D. Rossell, R. Erni, and J. Fompeyrine, “Confined epitaxial lateral overgrowth (CELO): a novel concept for scalable integration of CMOS-compatible InGaAs-on-insulator MOSFETs on large-area Si substrates,” in Symposium on VLSI Technology (VLSI Technology) (2015), pp. T172–T173.

Roxlo, C.

Roycroft, B.

R. Loi, J. O’Callaghan, B. Roycroft, C. Robert, A. Fecioru, A. J. Trindade, A. Gocalinska, E. Pelucchi, C. A. Bower, and B. Corbett, “Transfer printing of AlGaInAs/InP etched facet lasers to Si substrates,” IEEE Photon. J. 8, 1504810 (2016).
[Crossref]

Rylyakov, A. V.

Sasaki, T.

T. Sasaki, M. Kitamura, and I. Mito, “Selective metalorganic vapor phase epitaxial growth of InGaAsP/InP layers with bandgap energy control in InGaAs/InGaAsP multiple-quantum well structures,” J. Cryst. Growth 132, 435–443 (1993).
[Crossref]

Sato, T.

T. Fujii, T. Sato, K. Takeda, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Epitaxial growth of InP to bury directly bonded thin active layer on SiO2/Si substrate for fabricating distributed feedback lasers on silicon,” IET Optoelectron. 9, 151–157 (2015).
[Crossref]

S. Matsuo, T. Fujii, K. Hasebe, K. Takeda, T. Sato, and T. Kakitsuka, “Directly modulated buried heterostructure DFB laser on SiO2/Si substrate fabricated by regrowth of InP using bonded active layer,” Opt. Express 22, 12139–12147 (2014).
[Crossref]

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13  fJ of energy consumed per bit transmitted,” Nat. Photonics 4, 648–654 (2010).
[Crossref]

Schatz, R.

Schmid, H.

B. F. Mayer, S. Wirths, S. Mauthe, P. Staudinger, M. Sousa, J. Winiger, H. Schmid, and K. E. Moselund, “Microcavity lasers on silicon by template-assisted selective epitaxy of microsubstrates,” IEEE Photon. Technol. Lett. 31, 1021–1024 (2019).
[Crossref]

H. Schmid, M. Borg, K. Moselund, L. Gignac, C. M. Breslin, J. Bruley, D. Cutaia, and H. Riel, “Template-assisted selective epitaxy of III-V nanoscale devices for co-planar heterogeneous integration with Si,” Appl. Phys. Lett. 106, 233101 (2015).
[Crossref]

Schmid, J. H.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. M. Fédéli, J. M. Hartmann, J. H. Schmid, D. X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

Schow, C. L.

Seeds, A. J.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Segawa, T.

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13  fJ of energy consumed per bit transmitted,” Nat. Photonics 4, 648–654 (2010).
[Crossref]

Shen, A.

V. Cristofori, F. Da Ros, O. Ozolins, M. E. Chaibi, L. Bramerie, Y. Ding, X. Pang, A. Shen, A. Gallet, G. H. Duan, K. Hassan, S. Olivier, S. Popov, G. Jacobsen, L. K. Oxenløwe, and C. Peucheret, “25-Gb/s transmission over 2.5-km SSMF by silicon MRR enhanced 1.55-µm III-V/SOI DML,” IEEE Photon. Technol. Lett. 29, 960–963 (2017).
[Crossref]

Shi, B.

Shinya, A.

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13  fJ of energy consumed per bit transmitted,” Nat. Photonics 4, 648–654 (2010).
[Crossref]

K. Takeda, T. Fujii, A. Shinya, T. Tsuchizawa, H. Nishi, E. Kuramochi, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Si nanowire waveguide coupled current-driven photonic-crystal lasers,” in Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) (2017), Vol. 1185.

Shoji, T.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on slicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11, 232–240 (2005).
[Crossref]

Shutts, S.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Sirbu, A.

Sirenko, A. A.

