Abstract

All-dielectric metasurfaces comprising arrays of nanostructured high-refractive-index materials are re-imagining what is achievable in terms of the manipulation of light. However, the functionality of conventional dielectric-based metasurfaces is fixed by design; thus, their optical response is locked in at the fabrication stage. A far wider range of applications could be addressed if dynamic and reconfigurable control were possible. We demonstrate this here via the novel concept of hybrid metasurfaces, in which reconfigurability is achieved by embedding sub-wavelength inclusions of chalcogenide phase-change materials within the body of silicon nanoresonators. By strategic placement of an ultra-thin ${{\rm Ge}_2}{{\rm Sb}_2}{{\rm Te}_5}$ layer and reversible switching of its phase-state, we show individual, multilevel, and dynamic control of metasurface resonances. We showcase our concept via the design, fabrication, and characterization of metadevices capable of dynamically filtering and modulating light in the near infrared (O and C telecom bands), with modulation depths as high as 70% and multilevel tunability. Finally, we show numerically how the same approach can be re-scaled to shorter wavelengths via appropriate material selection, paving the way to additional applications, such as high-efficiency vivid structural color generators in the visible spectrum. We believe that the concept of hybrid all-dielectric/phase-change metasurfaces presented in this work could pave the way for a wide range of design possibilities in terms of multilevel, reconfigurable, and high-efficiency light manipulation.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13, 139–150 (2014).
    [Crossref]
  2. S. B. Glybovski, S. A. Tretyakov, P. A. Belov, Y. S. Kivshar, and C. R. Simovski, “Metasurfaces: from microwaves to visible,” Phys. Rep. 634, 1–72 (2017).
    [Crossref]
  3. A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339, 1232009 (2013).
    [Crossref]
  4. H.-T. Chen, A. T. Taylor, and N. Yu, “A review of metasurfaces: physics and applications,” Rep. Prog. Phys. 79, 076401 (2016).
    [Crossref]
  5. G. Ding, Y. Yang, R. A. Deshpande, and S. I. Bozhevolnyi, “A review of gap surface plasmon metasurfaces: fundamentals and applications,” Nanophotonics 7, 1129–1156 (2018).
    [Crossref]
  6. D. N. Jones, N. Liu, B. Corbett, P. Lovera, A. J. Quinn, and A. O’Riordan, “Surface plasmon assisted extraordinary transmission in metallic nanohole arrays and its suitability as a bio sensor,” J. Phys. Conf. Ser. 307, 012005 (2011).
    [Crossref]
  7. A. Tittl, P. Mai, R. Taubert, D. Dregely, N. Liu, and H. Giessen, “Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing,” Nano Lett. 11, 4366–4369 (2011).
    [Crossref]
  8. F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, G. Zeno, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12, 4932–4936 (2012).
    [Crossref]
  9. C. Han and W. Y. Tam, “Broadband optical magnetism in chiral metallic nanohole arrays by shadowing vapor deposition,” Appl. Phys. Lett. 106, 081102 (2016).
    [Crossref]
  10. L. Zou, W. Withayachumnankul, M. C. Shah, A. Mitchell, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Dielectric resonator nanoantennas at visible frequencies,” Opt. Express 21, 1344–1352 (2013).
    [Crossref]
  11. A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2012).
    [Crossref]
  12. A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region, Nano Lett. 12, 3749–3755 (2012).
    [Crossref]
  13. A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Lukyanchuk, “Optically resonant dielectric nanaostructures,” Science 354, aag2472 (2016).
    [Crossref]
  14. J. Cambiasso, G. Grinblat, Y. Li, A. Rakovich, E. Cortes, and S. A. Maier, “Bridging the gap between dielectric nanophotonics and the visible regime with effectively lossless gallium phosphide antennas,” Nano Lett. 17, 1219–1225 (2017).
    [Crossref]
  15. I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano. 7, 7824–7832 (2013).
    [Crossref]
  16. M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric Huygen’s surfaces,” Adv. Opt. Mater. 3, 813–820 (2015).
    [Crossref]
  17. Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
    [Crossref]
  18. R. Paniagua-Domínguez, Y. F. Yu, A. E. Miroschnichenko, L. A. Krivitsky, Y. H. Fu, V. Valuckas, L. Gonzaga, Y. T. Toh, A. Y. S. Kay, B. Luk’yanchuk, and A. I. Kuznetsov, “Generalised Brewster effect in dielectric metasurfaces,” Nat. Commun. 7, 10362 (2016).
    [Crossref]
  19. Y. F. Yu, A. Y. Zhu, R. Paniagua-Dominguez, Y. H. Fu, B. Luk’yanchuk, and A. I. Kuznetsov, “High-transmission dielectric metasurfaces with 2π phase control at visible wavelengths,” Laser Photon. Rev. 9, 412–418 (2015).
    [Crossref]
  20. R. Paniagua-Domínguez, Y. F. Yu, E. Khaidarov, S. Choi, V. Leong, R. M. Bakker, X. Liang, Y. H. Fu, V. Valuckas, L. A. Krivitsky, and A. I. Kuznetsov, “A metalens with a near-unity numerical aperture,” Nano Lett. 18, 2124–2132 (2018).
    [Crossref]
  21. J. Sautter, I. Staude, M. Decker, E. Rusak, D. Neshev, I. Brener, and Y. S. Kivshar, “Active tuning of all-dielectric metasurfaces,” ACS Nano. 9, 4308–4315 (2015).
    [Crossref]
  22. A. Komar, Z. Fang, J. Bohn, J. Sautter, M. Decker, A. Miroschnichenko, T. Pertsch, I. Brener, Y. S. Kivshar, I. Staude, and D. N. Neshev, “Electrically tunable all-dielectric optical metasurfaces based on liquid crystals,” Appl. Phys. Lett. 110, 071109 (2017).
    [Crossref]
  23. S. Makarov, S. Kudryashov, I. Mukhin, A. Mozharov, V. Milichko, A. Krasnok, and P. Belov, “Tuning of magnetic optical response in a dielectric nanoparticle by ultrafast photoexcitation of dense electron-hole plasma,” Nano Lett. 15, 6187–6192 (2015).
    [Crossref]
  24. D. Loke, T. H. Lee, W. J. Wang, L. P. Shi, R. Zhao, Y. C. Yeo, T. C. Chong, and S. R. Elliott, “Breaking the speed limits of phase-change memory,” Science 336, 1566–1569 (2012).
    [Crossref]
  25. I. S. Kim, “High performance PRAM cell scalable to sub-20nm technology with below 4F2 cell size, extendable to DRAM applications,” in IEEE Symposium on VLSI Technology, IEEE, Honolulu, Hawaii, USA, 2010, p. 203.
  26. J. Siegel, A. Schropp, J. Solis, C. N. Alfonso, and M. Wuttig, “Rewritable phase-change optical recording in Ge2Sb2Te5 films induced by picosecond laser pulses,” Appl. Phys. Lett. 84, 2250–2252 (2004).
    [Crossref]
  27. M. Wuttig and N. Yamada, “Phase-change materials for rewritable data storage,” Nat. Mater. 6, 824–832 (2007).
    [Crossref]
  28. M. R. Hashemi, S.-G. Yang, T. Wang, N. Sepulveda, and M. Jarrahi, “Electronically-controlled beam-steering through vanadium dioxide metasurfaces,” Sci. Rep. 6, 35429 (2016).
    [Crossref]
  29. M. Kim, J. Jeoing, J. K. S. Pooon, and G. V. Eleftheriades, “Vanadium-dioxide-assisted digital optical metasurfaces for dynamic wavefront engineering,” J. Opt. Soc. Am. B 33, 980–988 (2016).
    [Crossref]
  30. M. Wuttig, H. Bhaskaran, and T. Taubner, “Phase-change materials for non-volatile photonic applications,” Nat. Photonics 11, 465–476 (2017).
    [Crossref]
  31. C. Ruiz de Galarreta, A. M. Alexeev, Y.-Y. Au, M. Lopez-Garcia, M. Klemm, M. Cryan, J. Bertolotti, and C. D. Wright, “Nonvolatile reconfigurable phase-change metadevices for beam steering in the near infrared,” Adv. Funct. Mater. 28, 1704993 (2018).
    [Crossref]
  32. B. Gholipour, J. Zhang, K. F. MacDonald, D. W. Hewak, and N. I. Zheludev, “An all-optical, non-volatile, bidirectional, phase-change meta-switch,” Adv. Mater. 25, 3050–3054 (2013).
    [Crossref]
  33. A. Tittl, A. K. U. Michel, M. Schaferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid-infrared perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27, 4597–4603 (2015).
    [Crossref]
  34. L. Trimby, A. Baldycheva, and C. D. Wright, “Phase-change band-pass filters for multispectral imaging,” Proc. SPIE 10541, 105412B (2018).
    [Crossref]
  35. S. Garcia-Cuevas Carrillo, G. R. Nash, H. Hasan, M. J. Cryan, M. Klemm, H. Bhaskaran, and C. D. Wright, “Design of practicable phase-change metadevices for near-infrared absorber and modulation applications,” Opt. Express 24, 13563–13573 (2016).
    [Crossref]
  36. X. Tian and Z. Li, “Visible-near infrared ultra-broadband polarisation-independent metamaterial perfect absorber involving phase-change materials,” Opt. Express 4, 146–152 (2016).
    [Crossref]
  37. P. Hosseini, C. D. Wright, and H. Bhaskaran, “An optoelectronic framework enabled by low-dimensional phase-change films,” Nature 511, 206–211 (2014).
    [Crossref]
  38. X. Yin, T. Steinle, L. Huang, T. Taubner, M. Wuttig, T. Zentgraf, and H. Giessen, “Beam switching and bifocal zoom lensing using active plasmonic metasurfaces,” Light Sci. Appl. 6, e17016 (2017).
    [Crossref]
  39. J. Tian, H. Luo, Y. Yang, F. Ding, Y. Qu, D. Zhao, M. Qiu, and S. I. Bozhevolnyi, “Active control of anapole states by structuring the phase-change alloy Ge2Sb2Te5,” Nat. Commun. 10, 396 (2019).
    [Crossref]
  40. A. Karvounis, B. Gholipur, K. F. MacDonald, and N. I. Zheludev, “All-dielectric phase-change reconfigurable metasurface,” Appl. Phys. Lett. 109, 051103 (2016).
    [Crossref]
  41. W. Dong, H. Liu, J. K. Behera, L. Lu, R. J. H. Ng, K. V. Sreekanth, X. Zhou, J. K. W. Yang, and R. E. Simpson, “Wide bandgap phase change material tuned visible photonics,” Adv. Funct. Mater. 29, 6 (2019).
    [Crossref]
  42. D. T. Pierce and W. E. Spicer, “Electronic structure of amorphous Si from photoemission and optical studies,” Phys. Rev. B 5, 3017–3029 (1972).
    [Crossref]
  43. D. Arslan, K. E. Chong, D. N. Neshev, T. Pertsch, Y. S. Kivshar, and I. Staude, “Silicon Huygens' metasurfaces at oblique incidence,” in European Conference on Lasers and Electro-Optics and European Quantum Electronics Conference (2017), paper EH_6_2.
  44. Y. H. Ko and R. Magnusson, “Wideband dielectric metamaterial reflectors: Mie scattering or leaky Bloch mode resonance?” Optica 5, 289–294 (2018).
    [Crossref]
  45. C. D. Wright, Y. Liu, K. I. Kohary, M. M. Aziz, and R. J. Hicken, “Arithmetic and biologically-inspired computing using phase-change materials,” Adv. Mater., 23, 3408–3413 (2011).
    [Crossref]
  46. J. Siegel, C. N. Afonso, and J. Solis, “Amorphization dynamics of Ge2Sb2Te5 films upon nano-and femtosecond laser pulse irradiation,” J. Appl. Phys. 103, 023516 (2008).
    [Crossref]
  47. K. Sokolowski-Tinten, J. Solis, J. Bialkowski, J. Siegel, C. N. Afonso, and D. von der Linde, “Dynamics of ultrafast phase changes in amorphous GeSb films,” Phys. Rev. Lett. 81, 3679 (1998).
    [Crossref]
  48. C. Rios, P. Hosseini, R. A. Taylor, and H. Bhaskaran, “Color depth modulation and resolution in phase-change material nanodisplays,” Adv. Mater. 28, 4720–4726 (2016).
    [Crossref]
  49. S. Garcia-Cuevas Carrillo, L. Trimby, Y.-Y. Au, V. K. Nagareddy, G. Rodriguez-Hernandez, P. Hosseini, C. Rios, H. Bhaskaran, and C. D. Wright, “A nonvolatile phase-change metamaterial color display,” Adv. Opt. Mater. 7, 1801782 (2019).
    [Crossref]
  50. P. Hosseini, C. D. Wright, and H. Bhaskaran, “An optoelectronic framework enabled by low-dimensional phase-change films,” Nature 511, 206–211 (2014).
    [Crossref]
  51. J. R. Devore, “Refractive indices of rutile and sphalerite,” J. Opt. Soc. Am. 41, 416–419 (1951).
    [Crossref]
  52. L. Trimby, “Phase-change meta-devices for tuneable bandpass filtering in the infrared,” Ph.D. Thesis (University of Exeter, 2019).

