Abstract

Fluorescence microscopy and derived techniques are continuously looking for photodetectors able to guarantee increased sensitivity, high spatial and temporal resolution, and ease of integration into modern microscopy architectures. Recent advances in single-photon avalanche diodes (SPADs) fabricated with industry-standard microelectronic processes allow the development of new detection systems tailored to address the requirements of advanced imaging techniques (such as image-scanning microscopy). To this aim, we present the complete design and characterization of two bidimensional SPAD arrays composed of 25 fully independent and asynchronously operated pixels, both having fill factor of about 50% and specifically designed for being integrated into existing laser scanning microscopes. We used two different microelectronics technologies to fabricate our detectors: the first technology exhibiting very low noise (roughly 200 dark counts per second at room temperature) and the second one showing enhanced detection efficiency (more than 60% at a wavelength of 500 nm). Starting from the silicon-level device structures and moving towards the in-pixel and readout electronics description, we present performance assessments and comparisons between the two detectors. Images of a biological sample acquired after their integration into our custom image-scanning microscope finally demonstrate their exquisite on-field performance in terms of spatial resolution and contrast enhancement. We envisage that this work can trigger the development of a new class of SPAD-based detector arrays able to substitute the typical single-element sensor used in fluorescence laser scanning microscopy.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. B. Pawley, ed., Handbook of Biological Confocal Microscopy (Springer, 1995).
  2. W. Becker, ed., Advanced Time-Correlated Single Photon Counting Applications (Springer, 2015).
  3. E. Haustein and P. Schwille, “Fluorescence correlation spectroscopy: novel variations of an established technique,” Annu. Rev. Biophys. Biomol. Struct. 36, 151–169 (2007).
    [Crossref]
  4. S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission-depletion fluorescence microscopy,” Opt. Lett. 19, 780–782 (1994).
    [Crossref]
  5. G. Vicidomini, P. Bianchini, and A. Diaspro, “STED super-resolved microscopy,” Nat. Methods 15, 173–182 (2018).
    [Crossref]
  6. C. B. Müller and J. Enderlein, “Image scanning microscopy,” Phys. Rev. Lett. 104, 198101 (2010).
    [Crossref]
  7. I. Gregor and J. Enderlein, “Image scanning microscopy,” Curr. Opin. Chem. Biol. 51, 74–83 (2019).
    [Crossref]
  8. P. P. Webb, R. J. McIntyre, and J. Conradi, “Properties of avalanche photodiodes,” RCA Rev. 35, 234–278 (1974).
  9. F. Zappa, S. Tisa, A. Tosi, and S. Cova, “Principles and features of single-photon avalanche diode arrays,” Sens. Actuators A 140, 103–112 (2007).
    [Crossref]
  10. A. Tosi, N. Calandri, M. Sanzaro, and F. Acerbi, “Low-noise, low-jitter, high detection efficiency InGaAs/InP single-photon avalanche diode,” IEEE J. Sel. Top. Quantum Electron. 20, 192–197 (2014).
    [Crossref]
  11. H. Dautet, P. Deschamps, B. Dion, A. D. MacGregor, D. MacSween, R. J. McIntyre, C. Trottier, and P. P. Webb, “Photon counting techniques with silicon avalanche photodiodes,” Appl. Opt. 32, 3894–3900 (1993).
    [Crossref]
  12. “SPCM-NIR single-photon detection module datasheet,” 2020, http://www.excelitas.com .
  13. M. Ghioni, S. Cova, A. Lacaita, and G. Ripamonti, “New silicon epitaxial avalanche diode for single-photon timing at room temperature,” Electron. Lett. 24, 1476–1477 (1988).
    [Crossref]
  14. M. Ghioni, A. Gulinatti, I. Rech, F. Zappa, and S. Cova, “Progress in silicon single-photon avalanche diodes,” IEEE J. of Sel. Top. in Quantum Electron. 13, 852–862 (2007).
    [Crossref]
  15. “PDM photon counting module datasheet,” 2020, http://www.micro-photon-devices.com .
  16. D. Bronzi, F. Villa, S. Tisa, A. Tosi, and F. Zappa, “SPAD figures of merit for photon-counting, photon-timing, and imaging applications: a review,” IEEE Sens. J. 16, 3–12 (2016).
    [Crossref]
  17. R. K. Henderson, N. Johnston, F. M. D. Rocca, H. Chen, D. D.-U. Li, G. Hungerford, R. Hirsch, D. Mcloskey, P. Yip, and D. J. S. Birch, “A 192 × 128 time correlated SPAD image sensor in 40-nm CMOS technology,” IEEE J. Solid-State Circuits 54, 1907–1916 (2019).
    [Crossref]
  18. F. Villa, D. Bronzi, Y. Zou, C. Scarcella, G. Boso, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, W. Brockherde, and U. Paschen, “CMOS SPADs with up to 500  µm diameter and 55% detection efficiency at 420  nm,” J. Mod. Opt. 61, 102–115 (2014).
    [Crossref]
  19. R. K. Henderson, N. Johnston, S. W. Hutchings, I. Gyongy, T. A. Abbas, N. Dutton, M. Tyler, S. Chan, and J. Leach, “A 256 × 256 40  nm/90  nm CMOS 3D-stacked 120  dB dynamic-range reconfigurable time-resolved SPAD imager,” in IEEE International Solid-State Circuits Conference (2019), pp. 106–108.
  20. E. Charbon, C. Bruschini, and M. Lee, “3D-stacked CMOS SPAD image sensors: technology and applications,” in IEEE International Conference on Electronics Circuits and Systems (2018), pp. 1–4.
  21. K. Morimoto, A. Ardelean, M. L. Wu, A. Can Ulku, I. M. Antolovic, C. Bruschini, and E. Charbon, “Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications,” Optica 7, 346–354 (2020).
    [Crossref]
  22. D. Bronzi, F. Villa, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, and W. Brockherde, “100.000  frames/s 64 × 32 single-photon detector array for 2-D imaging and 3-D ranging,” IEEE J. Sel. Top. Quantum Electron. 20, 354–363 (2014).
    [Crossref]
  23. F. Villa, R. Lussana, D. Bronzi, S. Tisa, A. Tosi, F. Zappa, A. Dalla Mora, D. Contini, D. Durini, S. Weyers, and W. Brockherde, “CMOS imager with 1024 SPADs and TDCs for single-photon timing and 3D time-of-flight,” IEEE J. Sel. Top. Quantum Electron. 20, 364–373 (2014).
    [Crossref]
  24. D. Portaluppi, E. Conca, and F. Villa, “32 × 32 CMOS SPAD imager for gated imaging photon timing, and photon coincidence,” IEEE J. Sel. Top. Quantum Electron. 24, 1–6 (2018).
    [Crossref]
  25. L. H. C. Braga, L. Gasparini, L. Grant, R. K. Henderson, N. Massari, M. Perenzoni, D. Stoppa, and R. Walker, “A fully digital 8 × 16  SiPM array for PET applications with per-pixel TDCs and real-time energy output,” IEEE J. Solid-State Circuits 49, 301–314 (2014).
    [Crossref]
  26. G. Tortarolo, M. Castello, S. Koho, and G. Vicidomini, “Synergic combination of stimulated emission depletion microscopy with image scanning microscopy to reduce light dosage,” bioRxiv 741389 (2020).
  27. M. Bertero, C. De Mol, E. R. Pike, and J. G. Walker, “Resolution in diffraction-limited imaging, a singular value analysis IV. The case of uncertain localization or non-uniform illumination of the object,” Opt. Acta 31, 923–946 (1984).
    [Crossref]
  28. C. J. R. Sheppard, “Super-resolution in confocal imaging,” Optik 80, 53–54 (1988).
  29. C. J. R. Sheppard, S. B. Mehta, and R. Heintzmann, “Superresolution by image scanning microscopy using pixel reassignment,” Opt. Lett. 38, 2889–2892 (2013).
    [Crossref]
  30. M. Castello, C. J. R. Sheppard, A. Diaspro, and G. Vicidomini, “Image scanning microscopy with a quadrant detector,” Opt. Lett. 40, 5355–5358 (2015).
    [Crossref]
  31. G. M. R. De Luca, R. M. P. Breedijk, R. A. J. Brandt, C. H. C. Zeelenberg, B. E. de Jong, W. Timmermans, L. Nahidi Azar, R. A. Hoebe, S. Stallinga, and E. M. M. Manders, “Re-scan confocal microscopy: scanning twice for better resolution,” Biomed. Opt. Express 4, 2644–2656 (2013).
    [Crossref]
  32. S. Roth, C. J. R. Sheppard, K. Wicker, and R. Heintzmann, “Optical photon reassignment microscopy (OPRA),” Opt. Nanosc. 2, 5 (2013).
    [Crossref]
  33. P. W. Winter, A. G. York, D. Dalle Nogare, M. Ingaramo, R. Christensen, A. Chitnis, G. H. Patterson, and H. Shroff, “Two-photon instant structured illumination microscopy improves the depth penetration of super-resolution imaging in thick scattering samples,” Optica 1, 181–191 (2014).
    [Crossref]
  34. I. Gregor, M. Spiecker, R. Petrovsky, J. Großhans, R. Ros, and J. Enderlein, “Rapid nonlinear image scanning microscopy,” Nat. Methods 14, 1087–1089 (2017).
    [Crossref]
  35. J. Huff, “The Airyscan detector from ZEISS: confocal imaging with improved signal-to-noise ratio and super-resolution,” Nat. Methods 12, i–ii (2015).
    [Crossref]
  36. M. Sanzaro, P. Gattari, F. Villa, G. Croce, and F. Zappa, “Single-photon avalanche diodes in a 0.16  µm BCD technology with sharp timing response and red-enhanced sensitivity,” IEEE J. Sel. Top. Quantum Electron. 24, 1–9 (2018).
    [Crossref]
  37. I. M. Antolovic, C. Bruschini, and E. Charbon, “Dynamic range extension for photon counting arrays,” Opt. Express 26, 22234–22248 (2018).
    [Crossref]
  38. S. Cova, A. Lacaita, and G. Ripamonti, “Trapping phenomena in avalanche photodiodes on nanosecond scale,” IEEE Electron Device Lett. 12, 685–687 (1991).
    [Crossref]
  39. D. Bronzi, S. Tisa, F. Villa, S. Bellisai, A. Tosi, and F. Zappa, “Fast sensing and quenching of CMOS SPADs for minimal afterpulsing effects,” IEEE Photon. Technol. Lett. 25, 776–779 (2013).
    [Crossref]
  40. “PMT2101 amplified photomultiplier tube module datasheet,” 2020, http://www.thorlabs.com .
  41. A. S. Grove, ed., Physics and Technology of Semiconductor Devices (Wiley, 1967).
  42. A. Migdall, S. V. Polyakov, J. Fan, and J. C. Bienfang, “Single-photon generation and detection,” in Experimental Methods in the Physical Sciences (Academic, 2013), Vol. 45.
  43. S. Cova, G. Ripamonti, and A. Lacaita, “Avalanche semiconductor detector for single optical photons with a time resolution of 60 ps,” Nucl. Instrum. Methods A253, 482–487 (1987).
    [Crossref]
  44. I. Rech, A. Ingargiola, R. Spinelli, I. Labanca, S. Marangoni, M. Ghioni, and S. Cova, “Optical crosstalk in single photon avalanche diode arrays: a new complete model,” Opt. Express 16, 8381–8394 (2008).
    [Crossref]
  45. M. Sanzaro, F. Signorelli, P. Gattari, A. Tosi, and F. Zappa, “0.16  µm—BCD silicon photomultipliers with sharp timing response and reduced correlated noise,” Sensors 18, 3763 (2018).
    [Crossref]
  46. M. Castello, G. Tortarolo, M. Buttafava, T. Deguchi, F. Villa, S. Koho, L. Pesce, M. Oneto, S. Pelicci, L. Lanzanó, P. Bianchini, C. J. R. Sheppard, A. Diaspro, A. Tosi, and G. Vicidomini, “A robust and versatile platform for image scanning microscopy enabling super-resolution FLIM,” Nat. Methods 16, 175–178 (2019).
    [Crossref]
  47. S. V. Koho, E. Slenders, G. Tortarolo, M. Castello, M. Buttafava, F. Villa, E. Tcarenkova, M. Ameloot, P. Bianchini, C. J. R. Sheppard, A. Diaspro, A. Tosi, and G. Vicidomini, “Two-photon image-scanning microscopy with SPAD array and blind image reconstruction,” Biomed. Opt. Express 11, 2905–2924 (2020).
    [Crossref]
  48. M. Castello, G. Tortarolo, I. Coto Hernández, T. Deguchi, A. Diaspro, and G. Vicidomini, “Removal of anti-Stokes emission background in STED microscopy by FPGA-based synchronous detection,” Rev. Sci. Instrum. 88, 053701 (2017).
    [Crossref]
  49. G. Tortarolo, M. Castello, A. Diaspro, S. Koho, and G. Vicidomini, “Evaluating image resolution in stimulated emission depletion microscopy,” Optica 5, 32–35 (2018).
    [Crossref]
  50. S. Surdo, R. Carzino, A. Diaspro, and M. Duocastella, “Single-shot laser additive manufacturing of high fill-factor microlens arrays,” Adv. Opt. Mater. 6, 1701190 (2018).
    [Crossref]
  51. J. Dreier, M. Castello, G. Coceano, R. Cáceres, J. Plastino, G. Vicidomini, and I. Testa, “Smart scanning for low-illumination and fast RESOLFT nanoscopy in vivo,” Nat. Commun. 10, 556 (2019).
    [Crossref]
  52. L. Scipioni, L. Lanzanó, A. Diaspro, and E. Gratton, “Comprehensive correlation analysis for super-resolution dynamic fingerprinting of cellular compartments using the Zeiss Airyscan detector,” Nat. Commun. 9, 5120 (2018).
    [Crossref]
  53. “H7546A multianode photomultiplier tube assembly datasheet,” 2020, http://www.hamamatsu.com .
  54. L. Wawrezinieck, H. Rigneault, D. Marguet, and P. F. Lenne, “Fluorescence correlation spectroscopy diffusion laws to probe the submicron cell membrane organization,” Biophys. J. 89, 4029–4042 (2005).
    [Crossref]
  55. G. Musarra, A. Lyons, E. Conca, Y. Altmann, F. Villa, F. Zappa, M. J. Padgett, and D. Faccio, “Non-line-of-sight three-dimensional imaging with a single-pixel camera,” Phys. Rev. Appl. 12, 011002 (2019).
    [Crossref]
  56. M. Perenzoni, D. Perenzoni, and D. Stoppa, “A 64 × 64-pixels digital silicon photomultiplier direct TOF sensor with 100-MPhotons/s/pixel background rejection and imaging/altimeter mode with 0.14% precision up to 6  km for spacecraft navigation and landing,” IEEE J. Solid-State Circuits 52, 151–160 (2017).
    [Crossref]
  57. J. D. Johansson, D. Portaluppi, M. Buttafava, and F. Villa, “A multipixel diffuse correlation spectroscopy system based on a single photon avalanche diode array,” J. Biophoton. 12, e201900091 (2019).
    [Crossref]