A. A. Sirenko, A. Kazimirov, R. Huang, D. H. Bilderback, S. O’Malley, V. Gupta, K. Bacher, L. J. P. Ketelsen, and A. Ougazzaden, “Microbeam high-resolution x-ray diffraction in strained InGaAlAs-based multiple quantum well laser structures grown selectively on masked InP substrates,” J. Appl. Phys. 97, 063512 (2005).
[Crossref]

Smalbrugge, B.

Smit, M.

Smowton, P. M.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Sobiesierski, A.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Song, B.

Sousa, M.

B. F. Mayer, S. Wirths, S. Mauthe, P. Staudinger, M. Sousa, J. Winiger, H. Schmid, and K. E. Moselund, “Microcavity lasers on silicon by template-assisted selective epitaxy of microsubstrates,” IEEE Photon. Technol. Lett. 31, 1021–1024 (2019).
[Crossref]

L. Czornomaz, E. Uccelli, M. Sousa, V. Deshpande, V. Djara, D. Caimi, M. D. Rossell, R. Erni, and J. Fompeyrine, “Confined epitaxial lateral overgrowth (CELO): a novel concept for scalable integration of CMOS-compatible InGaAs-on-insulator MOSFETs on large-area Si substrates,” in Symposium on VLSI Technology (VLSI Technology) (2015), pp. T172–T173.

Srinivasan, S.

T. Komljenovic, S. Srinivasan, E. Norberg, M. Davenport, G. Fish, and J. E. Bowers, “Widely tunable narrow-linewidth monolithically integrated external-cavity semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 21, 214–222 (2015).
[Crossref]

Staudinger, P.

B. F. Mayer, S. Wirths, S. Mauthe, P. Staudinger, M. Sousa, J. Winiger, H. Schmid, and K. E. Moselund, “Microcavity lasers on silicon by template-assisted selective epitaxy of microsubstrates,” IEEE Photon. Technol. Lett. 31, 1021–1024 (2019).
[Crossref]

Sudo, T.

Sugo, M.

M. Sugo, H. Mori, M. Tachikawa, Y. Itoh, and M. Yamamoto, “Room-temperature operation of an InGaAsP double-heterostructure laser emitting at 1.55  µm on a Si substrate,” Appl. Phys. Lett. 57, 593–595 (1990).
[Crossref]

Suran Brunelli, S. T.

Tachikawa, M.

M. Sugo, H. Mori, M. Tachikawa, Y. Itoh, and M. Yamamoto, “Room-temperature operation of an InGaAsP double-heterostructure laser emitting at 1.55  µm on a Si substrate,” Appl. Phys. Lett. 57, 593–595 (1990).
[Crossref]

Takahashi, J.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on slicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11, 232–240 (2005).
[Crossref]

Takahashi, M.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on slicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11, 232–240 (2005).
[Crossref]

Takeda, K.

T. Aihara, T. Hiraki, K. Takeda, T. Fujii, T. Kakitsuka, T. Tsuchizawa, and S. Matsuo, “Membrane buried-heterostructure DFB laser with an optically coupled III-V/Si waveguide,” Opt. Express 27, 36438–36448 (2019).
[Crossref]

T. Fujii, K. Takeda, N. P. Diamantopoulos, E. Kanno, K. Hasebe, H. Nishi, R. Nakao, T. Kakitsuka, and S. Matsuo, “Heterogeneously integrated membrane lasers on Si substrate for low operating energy optical links,” IEEE J. Sel. Top. Quantum Electron. 24, 1500408 (2018).
[Crossref]

H. Nishi, T. Fujii, K. Takeda, K. Hasebe, T. Kakitsuka, T. Tsuchizawa, T. Yamamoto, K. Yamada, and S. Matsuo, “Membrane distributed-reflector laser integrated with SiOx-based spot-size converter on Si substrate,” Opt. Express 24, 18346–18352 (2016).
[Crossref]