2019 (3)

J. Tian, H. Luo, Y. Yang, F. Ding, Y. Qu, D. Zhao, M. Qiu, and S. I. Bozhevolnyi, “Active control of anapole states by structuring the phase-change alloy Ge2Sb2Te5,” Nat. Commun. 10, 396 (2019).
[Crossref]

W. Dong, H. Liu, J. K. Behera, L. Lu, R. J. H. Ng, K. V. Sreekanth, X. Zhou, J. K. W. Yang, and R. E. Simpson, “Wide bandgap phase change material tuned visible photonics,” Adv. Funct. Mater. 29, 6 (2019).
[Crossref]

S. Garcia-Cuevas Carrillo, L. Trimby, Y.-Y. Au, V. K. Nagareddy, G. Rodriguez-Hernandez, P. Hosseini, C. Rios, H. Bhaskaran, and C. D. Wright, “A nonvolatile phase-change metamaterial color display,” Adv. Opt. Mater. 7, 1801782 (2019).
[Crossref]

2018 (5)

Y. H. Ko and R. Magnusson, “Wideband dielectric metamaterial reflectors: Mie scattering or leaky Bloch mode resonance?” Optica 5, 289–294 (2018).
[Crossref]

C. Ruiz de Galarreta, A. M. Alexeev, Y.-Y. Au, M. Lopez-Garcia, M. Klemm, M. Cryan, J. Bertolotti, and C. D. Wright, “Nonvolatile reconfigurable phase-change metadevices for beam steering in the near infrared,” Adv. Funct. Mater. 28, 1704993 (2018).
[Crossref]

G. Ding, Y. Yang, R. A. Deshpande, and S. I. Bozhevolnyi, “A review of gap surface plasmon metasurfaces: fundamentals and applications,” Nanophotonics 7, 1129–1156 (2018).
[Crossref]

R. Paniagua-Domínguez, Y. F. Yu, E. Khaidarov, S. Choi, V. Leong, R. M. Bakker, X. Liang, Y. H. Fu, V. Valuckas, L. A. Krivitsky, and A. I. Kuznetsov, “A metalens with a near-unity numerical aperture,” Nano Lett. 18, 2124–2132 (2018).
[Crossref]

L. Trimby, A. Baldycheva, and C. D. Wright, “Phase-change band-pass filters for multispectral imaging,” Proc. SPIE 10541, 105412B (2018).
[Crossref]

2017 (5)

M. Wuttig, H. Bhaskaran, and T. Taubner, “Phase-change materials for non-volatile photonic applications,” Nat. Photonics 11, 465–476 (2017).
[Crossref]

A. Komar, Z. Fang, J. Bohn, J. Sautter, M. Decker, A. Miroschnichenko, T. Pertsch, I. Brener, Y. S. Kivshar, I. Staude, and D. N. Neshev, “Electrically tunable all-dielectric optical metasurfaces based on liquid crystals,” Appl. Phys. Lett. 110, 071109 (2017).
[Crossref]

J. Cambiasso, G. Grinblat, Y. Li, A. Rakovich, E. Cortes, and S. A. Maier, “Bridging the gap between dielectric nanophotonics and the visible regime with effectively lossless gallium phosphide antennas,” Nano Lett. 17, 1219–1225 (2017).
[Crossref]

S. B. Glybovski, S. A. Tretyakov, P. A. Belov, Y. S. Kivshar, and C. R. Simovski, “Metasurfaces: from microwaves to visible,” Phys. Rep. 634, 1–72 (2017).
[Crossref]

X. Yin, T. Steinle, L. Huang, T. Taubner, M. Wuttig, T. Zentgraf, and H. Giessen, “Beam switching and bifocal zoom lensing using active plasmonic metasurfaces,” Light Sci. Appl. 6, e17016 (2017).
[Crossref]

2016 (10)

A. Karvounis, B. Gholipur, K. F. MacDonald, and N. I. Zheludev, “All-dielectric phase-change reconfigurable metasurface,” Appl. Phys. Lett. 109, 051103 (2016).
[Crossref]

C. Rios, P. Hosseini, R. A. Taylor, and H. Bhaskaran, “Color depth modulation and resolution in phase-change material nanodisplays,” Adv. Mater. 28, 4720–4726 (2016).
[Crossref]

H.-T. Chen, A. T. Taylor, and N. Yu, “A review of metasurfaces: physics and applications,” Rep. Prog. Phys. 79, 076401 (2016).
[Crossref]

C. Han and W. Y. Tam, “Broadband optical magnetism in chiral metallic nanohole arrays by shadowing vapor deposition,” Appl. Phys. Lett. 106, 081102 (2016).
[Crossref]

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Lukyanchuk, “Optically resonant dielectric nanaostructures,” Science 354, aag2472 (2016).
[Crossref]