2020 (2)

2019 (6)

J. D. Johansson, D. Portaluppi, M. Buttafava, and F. Villa, “A multipixel diffuse correlation spectroscopy system based on a single photon avalanche diode array,” J. Biophoton. 12, e201900091 (2019).
[Crossref]

I. Gregor and J. Enderlein, “Image scanning microscopy,” Curr. Opin. Chem. Biol. 51, 74–83 (2019).
[Crossref]

R. K. Henderson, N. Johnston, F. M. D. Rocca, H. Chen, D. D.-U. Li, G. Hungerford, R. Hirsch, D. Mcloskey, P. Yip, and D. J. S. Birch, “A 192 × 128 time correlated SPAD image sensor in 40-nm CMOS technology,” IEEE J. Solid-State Circuits 54, 1907–1916 (2019).
[Crossref]

J. Dreier, M. Castello, G. Coceano, R. Cáceres, J. Plastino, G. Vicidomini, and I. Testa, “Smart scanning for low-illumination and fast RESOLFT nanoscopy in vivo,” Nat. Commun. 10, 556 (2019).
[Crossref]

G. Musarra, A. Lyons, E. Conca, Y. Altmann, F. Villa, F. Zappa, M. J. Padgett, and D. Faccio, “Non-line-of-sight three-dimensional imaging with a single-pixel camera,” Phys. Rev. Appl. 12, 011002 (2019).
[Crossref]

M. Castello, G. Tortarolo, M. Buttafava, T. Deguchi, F. Villa, S. Koho, L. Pesce, M. Oneto, S. Pelicci, L. Lanzanó, P. Bianchini, C. J. R. Sheppard, A. Diaspro, A. Tosi, and G. Vicidomini, “A robust and versatile platform for image scanning microscopy enabling super-resolution FLIM,” Nat. Methods 16, 175–178 (2019).
[Crossref]

2018 (8)

S. Surdo, R. Carzino, A. Diaspro, and M. Duocastella, “Single-shot laser additive manufacturing of high fill-factor microlens arrays,” Adv. Opt. Mater. 6, 1701190 (2018).
[Crossref]

L. Scipioni, L. Lanzanó, A. Diaspro, and E. Gratton, “Comprehensive correlation analysis for super-resolution dynamic fingerprinting of cellular compartments using the Zeiss Airyscan detector,” Nat. Commun. 9, 5120 (2018).
[Crossref]

G. Vicidomini, P. Bianchini, and A. Diaspro, “STED super-resolved microscopy,” Nat. Methods 15, 173–182 (2018).
[Crossref]

I. M. Antolovic, C. Bruschini, and E. Charbon, “Dynamic range extension for photon counting arrays,” Opt. Express 26, 22234–22248 (2018).
[Crossref]

D. Portaluppi, E. Conca, and F. Villa, “32 × 32 CMOS SPAD imager for gated imaging photon timing, and photon coincidence,” IEEE J. Sel. Top. Quantum Electron. 24, 1–6 (2018).
[Crossref]

G. Tortarolo, M. Castello, A. Diaspro, S. Koho, and G. Vicidomini, “Evaluating image resolution in stimulated emission depletion microscopy,” Optica 5, 32–35 (2018).
[Crossref]

M. Sanzaro, P. Gattari, F. Villa, G. Croce, and F. Zappa, “Single-photon avalanche diodes in a 0.16  µm BCD technology with sharp timing response and red-enhanced sensitivity,” IEEE J. Sel. Top. Quantum Electron. 24, 1–9 (2018).
[Crossref]

M. Sanzaro, F. Signorelli, P. Gattari, A. Tosi, and F. Zappa, “0.16  µm—BCD silicon photomultipliers with sharp timing response and reduced correlated noise,” Sensors 18, 3763 (2018).
[Crossref]

2017 (3)

I. Gregor, M. Spiecker, R. Petrovsky, J. Großhans, R. Ros, and J. Enderlein, “Rapid nonlinear image scanning microscopy,” Nat. Methods 14, 1087–1089 (2017).
[Crossref]

M. Perenzoni, D. Perenzoni, and D. Stoppa, “A 64 × 64-pixels digital silicon photomultiplier direct TOF sensor with 100-MPhotons/s/pixel background rejection and imaging/altimeter mode with 0.14% precision up to 6  km for spacecraft navigation and landing,” IEEE J. Solid-State Circuits 52, 151–160 (2017).
[Crossref]

M. Castello, G. Tortarolo, I. Coto Hernández, T. Deguchi, A. Diaspro, and G. Vicidomini, “Removal of anti-Stokes emission background in STED microscopy by FPGA-based synchronous detection,” Rev. Sci. Instrum. 88, 053701 (2017).
[Crossref]

2016 (1)

D. Bronzi, F. Villa, S. Tisa, A. Tosi, and F. Zappa, “SPAD figures of merit for photon-counting, photon-timing, and imaging applications: a review,” IEEE Sens. J. 16, 3–12 (2016).
[Crossref]

2015 (2)

J. Huff, “The Airyscan detector from ZEISS: confocal imaging with improved signal-to-noise ratio and super-resolution,” Nat. Methods 12, i–ii (2015).
[Crossref]

M. Castello, C. J. R. Sheppard, A. Diaspro, and G. Vicidomini, “Image scanning microscopy with a quadrant detector,” Opt. Lett. 40, 5355–5358 (2015).
[Crossref]

2014 (6)

A. Tosi, N. Calandri, M. Sanzaro, and F. Acerbi, “Low-noise, low-jitter, high detection efficiency InGaAs/InP single-photon avalanche diode,” IEEE J. Sel. Top. Quantum Electron. 20, 192–197 (2014).
[Crossref]

P. W. Winter, A. G. York, D. Dalle Nogare, M. Ingaramo, R. Christensen, A. Chitnis, G. H. Patterson, and H. Shroff, “Two-photon instant structured illumination microscopy improves the depth penetration of super-resolution imaging in thick scattering samples,” Optica 1, 181–191 (2014).
[Crossref]

F. Villa, D. Bronzi, Y. Zou, C. Scarcella, G. Boso, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, W. Brockherde, and U. Paschen, “CMOS SPADs with up to 500  µm diameter and 55% detection efficiency at 420  nm,” J. Mod. Opt. 61, 102–115 (2014).
[Crossref]

L. H. C. Braga, L. Gasparini, L. Grant, R. K. Henderson, N. Massari, M. Perenzoni, D. Stoppa, and R. Walker, “A fully digital 8 × 16  SiPM array for PET applications with per-pixel TDCs and real-time energy output,” IEEE J. Solid-State Circuits 49, 301–314 (2014).
[Crossref]

D. Bronzi, F. Villa, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, and W. Brockherde, “100.000  frames/s 64 × 32 single-photon detector array for 2-D imaging and 3-D ranging,” IEEE J. Sel. Top. Quantum Electron. 20, 354–363 (2014).
[Crossref]

F. Villa, R. Lussana, D. Bronzi, S. Tisa, A. Tosi, F. Zappa, A. Dalla Mora, D. Contini, D. Durini, S. Weyers, and W. Brockherde, “CMOS imager with 1024 SPADs and TDCs for single-photon timing and 3D time-of-flight,” IEEE J. Sel. Top. Quantum Electron. 20, 364–373 (2014).
[Crossref]

2013 (4)

G. M. R. De Luca, R. M. P. Breedijk, R. A. J. Brandt, C. H. C. Zeelenberg, B. E. de Jong, W. Timmermans, L. Nahidi Azar, R. A. Hoebe, S. Stallinga, and E. M. M. Manders, “Re-scan confocal microscopy: scanning twice for better resolution,” Biomed. Opt. Express 4, 2644–2656 (2013).
[Crossref]

C. J. R. Sheppard, S. B. Mehta, and R. Heintzmann, “Superresolution by image scanning microscopy using pixel reassignment,” Opt. Lett. 38, 2889–2892 (2013).
[Crossref]

D. Bronzi, S. Tisa, F. Villa, S. Bellisai, A. Tosi, and F. Zappa, “Fast sensing and quenching of CMOS SPADs for minimal afterpulsing effects,” IEEE Photon. Technol. Lett. 25, 776–779 (2013).
[Crossref]

S. Roth, C. J. R. Sheppard, K. Wicker, and R. Heintzmann, “Optical photon reassignment microscopy (OPRA),” Opt. Nanosc. 2, 5 (2013).
[Crossref]

2010 (1)

C. B. Müller and J. Enderlein, “Image scanning microscopy,” Phys. Rev. Lett. 104, 198101 (2010).
[Crossref]

2008 (1)

2007 (3)

M. Ghioni, A. Gulinatti, I. Rech, F. Zappa, and S. Cova, “Progress in silicon single-photon avalanche diodes,” IEEE J. of Sel. Top. in Quantum Electron. 13, 852–862 (2007).
[Crossref]

E. Haustein and P. Schwille, “Fluorescence correlation spectroscopy: novel variations of an established technique,” Annu. Rev. Biophys. Biomol. Struct. 36, 151–169 (2007).
[Crossref]

F. Zappa, S. Tisa, A. Tosi, and S. Cova, “Principles and features of single-photon avalanche diode arrays,” Sens. Actuators A 140, 103–112 (2007).
[Crossref]

2005 (1)

L. Wawrezinieck, H. Rigneault, D. Marguet, and P. F. Lenne, “Fluorescence correlation spectroscopy diffusion laws to probe the submicron cell membrane organization,” Biophys. J. 89, 4029–4042 (2005).
[Crossref]

1994 (1)

1993 (1)

1991 (1)

S. Cova, A. Lacaita, and G. Ripamonti, “Trapping phenomena in avalanche photodiodes on nanosecond scale,” IEEE Electron Device Lett. 12, 685–687 (1991).
[Crossref]

1988 (2)

C. J. R. Sheppard, “Super-resolution in confocal imaging,” Optik 80, 53–54 (1988).

M. Ghioni, S. Cova, A. Lacaita, and G. Ripamonti, “New silicon epitaxial avalanche diode for single-photon timing at room temperature,” Electron. Lett. 24, 1476–1477 (1988).
[Crossref]

1987 (1)

S. Cova, G. Ripamonti, and A. Lacaita, “Avalanche semiconductor detector for single optical photons with a time resolution of 60 ps,” Nucl. Instrum. Methods A253, 482–487 (1987).
[Crossref]

1984 (1)

M. Bertero, C. De Mol, E. R. Pike, and J. G. Walker, “Resolution in diffraction-limited imaging, a singular value analysis IV. The case of uncertain localization or non-uniform illumination of the object,” Opt. Acta 31, 923–946 (1984).
[Crossref]

1974 (1)

P. P. Webb, R. J. McIntyre, and J. Conradi, “Properties of avalanche photodiodes,” RCA Rev. 35, 234–278 (1974).

Abbas, T. A.

R. K. Henderson, N. Johnston, S. W. Hutchings, I. Gyongy, T. A. Abbas, N. Dutton, M. Tyler, S. Chan, and J. Leach, “A 256 × 256 40  nm/90  nm CMOS 3D-stacked 120  dB dynamic-range reconfigurable time-resolved SPAD imager,” in IEEE International Solid-State Circuits Conference (2019), pp. 106–108.

Acerbi, F.

A. Tosi, N. Calandri, M. Sanzaro, and F. Acerbi, “Low-noise, low-jitter, high detection efficiency InGaAs/InP single-photon avalanche diode,” IEEE J. Sel. Top. Quantum Electron. 20, 192–197 (2014).
[Crossref]

Altmann, Y.

G. Musarra, A. Lyons, E. Conca, Y. Altmann, F. Villa, F. Zappa, M. J. Padgett, and D. Faccio, “Non-line-of-sight three-dimensional imaging with a single-pixel camera,” Phys. Rev. Appl. 12, 011002 (2019).
[Crossref]

Ameloot, M.

Antolovic, I. M.

Ardelean, A.