T. Fujii, T. Sato, K. Takeda, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Epitaxial growth of InP to bury directly bonded thin active layer on SiO2/Si substrate for fabricating distributed feedback lasers on silicon,” IET Optoelectron. 9, 151–157 (2015).
[Crossref]

S. Matsuo, T. Fujii, K. Hasebe, K. Takeda, T. Sato, and T. Kakitsuka, “Directly modulated buried heterostructure DFB laser on SiO2/Si substrate fabricated by regrowth of InP using bonded active layer,” Opt. Express 22, 12139–12147 (2014).
[Crossref]

T. Fujii, H. Nishi, K. Takeda, E. Kanno, K. Hasebe, T. Kakitsuka, T. Yamamoto, H. Fukuda, T. Tsuchizawa, and S. Matsuo, “1.3-µm directly modulated membrane laser array employing epitaxial growth of InGaAlAs MQW on InP/SiO2/Si substrate,” in European Conference on Optical Communication (ECOC) (2016), paper Th3A.2.

N.-P. Diamantopoulos, T. Fujii, H. Nishi, K. Takeda, T. Kakitsuka, and S. Matsuo, “Energy-efficient 100-Gbps PAM transmissions using a 1.3-µm membrane DML-on-silicon,” in Photonics in Switching and Computing (PSC) (2018).

K. Takeda, T. Fujii, A. Shinya, T. Tsuchizawa, H. Nishi, E. Kuramochi, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Si nanowire waveguide coupled current-driven photonic-crystal lasers,” in Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) (2017), Vol. 1185.

Tamechika, E.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on slicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11, 232–240 (2005).
[Crossref]

Tanabe, K.

K. Tanabe, K. Watanabe, and Y. Arakawa, “III-V/Si hybrid photonic devices by direct fusion bonding,” Sci. Rep. 2, 349 (2012).
[Crossref]

Tang, M.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Tateno, K.

S. Matsuo, K. Tateno, T. Nakahara, H. Tsuda, and T. Kurokawa, “Use of polyimide bonding for hybrid integration of a vertical cavity surface emitting laser on a silicon substrate,” Electron. Lett. 33, 1148–1149 (1997).
[Crossref]

Thomson, D.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. M. Fédéli, J. M. Hartmann, J. H. Schmid, D. X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

Tian, B.

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9, 837–842 (2015).
[Crossref]

Trindade, A. J.

J. Zhang, B. Haq, J. O’Callaghan, A. Gocalinska, E. Pelucchi, A. J. Trindade, B. Corbett, G. Morthier, and G. Roelkens, “Transfer-printing-based integration of a III-V-on-silicon distributed feedback laser,” Opt. Express 26, 8821–8830 (2018).
[Crossref]

R. Loi, J. O’Callaghan, B. Roycroft, C. Robert, A. Fecioru, A. J. Trindade, A. Gocalinska, E. Pelucchi, C. A. Bower, and B. Corbett, “Transfer printing of AlGaInAs/InP etched facet lasers to Si substrates,” IEEE Photon. J. 8, 1504810 (2016).
[Crossref]

Tsuchizawa, T.

T. Aihara, T. Hiraki, K. Takeda, T. Fujii, T. Kakitsuka, T. Tsuchizawa, and S. Matsuo, “Membrane buried-heterostructure DFB laser with an optically coupled III-V/Si waveguide,” Opt. Express 27, 36438–36448 (2019).
[Crossref]

H. Nishi, T. Fujii, K. Takeda, K. Hasebe, T. Kakitsuka, T. Tsuchizawa, T. Yamamoto, K. Yamada, and S. Matsuo, “Membrane distributed-reflector laser integrated with SiOx-based spot-size converter on Si substrate,” Opt. Express 24, 18346–18352 (2016).
[Crossref]

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on slicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11, 232–240 (2005).
[Crossref]

T. Fujii, H. Nishi, K. Takeda, E. Kanno, K. Hasebe, T. Kakitsuka, T. Yamamoto, H. Fukuda, T. Tsuchizawa, and S. Matsuo, “1.3-µm directly modulated membrane laser array employing epitaxial growth of InGaAlAs MQW on InP/SiO2/Si substrate,” in European Conference on Optical Communication (ECOC) (2016), paper Th3A.2.