R. Paniagua-Domínguez, Y. F. Yu, A. E. Miroschnichenko, L. A. Krivitsky, Y. H. Fu, V. Valuckas, L. Gonzaga, Y. T. Toh, A. Y. S. Kay, B. Luk’yanchuk, and A. I. Kuznetsov, “Generalised Brewster effect in dielectric metasurfaces,” Nat. Commun. 7, 10362 (2016).
[Crossref]

M. R. Hashemi, S.-G. Yang, T. Wang, N. Sepulveda, and M. Jarrahi, “Electronically-controlled beam-steering through vanadium dioxide metasurfaces,” Sci. Rep. 6, 35429 (2016).
[Crossref]

M. Kim, J. Jeoing, J. K. S. Pooon, and G. V. Eleftheriades, “Vanadium-dioxide-assisted digital optical metasurfaces for dynamic wavefront engineering,” J. Opt. Soc. Am. B 33, 980–988 (2016).
[Crossref]

S. Garcia-Cuevas Carrillo, G. R. Nash, H. Hasan, M. J. Cryan, M. Klemm, H. Bhaskaran, and C. D. Wright, “Design of practicable phase-change metadevices for near-infrared absorber and modulation applications,” Opt. Express 24, 13563–13573 (2016).
[Crossref]

X. Tian and Z. Li, “Visible-near infrared ultra-broadband polarisation-independent metamaterial perfect absorber involving phase-change materials,” Opt. Express 4, 146–152 (2016).
[Crossref]

2015 (5)

Y. F. Yu, A. Y. Zhu, R. Paniagua-Dominguez, Y. H. Fu, B. Luk’yanchuk, and A. I. Kuznetsov, “High-transmission dielectric metasurfaces with 2π phase control at visible wavelengths,” Laser Photon. Rev. 9, 412–418 (2015).
[Crossref]

J. Sautter, I. Staude, M. Decker, E. Rusak, D. Neshev, I. Brener, and Y. S. Kivshar, “Active tuning of all-dielectric metasurfaces,” ACS Nano. 9, 4308–4315 (2015).
[Crossref]

S. Makarov, S. Kudryashov, I. Mukhin, A. Mozharov, V. Milichko, A. Krasnok, and P. Belov, “Tuning of magnetic optical response in a dielectric nanoparticle by ultrafast photoexcitation of dense electron-hole plasma,” Nano Lett. 15, 6187–6192 (2015).
[Crossref]

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric Huygen’s surfaces,” Adv. Opt. Mater. 3, 813–820 (2015).
[Crossref]

A. Tittl, A. K. U. Michel, M. Schaferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid-infrared perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27, 4597–4603 (2015).
[Crossref]

2014 (3)

P. Hosseini, C. D. Wright, and H. Bhaskaran, “An optoelectronic framework enabled by low-dimensional phase-change films,” Nature 511, 206–211 (2014).
[Crossref]

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13, 139–150 (2014).
[Crossref]

P. Hosseini, C. D. Wright, and H. Bhaskaran, “An optoelectronic framework enabled by low-dimensional phase-change films,” Nature 511, 206–211 (2014).
[Crossref]

2013 (5)

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339, 1232009 (2013).
[Crossref]

L. Zou, W. Withayachumnankul, M. C. Shah, A. Mitchell, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Dielectric resonator nanoantennas at visible frequencies,” Opt. Express 21, 1344–1352 (2013).
[Crossref]

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
[Crossref]

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano. 7, 7824–7832 (2013).
[Crossref]

B. Gholipour, J. Zhang, K. F. MacDonald, D. W. Hewak, and N. I. Zheludev, “An all-optical, non-volatile, bidirectional, phase-change meta-switch,” Adv. Mater. 25, 3050–3054 (2013).
[Crossref]

2012 (4)

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, G. Zeno, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12, 4932–4936 (2012).
[Crossref]

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2012).
[Crossref]

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region, Nano Lett. 12, 3749–3755 (2012).
[Crossref]

D. Loke, T. H. Lee, W. J. Wang, L. P. Shi, R. Zhao, Y. C. Yeo, T. C. Chong, and S. R. Elliott, “Breaking the speed limits of phase-change memory,” Science 336, 1566–1569 (2012).
[Crossref]

2011 (3)

D. N. Jones, N. Liu, B. Corbett, P. Lovera, A. J. Quinn, and A. O’Riordan, “Surface plasmon assisted extraordinary transmission in metallic nanohole arrays and its suitability as a bio sensor,” J. Phys. Conf. Ser. 307, 012005 (2011).
[Crossref]

A. Tittl, P. Mai, R. Taubert, D. Dregely, N. Liu, and H. Giessen, “Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing,” Nano Lett. 11, 4366–4369 (2011).
[Crossref]

C. D. Wright, Y. Liu, K. I. Kohary, M. M. Aziz, and R. J. Hicken, “Arithmetic and biologically-inspired computing using phase-change materials,” Adv. Mater., 23, 3408–3413 (2011).
[Crossref]

2008 (1)

J. Siegel, C. N. Afonso, and J. Solis, “Amorphization dynamics of Ge2Sb2Te5 films upon nano-and femtosecond laser pulse irradiation,” J. Appl. Phys. 103, 023516 (2008).
[Crossref]

2007 (1)

M. Wuttig and N. Yamada, “Phase-change materials for rewritable data storage,” Nat. Mater. 6, 824–832 (2007).
[Crossref]

2004 (1)

J. Siegel, A. Schropp, J. Solis, C. N. Alfonso, and M. Wuttig, “Rewritable phase-change optical recording in Ge2Sb2Te5 films induced by picosecond laser pulses,” Appl. Phys. Lett. 84, 2250–2252 (2004).
[Crossref]

1998 (1)

K. Sokolowski-Tinten, J. Solis, J. Bialkowski, J. Siegel, C. N. Afonso, and D. von der Linde, “Dynamics of ultrafast phase changes in amorphous GeSb films,” Phys. Rev. Lett. 81, 3679 (1998).
[Crossref]

1972 (1)

D. T. Pierce and W. E. Spicer, “Electronic structure of amorphous Si from photoemission and optical studies,” Phys. Rev. B 5, 3017–3029 (1972).
[Crossref]

1951 (1)

Afonso, C. N.

J. Siegel, C. N. Afonso, and J. Solis, “Amorphization dynamics of Ge2Sb2Te5 films upon nano-and femtosecond laser pulse irradiation,” J. Appl. Phys. 103, 023516 (2008).
[Crossref]

K. Sokolowski-Tinten, J. Solis, J. Bialkowski, J. Siegel, C. N. Afonso, and D. von der Linde, “Dynamics of ultrafast phase changes in amorphous GeSb films,” Phys. Rev. Lett. 81, 3679 (1998).
[Crossref]

Aieta, F.

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, G. Zeno, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12, 4932–4936 (2012).
[Crossref]

Alexeev, A. M.

C. Ruiz de Galarreta, A. M. Alexeev, Y.-Y. Au, M. Lopez-Garcia, M. Klemm, M. Cryan, J. Bertolotti, and C. D. Wright, “Nonvolatile reconfigurable phase-change metadevices for beam steering in the near infrared,” Adv. Funct. Mater. 28, 1704993 (2018).
[Crossref]

Alfonso, C. N.

J. Siegel, A. Schropp, J. Solis, C. N. Alfonso, and M. Wuttig, “Rewritable phase-change optical recording in Ge2Sb2Te5 films induced by picosecond laser pulses,” Appl. Phys. Lett. 84, 2250–2252 (2004).
[Crossref]

Arslan, D.

D. Arslan, K. E. Chong, D. N. Neshev, T. Pertsch, Y. S. Kivshar, and I. Staude, “Silicon Huygens' metasurfaces at oblique incidence,” in European Conference on Lasers and Electro-Optics and European Quantum Electronics Conference (2017), paper EH_6_2.

Au, Y.-Y.

S. Garcia-Cuevas Carrillo, L. Trimby, Y.-Y. Au, V. K. Nagareddy, G. Rodriguez-Hernandez, P. Hosseini, C. Rios, H. Bhaskaran, and C. D. Wright, “A nonvolatile phase-change metamaterial color display,” Adv. Opt. Mater. 7, 1801782 (2019).
[Crossref]

C. Ruiz de Galarreta, A. M. Alexeev, Y.-Y. Au, M. Lopez-Garcia, M. Klemm, M. Cryan, J. Bertolotti, and C. D. Wright, “Nonvolatile reconfigurable phase-change metadevices for beam steering in the near infrared,” Adv. Funct. Mater. 28, 1704993 (2018).
[Crossref]

Aziz, M. M.

C. D. Wright, Y. Liu, K. I. Kohary, M. M. Aziz, and R. J. Hicken, “Arithmetic and biologically-inspired computing using phase-change materials,” Adv. Mater., 23, 3408–3413 (2011).
[Crossref]

Bakker, R. M.

R. Paniagua-Domínguez, Y. F. Yu, E. Khaidarov, S. Choi, V. Leong, R. M. Bakker, X. Liang, Y. H. Fu, V. Valuckas, L. A. Krivitsky, and A. I. Kuznetsov, “A metalens with a near-unity numerical aperture,” Nano Lett. 18, 2124–2132 (2018).
[Crossref]

Baldycheva, A.