Bellisai, S.

D. Bronzi, S. Tisa, F. Villa, S. Bellisai, A. Tosi, and F. Zappa, “Fast sensing and quenching of CMOS SPADs for minimal afterpulsing effects,” IEEE Photon. Technol. Lett. 25, 776–779 (2013).
[Crossref]

Bertero, M.

M. Bertero, C. De Mol, E. R. Pike, and J. G. Walker, “Resolution in diffraction-limited imaging, a singular value analysis IV. The case of uncertain localization or non-uniform illumination of the object,” Opt. Acta 31, 923–946 (1984).
[Crossref]

Bianchini, P.

S. V. Koho, E. Slenders, G. Tortarolo, M. Castello, M. Buttafava, F. Villa, E. Tcarenkova, M. Ameloot, P. Bianchini, C. J. R. Sheppard, A. Diaspro, A. Tosi, and G. Vicidomini, “Two-photon image-scanning microscopy with SPAD array and blind image reconstruction,” Biomed. Opt. Express 11, 2905–2924 (2020).
[Crossref]

M. Castello, G. Tortarolo, M. Buttafava, T. Deguchi, F. Villa, S. Koho, L. Pesce, M. Oneto, S. Pelicci, L. Lanzanó, P. Bianchini, C. J. R. Sheppard, A. Diaspro, A. Tosi, and G. Vicidomini, “A robust and versatile platform for image scanning microscopy enabling super-resolution FLIM,” Nat. Methods 16, 175–178 (2019).
[Crossref]

G. Vicidomini, P. Bianchini, and A. Diaspro, “STED super-resolved microscopy,” Nat. Methods 15, 173–182 (2018).
[Crossref]

Bienfang, J. C.

A. Migdall, S. V. Polyakov, J. Fan, and J. C. Bienfang, “Single-photon generation and detection,” in Experimental Methods in the Physical Sciences (Academic, 2013), Vol. 45.

Birch, D. J. S.

R. K. Henderson, N. Johnston, F. M. D. Rocca, H. Chen, D. D.-U. Li, G. Hungerford, R. Hirsch, D. Mcloskey, P. Yip, and D. J. S. Birch, “A 192 × 128 time correlated SPAD image sensor in 40-nm CMOS technology,” IEEE J. Solid-State Circuits 54, 1907–1916 (2019).
[Crossref]

Boso, G.

F. Villa, D. Bronzi, Y. Zou, C. Scarcella, G. Boso, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, W. Brockherde, and U. Paschen, “CMOS SPADs with up to 500  µm diameter and 55% detection efficiency at 420  nm,” J. Mod. Opt. 61, 102–115 (2014).
[Crossref]

Braga, L. H. C.

L. H. C. Braga, L. Gasparini, L. Grant, R. K. Henderson, N. Massari, M. Perenzoni, D. Stoppa, and R. Walker, “A fully digital 8 × 16  SiPM array for PET applications with per-pixel TDCs and real-time energy output,” IEEE J. Solid-State Circuits 49, 301–314 (2014).
[Crossref]

Brandt, R. A. J.

Breedijk, R. M. P.

Brockherde, W.

D. Bronzi, F. Villa, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, and W. Brockherde, “100.000  frames/s 64 × 32 single-photon detector array for 2-D imaging and 3-D ranging,” IEEE J. Sel. Top. Quantum Electron. 20, 354–363 (2014).
[Crossref]

F. Villa, R. Lussana, D. Bronzi, S. Tisa, A. Tosi, F. Zappa, A. Dalla Mora, D. Contini, D. Durini, S. Weyers, and W. Brockherde, “CMOS imager with 1024 SPADs and TDCs for single-photon timing and 3D time-of-flight,” IEEE J. Sel. Top. Quantum Electron. 20, 364–373 (2014).
[Crossref]

F. Villa, D. Bronzi, Y. Zou, C. Scarcella, G. Boso, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, W. Brockherde, and U. Paschen, “CMOS SPADs with up to 500  µm diameter and 55% detection efficiency at 420  nm,” J. Mod. Opt. 61, 102–115 (2014).
[Crossref]

Bronzi, D.

D. Bronzi, F. Villa, S. Tisa, A. Tosi, and F. Zappa, “SPAD figures of merit for photon-counting, photon-timing, and imaging applications: a review,” IEEE Sens. J. 16, 3–12 (2016).
[Crossref]

F. Villa, D. Bronzi, Y. Zou, C. Scarcella, G. Boso, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, W. Brockherde, and U. Paschen, “CMOS SPADs with up to 500  µm diameter and 55% detection efficiency at 420  nm,” J. Mod. Opt. 61, 102–115 (2014).
[Crossref]

F. Villa, R. Lussana, D. Bronzi, S. Tisa, A. Tosi, F. Zappa, A. Dalla Mora, D. Contini, D. Durini, S. Weyers, and W. Brockherde, “CMOS imager with 1024 SPADs and TDCs for single-photon timing and 3D time-of-flight,” IEEE J. Sel. Top. Quantum Electron. 20, 364–373 (2014).
[Crossref]

D. Bronzi, F. Villa, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, and W. Brockherde, “100.000  frames/s 64 × 32 single-photon detector array for 2-D imaging and 3-D ranging,” IEEE J. Sel. Top. Quantum Electron. 20, 354–363 (2014).
[Crossref]

D. Bronzi, S. Tisa, F. Villa, S. Bellisai, A. Tosi, and F. Zappa, “Fast sensing and quenching of CMOS SPADs for minimal afterpulsing effects,” IEEE Photon. Technol. Lett. 25, 776–779 (2013).
[Crossref]

Bruschini, C.

Buttafava, M.

S. V. Koho, E. Slenders, G. Tortarolo, M. Castello, M. Buttafava, F. Villa, E. Tcarenkova, M. Ameloot, P. Bianchini, C. J. R. Sheppard, A. Diaspro, A. Tosi, and G. Vicidomini, “Two-photon image-scanning microscopy with SPAD array and blind image reconstruction,” Biomed. Opt. Express 11, 2905–2924 (2020).
[Crossref]

M. Castello, G. Tortarolo, M. Buttafava, T. Deguchi, F. Villa, S. Koho, L. Pesce, M. Oneto, S. Pelicci, L. Lanzanó, P. Bianchini, C. J. R. Sheppard, A. Diaspro, A. Tosi, and G. Vicidomini, “A robust and versatile platform for image scanning microscopy enabling super-resolution FLIM,” Nat. Methods 16, 175–178 (2019).
[Crossref]

J. D. Johansson, D. Portaluppi, M. Buttafava, and F. Villa, “A multipixel diffuse correlation spectroscopy system based on a single photon avalanche diode array,” J. Biophoton. 12, e201900091 (2019).
[Crossref]

Cáceres, R.

J. Dreier, M. Castello, G. Coceano, R. Cáceres, J. Plastino, G. Vicidomini, and I. Testa, “Smart scanning for low-illumination and fast RESOLFT nanoscopy in vivo,” Nat. Commun. 10, 556 (2019).
[Crossref]

Calandri, N.

A. Tosi, N. Calandri, M. Sanzaro, and F. Acerbi, “Low-noise, low-jitter, high detection efficiency InGaAs/InP single-photon avalanche diode,” IEEE J. Sel. Top. Quantum Electron. 20, 192–197 (2014).
[Crossref]

Can Ulku, A.

Carzino, R.

S. Surdo, R. Carzino, A. Diaspro, and M. Duocastella, “Single-shot laser additive manufacturing of high fill-factor microlens arrays,” Adv. Opt. Mater. 6, 1701190 (2018).
[Crossref]

Castello, M.

S. V. Koho, E. Slenders, G. Tortarolo, M. Castello, M. Buttafava, F. Villa, E. Tcarenkova, M. Ameloot, P. Bianchini, C. J. R. Sheppard, A. Diaspro, A. Tosi, and G. Vicidomini, “Two-photon image-scanning microscopy with SPAD array and blind image reconstruction,” Biomed. Opt. Express 11, 2905–2924 (2020).
[Crossref]

M. Castello, G. Tortarolo, M. Buttafava, T. Deguchi, F. Villa, S. Koho, L. Pesce, M. Oneto, S. Pelicci, L. Lanzanó, P. Bianchini, C. J. R. Sheppard, A. Diaspro, A. Tosi, and G. Vicidomini, “A robust and versatile platform for image scanning microscopy enabling super-resolution FLIM,” Nat. Methods 16, 175–178 (2019).
[Crossref]

J. Dreier, M. Castello, G. Coceano, R. Cáceres, J. Plastino, G. Vicidomini, and I. Testa, “Smart scanning for low-illumination and fast RESOLFT nanoscopy in vivo,” Nat. Commun. 10, 556 (2019).
[Crossref]

G. Tortarolo, M. Castello, A. Diaspro, S. Koho, and G. Vicidomini, “Evaluating image resolution in stimulated emission depletion microscopy,” Optica 5, 32–35 (2018).
[Crossref]

M. Castello, G. Tortarolo, I. Coto Hernández, T. Deguchi, A. Diaspro, and G. Vicidomini, “Removal of anti-Stokes emission background in STED microscopy by FPGA-based synchronous detection,” Rev. Sci. Instrum. 88, 053701 (2017).
[Crossref]

M. Castello, C. J. R. Sheppard, A. Diaspro, and G. Vicidomini, “Image scanning microscopy with a quadrant detector,” Opt. Lett. 40, 5355–5358 (2015).
[Crossref]

G. Tortarolo, M. Castello, S. Koho, and G. Vicidomini, “Synergic combination of stimulated emission depletion microscopy with image scanning microscopy to reduce light dosage,” bioRxiv 741389 (2020).

Chan, S.

R. K. Henderson, N. Johnston, S. W. Hutchings, I. Gyongy, T. A. Abbas, N. Dutton, M. Tyler, S. Chan, and J. Leach, “A 256 × 256 40  nm/90  nm CMOS 3D-stacked 120  dB dynamic-range reconfigurable time-resolved SPAD imager,” in IEEE International Solid-State Circuits Conference (2019), pp. 106–108.

Charbon, E.

Chen, H.

R. K. Henderson, N. Johnston, F. M. D. Rocca, H. Chen, D. D.-U. Li, G. Hungerford, R. Hirsch, D. Mcloskey, P. Yip, and D. J. S. Birch, “A 192 × 128 time correlated SPAD image sensor in 40-nm CMOS technology,” IEEE J. Solid-State Circuits 54, 1907–1916 (2019).
[Crossref]

Chitnis, A.

Christensen, R.

Coceano, G.

J. Dreier, M. Castello, G. Coceano, R. Cáceres, J. Plastino, G. Vicidomini, and I. Testa, “Smart scanning for low-illumination and fast RESOLFT nanoscopy in vivo,” Nat. Commun. 10, 556 (2019).
[Crossref]

Conca, E.

G. Musarra, A. Lyons, E. Conca, Y. Altmann, F. Villa, F. Zappa, M. J. Padgett, and D. Faccio, “Non-line-of-sight three-dimensional imaging with a single-pixel camera,” Phys. Rev. Appl. 12, 011002 (2019).
[Crossref]

D. Portaluppi, E. Conca, and F. Villa, “32 × 32 CMOS SPAD imager for gated imaging photon timing, and photon coincidence,” IEEE J. Sel. Top. Quantum Electron. 24, 1–6 (2018).
[Crossref]

Conradi, J.

P. P. Webb, R. J. McIntyre, and J. Conradi, “Properties of avalanche photodiodes,” RCA Rev. 35, 234–278 (1974).

Contini, D.

F. Villa, R. Lussana, D. Bronzi, S. Tisa, A. Tosi, F. Zappa, A. Dalla Mora, D. Contini, D. Durini, S. Weyers, and W. Brockherde, “CMOS imager with 1024 SPADs and TDCs for single-photon timing and 3D time-of-flight,” IEEE J. Sel. Top. Quantum Electron. 20, 364–373 (2014).
[Crossref]

Coto Hernández, I.

M. Castello, G. Tortarolo, I. Coto Hernández, T. Deguchi, A. Diaspro, and G. Vicidomini, “Removal of anti-Stokes emission background in STED microscopy by FPGA-based synchronous detection,” Rev. Sci. Instrum. 88, 053701 (2017).
[Crossref]

Cova, S.

I. Rech, A. Ingargiola, R. Spinelli, I. Labanca, S. Marangoni, M. Ghioni, and S. Cova, “Optical crosstalk in single photon avalanche diode arrays: a new complete model,” Opt. Express 16, 8381–8394 (2008).
[Crossref]

F. Zappa, S. Tisa, A. Tosi, and S. Cova, “Principles and features of single-photon avalanche diode arrays,” Sens. Actuators A 140, 103–112 (2007).
[Crossref]

M. Ghioni, A. Gulinatti, I. Rech, F. Zappa, and S. Cova, “Progress in silicon single-photon avalanche diodes,” IEEE J. of Sel. Top. in Quantum Electron. 13, 852–862 (2007).
[Crossref]

S. Cova, A. Lacaita, and G. Ripamonti, “Trapping phenomena in avalanche photodiodes on nanosecond scale,” IEEE Electron Device Lett. 12, 685–687 (1991).
[Crossref]

M. Ghioni, S. Cova, A. Lacaita, and G. Ripamonti, “New silicon epitaxial avalanche diode for single-photon timing at room temperature,” Electron. Lett. 24, 1476–1477 (1988).
[Crossref]

S. Cova, G. Ripamonti, and A. Lacaita, “Avalanche semiconductor detector for single optical photons with a time resolution of 60 ps,” Nucl. Instrum. Methods A253, 482–487 (1987).
[Crossref]

Croce, G.