K. Takeda, T. Fujii, A. Shinya, T. Tsuchizawa, H. Nishi, E. Kuramochi, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Si nanowire waveguide coupled current-driven photonic-crystal lasers,” in Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) (2017), Vol. 1185.

Tsuda, H.

S. Matsuo, K. Tateno, T. Nakahara, H. Tsuda, and T. Kurokawa, “Use of polyimide bonding for hybrid integration of a vertical cavity surface emitting laser on a silicon substrate,” Electron. Lett. 33, 1148–1149 (1997).
[Crossref]

Uccelli, E.

L. Czornomaz, E. Uccelli, M. Sousa, V. Deshpande, V. Djara, D. Caimi, M. D. Rossell, R. Erni, and J. Fompeyrine, “Confined epitaxial lateral overgrowth (CELO): a novel concept for scalable integration of CMOS-compatible InGaAs-on-insulator MOSFETs on large-area Si substrates,” in Symposium on VLSI Technology (VLSI Technology) (2015), pp. T172–T173.

Urino, Y.

Y. Arakawa, T. Nakamura, Y. Urino, and T. Fujita, “Silicon photonics for next generation system integration platform,” IEEE Commun. Mag. 51(3), 72–77 (2013).
[Crossref]

Van Campenhout, J.

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9, 837–842 (2015).
[Crossref]

Van Landschoot, L.

Van Thourhout, D.

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9, 837–842 (2015).
[Crossref]

S. Keyvaninia, S. Verstuyft, L. Van Landschoot, F. Lelarge, G.-H. Duan, S. Messaoudene, J. M. Fedeli, T. De Vries, B. Smalbrugge, E. J. Geluk, J. Bolk, M. Smit, G. Morthier, D. Van Thourhout, and G. Roelkens, “Heterogeneously integrated III-V/silicon distributed feedback lasers,” Opt. Lett. 38, 5434 (2013).
[Crossref]

Verstuyft, S.

Virot, L.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. M. Fédéli, J. M. Hartmann, J. H. Schmid, D. X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

Vivien, L.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. M. Fédéli, J. M. Hartmann, J. H. Schmid, D. X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

Wang, L.

Wang, Z.

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9, 837–842 (2015).
[Crossref]

Wanlass, M. W.

A. Fontcuberta i Morral, J. M. Zahler, H. A. Atwater, S. P. Ahrenkiel, and M. W. Wanlass, “InGaAs/InP double heterostructures on InP/Si templates fabricated by wafer bonding and hydrogen-induced exfoliation,” Appl. Phys. Lett. 83, 5413 (2003).
[Crossref]

Watanabe, K.

K. Tanabe, K. Watanabe, and Y. Arakawa, “III-V/Si hybrid photonic devices by direct fusion bonding,” Sci. Rep. 2, 349 (2012).
[Crossref]

Watanabe, T.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on slicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11, 232–240 (2005).
[Crossref]

Westbergh, P.

D. M. Kuchta, A. V. Rylyakov, C. L. Schow, J. E. Proesel, C. W. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “A 50  Gb/s NRZ modulated 850  nm VCSEL transmitter operating error free to 90°C,” J. Lightwave Technol. 33, 802–810 (2015).
[Crossref]

E. Haglund, P. Westbergh, J. S. Gustavsson, E. P. Haglund, A. Larsson, M. Geen, and A. Joel, “30  GHz bandwidth 850  nm VCSEL with sub-100  fJ/bit energy dissipation at 25–50  Gbit/s,” Electron. Lett. 51, 1096–1098 (2015).
[Crossref]

Winiger, J.