L. Trimby, A. Baldycheva, and C. D. Wright, “Phase-change band-pass filters for multispectral imaging,” Proc. SPIE 10541, 105412B (2018).
[Crossref]

Behera, J. K.

W. Dong, H. Liu, J. K. Behera, L. Lu, R. J. H. Ng, K. V. Sreekanth, X. Zhou, J. K. W. Yang, and R. E. Simpson, “Wide bandgap phase change material tuned visible photonics,” Adv. Funct. Mater. 29, 6 (2019).
[Crossref]

Belov, P.

S. Makarov, S. Kudryashov, I. Mukhin, A. Mozharov, V. Milichko, A. Krasnok, and P. Belov, “Tuning of magnetic optical response in a dielectric nanoparticle by ultrafast photoexcitation of dense electron-hole plasma,” Nano Lett. 15, 6187–6192 (2015).
[Crossref]

Belov, P. A.

S. B. Glybovski, S. A. Tretyakov, P. A. Belov, Y. S. Kivshar, and C. R. Simovski, “Metasurfaces: from microwaves to visible,” Phys. Rep. 634, 1–72 (2017).
[Crossref]

Bertolotti, J.

C. Ruiz de Galarreta, A. M. Alexeev, Y.-Y. Au, M. Lopez-Garcia, M. Klemm, M. Cryan, J. Bertolotti, and C. D. Wright, “Nonvolatile reconfigurable phase-change metadevices for beam steering in the near infrared,” Adv. Funct. Mater. 28, 1704993 (2018).
[Crossref]

Bhaskaran, H.

S. Garcia-Cuevas Carrillo, L. Trimby, Y.-Y. Au, V. K. Nagareddy, G. Rodriguez-Hernandez, P. Hosseini, C. Rios, H. Bhaskaran, and C. D. Wright, “A nonvolatile phase-change metamaterial color display,” Adv. Opt. Mater. 7, 1801782 (2019).
[Crossref]

M. Wuttig, H. Bhaskaran, and T. Taubner, “Phase-change materials for non-volatile photonic applications,” Nat. Photonics 11, 465–476 (2017).
[Crossref]

S. Garcia-Cuevas Carrillo, G. R. Nash, H. Hasan, M. J. Cryan, M. Klemm, H. Bhaskaran, and C. D. Wright, “Design of practicable phase-change metadevices for near-infrared absorber and modulation applications,” Opt. Express 24, 13563–13573 (2016).
[Crossref]

C. Rios, P. Hosseini, R. A. Taylor, and H. Bhaskaran, “Color depth modulation and resolution in phase-change material nanodisplays,” Adv. Mater. 28, 4720–4726 (2016).
[Crossref]

P. Hosseini, C. D. Wright, and H. Bhaskaran, “An optoelectronic framework enabled by low-dimensional phase-change films,” Nature 511, 206–211 (2014).
[Crossref]

P. Hosseini, C. D. Wright, and H. Bhaskaran, “An optoelectronic framework enabled by low-dimensional phase-change films,” Nature 511, 206–211 (2014).
[Crossref]

Bhaskaran, M.

Bialkowski, J.

K. Sokolowski-Tinten, J. Solis, J. Bialkowski, J. Siegel, C. N. Afonso, and D. von der Linde, “Dynamics of ultrafast phase changes in amorphous GeSb films,” Phys. Rev. Lett. 81, 3679 (1998).
[Crossref]

Blanchard, R.

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, G. Zeno, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12, 4932–4936 (2012).
[Crossref]

Bohn, J.

A. Komar, Z. Fang, J. Bohn, J. Sautter, M. Decker, A. Miroschnichenko, T. Pertsch, I. Brener, Y. S. Kivshar, I. Staude, and D. N. Neshev, “Electrically tunable all-dielectric optical metasurfaces based on liquid crystals,” Appl. Phys. Lett. 110, 071109 (2017).
[Crossref]

Boltasseva, A.

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339, 1232009 (2013).
[Crossref]

Bozhevolnyi, S. I.

J. Tian, H. Luo, Y. Yang, F. Ding, Y. Qu, D. Zhao, M. Qiu, and S. I. Bozhevolnyi, “Active control of anapole states by structuring the phase-change alloy Ge2Sb2Te5,” Nat. Commun. 10, 396 (2019).
[Crossref]

G. Ding, Y. Yang, R. A. Deshpande, and S. I. Bozhevolnyi, “A review of gap surface plasmon metasurfaces: fundamentals and applications,” Nanophotonics 7, 1129–1156 (2018).
[Crossref]

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region, Nano Lett. 12, 3749–3755 (2012).
[Crossref]

Brener, I.

A. Komar, Z. Fang, J. Bohn, J. Sautter, M. Decker, A. Miroschnichenko, T. Pertsch, I. Brener, Y. S. Kivshar, I. Staude, and D. N. Neshev, “Electrically tunable all-dielectric optical metasurfaces based on liquid crystals,” Appl. Phys. Lett. 110, 071109 (2017).
[Crossref]

J. Sautter, I. Staude, M. Decker, E. Rusak, D. Neshev, I. Brener, and Y. S. Kivshar, “Active tuning of all-dielectric metasurfaces,” ACS Nano. 9, 4308–4315 (2015).
[Crossref]

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric Huygen’s surfaces,” Adv. Opt. Mater. 3, 813–820 (2015).
[Crossref]

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano. 7, 7824–7832 (2013).
[Crossref]

Brongersma, M. L.

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Lukyanchuk, “Optically resonant dielectric nanaostructures,” Science 354, aag2472 (2016).
[Crossref]

Cambiasso, J.

J. Cambiasso, G. Grinblat, Y. Li, A. Rakovich, E. Cortes, and S. A. Maier, “Bridging the gap between dielectric nanophotonics and the visible regime with effectively lossless gallium phosphide antennas,” Nano Lett. 17, 1219–1225 (2017).
[Crossref]

Capasso, F.

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13, 139–150 (2014).
[Crossref]

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, G. Zeno, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12, 4932–4936 (2012).
[Crossref]

Chen, H.-T.

H.-T. Chen, A. T. Taylor, and N. Yu, “A review of metasurfaces: physics and applications,” Rep. Prog. Phys. 79, 076401 (2016).
[Crossref]

Chichkov, B. N.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region, Nano Lett. 12, 3749–3755 (2012).
[Crossref]

Choi, S.

R. Paniagua-Domínguez, Y. F. Yu, E. Khaidarov, S. Choi, V. Leong, R. M. Bakker, X. Liang, Y. H. Fu, V. Valuckas, L. A. Krivitsky, and A. I. Kuznetsov, “A metalens with a near-unity numerical aperture,” Nano Lett. 18, 2124–2132 (2018).
[Crossref]

Chong, K. E.

D. Arslan, K. E. Chong, D. N. Neshev, T. Pertsch, Y. S. Kivshar, and I. Staude, “Silicon Huygens' metasurfaces at oblique incidence,” in European Conference on Lasers and Electro-Optics and European Quantum Electronics Conference (2017), paper EH_6_2.

Chong, T. C.

D. Loke, T. H. Lee, W. J. Wang, L. P. Shi, R. Zhao, Y. C. Yeo, T. C. Chong, and S. R. Elliott, “Breaking the speed limits of phase-change memory,” Science 336, 1566–1569 (2012).
[Crossref]

Corbett, B.

D. N. Jones, N. Liu, B. Corbett, P. Lovera, A. J. Quinn, and A. O’Riordan, “Surface plasmon assisted extraordinary transmission in metallic nanohole arrays and its suitability as a bio sensor,” J. Phys. Conf. Ser. 307, 012005 (2011).
[Crossref]

Cortes, E.

J. Cambiasso, G. Grinblat, Y. Li, A. Rakovich, E. Cortes, and S. A. Maier, “Bridging the gap between dielectric nanophotonics and the visible regime with effectively lossless gallium phosphide antennas,” Nano Lett. 17, 1219–1225 (2017).
[Crossref]

Cryan, M.

C. Ruiz de Galarreta, A. M. Alexeev, Y.-Y. Au, M. Lopez-Garcia, M. Klemm, M. Cryan, J. Bertolotti, and C. D. Wright, “Nonvolatile reconfigurable phase-change metadevices for beam steering in the near infrared,” Adv. Funct. Mater. 28, 1704993 (2018).
[Crossref]

Cryan, M. J.

Cui, L.

A. Tittl, A. K. U. Michel, M. Schaferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid-infrared perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27, 4597–4603 (2015).
[Crossref]

Decker, M.

A. Komar, Z. Fang, J. Bohn, J. Sautter, M. Decker, A. Miroschnichenko, T. Pertsch, I. Brener, Y. S. Kivshar, I. Staude, and D. N. Neshev, “Electrically tunable all-dielectric optical metasurfaces based on liquid crystals,” Appl. Phys. Lett. 110, 071109 (2017).
[Crossref]

J. Sautter, I. Staude, M. Decker, E. Rusak, D. Neshev, I. Brener, and Y. S. Kivshar, “Active tuning of all-dielectric metasurfaces,” ACS Nano. 9, 4308–4315 (2015).
[Crossref]

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric Huygen’s surfaces,” Adv. Opt. Mater. 3, 813–820 (2015).
[Crossref]

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano. 7, 7824–7832 (2013).
[Crossref]

Deshpande, R. A.