M. Sanzaro, P. Gattari, F. Villa, G. Croce, and F. Zappa, “Single-photon avalanche diodes in a 0.16  µm BCD technology with sharp timing response and red-enhanced sensitivity,” IEEE J. Sel. Top. Quantum Electron. 24, 1–9 (2018).
[Crossref]

Dalla Mora, A.

F. Villa, R. Lussana, D. Bronzi, S. Tisa, A. Tosi, F. Zappa, A. Dalla Mora, D. Contini, D. Durini, S. Weyers, and W. Brockherde, “CMOS imager with 1024 SPADs and TDCs for single-photon timing and 3D time-of-flight,” IEEE J. Sel. Top. Quantum Electron. 20, 364–373 (2014).
[Crossref]

Dalle Nogare, D.

Dautet, H.

de Jong, B. E.

De Luca, G. M. R.

De Mol, C.

M. Bertero, C. De Mol, E. R. Pike, and J. G. Walker, “Resolution in diffraction-limited imaging, a singular value analysis IV. The case of uncertain localization or non-uniform illumination of the object,” Opt. Acta 31, 923–946 (1984).
[Crossref]

Deguchi, T.

M. Castello, G. Tortarolo, M. Buttafava, T. Deguchi, F. Villa, S. Koho, L. Pesce, M. Oneto, S. Pelicci, L. Lanzanó, P. Bianchini, C. J. R. Sheppard, A. Diaspro, A. Tosi, and G. Vicidomini, “A robust and versatile platform for image scanning microscopy enabling super-resolution FLIM,” Nat. Methods 16, 175–178 (2019).
[Crossref]

M. Castello, G. Tortarolo, I. Coto Hernández, T. Deguchi, A. Diaspro, and G. Vicidomini, “Removal of anti-Stokes emission background in STED microscopy by FPGA-based synchronous detection,” Rev. Sci. Instrum. 88, 053701 (2017).
[Crossref]

Deschamps, P.

Diaspro, A.

S. V. Koho, E. Slenders, G. Tortarolo, M. Castello, M. Buttafava, F. Villa, E. Tcarenkova, M. Ameloot, P. Bianchini, C. J. R. Sheppard, A. Diaspro, A. Tosi, and G. Vicidomini, “Two-photon image-scanning microscopy with SPAD array and blind image reconstruction,” Biomed. Opt. Express 11, 2905–2924 (2020).
[Crossref]

M. Castello, G. Tortarolo, M. Buttafava, T. Deguchi, F. Villa, S. Koho, L. Pesce, M. Oneto, S. Pelicci, L. Lanzanó, P. Bianchini, C. J. R. Sheppard, A. Diaspro, A. Tosi, and G. Vicidomini, “A robust and versatile platform for image scanning microscopy enabling super-resolution FLIM,” Nat. Methods 16, 175–178 (2019).
[Crossref]

G. Tortarolo, M. Castello, A. Diaspro, S. Koho, and G. Vicidomini, “Evaluating image resolution in stimulated emission depletion microscopy,” Optica 5, 32–35 (2018).
[Crossref]

S. Surdo, R. Carzino, A. Diaspro, and M. Duocastella, “Single-shot laser additive manufacturing of high fill-factor microlens arrays,” Adv. Opt. Mater. 6, 1701190 (2018).
[Crossref]

L. Scipioni, L. Lanzanó, A. Diaspro, and E. Gratton, “Comprehensive correlation analysis for super-resolution dynamic fingerprinting of cellular compartments using the Zeiss Airyscan detector,” Nat. Commun. 9, 5120 (2018).
[Crossref]

G. Vicidomini, P. Bianchini, and A. Diaspro, “STED super-resolved microscopy,” Nat. Methods 15, 173–182 (2018).
[Crossref]

M. Castello, G. Tortarolo, I. Coto Hernández, T. Deguchi, A. Diaspro, and G. Vicidomini, “Removal of anti-Stokes emission background in STED microscopy by FPGA-based synchronous detection,” Rev. Sci. Instrum. 88, 053701 (2017).
[Crossref]

M. Castello, C. J. R. Sheppard, A. Diaspro, and G. Vicidomini, “Image scanning microscopy with a quadrant detector,” Opt. Lett. 40, 5355–5358 (2015).
[Crossref]

Dion, B.

Dreier, J.

J. Dreier, M. Castello, G. Coceano, R. Cáceres, J. Plastino, G. Vicidomini, and I. Testa, “Smart scanning for low-illumination and fast RESOLFT nanoscopy in vivo,” Nat. Commun. 10, 556 (2019).
[Crossref]

Duocastella, M.

S. Surdo, R. Carzino, A. Diaspro, and M. Duocastella, “Single-shot laser additive manufacturing of high fill-factor microlens arrays,” Adv. Opt. Mater. 6, 1701190 (2018).
[Crossref]

Durini, D.

F. Villa, D. Bronzi, Y. Zou, C. Scarcella, G. Boso, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, W. Brockherde, and U. Paschen, “CMOS SPADs with up to 500  µm diameter and 55% detection efficiency at 420  nm,” J. Mod. Opt. 61, 102–115 (2014).
[Crossref]

F. Villa, R. Lussana, D. Bronzi, S. Tisa, A. Tosi, F. Zappa, A. Dalla Mora, D. Contini, D. Durini, S. Weyers, and W. Brockherde, “CMOS imager with 1024 SPADs and TDCs for single-photon timing and 3D time-of-flight,” IEEE J. Sel. Top. Quantum Electron. 20, 364–373 (2014).
[Crossref]

D. Bronzi, F. Villa, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, and W. Brockherde, “100.000  frames/s 64 × 32 single-photon detector array for 2-D imaging and 3-D ranging,” IEEE J. Sel. Top. Quantum Electron. 20, 354–363 (2014).
[Crossref]

Dutton, N.

R. K. Henderson, N. Johnston, S. W. Hutchings, I. Gyongy, T. A. Abbas, N. Dutton, M. Tyler, S. Chan, and J. Leach, “A 256 × 256 40  nm/90  nm CMOS 3D-stacked 120  dB dynamic-range reconfigurable time-resolved SPAD imager,” in IEEE International Solid-State Circuits Conference (2019), pp. 106–108.

Enderlein, J.

I. Gregor and J. Enderlein, “Image scanning microscopy,” Curr. Opin. Chem. Biol. 51, 74–83 (2019).
[Crossref]

I. Gregor, M. Spiecker, R. Petrovsky, J. Großhans, R. Ros, and J. Enderlein, “Rapid nonlinear image scanning microscopy,” Nat. Methods 14, 1087–1089 (2017).
[Crossref]

C. B. Müller and J. Enderlein, “Image scanning microscopy,” Phys. Rev. Lett. 104, 198101 (2010).
[Crossref]

Faccio, D.

G. Musarra, A. Lyons, E. Conca, Y. Altmann, F. Villa, F. Zappa, M. J. Padgett, and D. Faccio, “Non-line-of-sight three-dimensional imaging with a single-pixel camera,” Phys. Rev. Appl. 12, 011002 (2019).
[Crossref]

Fan, J.

A. Migdall, S. V. Polyakov, J. Fan, and J. C. Bienfang, “Single-photon generation and detection,” in Experimental Methods in the Physical Sciences (Academic, 2013), Vol. 45.

Gasparini, L.

L. H. C. Braga, L. Gasparini, L. Grant, R. K. Henderson, N. Massari, M. Perenzoni, D. Stoppa, and R. Walker, “A fully digital 8 × 16  SiPM array for PET applications with per-pixel TDCs and real-time energy output,” IEEE J. Solid-State Circuits 49, 301–314 (2014).
[Crossref]

Gattari, P.

M. Sanzaro, F. Signorelli, P. Gattari, A. Tosi, and F. Zappa, “0.16  µm—BCD silicon photomultipliers with sharp timing response and reduced correlated noise,” Sensors 18, 3763 (2018).
[Crossref]

M. Sanzaro, P. Gattari, F. Villa, G. Croce, and F. Zappa, “Single-photon avalanche diodes in a 0.16  µm BCD technology with sharp timing response and red-enhanced sensitivity,” IEEE J. Sel. Top. Quantum Electron. 24, 1–9 (2018).
[Crossref]

Ghioni, M.

I. Rech, A. Ingargiola, R. Spinelli, I. Labanca, S. Marangoni, M. Ghioni, and S. Cova, “Optical crosstalk in single photon avalanche diode arrays: a new complete model,” Opt. Express 16, 8381–8394 (2008).
[Crossref]

M. Ghioni, A. Gulinatti, I. Rech, F. Zappa, and S. Cova, “Progress in silicon single-photon avalanche diodes,” IEEE J. of Sel. Top. in Quantum Electron. 13, 852–862 (2007).
[Crossref]

M. Ghioni, S. Cova, A. Lacaita, and G. Ripamonti, “New silicon epitaxial avalanche diode for single-photon timing at room temperature,” Electron. Lett. 24, 1476–1477 (1988).
[Crossref]

Grant, L.

L. H. C. Braga, L. Gasparini, L. Grant, R. K. Henderson, N. Massari, M. Perenzoni, D. Stoppa, and R. Walker, “A fully digital 8 × 16  SiPM array for PET applications with per-pixel TDCs and real-time energy output,” IEEE J. Solid-State Circuits 49, 301–314 (2014).
[Crossref]

Gratton, E.

L. Scipioni, L. Lanzanó, A. Diaspro, and E. Gratton, “Comprehensive correlation analysis for super-resolution dynamic fingerprinting of cellular compartments using the Zeiss Airyscan detector,” Nat. Commun. 9, 5120 (2018).
[Crossref]

Gregor, I.

I. Gregor and J. Enderlein, “Image scanning microscopy,” Curr. Opin. Chem. Biol. 51, 74–83 (2019).
[Crossref]

I. Gregor, M. Spiecker, R. Petrovsky, J. Großhans, R. Ros, and J. Enderlein, “Rapid nonlinear image scanning microscopy,” Nat. Methods 14, 1087–1089 (2017).
[Crossref]

Großhans, J.

I. Gregor, M. Spiecker, R. Petrovsky, J. Großhans, R. Ros, and J. Enderlein, “Rapid nonlinear image scanning microscopy,” Nat. Methods 14, 1087–1089 (2017).
[Crossref]

Gulinatti, A.

M. Ghioni, A. Gulinatti, I. Rech, F. Zappa, and S. Cova, “Progress in silicon single-photon avalanche diodes,” IEEE J. of Sel. Top. in Quantum Electron. 13, 852–862 (2007).
[Crossref]

Gyongy, I.

R. K. Henderson, N. Johnston, S. W. Hutchings, I. Gyongy, T. A. Abbas, N. Dutton, M. Tyler, S. Chan, and J. Leach, “A 256 × 256 40  nm/90  nm CMOS 3D-stacked 120  dB dynamic-range reconfigurable time-resolved SPAD imager,” in IEEE International Solid-State Circuits Conference (2019), pp. 106–108.

Haustein, E.

E. Haustein and P. Schwille, “Fluorescence correlation spectroscopy: novel variations of an established technique,” Annu. Rev. Biophys. Biomol. Struct. 36, 151–169 (2007).
[Crossref]

Heintzmann, R.

C. J. R. Sheppard, S. B. Mehta, and R. Heintzmann, “Superresolution by image scanning microscopy using pixel reassignment,” Opt. Lett. 38, 2889–2892 (2013).
[Crossref]

S. Roth, C. J. R. Sheppard, K. Wicker, and R. Heintzmann, “Optical photon reassignment microscopy (OPRA),” Opt. Nanosc. 2, 5 (2013).
[Crossref]

Hell, S. W.

Henderson, R. K.

R. K. Henderson, N. Johnston, F. M. D. Rocca, H. Chen, D. D.-U. Li, G. Hungerford, R. Hirsch, D. Mcloskey, P. Yip, and D. J. S. Birch, “A 192 × 128 time correlated SPAD image sensor in 40-nm CMOS technology,” IEEE J. Solid-State Circuits 54, 1907–1916 (2019).
[Crossref]

L. H. C. Braga, L. Gasparini, L. Grant, R. K. Henderson, N. Massari, M. Perenzoni, D. Stoppa, and R. Walker, “A fully digital 8 × 16  SiPM array for PET applications with per-pixel TDCs and real-time energy output,” IEEE J. Solid-State Circuits 49, 301–314 (2014).
[Crossref]

R. K. Henderson, N. Johnston, S. W. Hutchings, I. Gyongy, T. A. Abbas, N. Dutton, M. Tyler, S. Chan, and J. Leach, “A 256 × 256 40  nm/90  nm CMOS 3D-stacked 120  dB dynamic-range reconfigurable time-resolved SPAD imager,” in IEEE International Solid-State Circuits Conference (2019), pp. 106–108.

Hirsch, R.

R. K. Henderson, N. Johnston, F. M. D. Rocca, H. Chen, D. D.-U. Li, G. Hungerford, R. Hirsch, D. Mcloskey, P. Yip, and D. J. S. Birch, “A 192 × 128 time correlated SPAD image sensor in 40-nm CMOS technology,” IEEE J. Solid-State Circuits 54, 1907–1916 (2019).
[Crossref]

Hoebe, R. A.

Huff, J.

J. Huff, “The Airyscan detector from ZEISS: confocal imaging with improved signal-to-noise ratio and super-resolution,” Nat. Methods 12, i–ii (2015).
[Crossref]

Hungerford, G.