B. F. Mayer, S. Wirths, S. Mauthe, P. Staudinger, M. Sousa, J. Winiger, H. Schmid, and K. E. Moselund, “Microcavity lasers on silicon by template-assisted selective epitaxy of microsubstrates,” IEEE Photon. Technol. Lett. 31, 1021–1024 (2019).
[Crossref]

Wirths, S.

B. F. Mayer, S. Wirths, S. Mauthe, P. Staudinger, M. Sousa, J. Winiger, H. Schmid, and K. E. Moselund, “Microcavity lasers on silicon by template-assisted selective epitaxy of microsubstrates,” IEEE Photon. Technol. Lett. 31, 1021–1024 (2019).
[Crossref]

Wolf, P.

Wong, K. S.

Wu, J.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Xu, D. X.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. M. Fédéli, J. M. Hartmann, J. H. Schmid, D. X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

Xue, Y.

Yablonovitch, E.

E. Yablonovitch, T. Gmitter, J. P. Harbison, and R. Bhat, “Extreme selectivity in the lift-off of epitaxial GaAs films,” Appl. Phys. Lett. 51, 2222–2224 (1987).
[Crossref]

Yamada, K.

H. Nishi, T. Fujii, K. Takeda, K. Hasebe, T. Kakitsuka, T. Tsuchizawa, T. Yamamoto, K. Yamada, and S. Matsuo, “Membrane distributed-reflector laser integrated with SiOx-based spot-size converter on Si substrate,” Opt. Express 24, 18346–18352 (2016).
[Crossref]

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on slicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11, 232–240 (2005).
[Crossref]

Yamaguchi, M.

K. Kudo, Y. Furushima, T. Nakazaki, and M. Yamaguchi, “Densely arrayed eight-wavelength semiconductor lasers fabricated by microarray selective epitaxy,” IEEE J. Sel. Top. Quantum Electron. 5, 428–434 (1999).
[Crossref]

Yamamoto, M.

M. Sugo, H. Mori, M. Tachikawa, Y. Itoh, and M. Yamamoto, “Room-temperature operation of an InGaAsP double-heterostructure laser emitting at 1.55  µm on a Si substrate,” Appl. Phys. Lett. 57, 593–595 (1990).
[Crossref]

Yamamoto, T.

H. Nishi, T. Fujii, K. Takeda, K. Hasebe, T. Kakitsuka, T. Tsuchizawa, T. Yamamoto, K. Yamada, and S. Matsuo, “Membrane distributed-reflector laser integrated with SiOx-based spot-size converter on Si substrate,” Opt. Express 24, 18346–18352 (2016).
[Crossref]

T. Fujii, H. Nishi, K. Takeda, E. Kanno, K. Hasebe, T. Kakitsuka, T. Yamamoto, H. Fukuda, T. Tsuchizawa, and S. Matsuo, “1.3-µm directly modulated membrane laser array employing epitaxial growth of InGaAlAs MQW on InP/SiO2/Si substrate,” in European Conference on Optical Communication (ECOC) (2016), paper Th3A.2.

Yan, Z.

Yoshikuni, Y.

Y. Yoshikuni and G. Motosugi, “Multielectrode distributed feedback laser for pure frequency modulation and chirping suppressed amplitude modulation,” J. Lightwave Technol. 5, 516–522 (1987).
[Crossref]

Zahler, J. M.

A. Fontcuberta i Morral, J. M. Zahler, H. A. Atwater, S. P. Ahrenkiel, and M. W. Wanlass, “InGaAs/InP double heterostructures on InP/Si templates fabricated by wafer bonding and hydrogen-induced exfoliation,” Appl. Phys. Lett. 83, 5413 (2003).
[Crossref]

Zhang, J.

Zhao, H.