G. Ding, Y. Yang, R. A. Deshpande, and S. I. Bozhevolnyi, “A review of gap surface plasmon metasurfaces: fundamentals and applications,” Nanophotonics 7, 1129–1156 (2018).
[Crossref]

Devore, J. R.

Ding, F.

J. Tian, H. Luo, Y. Yang, F. Ding, Y. Qu, D. Zhao, M. Qiu, and S. I. Bozhevolnyi, “Active control of anapole states by structuring the phase-change alloy Ge2Sb2Te5,” Nat. Commun. 10, 396 (2019).
[Crossref]

Ding, G.

G. Ding, Y. Yang, R. A. Deshpande, and S. I. Bozhevolnyi, “A review of gap surface plasmon metasurfaces: fundamentals and applications,” Nanophotonics 7, 1129–1156 (2018).
[Crossref]

Dominguez, J.

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric Huygen’s surfaces,” Adv. Opt. Mater. 3, 813–820 (2015).
[Crossref]

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano. 7, 7824–7832 (2013).
[Crossref]

Dong, W.

W. Dong, H. Liu, J. K. Behera, L. Lu, R. J. H. Ng, K. V. Sreekanth, X. Zhou, J. K. W. Yang, and R. E. Simpson, “Wide bandgap phase change material tuned visible photonics,” Adv. Funct. Mater. 29, 6 (2019).
[Crossref]

Dregely, D.

A. Tittl, P. Mai, R. Taubert, D. Dregely, N. Liu, and H. Giessen, “Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing,” Nano Lett. 11, 4366–4369 (2011).
[Crossref]

Eleftheriades, G. V.

Elliott, S. R.

D. Loke, T. H. Lee, W. J. Wang, L. P. Shi, R. Zhao, Y. C. Yeo, T. C. Chong, and S. R. Elliott, “Breaking the speed limits of phase-change memory,” Science 336, 1566–1569 (2012).
[Crossref]

Eriksen, R. L.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region, Nano Lett. 12, 3749–3755 (2012).
[Crossref]

Evlyukhin, A. B.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region, Nano Lett. 12, 3749–3755 (2012).
[Crossref]

Falkner, M.

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric Huygen’s surfaces,” Adv. Opt. Mater. 3, 813–820 (2015).
[Crossref]

Fang, Z.

A. Komar, Z. Fang, J. Bohn, J. Sautter, M. Decker, A. Miroschnichenko, T. Pertsch, I. Brener, Y. S. Kivshar, I. Staude, and D. N. Neshev, “Electrically tunable all-dielectric optical metasurfaces based on liquid crystals,” Appl. Phys. Lett. 110, 071109 (2017).
[Crossref]

Fofang, N. T.

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano. 7, 7824–7832 (2013).
[Crossref]

Fu, Y. H.

R. Paniagua-Domínguez, Y. F. Yu, E. Khaidarov, S. Choi, V. Leong, R. M. Bakker, X. Liang, Y. H. Fu, V. Valuckas, L. A. Krivitsky, and A. I. Kuznetsov, “A metalens with a near-unity numerical aperture,” Nano Lett. 18, 2124–2132 (2018).
[Crossref]

R. Paniagua-Domínguez, Y. F. Yu, A. E. Miroschnichenko, L. A. Krivitsky, Y. H. Fu, V. Valuckas, L. Gonzaga, Y. T. Toh, A. Y. S. Kay, B. Luk’yanchuk, and A. I. Kuznetsov, “Generalised Brewster effect in dielectric metasurfaces,” Nat. Commun. 7, 10362 (2016).
[Crossref]

Y. F. Yu, A. Y. Zhu, R. Paniagua-Dominguez, Y. H. Fu, B. Luk’yanchuk, and A. I. Kuznetsov, “High-transmission dielectric metasurfaces with 2π phase control at visible wavelengths,” Laser Photon. Rev. 9, 412–418 (2015).
[Crossref]

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
[Crossref]

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2012).
[Crossref]

Fumeaux, C.

Garcia-Cuevas Carrillo, S.

S. Garcia-Cuevas Carrillo, L. Trimby, Y.-Y. Au, V. K. Nagareddy, G. Rodriguez-Hernandez, P. Hosseini, C. Rios, H. Bhaskaran, and C. D. Wright, “A nonvolatile phase-change metamaterial color display,” Adv. Opt. Mater. 7, 1801782 (2019).
[Crossref]

S. Garcia-Cuevas Carrillo, G. R. Nash, H. Hasan, M. J. Cryan, M. Klemm, H. Bhaskaran, and C. D. Wright, “Design of practicable phase-change metadevices for near-infrared absorber and modulation applications,” Opt. Express 24, 13563–13573 (2016).
[Crossref]

Genevet, P.

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, G. Zeno, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12, 4932–4936 (2012).
[Crossref]

Gholipour, B.

A. Tittl, A. K. U. Michel, M. Schaferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid-infrared perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27, 4597–4603 (2015).
[Crossref]

B. Gholipour, J. Zhang, K. F. MacDonald, D. W. Hewak, and N. I. Zheludev, “An all-optical, non-volatile, bidirectional, phase-change meta-switch,” Adv. Mater. 25, 3050–3054 (2013).
[Crossref]

Gholipur, B.

A. Karvounis, B. Gholipur, K. F. MacDonald, and N. I. Zheludev, “All-dielectric phase-change reconfigurable metasurface,” Appl. Phys. Lett. 109, 051103 (2016).
[Crossref]

Giessen, H.

X. Yin, T. Steinle, L. Huang, T. Taubner, M. Wuttig, T. Zentgraf, and H. Giessen, “Beam switching and bifocal zoom lensing using active plasmonic metasurfaces,” Light Sci. Appl. 6, e17016 (2017).
[Crossref]

A. Tittl, A. K. U. Michel, M. Schaferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid-infrared perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27, 4597–4603 (2015).
[Crossref]

A. Tittl, P. Mai, R. Taubert, D. Dregely, N. Liu, and H. Giessen, “Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing,” Nano Lett. 11, 4366–4369 (2011).
[Crossref]

Glybovski, S. B.

S. B. Glybovski, S. A. Tretyakov, P. A. Belov, Y. S. Kivshar, and C. R. Simovski, “Metasurfaces: from microwaves to visible,” Phys. Rep. 634, 1–72 (2017).
[Crossref]

Gonzaga, L.

R. Paniagua-Domínguez, Y. F. Yu, A. E. Miroschnichenko, L. A. Krivitsky, Y. H. Fu, V. Valuckas, L. Gonzaga, Y. T. Toh, A. Y. S. Kay, B. Luk’yanchuk, and A. I. Kuznetsov, “Generalised Brewster effect in dielectric metasurfaces,” Nat. Commun. 7, 10362 (2016).
[Crossref]

Gonzales, E.

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano. 7, 7824–7832 (2013).
[Crossref]

Grinblat, G.

J. Cambiasso, G. Grinblat, Y. Li, A. Rakovich, E. Cortes, and S. A. Maier, “Bridging the gap between dielectric nanophotonics and the visible regime with effectively lossless gallium phosphide antennas,” Nano Lett. 17, 1219–1225 (2017).
[Crossref]

Han, C.

C. Han and W. Y. Tam, “Broadband optical magnetism in chiral metallic nanohole arrays by shadowing vapor deposition,” Appl. Phys. Lett. 106, 081102 (2016).
[Crossref]

Hasan, H.

Hashemi, M. R.

M. R. Hashemi, S.-G. Yang, T. Wang, N. Sepulveda, and M. Jarrahi, “Electronically-controlled beam-steering through vanadium dioxide metasurfaces,” Sci. Rep. 6, 35429 (2016).
[Crossref]

Hewak, D. W.

B. Gholipour, J. Zhang, K. F. MacDonald, D. W. Hewak, and N. I. Zheludev, “An all-optical, non-volatile, bidirectional, phase-change meta-switch,” Adv. Mater. 25, 3050–3054 (2013).
[Crossref]

Hicken, R. J.

C. D. Wright, Y. Liu, K. I. Kohary, M. M. Aziz, and R. J. Hicken, “Arithmetic and biologically-inspired computing using phase-change materials,” Adv. Mater., 23, 3408–3413 (2011).
[Crossref]

Hosseini, P.

S. Garcia-Cuevas Carrillo, L. Trimby, Y.-Y. Au, V. K. Nagareddy, G. Rodriguez-Hernandez, P. Hosseini, C. Rios, H. Bhaskaran, and C. D. Wright, “A nonvolatile phase-change metamaterial color display,” Adv. Opt. Mater. 7, 1801782 (2019).
[Crossref]

C. Rios, P. Hosseini, R. A. Taylor, and H. Bhaskaran, “Color depth modulation and resolution in phase-change material nanodisplays,” Adv. Mater. 28, 4720–4726 (2016).
[Crossref]

P. Hosseini, C. D. Wright, and H. Bhaskaran, “An optoelectronic framework enabled by low-dimensional phase-change films,” Nature 511, 206–211 (2014).
[Crossref]

P. Hosseini, C. D. Wright, and H. Bhaskaran, “An optoelectronic framework enabled by low-dimensional phase-change films,” Nature 511, 206–211 (2014).
[Crossref]

Huang, L.