R. K. Henderson, N. Johnston, F. M. D. Rocca, H. Chen, D. D.-U. Li, G. Hungerford, R. Hirsch, D. Mcloskey, P. Yip, and D. J. S. Birch, “A 192 × 128 time correlated SPAD image sensor in 40-nm CMOS technology,” IEEE J. Solid-State Circuits 54, 1907–1916 (2019).
[Crossref]

Hutchings, S. W.

R. K. Henderson, N. Johnston, S. W. Hutchings, I. Gyongy, T. A. Abbas, N. Dutton, M. Tyler, S. Chan, and J. Leach, “A 256 × 256 40  nm/90  nm CMOS 3D-stacked 120  dB dynamic-range reconfigurable time-resolved SPAD imager,” in IEEE International Solid-State Circuits Conference (2019), pp. 106–108.

Ingaramo, M.

Ingargiola, A.

Johansson, J. D.

J. D. Johansson, D. Portaluppi, M. Buttafava, and F. Villa, “A multipixel diffuse correlation spectroscopy system based on a single photon avalanche diode array,” J. Biophoton. 12, e201900091 (2019).
[Crossref]

Johnston, N.

R. K. Henderson, N. Johnston, F. M. D. Rocca, H. Chen, D. D.-U. Li, G. Hungerford, R. Hirsch, D. Mcloskey, P. Yip, and D. J. S. Birch, “A 192 × 128 time correlated SPAD image sensor in 40-nm CMOS technology,” IEEE J. Solid-State Circuits 54, 1907–1916 (2019).
[Crossref]

R. K. Henderson, N. Johnston, S. W. Hutchings, I. Gyongy, T. A. Abbas, N. Dutton, M. Tyler, S. Chan, and J. Leach, “A 256 × 256 40  nm/90  nm CMOS 3D-stacked 120  dB dynamic-range reconfigurable time-resolved SPAD imager,” in IEEE International Solid-State Circuits Conference (2019), pp. 106–108.

Koho, S.

M. Castello, G. Tortarolo, M. Buttafava, T. Deguchi, F. Villa, S. Koho, L. Pesce, M. Oneto, S. Pelicci, L. Lanzanó, P. Bianchini, C. J. R. Sheppard, A. Diaspro, A. Tosi, and G. Vicidomini, “A robust and versatile platform for image scanning microscopy enabling super-resolution FLIM,” Nat. Methods 16, 175–178 (2019).
[Crossref]

G. Tortarolo, M. Castello, A. Diaspro, S. Koho, and G. Vicidomini, “Evaluating image resolution in stimulated emission depletion microscopy,” Optica 5, 32–35 (2018).
[Crossref]

G. Tortarolo, M. Castello, S. Koho, and G. Vicidomini, “Synergic combination of stimulated emission depletion microscopy with image scanning microscopy to reduce light dosage,” bioRxiv 741389 (2020).

Koho, S. V.

Labanca, I.

Lacaita, A.

S. Cova, A. Lacaita, and G. Ripamonti, “Trapping phenomena in avalanche photodiodes on nanosecond scale,” IEEE Electron Device Lett. 12, 685–687 (1991).
[Crossref]

M. Ghioni, S. Cova, A. Lacaita, and G. Ripamonti, “New silicon epitaxial avalanche diode for single-photon timing at room temperature,” Electron. Lett. 24, 1476–1477 (1988).
[Crossref]

S. Cova, G. Ripamonti, and A. Lacaita, “Avalanche semiconductor detector for single optical photons with a time resolution of 60 ps,” Nucl. Instrum. Methods A253, 482–487 (1987).
[Crossref]

Lanzanó, L.

M. Castello, G. Tortarolo, M. Buttafava, T. Deguchi, F. Villa, S. Koho, L. Pesce, M. Oneto, S. Pelicci, L. Lanzanó, P. Bianchini, C. J. R. Sheppard, A. Diaspro, A. Tosi, and G. Vicidomini, “A robust and versatile platform for image scanning microscopy enabling super-resolution FLIM,” Nat. Methods 16, 175–178 (2019).
[Crossref]

L. Scipioni, L. Lanzanó, A. Diaspro, and E. Gratton, “Comprehensive correlation analysis for super-resolution dynamic fingerprinting of cellular compartments using the Zeiss Airyscan detector,” Nat. Commun. 9, 5120 (2018).
[Crossref]

Leach, J.

R. K. Henderson, N. Johnston, S. W. Hutchings, I. Gyongy, T. A. Abbas, N. Dutton, M. Tyler, S. Chan, and J. Leach, “A 256 × 256 40  nm/90  nm CMOS 3D-stacked 120  dB dynamic-range reconfigurable time-resolved SPAD imager,” in IEEE International Solid-State Circuits Conference (2019), pp. 106–108.

Lee, M.

E. Charbon, C. Bruschini, and M. Lee, “3D-stacked CMOS SPAD image sensors: technology and applications,” in IEEE International Conference on Electronics Circuits and Systems (2018), pp. 1–4.

Lenne, P. F.

L. Wawrezinieck, H. Rigneault, D. Marguet, and P. F. Lenne, “Fluorescence correlation spectroscopy diffusion laws to probe the submicron cell membrane organization,” Biophys. J. 89, 4029–4042 (2005).
[Crossref]

Li, D. D.-U.

R. K. Henderson, N. Johnston, F. M. D. Rocca, H. Chen, D. D.-U. Li, G. Hungerford, R. Hirsch, D. Mcloskey, P. Yip, and D. J. S. Birch, “A 192 × 128 time correlated SPAD image sensor in 40-nm CMOS technology,” IEEE J. Solid-State Circuits 54, 1907–1916 (2019).
[Crossref]

Lussana, R.

F. Villa, R. Lussana, D. Bronzi, S. Tisa, A. Tosi, F. Zappa, A. Dalla Mora, D. Contini, D. Durini, S. Weyers, and W. Brockherde, “CMOS imager with 1024 SPADs and TDCs for single-photon timing and 3D time-of-flight,” IEEE J. Sel. Top. Quantum Electron. 20, 364–373 (2014).
[Crossref]

Lyons, A.

G. Musarra, A. Lyons, E. Conca, Y. Altmann, F. Villa, F. Zappa, M. J. Padgett, and D. Faccio, “Non-line-of-sight three-dimensional imaging with a single-pixel camera,” Phys. Rev. Appl. 12, 011002 (2019).
[Crossref]

MacGregor, A. D.

MacSween, D.

Manders, E. M. M.

Marangoni, S.

Marguet, D.

L. Wawrezinieck, H. Rigneault, D. Marguet, and P. F. Lenne, “Fluorescence correlation spectroscopy diffusion laws to probe the submicron cell membrane organization,” Biophys. J. 89, 4029–4042 (2005).
[Crossref]

Massari, N.

L. H. C. Braga, L. Gasparini, L. Grant, R. K. Henderson, N. Massari, M. Perenzoni, D. Stoppa, and R. Walker, “A fully digital 8 × 16  SiPM array for PET applications with per-pixel TDCs and real-time energy output,” IEEE J. Solid-State Circuits 49, 301–314 (2014).
[Crossref]

McIntyre, R. J.

Mcloskey, D.

R. K. Henderson, N. Johnston, F. M. D. Rocca, H. Chen, D. D.-U. Li, G. Hungerford, R. Hirsch, D. Mcloskey, P. Yip, and D. J. S. Birch, “A 192 × 128 time correlated SPAD image sensor in 40-nm CMOS technology,” IEEE J. Solid-State Circuits 54, 1907–1916 (2019).
[Crossref]

Mehta, S. B.

Migdall, A.

A. Migdall, S. V. Polyakov, J. Fan, and J. C. Bienfang, “Single-photon generation and detection,” in Experimental Methods in the Physical Sciences (Academic, 2013), Vol. 45.

Morimoto, K.

Müller, C. B.

C. B. Müller and J. Enderlein, “Image scanning microscopy,” Phys. Rev. Lett. 104, 198101 (2010).
[Crossref]

Musarra, G.

G. Musarra, A. Lyons, E. Conca, Y. Altmann, F. Villa, F. Zappa, M. J. Padgett, and D. Faccio, “Non-line-of-sight three-dimensional imaging with a single-pixel camera,” Phys. Rev. Appl. 12, 011002 (2019).
[Crossref]

Nahidi Azar, L.

Oneto, M.

M. Castello, G. Tortarolo, M. Buttafava, T. Deguchi, F. Villa, S. Koho, L. Pesce, M. Oneto, S. Pelicci, L. Lanzanó, P. Bianchini, C. J. R. Sheppard, A. Diaspro, A. Tosi, and G. Vicidomini, “A robust and versatile platform for image scanning microscopy enabling super-resolution FLIM,” Nat. Methods 16, 175–178 (2019).
[Crossref]

Padgett, M. J.

G. Musarra, A. Lyons, E. Conca, Y. Altmann, F. Villa, F. Zappa, M. J. Padgett, and D. Faccio, “Non-line-of-sight three-dimensional imaging with a single-pixel camera,” Phys. Rev. Appl. 12, 011002 (2019).
[Crossref]

Paschen, U.

F. Villa, D. Bronzi, Y. Zou, C. Scarcella, G. Boso, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, W. Brockherde, and U. Paschen, “CMOS SPADs with up to 500  µm diameter and 55% detection efficiency at 420  nm,” J. Mod. Opt. 61, 102–115 (2014).
[Crossref]

Patterson, G. H.

Pelicci, S.

M. Castello, G. Tortarolo, M. Buttafava, T. Deguchi, F. Villa, S. Koho, L. Pesce, M. Oneto, S. Pelicci, L. Lanzanó, P. Bianchini, C. J. R. Sheppard, A. Diaspro, A. Tosi, and G. Vicidomini, “A robust and versatile platform for image scanning microscopy enabling super-resolution FLIM,” Nat. Methods 16, 175–178 (2019).
[Crossref]

Perenzoni, D.

M. Perenzoni, D. Perenzoni, and D. Stoppa, “A 64 × 64-pixels digital silicon photomultiplier direct TOF sensor with 100-MPhotons/s/pixel background rejection and imaging/altimeter mode with 0.14% precision up to 6  km for spacecraft navigation and landing,” IEEE J. Solid-State Circuits 52, 151–160 (2017).
[Crossref]

Perenzoni, M.

M. Perenzoni, D. Perenzoni, and D. Stoppa, “A 64 × 64-pixels digital silicon photomultiplier direct TOF sensor with 100-MPhotons/s/pixel background rejection and imaging/altimeter mode with 0.14% precision up to 6  km for spacecraft navigation and landing,” IEEE J. Solid-State Circuits 52, 151–160 (2017).
[Crossref]

L. H. C. Braga, L. Gasparini, L. Grant, R. K. Henderson, N. Massari, M. Perenzoni, D. Stoppa, and R. Walker, “A fully digital 8 × 16  SiPM array for PET applications with per-pixel TDCs and real-time energy output,” IEEE J. Solid-State Circuits 49, 301–314 (2014).
[Crossref]

Pesce, L.

M. Castello, G. Tortarolo, M. Buttafava, T. Deguchi, F. Villa, S. Koho, L. Pesce, M. Oneto, S. Pelicci, L. Lanzanó, P. Bianchini, C. J. R. Sheppard, A. Diaspro, A. Tosi, and G. Vicidomini, “A robust and versatile platform for image scanning microscopy enabling super-resolution FLIM,” Nat. Methods 16, 175–178 (2019).
[Crossref]

Petrovsky, R.

I. Gregor, M. Spiecker, R. Petrovsky, J. Großhans, R. Ros, and J. Enderlein, “Rapid nonlinear image scanning microscopy,” Nat. Methods 14, 1087–1089 (2017).
[Crossref]

Pike, E. R.

M. Bertero, C. De Mol, E. R. Pike, and J. G. Walker, “Resolution in diffraction-limited imaging, a singular value analysis IV. The case of uncertain localization or non-uniform illumination of the object,” Opt. Acta 31, 923–946 (1984).
[Crossref]

Plastino, J.

J. Dreier, M. Castello, G. Coceano, R. Cáceres, J. Plastino, G. Vicidomini, and I. Testa, “Smart scanning for low-illumination and fast RESOLFT nanoscopy in vivo,” Nat. Commun. 10, 556 (2019).
[Crossref]

Polyakov, S. V.

A. Migdall, S. V. Polyakov, J. Fan, and J. C. Bienfang, “Single-photon generation and detection,” in Experimental Methods in the Physical Sciences (Academic, 2013), Vol. 45.

Portaluppi, D.

J. D. Johansson, D. Portaluppi, M. Buttafava, and F. Villa, “A multipixel diffuse correlation spectroscopy system based on a single photon avalanche diode array,” J. Biophoton. 12, e201900091 (2019).
[Crossref]

D. Portaluppi, E. Conca, and F. Villa, “32 × 32 CMOS SPAD imager for gated imaging photon timing, and photon coincidence,” IEEE J. Sel. Top. Quantum Electron. 24, 1–6 (2018).
[Crossref]

Rech, I.

I. Rech, A. Ingargiola, R. Spinelli, I. Labanca, S. Marangoni, M. Ghioni, and S. Cova, “Optical crosstalk in single photon avalanche diode arrays: a new complete model,” Opt. Express 16, 8381–8394 (2008).
[Crossref]

M. Ghioni, A. Gulinatti, I. Rech, F. Zappa, and S. Cova, “Progress in silicon single-photon avalanche diodes,” IEEE J. of Sel. Top. in Quantum Electron. 13, 852–862 (2007).
[Crossref]

Rigneault, H.