Zilkie, A.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. M. Fédéli, J. M. Hartmann, J. H. Schmid, D. X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

Adv. Opt. Photon. (1)

Appl. Phys. Lett. (4)

M. Sugo, H. Mori, M. Tachikawa, Y. Itoh, and M. Yamamoto, “Room-temperature operation of an InGaAsP double-heterostructure laser emitting at 1.55  µm on a Si substrate,” Appl. Phys. Lett. 57, 593–595 (1990).
[Crossref]

H. Schmid, M. Borg, K. Moselund, L. Gignac, C. M. Breslin, J. Bruley, D. Cutaia, and H. Riel, “Template-assisted selective epitaxy of III-V nanoscale devices for co-planar heterogeneous integration with Si,” Appl. Phys. Lett. 106, 233101 (2015).
[Crossref]

E. Yablonovitch, T. Gmitter, J. P. Harbison, and R. Bhat, “Extreme selectivity in the lift-off of epitaxial GaAs films,” Appl. Phys. Lett. 51, 2222–2224 (1987).
[Crossref]

A. Fontcuberta i Morral, J. M. Zahler, H. A. Atwater, S. P. Ahrenkiel, and M. W. Wanlass, “InGaAs/InP double heterostructures on InP/Si templates fabricated by wafer bonding and hydrogen-induced exfoliation,” Appl. Phys. Lett. 83, 5413 (2003).
[Crossref]

Electron. Lett. (3)

B. Aspar, E. Jalaguier, A. Mas, C. Locatelli, O. Rayssac, H. Moriceau, S. Pocas, A. M. Papon, J. F. Michaud, and M. Bruel, “Smart-cut process using metallic bonding: application to transfer of Si, GaAs, InP thin films,” Electron. Lett. 35, 1024–1025 (1999).
[Crossref]

S. Matsuo, K. Tateno, T. Nakahara, H. Tsuda, and T. Kurokawa, “Use of polyimide bonding for hybrid integration of a vertical cavity surface emitting laser on a silicon substrate,” Electron. Lett. 33, 1148–1149 (1997).
[Crossref]

E. Haglund, P. Westbergh, J. S. Gustavsson, E. P. Haglund, A. Larsson, M. Geen, and A. Joel, “30  GHz bandwidth 850  nm VCSEL with sub-100  fJ/bit energy dissipation at 25–50  Gbit/s,” Electron. Lett. 51, 1096–1098 (2015).
[Crossref]

IEEE Commun. Mag. (1)

Y. Arakawa, T. Nakamura, Y. Urino, and T. Fujita, “Silicon photonics for next generation system integration platform,” IEEE Commun. Mag. 51(3), 72–77 (2013).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (4)

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on slicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11, 232–240 (2005).
[Crossref]

T. Komljenovic, S. Srinivasan, E. Norberg, M. Davenport, G. Fish, and J. E. Bowers, “Widely tunable narrow-linewidth monolithically integrated external-cavity semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 21, 214–222 (2015).
[Crossref]

T. Fujii, K. Takeda, N. P. Diamantopoulos, E. Kanno, K. Hasebe, H. Nishi, R. Nakao, T. Kakitsuka, and S. Matsuo, “Heterogeneously integrated membrane lasers on Si substrate for low operating energy optical links,” IEEE J. Sel. Top. Quantum Electron. 24, 1500408 (2018).
[Crossref]

K. Kudo, Y. Furushima, T. Nakazaki, and M. Yamaguchi, “Densely arrayed eight-wavelength semiconductor lasers fabricated by microarray selective epitaxy,” IEEE J. Sel. Top. Quantum Electron. 5, 428–434 (1999).
[Crossref]

IEEE Photon. J. (1)

R. Loi, J. O’Callaghan, B. Roycroft, C. Robert, A. Fecioru, A. J. Trindade, A. Gocalinska, E. Pelucchi, C. A. Bower, and B. Corbett, “Transfer printing of AlGaInAs/InP etched facet lasers to Si substrates,” IEEE Photon. J. 8, 1504810 (2016).
[Crossref]

IEEE Photon. Technol. Lett. (2)