X. Yin, T. Steinle, L. Huang, T. Taubner, M. Wuttig, T. Zentgraf, and H. Giessen, “Beam switching and bifocal zoom lensing using active plasmonic metasurfaces,” Light Sci. Appl. 6, e17016 (2017).
[Crossref]

Jarrahi, M.

M. R. Hashemi, S.-G. Yang, T. Wang, N. Sepulveda, and M. Jarrahi, “Electronically-controlled beam-steering through vanadium dioxide metasurfaces,” Sci. Rep. 6, 35429 (2016).
[Crossref]

Jeoing, J.

Jones, D. N.

D. N. Jones, N. Liu, B. Corbett, P. Lovera, A. J. Quinn, and A. O’Riordan, “Surface plasmon assisted extraordinary transmission in metallic nanohole arrays and its suitability as a bio sensor,” J. Phys. Conf. Ser. 307, 012005 (2011).
[Crossref]

Karvounis, A.

A. Karvounis, B. Gholipur, K. F. MacDonald, and N. I. Zheludev, “All-dielectric phase-change reconfigurable metasurface,” Appl. Phys. Lett. 109, 051103 (2016).
[Crossref]

Kats, M. A.

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, G. Zeno, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12, 4932–4936 (2012).
[Crossref]

Kay, A. Y. S.

R. Paniagua-Domínguez, Y. F. Yu, A. E. Miroschnichenko, L. A. Krivitsky, Y. H. Fu, V. Valuckas, L. Gonzaga, Y. T. Toh, A. Y. S. Kay, B. Luk’yanchuk, and A. I. Kuznetsov, “Generalised Brewster effect in dielectric metasurfaces,” Nat. Commun. 7, 10362 (2016).
[Crossref]

Khaidarov, E.

R. Paniagua-Domínguez, Y. F. Yu, E. Khaidarov, S. Choi, V. Leong, R. M. Bakker, X. Liang, Y. H. Fu, V. Valuckas, L. A. Krivitsky, and A. I. Kuznetsov, “A metalens with a near-unity numerical aperture,” Nano Lett. 18, 2124–2132 (2018).
[Crossref]

Kildishev, A. V.

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339, 1232009 (2013).
[Crossref]

Kim, I. S.

I. S. Kim, “High performance PRAM cell scalable to sub-20nm technology with below 4F2 cell size, extendable to DRAM applications,” in IEEE Symposium on VLSI Technology, IEEE, Honolulu, Hawaii, USA, 2010, p. 203.

Kim, M.

Kivshar, Y.

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano. 7, 7824–7832 (2013).
[Crossref]

Kivshar, Y. S.

A. Komar, Z. Fang, J. Bohn, J. Sautter, M. Decker, A. Miroschnichenko, T. Pertsch, I. Brener, Y. S. Kivshar, I. Staude, and D. N. Neshev, “Electrically tunable all-dielectric optical metasurfaces based on liquid crystals,” Appl. Phys. Lett. 110, 071109 (2017).
[Crossref]

S. B. Glybovski, S. A. Tretyakov, P. A. Belov, Y. S. Kivshar, and C. R. Simovski, “Metasurfaces: from microwaves to visible,” Phys. Rep. 634, 1–72 (2017).
[Crossref]

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Lukyanchuk, “Optically resonant dielectric nanaostructures,” Science 354, aag2472 (2016).
[Crossref]

J. Sautter, I. Staude, M. Decker, E. Rusak, D. Neshev, I. Brener, and Y. S. Kivshar, “Active tuning of all-dielectric metasurfaces,” ACS Nano. 9, 4308–4315 (2015).
[Crossref]

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric Huygen’s surfaces,” Adv. Opt. Mater. 3, 813–820 (2015).
[Crossref]

D. Arslan, K. E. Chong, D. N. Neshev, T. Pertsch, Y. S. Kivshar, and I. Staude, “Silicon Huygens' metasurfaces at oblique incidence,” in European Conference on Lasers and Electro-Optics and European Quantum Electronics Conference (2017), paper EH_6_2.

Klemm, M.

C. Ruiz de Galarreta, A. M. Alexeev, Y.-Y. Au, M. Lopez-Garcia, M. Klemm, M. Cryan, J. Bertolotti, and C. D. Wright, “Nonvolatile reconfigurable phase-change metadevices for beam steering in the near infrared,” Adv. Funct. Mater. 28, 1704993 (2018).
[Crossref]

S. Garcia-Cuevas Carrillo, G. R. Nash, H. Hasan, M. J. Cryan, M. Klemm, H. Bhaskaran, and C. D. Wright, “Design of practicable phase-change metadevices for near-infrared absorber and modulation applications,” Opt. Express 24, 13563–13573 (2016).
[Crossref]

Ko, Y. H.

Kohary, K. I.

C. D. Wright, Y. Liu, K. I. Kohary, M. M. Aziz, and R. J. Hicken, “Arithmetic and biologically-inspired computing using phase-change materials,” Adv. Mater., 23, 3408–3413 (2011).
[Crossref]

Komar, A.

A. Komar, Z. Fang, J. Bohn, J. Sautter, M. Decker, A. Miroschnichenko, T. Pertsch, I. Brener, Y. S. Kivshar, I. Staude, and D. N. Neshev, “Electrically tunable all-dielectric optical metasurfaces based on liquid crystals,” Appl. Phys. Lett. 110, 071109 (2017).
[Crossref]

Krasnok, A.

S. Makarov, S. Kudryashov, I. Mukhin, A. Mozharov, V. Milichko, A. Krasnok, and P. Belov, “Tuning of magnetic optical response in a dielectric nanoparticle by ultrafast photoexcitation of dense electron-hole plasma,” Nano Lett. 15, 6187–6192 (2015).
[Crossref]

Krivitsky, L. A.

R. Paniagua-Domínguez, Y. F. Yu, E. Khaidarov, S. Choi, V. Leong, R. M. Bakker, X. Liang, Y. H. Fu, V. Valuckas, L. A. Krivitsky, and A. I. Kuznetsov, “A metalens with a near-unity numerical aperture,” Nano Lett. 18, 2124–2132 (2018).
[Crossref]

R. Paniagua-Domínguez, Y. F. Yu, A. E. Miroschnichenko, L. A. Krivitsky, Y. H. Fu, V. Valuckas, L. Gonzaga, Y. T. Toh, A. Y. S. Kay, B. Luk’yanchuk, and A. I. Kuznetsov, “Generalised Brewster effect in dielectric metasurfaces,” Nat. Commun. 7, 10362 (2016).
[Crossref]

Kudryashov, S.

S. Makarov, S. Kudryashov, I. Mukhin, A. Mozharov, V. Milichko, A. Krasnok, and P. Belov, “Tuning of magnetic optical response in a dielectric nanoparticle by ultrafast photoexcitation of dense electron-hole plasma,” Nano Lett. 15, 6187–6192 (2015).
[Crossref]

Kuznetsov, A. I.

R. Paniagua-Domínguez, Y. F. Yu, E. Khaidarov, S. Choi, V. Leong, R. M. Bakker, X. Liang, Y. H. Fu, V. Valuckas, L. A. Krivitsky, and A. I. Kuznetsov, “A metalens with a near-unity numerical aperture,” Nano Lett. 18, 2124–2132 (2018).
[Crossref]

R. Paniagua-Domínguez, Y. F. Yu, A. E. Miroschnichenko, L. A. Krivitsky, Y. H. Fu, V. Valuckas, L. Gonzaga, Y. T. Toh, A. Y. S. Kay, B. Luk’yanchuk, and A. I. Kuznetsov, “Generalised Brewster effect in dielectric metasurfaces,” Nat. Commun. 7, 10362 (2016).
[Crossref]

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Lukyanchuk, “Optically resonant dielectric nanaostructures,” Science 354, aag2472 (2016).
[Crossref]

Y. F. Yu, A. Y. Zhu, R. Paniagua-Dominguez, Y. H. Fu, B. Luk’yanchuk, and A. I. Kuznetsov, “High-transmission dielectric metasurfaces with 2π phase control at visible wavelengths,” Laser Photon. Rev. 9, 412–418 (2015).
[Crossref]

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
[Crossref]

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2012).
[Crossref]

Lee, T. H.

D. Loke, T. H. Lee, W. J. Wang, L. P. Shi, R. Zhao, Y. C. Yeo, T. C. Chong, and S. R. Elliott, “Breaking the speed limits of phase-change memory,” Science 336, 1566–1569 (2012).
[Crossref]

Leong, V.