L. Wawrezinieck, H. Rigneault, D. Marguet, and P. F. Lenne, “Fluorescence correlation spectroscopy diffusion laws to probe the submicron cell membrane organization,” Biophys. J. 89, 4029–4042 (2005).
[Crossref]

Ripamonti, G.

S. Cova, A. Lacaita, and G. Ripamonti, “Trapping phenomena in avalanche photodiodes on nanosecond scale,” IEEE Electron Device Lett. 12, 685–687 (1991).
[Crossref]

M. Ghioni, S. Cova, A. Lacaita, and G. Ripamonti, “New silicon epitaxial avalanche diode for single-photon timing at room temperature,” Electron. Lett. 24, 1476–1477 (1988).
[Crossref]

S. Cova, G. Ripamonti, and A. Lacaita, “Avalanche semiconductor detector for single optical photons with a time resolution of 60 ps,” Nucl. Instrum. Methods A253, 482–487 (1987).
[Crossref]

Rocca, F. M. D.

R. K. Henderson, N. Johnston, F. M. D. Rocca, H. Chen, D. D.-U. Li, G. Hungerford, R. Hirsch, D. Mcloskey, P. Yip, and D. J. S. Birch, “A 192 × 128 time correlated SPAD image sensor in 40-nm CMOS technology,” IEEE J. Solid-State Circuits 54, 1907–1916 (2019).
[Crossref]

Ros, R.

I. Gregor, M. Spiecker, R. Petrovsky, J. Großhans, R. Ros, and J. Enderlein, “Rapid nonlinear image scanning microscopy,” Nat. Methods 14, 1087–1089 (2017).
[Crossref]

Roth, S.

S. Roth, C. J. R. Sheppard, K. Wicker, and R. Heintzmann, “Optical photon reassignment microscopy (OPRA),” Opt. Nanosc. 2, 5 (2013).
[Crossref]

Sanzaro, M.

M. Sanzaro, P. Gattari, F. Villa, G. Croce, and F. Zappa, “Single-photon avalanche diodes in a 0.16  µm BCD technology with sharp timing response and red-enhanced sensitivity,” IEEE J. Sel. Top. Quantum Electron. 24, 1–9 (2018).
[Crossref]

M. Sanzaro, F. Signorelli, P. Gattari, A. Tosi, and F. Zappa, “0.16  µm—BCD silicon photomultipliers with sharp timing response and reduced correlated noise,” Sensors 18, 3763 (2018).
[Crossref]

A. Tosi, N. Calandri, M. Sanzaro, and F. Acerbi, “Low-noise, low-jitter, high detection efficiency InGaAs/InP single-photon avalanche diode,” IEEE J. Sel. Top. Quantum Electron. 20, 192–197 (2014).
[Crossref]

Scarcella, C.

F. Villa, D. Bronzi, Y. Zou, C. Scarcella, G. Boso, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, W. Brockherde, and U. Paschen, “CMOS SPADs with up to 500  µm diameter and 55% detection efficiency at 420  nm,” J. Mod. Opt. 61, 102–115 (2014).
[Crossref]

Schwille, P.

E. Haustein and P. Schwille, “Fluorescence correlation spectroscopy: novel variations of an established technique,” Annu. Rev. Biophys. Biomol. Struct. 36, 151–169 (2007).
[Crossref]

Scipioni, L.

L. Scipioni, L. Lanzanó, A. Diaspro, and E. Gratton, “Comprehensive correlation analysis for super-resolution dynamic fingerprinting of cellular compartments using the Zeiss Airyscan detector,” Nat. Commun. 9, 5120 (2018).
[Crossref]

Sheppard, C. J. R.

S. V. Koho, E. Slenders, G. Tortarolo, M. Castello, M. Buttafava, F. Villa, E. Tcarenkova, M. Ameloot, P. Bianchini, C. J. R. Sheppard, A. Diaspro, A. Tosi, and G. Vicidomini, “Two-photon image-scanning microscopy with SPAD array and blind image reconstruction,” Biomed. Opt. Express 11, 2905–2924 (2020).
[Crossref]

M. Castello, G. Tortarolo, M. Buttafava, T. Deguchi, F. Villa, S. Koho, L. Pesce, M. Oneto, S. Pelicci, L. Lanzanó, P. Bianchini, C. J. R. Sheppard, A. Diaspro, A. Tosi, and G. Vicidomini, “A robust and versatile platform for image scanning microscopy enabling super-resolution FLIM,” Nat. Methods 16, 175–178 (2019).
[Crossref]

M. Castello, C. J. R. Sheppard, A. Diaspro, and G. Vicidomini, “Image scanning microscopy with a quadrant detector,” Opt. Lett. 40, 5355–5358 (2015).
[Crossref]

C. J. R. Sheppard, S. B. Mehta, and R. Heintzmann, “Superresolution by image scanning microscopy using pixel reassignment,” Opt. Lett. 38, 2889–2892 (2013).
[Crossref]

S. Roth, C. J. R. Sheppard, K. Wicker, and R. Heintzmann, “Optical photon reassignment microscopy (OPRA),” Opt. Nanosc. 2, 5 (2013).
[Crossref]

C. J. R. Sheppard, “Super-resolution in confocal imaging,” Optik 80, 53–54 (1988).

Shroff, H.

Signorelli, F.

M. Sanzaro, F. Signorelli, P. Gattari, A. Tosi, and F. Zappa, “0.16  µm—BCD silicon photomultipliers with sharp timing response and reduced correlated noise,” Sensors 18, 3763 (2018).
[Crossref]

Slenders, E.

Spiecker, M.

I. Gregor, M. Spiecker, R. Petrovsky, J. Großhans, R. Ros, and J. Enderlein, “Rapid nonlinear image scanning microscopy,” Nat. Methods 14, 1087–1089 (2017).
[Crossref]

Spinelli, R.

Stallinga, S.

Stoppa, D.

M. Perenzoni, D. Perenzoni, and D. Stoppa, “A 64 × 64-pixels digital silicon photomultiplier direct TOF sensor with 100-MPhotons/s/pixel background rejection and imaging/altimeter mode with 0.14% precision up to 6  km for spacecraft navigation and landing,” IEEE J. Solid-State Circuits 52, 151–160 (2017).
[Crossref]

L. H. C. Braga, L. Gasparini, L. Grant, R. K. Henderson, N. Massari, M. Perenzoni, D. Stoppa, and R. Walker, “A fully digital 8 × 16  SiPM array for PET applications with per-pixel TDCs and real-time energy output,” IEEE J. Solid-State Circuits 49, 301–314 (2014).
[Crossref]

Surdo, S.

S. Surdo, R. Carzino, A. Diaspro, and M. Duocastella, “Single-shot laser additive manufacturing of high fill-factor microlens arrays,” Adv. Opt. Mater. 6, 1701190 (2018).
[Crossref]

Tcarenkova, E.

Testa, I.

J. Dreier, M. Castello, G. Coceano, R. Cáceres, J. Plastino, G. Vicidomini, and I. Testa, “Smart scanning for low-illumination and fast RESOLFT nanoscopy in vivo,” Nat. Commun. 10, 556 (2019).
[Crossref]

Timmermans, W.

Tisa, S.

D. Bronzi, F. Villa, S. Tisa, A. Tosi, and F. Zappa, “SPAD figures of merit for photon-counting, photon-timing, and imaging applications: a review,” IEEE Sens. J. 16, 3–12 (2016).
[Crossref]

F. Villa, D. Bronzi, Y. Zou, C. Scarcella, G. Boso, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, W. Brockherde, and U. Paschen, “CMOS SPADs with up to 500  µm diameter and 55% detection efficiency at 420  nm,” J. Mod. Opt. 61, 102–115 (2014).
[Crossref]

F. Villa, R. Lussana, D. Bronzi, S. Tisa, A. Tosi, F. Zappa, A. Dalla Mora, D. Contini, D. Durini, S. Weyers, and W. Brockherde, “CMOS imager with 1024 SPADs and TDCs for single-photon timing and 3D time-of-flight,” IEEE J. Sel. Top. Quantum Electron. 20, 364–373 (2014).
[Crossref]

D. Bronzi, F. Villa, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, and W. Brockherde, “100.000  frames/s 64 × 32 single-photon detector array for 2-D imaging and 3-D ranging,” IEEE J. Sel. Top. Quantum Electron. 20, 354–363 (2014).
[Crossref]

D. Bronzi, S. Tisa, F. Villa, S. Bellisai, A. Tosi, and F. Zappa, “Fast sensing and quenching of CMOS SPADs for minimal afterpulsing effects,” IEEE Photon. Technol. Lett. 25, 776–779 (2013).
[Crossref]

F. Zappa, S. Tisa, A. Tosi, and S. Cova, “Principles and features of single-photon avalanche diode arrays,” Sens. Actuators A 140, 103–112 (2007).
[Crossref]

Tortarolo, G.

S. V. Koho, E. Slenders, G. Tortarolo, M. Castello, M. Buttafava, F. Villa, E. Tcarenkova, M. Ameloot, P. Bianchini, C. J. R. Sheppard, A. Diaspro, A. Tosi, and G. Vicidomini, “Two-photon image-scanning microscopy with SPAD array and blind image reconstruction,” Biomed. Opt. Express 11, 2905–2924 (2020).
[Crossref]

M. Castello, G. Tortarolo, M. Buttafava, T. Deguchi, F. Villa, S. Koho, L. Pesce, M. Oneto, S. Pelicci, L. Lanzanó, P. Bianchini, C. J. R. Sheppard, A. Diaspro, A. Tosi, and G. Vicidomini, “A robust and versatile platform for image scanning microscopy enabling super-resolution FLIM,” Nat. Methods 16, 175–178 (2019).
[Crossref]

G. Tortarolo, M. Castello, A. Diaspro, S. Koho, and G. Vicidomini, “Evaluating image resolution in stimulated emission depletion microscopy,” Optica 5, 32–35 (2018).
[Crossref]

M. Castello, G. Tortarolo, I. Coto Hernández, T. Deguchi, A. Diaspro, and G. Vicidomini, “Removal of anti-Stokes emission background in STED microscopy by FPGA-based synchronous detection,” Rev. Sci. Instrum. 88, 053701 (2017).
[Crossref]

G. Tortarolo, M. Castello, S. Koho, and G. Vicidomini, “Synergic combination of stimulated emission depletion microscopy with image scanning microscopy to reduce light dosage,” bioRxiv 741389 (2020).

Tosi, A.

S. V. Koho, E. Slenders, G. Tortarolo, M. Castello, M. Buttafava, F. Villa, E. Tcarenkova, M. Ameloot, P. Bianchini, C. J. R. Sheppard, A. Diaspro, A. Tosi, and G. Vicidomini, “Two-photon image-scanning microscopy with SPAD array and blind image reconstruction,” Biomed. Opt. Express 11, 2905–2924 (2020).
[Crossref]

M. Castello, G. Tortarolo, M. Buttafava, T. Deguchi, F. Villa, S. Koho, L. Pesce, M. Oneto, S. Pelicci, L. Lanzanó, P. Bianchini, C. J. R. Sheppard, A. Diaspro, A. Tosi, and G. Vicidomini, “A robust and versatile platform for image scanning microscopy enabling super-resolution FLIM,” Nat. Methods 16, 175–178 (2019).
[Crossref]

M. Sanzaro, F. Signorelli, P. Gattari, A. Tosi, and F. Zappa, “0.16  µm—BCD silicon photomultipliers with sharp timing response and reduced correlated noise,” Sensors 18, 3763 (2018).
[Crossref]

D. Bronzi, F. Villa, S. Tisa, A. Tosi, and F. Zappa, “SPAD figures of merit for photon-counting, photon-timing, and imaging applications: a review,” IEEE Sens. J. 16, 3–12 (2016).
[Crossref]

F. Villa, D. Bronzi, Y. Zou, C. Scarcella, G. Boso, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, W. Brockherde, and U. Paschen, “CMOS SPADs with up to 500  µm diameter and 55% detection efficiency at 420  nm,” J. Mod. Opt. 61, 102–115 (2014).
[Crossref]

A. Tosi, N. Calandri, M. Sanzaro, and F. Acerbi, “Low-noise, low-jitter, high detection efficiency InGaAs/InP single-photon avalanche diode,” IEEE J. Sel. Top. Quantum Electron. 20, 192–197 (2014).
[Crossref]

D. Bronzi, F. Villa, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, and W. Brockherde, “100.000  frames/s 64 × 32 single-photon detector array for 2-D imaging and 3-D ranging,” IEEE J. Sel. Top. Quantum Electron. 20, 354–363 (2014).
[Crossref]

F. Villa, R. Lussana, D. Bronzi, S. Tisa, A. Tosi, F. Zappa, A. Dalla Mora, D. Contini, D. Durini, S. Weyers, and W. Brockherde, “CMOS imager with 1024 SPADs and TDCs for single-photon timing and 3D time-of-flight,” IEEE J. Sel. Top. Quantum Electron. 20, 364–373 (2014).
[Crossref]

D. Bronzi, S. Tisa, F. Villa, S. Bellisai, A. Tosi, and F. Zappa, “Fast sensing and quenching of CMOS SPADs for minimal afterpulsing effects,” IEEE Photon. Technol. Lett. 25, 776–779 (2013).
[Crossref]

F. Zappa, S. Tisa, A. Tosi, and S. Cova, “Principles and features of single-photon avalanche diode arrays,” Sens. Actuators A 140, 103–112 (2007).
[Crossref]

Trottier, C.