V. Cristofori, F. Da Ros, O. Ozolins, M. E. Chaibi, L. Bramerie, Y. Ding, X. Pang, A. Shen, A. Gallet, G. H. Duan, K. Hassan, S. Olivier, S. Popov, G. Jacobsen, L. K. Oxenløwe, and C. Peucheret, “25-Gb/s transmission over 2.5-km SSMF by silicon MRR enhanced 1.55-µm III-V/SOI DML,” IEEE Photon. Technol. Lett. 29, 960–963 (2017).
[Crossref]

B. F. Mayer, S. Wirths, S. Mauthe, P. Staudinger, M. Sousa, J. Winiger, H. Schmid, and K. E. Moselund, “Microcavity lasers on silicon by template-assisted selective epitaxy of microsubstrates,” IEEE Photon. Technol. Lett. 31, 1021–1024 (2019).
[Crossref]

IET Optoelectron. (1)

T. Fujii, T. Sato, K. Takeda, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Epitaxial growth of InP to bury directly bonded thin active layer on SiO2/Si substrate for fabricating distributed feedback lasers on silicon,” IET Optoelectron. 9, 151–157 (2015).
[Crossref]

J. Appl. Phys. (1)

A. A. Sirenko, A. Kazimirov, R. Huang, D. H. Bilderback, S. O’Malley, V. Gupta, K. Bacher, L. J. P. Ketelsen, and A. Ougazzaden, “Microbeam high-resolution x-ray diffraction in strained InGaAlAs-based multiple quantum well laser structures grown selectively on masked InP substrates,” J. Appl. Phys. 97, 063512 (2005).
[Crossref]

J. Cryst. Growth (1)

T. Sasaki, M. Kitamura, and I. Mito, “Selective metalorganic vapor phase epitaxial growth of InGaAsP/InP layers with bandgap energy control in InGaAs/InGaAsP multiple-quantum well structures,” J. Cryst. Growth 132, 435–443 (1993).
[Crossref]

J. Lightwave Technol. (4)

J. Opt. (1)

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. M. Fédéli, J. M. Hartmann, J. H. Schmid, D. X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

Nat. Photonics (3)

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9, 837–842 (2015).
[Crossref]

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13  fJ of energy consumed per bit transmitted,” Nat. Photonics 4, 648–654 (2010).
[Crossref]

Opt. Express (6)

Opt. Lett. (2)

Optica (2)

Proc. IEEE (1)

D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97, 1166–1185 (2009).
[Crossref]

Sci. Rep. (1)

K. Tanabe, K. Watanabe, and Y. Arakawa, “III-V/Si hybrid photonic devices by direct fusion bonding,” Sci. Rep. 2, 349 (2012).
[Crossref]

Other (5)

L. Czornomaz, E. Uccelli, M. Sousa, V. Deshpande, V. Djara, D. Caimi, M. D. Rossell, R. Erni, and J. Fompeyrine, “Confined epitaxial lateral overgrowth (CELO): a novel concept for scalable integration of CMOS-compatible InGaAs-on-insulator MOSFETs on large-area Si substrates,” in Symposium on VLSI Technology (VLSI Technology) (2015), pp. T172–T173.

K. Takeda, T. Fujii, A. Shinya, T. Tsuchizawa, H. Nishi, E. Kuramochi, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Si nanowire waveguide coupled current-driven photonic-crystal lasers,” in Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) (2017), Vol. 1185.

N.-P. Diamantopoulos, T. Fujii, H. Nishi, K. Takeda, T. Kakitsuka, and S. Matsuo, “Energy-efficient 100-Gbps PAM transmissions using a 1.3-µm membrane DML-on-silicon,” in Photonics in Switching and Computing (PSC) (2018).

“IEEE Standard for Ethernet–Amendment 10: Media Access Control Parameters, Physical Layers, and Management Parameters for 200  Gb/s and 400  Gb/s Operation,” IEEE 802.3 bs (2017).