R. Paniagua-Domínguez, Y. F. Yu, E. Khaidarov, S. Choi, V. Leong, R. M. Bakker, X. Liang, Y. H. Fu, V. Valuckas, L. A. Krivitsky, and A. I. Kuznetsov, “A metalens with a near-unity numerical aperture,” Nano Lett. 18, 2124–2132 (2018).
[Crossref]

Li, Y.

J. Cambiasso, G. Grinblat, Y. Li, A. Rakovich, E. Cortes, and S. A. Maier, “Bridging the gap between dielectric nanophotonics and the visible regime with effectively lossless gallium phosphide antennas,” Nano Lett. 17, 1219–1225 (2017).
[Crossref]

Li, Z.

X. Tian and Z. Li, “Visible-near infrared ultra-broadband polarisation-independent metamaterial perfect absorber involving phase-change materials,” Opt. Express 4, 146–152 (2016).
[Crossref]

Liang, X.

R. Paniagua-Domínguez, Y. F. Yu, E. Khaidarov, S. Choi, V. Leong, R. M. Bakker, X. Liang, Y. H. Fu, V. Valuckas, L. A. Krivitsky, and A. I. Kuznetsov, “A metalens with a near-unity numerical aperture,” Nano Lett. 18, 2124–2132 (2018).
[Crossref]

Liu, H.

W. Dong, H. Liu, J. K. Behera, L. Lu, R. J. H. Ng, K. V. Sreekanth, X. Zhou, J. K. W. Yang, and R. E. Simpson, “Wide bandgap phase change material tuned visible photonics,” Adv. Funct. Mater. 29, 6 (2019).
[Crossref]

Liu, N.

D. N. Jones, N. Liu, B. Corbett, P. Lovera, A. J. Quinn, and A. O’Riordan, “Surface plasmon assisted extraordinary transmission in metallic nanohole arrays and its suitability as a bio sensor,” J. Phys. Conf. Ser. 307, 012005 (2011).
[Crossref]

A. Tittl, P. Mai, R. Taubert, D. Dregely, N. Liu, and H. Giessen, “Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing,” Nano Lett. 11, 4366–4369 (2011).
[Crossref]

Liu, S.

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano. 7, 7824–7832 (2013).
[Crossref]

Liu, Y.

C. D. Wright, Y. Liu, K. I. Kohary, M. M. Aziz, and R. J. Hicken, “Arithmetic and biologically-inspired computing using phase-change materials,” Adv. Mater., 23, 3408–3413 (2011).
[Crossref]

Loke, D.

D. Loke, T. H. Lee, W. J. Wang, L. P. Shi, R. Zhao, Y. C. Yeo, T. C. Chong, and S. R. Elliott, “Breaking the speed limits of phase-change memory,” Science 336, 1566–1569 (2012).
[Crossref]

Lopez-Garcia, M.

C. Ruiz de Galarreta, A. M. Alexeev, Y.-Y. Au, M. Lopez-Garcia, M. Klemm, M. Cryan, J. Bertolotti, and C. D. Wright, “Nonvolatile reconfigurable phase-change metadevices for beam steering in the near infrared,” Adv. Funct. Mater. 28, 1704993 (2018).
[Crossref]

Lovera, P.

D. N. Jones, N. Liu, B. Corbett, P. Lovera, A. J. Quinn, and A. O’Riordan, “Surface plasmon assisted extraordinary transmission in metallic nanohole arrays and its suitability as a bio sensor,” J. Phys. Conf. Ser. 307, 012005 (2011).
[Crossref]

Lu, L.

W. Dong, H. Liu, J. K. Behera, L. Lu, R. J. H. Ng, K. V. Sreekanth, X. Zhou, J. K. W. Yang, and R. E. Simpson, “Wide bandgap phase change material tuned visible photonics,” Adv. Funct. Mater. 29, 6 (2019).
[Crossref]

Luk, T. S.

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano. 7, 7824–7832 (2013).
[Crossref]

Luk’yanchuk, B.

R. Paniagua-Domínguez, Y. F. Yu, A. E. Miroschnichenko, L. A. Krivitsky, Y. H. Fu, V. Valuckas, L. Gonzaga, Y. T. Toh, A. Y. S. Kay, B. Luk’yanchuk, and A. I. Kuznetsov, “Generalised Brewster effect in dielectric metasurfaces,” Nat. Commun. 7, 10362 (2016).
[Crossref]

Y. F. Yu, A. Y. Zhu, R. Paniagua-Dominguez, Y. H. Fu, B. Luk’yanchuk, and A. I. Kuznetsov, “High-transmission dielectric metasurfaces with 2π phase control at visible wavelengths,” Laser Photon. Rev. 9, 412–418 (2015).
[Crossref]

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
[Crossref]

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2012).
[Crossref]

Lukyanchuk, B.

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Lukyanchuk, “Optically resonant dielectric nanaostructures,” Science 354, aag2472 (2016).
[Crossref]

Luo, H.

J. Tian, H. Luo, Y. Yang, F. Ding, Y. Qu, D. Zhao, M. Qiu, and S. I. Bozhevolnyi, “Active control of anapole states by structuring the phase-change alloy Ge2Sb2Te5,” Nat. Commun. 10, 396 (2019).
[Crossref]

MacDonald, K. F.

A. Karvounis, B. Gholipur, K. F. MacDonald, and N. I. Zheludev, “All-dielectric phase-change reconfigurable metasurface,” Appl. Phys. Lett. 109, 051103 (2016).
[Crossref]

B. Gholipour, J. Zhang, K. F. MacDonald, D. W. Hewak, and N. I. Zheludev, “An all-optical, non-volatile, bidirectional, phase-change meta-switch,” Adv. Mater. 25, 3050–3054 (2013).
[Crossref]

Magnusson, R.

Mai, P.

A. Tittl, P. Mai, R. Taubert, D. Dregely, N. Liu, and H. Giessen, “Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing,” Nano Lett. 11, 4366–4369 (2011).
[Crossref]

Maier, S. A.

J. Cambiasso, G. Grinblat, Y. Li, A. Rakovich, E. Cortes, and S. A. Maier, “Bridging the gap between dielectric nanophotonics and the visible regime with effectively lossless gallium phosphide antennas,” Nano Lett. 17, 1219–1225 (2017).
[Crossref]

Makarov, S.

S. Makarov, S. Kudryashov, I. Mukhin, A. Mozharov, V. Milichko, A. Krasnok, and P. Belov, “Tuning of magnetic optical response in a dielectric nanoparticle by ultrafast photoexcitation of dense electron-hole plasma,” Nano Lett. 15, 6187–6192 (2015).
[Crossref]

Michel, A. K. U.

A. Tittl, A. K. U. Michel, M. Schaferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid-infrared perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27, 4597–4603 (2015).
[Crossref]

Milichko, V.

S. Makarov, S. Kudryashov, I. Mukhin, A. Mozharov, V. Milichko, A. Krasnok, and P. Belov, “Tuning of magnetic optical response in a dielectric nanoparticle by ultrafast photoexcitation of dense electron-hole plasma,” Nano Lett. 15, 6187–6192 (2015).
[Crossref]

Miroschnichenko, A.

A. Komar, Z. Fang, J. Bohn, J. Sautter, M. Decker, A. Miroschnichenko, T. Pertsch, I. Brener, Y. S. Kivshar, I. Staude, and D. N. Neshev, “Electrically tunable all-dielectric optical metasurfaces based on liquid crystals,” Appl. Phys. Lett. 110, 071109 (2017).
[Crossref]

Miroschnichenko, A. E.

R. Paniagua-Domínguez, Y. F. Yu, A. E. Miroschnichenko, L. A. Krivitsky, Y. H. Fu, V. Valuckas, L. Gonzaga, Y. T. Toh, A. Y. S. Kay, B. Luk’yanchuk, and A. I. Kuznetsov, “Generalised Brewster effect in dielectric metasurfaces,” Nat. Commun. 7, 10362 (2016).
[Crossref]

Miroshnichenko, A. E.

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Lukyanchuk, “Optically resonant dielectric nanaostructures,” Science 354, aag2472 (2016).
[Crossref]

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano. 7, 7824–7832 (2013).
[Crossref]

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
[Crossref]

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2012).
[Crossref]

Mitchell, A.

Mozharov, A.

S. Makarov, S. Kudryashov, I. Mukhin, A. Mozharov, V. Milichko, A. Krasnok, and P. Belov, “Tuning of magnetic optical response in a dielectric nanoparticle by ultrafast photoexcitation of dense electron-hole plasma,” Nano Lett. 15, 6187–6192 (2015).
[Crossref]

Mukhin, I.

S. Makarov, S. Kudryashov, I. Mukhin, A. Mozharov, V. Milichko, A. Krasnok, and P. Belov, “Tuning of magnetic optical response in a dielectric nanoparticle by ultrafast photoexcitation of dense electron-hole plasma,” Nano Lett. 15, 6187–6192 (2015).
[Crossref]

Nagareddy, V. K.

S. Garcia-Cuevas Carrillo, L. Trimby, Y.-Y. Au, V. K. Nagareddy, G. Rodriguez-Hernandez, P. Hosseini, C. Rios, H. Bhaskaran, and C. D. Wright, “A nonvolatile phase-change metamaterial color display,” Adv. Opt. Mater. 7, 1801782 (2019).
[Crossref]

Nash, G. R.