Tyler, M.

R. K. Henderson, N. Johnston, S. W. Hutchings, I. Gyongy, T. A. Abbas, N. Dutton, M. Tyler, S. Chan, and J. Leach, “A 256 × 256 40  nm/90  nm CMOS 3D-stacked 120  dB dynamic-range reconfigurable time-resolved SPAD imager,” in IEEE International Solid-State Circuits Conference (2019), pp. 106–108.

Vicidomini, G.

S. V. Koho, E. Slenders, G. Tortarolo, M. Castello, M. Buttafava, F. Villa, E. Tcarenkova, M. Ameloot, P. Bianchini, C. J. R. Sheppard, A. Diaspro, A. Tosi, and G. Vicidomini, “Two-photon image-scanning microscopy with SPAD array and blind image reconstruction,” Biomed. Opt. Express 11, 2905–2924 (2020).
[Crossref]

J. Dreier, M. Castello, G. Coceano, R. Cáceres, J. Plastino, G. Vicidomini, and I. Testa, “Smart scanning for low-illumination and fast RESOLFT nanoscopy in vivo,” Nat. Commun. 10, 556 (2019).
[Crossref]

M. Castello, G. Tortarolo, M. Buttafava, T. Deguchi, F. Villa, S. Koho, L. Pesce, M. Oneto, S. Pelicci, L. Lanzanó, P. Bianchini, C. J. R. Sheppard, A. Diaspro, A. Tosi, and G. Vicidomini, “A robust and versatile platform for image scanning microscopy enabling super-resolution FLIM,” Nat. Methods 16, 175–178 (2019).
[Crossref]

G. Tortarolo, M. Castello, A. Diaspro, S. Koho, and G. Vicidomini, “Evaluating image resolution in stimulated emission depletion microscopy,” Optica 5, 32–35 (2018).
[Crossref]

G. Vicidomini, P. Bianchini, and A. Diaspro, “STED super-resolved microscopy,” Nat. Methods 15, 173–182 (2018).
[Crossref]

M. Castello, G. Tortarolo, I. Coto Hernández, T. Deguchi, A. Diaspro, and G. Vicidomini, “Removal of anti-Stokes emission background in STED microscopy by FPGA-based synchronous detection,” Rev. Sci. Instrum. 88, 053701 (2017).
[Crossref]

M. Castello, C. J. R. Sheppard, A. Diaspro, and G. Vicidomini, “Image scanning microscopy with a quadrant detector,” Opt. Lett. 40, 5355–5358 (2015).
[Crossref]

G. Tortarolo, M. Castello, S. Koho, and G. Vicidomini, “Synergic combination of stimulated emission depletion microscopy with image scanning microscopy to reduce light dosage,” bioRxiv 741389 (2020).

Villa, F.

S. V. Koho, E. Slenders, G. Tortarolo, M. Castello, M. Buttafava, F. Villa, E. Tcarenkova, M. Ameloot, P. Bianchini, C. J. R. Sheppard, A. Diaspro, A. Tosi, and G. Vicidomini, “Two-photon image-scanning microscopy with SPAD array and blind image reconstruction,” Biomed. Opt. Express 11, 2905–2924 (2020).
[Crossref]

M. Castello, G. Tortarolo, M. Buttafava, T. Deguchi, F. Villa, S. Koho, L. Pesce, M. Oneto, S. Pelicci, L. Lanzanó, P. Bianchini, C. J. R. Sheppard, A. Diaspro, A. Tosi, and G. Vicidomini, “A robust and versatile platform for image scanning microscopy enabling super-resolution FLIM,” Nat. Methods 16, 175–178 (2019).
[Crossref]

J. D. Johansson, D. Portaluppi, M. Buttafava, and F. Villa, “A multipixel diffuse correlation spectroscopy system based on a single photon avalanche diode array,” J. Biophoton. 12, e201900091 (2019).
[Crossref]

G. Musarra, A. Lyons, E. Conca, Y. Altmann, F. Villa, F. Zappa, M. J. Padgett, and D. Faccio, “Non-line-of-sight three-dimensional imaging with a single-pixel camera,” Phys. Rev. Appl. 12, 011002 (2019).
[Crossref]

M. Sanzaro, P. Gattari, F. Villa, G. Croce, and F. Zappa, “Single-photon avalanche diodes in a 0.16  µm BCD technology with sharp timing response and red-enhanced sensitivity,” IEEE J. Sel. Top. Quantum Electron. 24, 1–9 (2018).
[Crossref]

D. Portaluppi, E. Conca, and F. Villa, “32 × 32 CMOS SPAD imager for gated imaging photon timing, and photon coincidence,” IEEE J. Sel. Top. Quantum Electron. 24, 1–6 (2018).
[Crossref]

D. Bronzi, F. Villa, S. Tisa, A. Tosi, and F. Zappa, “SPAD figures of merit for photon-counting, photon-timing, and imaging applications: a review,” IEEE Sens. J. 16, 3–12 (2016).
[Crossref]

F. Villa, D. Bronzi, Y. Zou, C. Scarcella, G. Boso, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, W. Brockherde, and U. Paschen, “CMOS SPADs with up to 500  µm diameter and 55% detection efficiency at 420  nm,” J. Mod. Opt. 61, 102–115 (2014).
[Crossref]

F. Villa, R. Lussana, D. Bronzi, S. Tisa, A. Tosi, F. Zappa, A. Dalla Mora, D. Contini, D. Durini, S. Weyers, and W. Brockherde, “CMOS imager with 1024 SPADs and TDCs for single-photon timing and 3D time-of-flight,” IEEE J. Sel. Top. Quantum Electron. 20, 364–373 (2014).
[Crossref]

D. Bronzi, F. Villa, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, and W. Brockherde, “100.000  frames/s 64 × 32 single-photon detector array for 2-D imaging and 3-D ranging,” IEEE J. Sel. Top. Quantum Electron. 20, 354–363 (2014).
[Crossref]

D. Bronzi, S. Tisa, F. Villa, S. Bellisai, A. Tosi, and F. Zappa, “Fast sensing and quenching of CMOS SPADs for minimal afterpulsing effects,” IEEE Photon. Technol. Lett. 25, 776–779 (2013).
[Crossref]

Walker, J. G.

M. Bertero, C. De Mol, E. R. Pike, and J. G. Walker, “Resolution in diffraction-limited imaging, a singular value analysis IV. The case of uncertain localization or non-uniform illumination of the object,” Opt. Acta 31, 923–946 (1984).
[Crossref]

Walker, R.

L. H. C. Braga, L. Gasparini, L. Grant, R. K. Henderson, N. Massari, M. Perenzoni, D. Stoppa, and R. Walker, “A fully digital 8 × 16  SiPM array for PET applications with per-pixel TDCs and real-time energy output,” IEEE J. Solid-State Circuits 49, 301–314 (2014).
[Crossref]

Wawrezinieck, L.

L. Wawrezinieck, H. Rigneault, D. Marguet, and P. F. Lenne, “Fluorescence correlation spectroscopy diffusion laws to probe the submicron cell membrane organization,” Biophys. J. 89, 4029–4042 (2005).
[Crossref]

Webb, P. P.

Weyers, S.

F. Villa, D. Bronzi, Y. Zou, C. Scarcella, G. Boso, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, W. Brockherde, and U. Paschen, “CMOS SPADs with up to 500  µm diameter and 55% detection efficiency at 420  nm,” J. Mod. Opt. 61, 102–115 (2014).
[Crossref]

D. Bronzi, F. Villa, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, and W. Brockherde, “100.000  frames/s 64 × 32 single-photon detector array for 2-D imaging and 3-D ranging,” IEEE J. Sel. Top. Quantum Electron. 20, 354–363 (2014).
[Crossref]

F. Villa, R. Lussana, D. Bronzi, S. Tisa, A. Tosi, F. Zappa, A. Dalla Mora, D. Contini, D. Durini, S. Weyers, and W. Brockherde, “CMOS imager with 1024 SPADs and TDCs for single-photon timing and 3D time-of-flight,” IEEE J. Sel. Top. Quantum Electron. 20, 364–373 (2014).
[Crossref]

Wichmann, J.

Wicker, K.

S. Roth, C. J. R. Sheppard, K. Wicker, and R. Heintzmann, “Optical photon reassignment microscopy (OPRA),” Opt. Nanosc. 2, 5 (2013).
[Crossref]

Winter, P. W.

Wu, M. L.

Yip, P.

R. K. Henderson, N. Johnston, F. M. D. Rocca, H. Chen, D. D.-U. Li, G. Hungerford, R. Hirsch, D. Mcloskey, P. Yip, and D. J. S. Birch, “A 192 × 128 time correlated SPAD image sensor in 40-nm CMOS technology,” IEEE J. Solid-State Circuits 54, 1907–1916 (2019).
[Crossref]

York, A. G.

Zappa, F.

G. Musarra, A. Lyons, E. Conca, Y. Altmann, F. Villa, F. Zappa, M. J. Padgett, and D. Faccio, “Non-line-of-sight three-dimensional imaging with a single-pixel camera,” Phys. Rev. Appl. 12, 011002 (2019).
[Crossref]

M. Sanzaro, P. Gattari, F. Villa, G. Croce, and F. Zappa, “Single-photon avalanche diodes in a 0.16  µm BCD technology with sharp timing response and red-enhanced sensitivity,” IEEE J. Sel. Top. Quantum Electron. 24, 1–9 (2018).
[Crossref]

M. Sanzaro, F. Signorelli, P. Gattari, A. Tosi, and F. Zappa, “0.16  µm—BCD silicon photomultipliers with sharp timing response and reduced correlated noise,” Sensors 18, 3763 (2018).
[Crossref]

D. Bronzi, F. Villa, S. Tisa, A. Tosi, and F. Zappa, “SPAD figures of merit for photon-counting, photon-timing, and imaging applications: a review,” IEEE Sens. J. 16, 3–12 (2016).
[Crossref]

F. Villa, D. Bronzi, Y. Zou, C. Scarcella, G. Boso, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, W. Brockherde, and U. Paschen, “CMOS SPADs with up to 500  µm diameter and 55% detection efficiency at 420  nm,” J. Mod. Opt. 61, 102–115 (2014).
[Crossref]

D. Bronzi, F. Villa, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, and W. Brockherde, “100.000  frames/s 64 × 32 single-photon detector array for 2-D imaging and 3-D ranging,” IEEE J. Sel. Top. Quantum Electron. 20, 354–363 (2014).
[Crossref]

F. Villa, R. Lussana, D. Bronzi, S. Tisa, A. Tosi, F. Zappa, A. Dalla Mora, D. Contini, D. Durini, S. Weyers, and W. Brockherde, “CMOS imager with 1024 SPADs and TDCs for single-photon timing and 3D time-of-flight,” IEEE J. Sel. Top. Quantum Electron. 20, 364–373 (2014).
[Crossref]

D. Bronzi, S. Tisa, F. Villa, S. Bellisai, A. Tosi, and F. Zappa, “Fast sensing and quenching of CMOS SPADs for minimal afterpulsing effects,” IEEE Photon. Technol. Lett. 25, 776–779 (2013).
[Crossref]

F. Zappa, S. Tisa, A. Tosi, and S. Cova, “Principles and features of single-photon avalanche diode arrays,” Sens. Actuators A 140, 103–112 (2007).
[Crossref]

M. Ghioni, A. Gulinatti, I. Rech, F. Zappa, and S. Cova, “Progress in silicon single-photon avalanche diodes,” IEEE J. of Sel. Top. in Quantum Electron. 13, 852–862 (2007).
[Crossref]

Zeelenberg, C. H. C.

Zou, Y.