T. Fujii, H. Nishi, K. Takeda, E. Kanno, K. Hasebe, T. Kakitsuka, T. Yamamoto, H. Fukuda, T. Tsuchizawa, and S. Matsuo, “1.3-µm directly modulated membrane laser array employing epitaxial growth of InGaAlAs MQW on InP/SiO2/Si substrate,” in European Conference on Optical Communication (ECOC) (2016), paper Th3A.2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Epitaxial growth of InGaAlAs MQWs using InP-on-insulator substrate. (a) Schematic of the epitaxial growth procedure using InP-on-insulator substrate fabricated by wafer bonding of InP epitaxial wafer to thermally oxidized silicon substrate, together with the growth progression. (b) Photoluminescence (PL) intensity maps for 12-period MQWs grown on InP substrate (top) and on InP-on-insulator substrate (bottom). The residual strain varied from ${-}{1290}$ to 670 ppm.
Fig. 2.
Fig. 2. Characterization of epitaxially grown InGaAlAs MQWs on InP-on-insulator substrate. (a) PL spectra for six-period MQWs grown on InP-on-insulator substrate (solid blue line), InP substrate (dashed red line), and normalized PL spectrum for the MQW grown on InP substrate (dashed green line). (b) X-ray diffraction (XRD) characteristics for six-period MQWs grown on InP-on-insulator substrate and InP substrate, along with numerical simulation. (c),(d) Atomic force microscope (AFM) image and PL intensity map for six-period MQWs with InP-cap layer grown on InP-on-insulator substrate, respectively.
Fig. 3.
Fig. 3. Selective-area epitaxial growth on InP-on-insulator substrate. (a) Schematic drawing of selective epitaxy of InGaAlAs MQWs with different bandgaps. (b) Schematic of the top view of the selective-area growth mask. (c) PL peak wavelength shift caused by the selective mask. (d) PL spectra for MQWs with different mask widths.
Fig. 4.
Fig. 4. Schematic of fabrication procedure for selectively grown wide-wavelength-range membrane laser array on silicon. (a) Direct bonding of InP epitaxial wafer to silicon substrate with 2 µm thick thermal oxide. (b) Formation of ${{\rm SiO}_2}$ mask on InP-on-insulator substrate for selective-area growth. The curvy gap represents the wide separation of two channels. (c) Selective-area epitaxial growth of InGaAlAs MQW on InP-on-insulator substrate. (d) Formation of mesa stripes by dry and wet etching. (e) Selective-area regrowth of InP to fabricate BH. (f) $P$- and $n$-type doping. (g) Fabrication of surface grating and metallization. (h) Integration with spot-size convertor.
Fig. 5.
Fig. 5. (a) Photograph and (b) PL intensity map for the entire50 mm wafer after the selective epitaxial growth of six-period InGaAlAs MQWs. (c) PL characterization of MQWs for eight-channel membrane lasers compared with reference MQWs grown on InP substrate. The inset compares the PL peak wavelength and FWHM.
Fig. 6.
Fig. 6. Cross-sectional bright-field scanning transmission electron microscope (BF-STEM) image of the selectively grown lasers on silicon for (a) the shortest wavelength channel and (b) the longest wavelength channel. (c) Top-view photograph (left) and the schematic (right) of the membrane laser array and (d) schematic of the cross sections of the membrane laser.
Fig. 7.
Fig. 7. Static characterization of selectively grown membrane lasers on silicon. (a) Optical output powers and bias voltages of eight lasers versus injected current under continuous-wave operation at 25°C. (b) Lasing spectra of eight lasers at 25°C together with the corresponding PL spectra measured just after the selective growth of MQWs.
Fig. 8.
Fig. 8. Dynamic characterization of selectively grown membrane lasers on silicon. (a) Eye diagrams for the eight-channel membrane lasers directly modulated with 25.8 Gbit/s NRZ signal. (b) 56 Gbit/s (28 Gbaud) PAM-4 back-to-back bit-error-rate (BER) characteristics of the shorter (lane 0) and longer (lane 7) wavelength devices, together with the equalized eye diagrams.