F. Villa, D. Bronzi, Y. Zou, C. Scarcella, G. Boso, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, W. Brockherde, and U. Paschen, “CMOS SPADs with up to 500  µm diameter and 55% detection efficiency at 420  nm,” J. Mod. Opt. 61, 102–115 (2014).
[Crossref]

Adv. Opt. Mater. (1)

S. Surdo, R. Carzino, A. Diaspro, and M. Duocastella, “Single-shot laser additive manufacturing of high fill-factor microlens arrays,” Adv. Opt. Mater. 6, 1701190 (2018).
[Crossref]

Annu. Rev. Biophys. Biomol. Struct. (1)

E. Haustein and P. Schwille, “Fluorescence correlation spectroscopy: novel variations of an established technique,” Annu. Rev. Biophys. Biomol. Struct. 36, 151–169 (2007).
[Crossref]

Appl. Opt. (1)

Biomed. Opt. Express (2)

Biophys. J. (1)

L. Wawrezinieck, H. Rigneault, D. Marguet, and P. F. Lenne, “Fluorescence correlation spectroscopy diffusion laws to probe the submicron cell membrane organization,” Biophys. J. 89, 4029–4042 (2005).
[Crossref]

Curr. Opin. Chem. Biol. (1)

I. Gregor and J. Enderlein, “Image scanning microscopy,” Curr. Opin. Chem. Biol. 51, 74–83 (2019).
[Crossref]

Electron. Lett. (1)

M. Ghioni, S. Cova, A. Lacaita, and G. Ripamonti, “New silicon epitaxial avalanche diode for single-photon timing at room temperature,” Electron. Lett. 24, 1476–1477 (1988).
[Crossref]

IEEE Electron Device Lett. (1)

S. Cova, A. Lacaita, and G. Ripamonti, “Trapping phenomena in avalanche photodiodes on nanosecond scale,” IEEE Electron Device Lett. 12, 685–687 (1991).
[Crossref]

IEEE J. of Sel. Top. in Quantum Electron. (1)

M. Ghioni, A. Gulinatti, I. Rech, F. Zappa, and S. Cova, “Progress in silicon single-photon avalanche diodes,” IEEE J. of Sel. Top. in Quantum Electron. 13, 852–862 (2007).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (5)

M. Sanzaro, P. Gattari, F. Villa, G. Croce, and F. Zappa, “Single-photon avalanche diodes in a 0.16  µm BCD technology with sharp timing response and red-enhanced sensitivity,” IEEE J. Sel. Top. Quantum Electron. 24, 1–9 (2018).
[Crossref]

A. Tosi, N. Calandri, M. Sanzaro, and F. Acerbi, “Low-noise, low-jitter, high detection efficiency InGaAs/InP single-photon avalanche diode,” IEEE J. Sel. Top. Quantum Electron. 20, 192–197 (2014).
[Crossref]

D. Bronzi, F. Villa, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, and W. Brockherde, “100.000  frames/s 64 × 32 single-photon detector array for 2-D imaging and 3-D ranging,” IEEE J. Sel. Top. Quantum Electron. 20, 354–363 (2014).
[Crossref]

F. Villa, R. Lussana, D. Bronzi, S. Tisa, A. Tosi, F. Zappa, A. Dalla Mora, D. Contini, D. Durini, S. Weyers, and W. Brockherde, “CMOS imager with 1024 SPADs and TDCs for single-photon timing and 3D time-of-flight,” IEEE J. Sel. Top. Quantum Electron. 20, 364–373 (2014).
[Crossref]

D. Portaluppi, E. Conca, and F. Villa, “32 × 32 CMOS SPAD imager for gated imaging photon timing, and photon coincidence,” IEEE J. Sel. Top. Quantum Electron. 24, 1–6 (2018).
[Crossref]

IEEE J. Solid-State Circuits (3)

L. H. C. Braga, L. Gasparini, L. Grant, R. K. Henderson, N. Massari, M. Perenzoni, D. Stoppa, and R. Walker, “A fully digital 8 × 16  SiPM array for PET applications with per-pixel TDCs and real-time energy output,” IEEE J. Solid-State Circuits 49, 301–314 (2014).
[Crossref]

R. K. Henderson, N. Johnston, F. M. D. Rocca, H. Chen, D. D.-U. Li, G. Hungerford, R. Hirsch, D. Mcloskey, P. Yip, and D. J. S. Birch, “A 192 × 128 time correlated SPAD image sensor in 40-nm CMOS technology,” IEEE J. Solid-State Circuits 54, 1907–1916 (2019).
[Crossref]

M. Perenzoni, D. Perenzoni, and D. Stoppa, “A 64 × 64-pixels digital silicon photomultiplier direct TOF sensor with 100-MPhotons/s/pixel background rejection and imaging/altimeter mode with 0.14% precision up to 6  km for spacecraft navigation and landing,” IEEE J. Solid-State Circuits 52, 151–160 (2017).
[Crossref]

IEEE Photon. Technol. Lett. (1)

D. Bronzi, S. Tisa, F. Villa, S. Bellisai, A. Tosi, and F. Zappa, “Fast sensing and quenching of CMOS SPADs for minimal afterpulsing effects,” IEEE Photon. Technol. Lett. 25, 776–779 (2013).
[Crossref]

IEEE Sens. J. (1)

D. Bronzi, F. Villa, S. Tisa, A. Tosi, and F. Zappa, “SPAD figures of merit for photon-counting, photon-timing, and imaging applications: a review,” IEEE Sens. J. 16, 3–12 (2016).
[Crossref]

J. Biophoton. (1)

J. D. Johansson, D. Portaluppi, M. Buttafava, and F. Villa, “A multipixel diffuse correlation spectroscopy system based on a single photon avalanche diode array,” J. Biophoton. 12, e201900091 (2019).
[Crossref]

J. Mod. Opt. (1)

F. Villa, D. Bronzi, Y. Zou, C. Scarcella, G. Boso, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, W. Brockherde, and U. Paschen, “CMOS SPADs with up to 500  µm diameter and 55% detection efficiency at 420  nm,” J. Mod. Opt. 61, 102–115 (2014).
[Crossref]

Nat. Commun. (2)

J. Dreier, M. Castello, G. Coceano, R. Cáceres, J. Plastino, G. Vicidomini, and I. Testa, “Smart scanning for low-illumination and fast RESOLFT nanoscopy in vivo,” Nat. Commun. 10, 556 (2019).
[Crossref]

L. Scipioni, L. Lanzanó, A. Diaspro, and E. Gratton, “Comprehensive correlation analysis for super-resolution dynamic fingerprinting of cellular compartments using the Zeiss Airyscan detector,” Nat. Commun. 9, 5120 (2018).
[Crossref]

Nat. Methods (4)

I. Gregor, M. Spiecker, R. Petrovsky, J. Großhans, R. Ros, and J. Enderlein, “Rapid nonlinear image scanning microscopy,” Nat. Methods 14, 1087–1089 (2017).
[Crossref]

J. Huff, “The Airyscan detector from ZEISS: confocal imaging with improved signal-to-noise ratio and super-resolution,” Nat. Methods 12, i–ii (2015).
[Crossref]

G. Vicidomini, P. Bianchini, and A. Diaspro, “STED super-resolved microscopy,” Nat. Methods 15, 173–182 (2018).
[Crossref]

M. Castello, G. Tortarolo, M. Buttafava, T. Deguchi, F. Villa, S. Koho, L. Pesce, M. Oneto, S. Pelicci, L. Lanzanó, P. Bianchini, C. J. R. Sheppard, A. Diaspro, A. Tosi, and G. Vicidomini, “A robust and versatile platform for image scanning microscopy enabling super-resolution FLIM,” Nat. Methods 16, 175–178 (2019).
[Crossref]

Nucl. Instrum. Methods (1)

S. Cova, G. Ripamonti, and A. Lacaita, “Avalanche semiconductor detector for single optical photons with a time resolution of 60 ps,” Nucl. Instrum. Methods A253, 482–487 (1987).
[Crossref]

Opt. Acta (1)

M. Bertero, C. De Mol, E. R. Pike, and J. G. Walker, “Resolution in diffraction-limited imaging, a singular value analysis IV. The case of uncertain localization or non-uniform illumination of the object,” Opt. Acta 31, 923–946 (1984).
[Crossref]

Opt. Express (2)

Opt. Lett. (3)

Opt. Nanosc. (1)

S. Roth, C. J. R. Sheppard, K. Wicker, and R. Heintzmann, “Optical photon reassignment microscopy (OPRA),” Opt. Nanosc. 2, 5 (2013).
[Crossref]

Optica (3)

Optik (1)

C. J. R. Sheppard, “Super-resolution in confocal imaging,” Optik 80, 53–54 (1988).

Phys. Rev. Appl. (1)

G. Musarra, A. Lyons, E. Conca, Y. Altmann, F. Villa, F. Zappa, M. J. Padgett, and D. Faccio, “Non-line-of-sight three-dimensional imaging with a single-pixel camera,” Phys. Rev. Appl. 12, 011002 (2019).
[Crossref]

Phys. Rev. Lett. (1)

C. B. Müller and J. Enderlein, “Image scanning microscopy,” Phys. Rev. Lett. 104, 198101 (2010).
[Crossref]

RCA Rev. (1)

P. P. Webb, R. J. McIntyre, and J. Conradi, “Properties of avalanche photodiodes,” RCA Rev. 35, 234–278 (1974).

Rev. Sci. Instrum. (1)

M. Castello, G. Tortarolo, I. Coto Hernández, T. Deguchi, A. Diaspro, and G. Vicidomini, “Removal of anti-Stokes emission background in STED microscopy by FPGA-based synchronous detection,” Rev. Sci. Instrum. 88, 053701 (2017).
[Crossref]

Sens. Actuators A (1)

F. Zappa, S. Tisa, A. Tosi, and S. Cova, “Principles and features of single-photon avalanche diode arrays,” Sens. Actuators A 140, 103–112 (2007).
[Crossref]

Sensors (1)

M. Sanzaro, F. Signorelli, P. Gattari, A. Tosi, and F. Zappa, “0.16  µm—BCD silicon photomultipliers with sharp timing response and reduced correlated noise,” Sensors 18, 3763 (2018).
[Crossref]

Other (11)

“SPCM-NIR single-photon detection module datasheet,” 2020, http://www.excelitas.com .

J. B. Pawley, ed., Handbook of Biological Confocal Microscopy (Springer, 1995).

W. Becker, ed., Advanced Time-Correlated Single Photon Counting Applications (Springer, 2015).

R. K. Henderson, N. Johnston, S. W. Hutchings, I. Gyongy, T. A. Abbas, N. Dutton, M. Tyler, S. Chan, and J. Leach, “A 256 × 256 40  nm/90  nm CMOS 3D-stacked 120  dB dynamic-range reconfigurable time-resolved SPAD imager,” in IEEE International Solid-State Circuits Conference (2019), pp. 106–108.

E. Charbon, C. Bruschini, and M. Lee, “3D-stacked CMOS SPAD image sensors: technology and applications,” in IEEE International Conference on Electronics Circuits and Systems (2018), pp. 1–4.

G. Tortarolo, M. Castello, S. Koho, and G. Vicidomini, “Synergic combination of stimulated emission depletion microscopy with image scanning microscopy to reduce light dosage,” bioRxiv 741389 (2020).

“PDM photon counting module datasheet,” 2020, http://www.micro-photon-devices.com .

“H7546A multianode photomultiplier tube assembly datasheet,” 2020, http://www.hamamatsu.com .

“PMT2101 amplified photomultiplier tube module datasheet,” 2020, http://www.thorlabs.com .

A. S. Grove, ed., Physics and Technology of Semiconductor Devices (Wiley, 1967).

A. Migdall, S. V. Polyakov, J. Fan, and J. C. Bienfang, “Single-photon generation and detection,” in Experimental Methods in the Physical Sciences (Academic, 2013), Vol. 45.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Simplified cross section of the SPAD inside each individual imaging pixel, fabricated using the (A) 0.35 µm HVCMOS and (B) 0.16 µm BCD SPAD technology. Both fabrication processes are industry standards and allow for the integration of in-pixel electronics (not shown in the cross section). Features in the images are not in scale.
Fig. 2.
Fig. 2. Detail of the photosensitive section of the (A) 0.35 µm HVCMOS and (B) 0.16 µm BCD imagers, showing the five-by-five square SPAD array. (C) Front-end board (which is part of the complete detection system), hosting the image sensor and dedicated electronics.
Fig. 3.
Fig. 3. Simplified circuit diagram of the in-pixel readout and quenching logic, based on a variable-load quenching circuit. Each pixel operates independently, marking photon detections by a voltage pulse at the output and subsequently enforcing the hold-off phase with programmable dead time ${{{T}}_D}$.
Fig. 4.
Fig. 4. (A) Photon detection efficiency of the 0.35 µm HVCMOS (blue curve) and 0.16 µm BCD (red curve) sensors, measured in the 400–1000 nm wavelength range. As a comparison, the PDE of a GaAsP PMT is also reported [40] (black dashed curve). (B) and (C) Normalized PDE uniformity inside the active area (for an individual pixel) of the 0.35 µm HVCMOS sensor and the 0.16 µm BCD sensor, respectively.
Fig. 5.
Fig. 5. Percentage distribution of dark-count rates (related to individual pixels) for the two imagers. The 0.35 µm HVCMOS SPADs (blue curve) have a DCR median of 200 cps at 300 K and 6 V of excess-bias voltage, while the 0.16 µm BCD ones (red curve) have a higher DCR median of 2 kcps at 300 K with 5 V excess-bias voltage.
Fig. 6.
Fig. 6. Single-pixel temporal response of the (A) 0.35 µm HVCMOS and (B) 0.16 µm BCD imagers, measured using a 50 ps FWHM pulsed laser at 850 nm. The temporal responses have been measured with only one pixel turned ON (blue and red curves) and with all 25 pixels simultaneously ON and illuminated (cyan and magenta curves), showing the effect of optical crosstalk between adjacent pixels.
Fig. 7.
Fig. 7. ISM images of tubulin filaments stained with Abberior STAR Red, acquired using the two described five-by-five SPAD imagers (A, C for the 0.35 μm-HVCMOS and B, D for the 0.16 μm-BCD) and processed with the adaptive pixel reassignment (APR) method discussed in Ref. [30]. Pixel dwell time: 100 µs. Sample area: ${{10}} \times {{10}}\;{{\unicode{x00B5}}}{{\rm{m}}^2}$ (scale bar: 1 µm). As a comparison, (C) and (D) also show the difference between ISM and standard confocal images (obtained simply summing together data from all 25 pixels).

Tables (5)

Tables Icon

Table 1. SPAD Array Sensors’ Single-Pixel Geometry Details

Tables Icon

Table 2. Afterpulsing Probability at Various Dead Times for 0.35 µm HVCMOS and 0.16 µm BCD SPAD Arrays

Tables Icon

Table 3. Optical Crosstalk Probability between Adjacent Pixels (Orthogonally and Diagonally) for Both Imagers

Tables Icon

Table 4. Peak Counts Boost for the ISM Images of Fig. 7, Compared to Images Obtained Only from Photons Detected by the Central Pixel, Equivalent to a Pinhole Aperture of about 0.2 AUa

Tables Icon

Table 5. FRC-Based Resolution Values as a Function of the Excitation Power for the ISM Images of Fig. 7, Compared with the Related Confocal Imagesa

Metrics