Neshev, D.

J. Sautter, I. Staude, M. Decker, E. Rusak, D. Neshev, I. Brener, and Y. S. Kivshar, “Active tuning of all-dielectric metasurfaces,” ACS Nano. 9, 4308–4315 (2015).
[Crossref]

Neshev, D. N.

A. Komar, Z. Fang, J. Bohn, J. Sautter, M. Decker, A. Miroschnichenko, T. Pertsch, I. Brener, Y. S. Kivshar, I. Staude, and D. N. Neshev, “Electrically tunable all-dielectric optical metasurfaces based on liquid crystals,” Appl. Phys. Lett. 110, 071109 (2017).
[Crossref]

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric Huygen’s surfaces,” Adv. Opt. Mater. 3, 813–820 (2015).
[Crossref]

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano. 7, 7824–7832 (2013).
[Crossref]

D. Arslan, K. E. Chong, D. N. Neshev, T. Pertsch, Y. S. Kivshar, and I. Staude, “Silicon Huygens' metasurfaces at oblique incidence,” in European Conference on Lasers and Electro-Optics and European Quantum Electronics Conference (2017), paper EH_6_2.

Neubrech, F.

A. Tittl, A. K. U. Michel, M. Schaferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid-infrared perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27, 4597–4603 (2015).
[Crossref]

Ng, R. J. H.

W. Dong, H. Liu, J. K. Behera, L. Lu, R. J. H. Ng, K. V. Sreekanth, X. Zhou, J. K. W. Yang, and R. E. Simpson, “Wide bandgap phase change material tuned visible photonics,” Adv. Funct. Mater. 29, 6 (2019).
[Crossref]

Novikov, S. M.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region, Nano Lett. 12, 3749–3755 (2012).
[Crossref]

O’Riordan, A.

D. N. Jones, N. Liu, B. Corbett, P. Lovera, A. J. Quinn, and A. O’Riordan, “Surface plasmon assisted extraordinary transmission in metallic nanohole arrays and its suitability as a bio sensor,” J. Phys. Conf. Ser. 307, 012005 (2011).
[Crossref]

Paniagua-Dominguez, R.

Y. F. Yu, A. Y. Zhu, R. Paniagua-Dominguez, Y. H. Fu, B. Luk’yanchuk, and A. I. Kuznetsov, “High-transmission dielectric metasurfaces with 2π phase control at visible wavelengths,” Laser Photon. Rev. 9, 412–418 (2015).
[Crossref]

Paniagua-Domínguez, R.

R. Paniagua-Domínguez, Y. F. Yu, E. Khaidarov, S. Choi, V. Leong, R. M. Bakker, X. Liang, Y. H. Fu, V. Valuckas, L. A. Krivitsky, and A. I. Kuznetsov, “A metalens with a near-unity numerical aperture,” Nano Lett. 18, 2124–2132 (2018).
[Crossref]

R. Paniagua-Domínguez, Y. F. Yu, A. E. Miroschnichenko, L. A. Krivitsky, Y. H. Fu, V. Valuckas, L. Gonzaga, Y. T. Toh, A. Y. S. Kay, B. Luk’yanchuk, and A. I. Kuznetsov, “Generalised Brewster effect in dielectric metasurfaces,” Nat. Commun. 7, 10362 (2016).
[Crossref]

Pertsch, T.

A. Komar, Z. Fang, J. Bohn, J. Sautter, M. Decker, A. Miroschnichenko, T. Pertsch, I. Brener, Y. S. Kivshar, I. Staude, and D. N. Neshev, “Electrically tunable all-dielectric optical metasurfaces based on liquid crystals,” Appl. Phys. Lett. 110, 071109 (2017).
[Crossref]

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric Huygen’s surfaces,” Adv. Opt. Mater. 3, 813–820 (2015).
[Crossref]

D. Arslan, K. E. Chong, D. N. Neshev, T. Pertsch, Y. S. Kivshar, and I. Staude, “Silicon Huygens' metasurfaces at oblique incidence,” in European Conference on Lasers and Electro-Optics and European Quantum Electronics Conference (2017), paper EH_6_2.

Pierce, D. T.

D. T. Pierce and W. E. Spicer, “Electronic structure of amorphous Si from photoemission and optical studies,” Phys. Rev. B 5, 3017–3029 (1972).
[Crossref]

Pooon, J. K. S.

Qiu, M.

J. Tian, H. Luo, Y. Yang, F. Ding, Y. Qu, D. Zhao, M. Qiu, and S. I. Bozhevolnyi, “Active control of anapole states by structuring the phase-change alloy Ge2Sb2Te5,” Nat. Commun. 10, 396 (2019).
[Crossref]

Qu, Y.

J. Tian, H. Luo, Y. Yang, F. Ding, Y. Qu, D. Zhao, M. Qiu, and S. I. Bozhevolnyi, “Active control of anapole states by structuring the phase-change alloy Ge2Sb2Te5,” Nat. Commun. 10, 396 (2019).
[Crossref]

Quinn, A. J.

D. N. Jones, N. Liu, B. Corbett, P. Lovera, A. J. Quinn, and A. O’Riordan, “Surface plasmon assisted extraordinary transmission in metallic nanohole arrays and its suitability as a bio sensor,” J. Phys. Conf. Ser. 307, 012005 (2011).
[Crossref]

Rakovich, A.

J. Cambiasso, G. Grinblat, Y. Li, A. Rakovich, E. Cortes, and S. A. Maier, “Bridging the gap between dielectric nanophotonics and the visible regime with effectively lossless gallium phosphide antennas,” Nano Lett. 17, 1219–1225 (2017).
[Crossref]

Reinhardt, C.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region, Nano Lett. 12, 3749–3755 (2012).
[Crossref]

Rios, C.

S. Garcia-Cuevas Carrillo, L. Trimby, Y.-Y. Au, V. K. Nagareddy, G. Rodriguez-Hernandez, P. Hosseini, C. Rios, H. Bhaskaran, and C. D. Wright, “A nonvolatile phase-change metamaterial color display,” Adv. Opt. Mater. 7, 1801782 (2019).
[Crossref]

C. Rios, P. Hosseini, R. A. Taylor, and H. Bhaskaran, “Color depth modulation and resolution in phase-change material nanodisplays,” Adv. Mater. 28, 4720–4726 (2016).
[Crossref]

Rodriguez-Hernandez, G.

S. Garcia-Cuevas Carrillo, L. Trimby, Y.-Y. Au, V. K. Nagareddy, G. Rodriguez-Hernandez, P. Hosseini, C. Rios, H. Bhaskaran, and C. D. Wright, “A nonvolatile phase-change metamaterial color display,” Adv. Opt. Mater. 7, 1801782 (2019).
[Crossref]

Ruiz de Galarreta, C.

C. Ruiz de Galarreta, A. M. Alexeev, Y.-Y. Au, M. Lopez-Garcia, M. Klemm, M. Cryan, J. Bertolotti, and C. D. Wright, “Nonvolatile reconfigurable phase-change metadevices for beam steering in the near infrared,” Adv. Funct. Mater. 28, 1704993 (2018).
[Crossref]

Rusak, E.

J. Sautter, I. Staude, M. Decker, E. Rusak, D. Neshev, I. Brener, and Y. S. Kivshar, “Active tuning of all-dielectric metasurfaces,” ACS Nano. 9, 4308–4315 (2015).
[Crossref]

Sautter, J.

A. Komar, Z. Fang, J. Bohn, J. Sautter, M. Decker, A. Miroschnichenko, T. Pertsch, I. Brener, Y. S. Kivshar, I. Staude, and D. N. Neshev, “Electrically tunable all-dielectric optical metasurfaces based on liquid crystals,” Appl. Phys. Lett. 110, 071109 (2017).
[Crossref]

J. Sautter, I. Staude, M. Decker, E. Rusak, D. Neshev, I. Brener, and Y. S. Kivshar, “Active tuning of all-dielectric metasurfaces,” ACS Nano. 9, 4308–4315 (2015).
[Crossref]

Schaferling, M.

A. Tittl, A. K. U. Michel, M. Schaferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid-infrared perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27, 4597–4603 (2015).
[Crossref]

Schropp, A.

J. Siegel, A. Schropp, J. Solis, C. N. Alfonso, and M. Wuttig, “Rewritable phase-change optical recording in Ge2Sb2Te5 films induced by picosecond laser pulses,” Appl. Phys. Lett. 84, 2250–2252 (2004).
[Crossref]

Sepulveda, N.

M. R. Hashemi, S.-G. Yang, T. Wang, N. Sepulveda, and M. Jarrahi, “Electronically-controlled beam-steering through vanadium dioxide metasurfaces,” Sci. Rep. 6, 35429 (2016).
[Crossref]

Shah, M. C.

Shalaev, V. M.

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339, 1232009 (2013).
[Crossref]

Shi, L. P.

D. Loke, T. H. Lee, W. J. Wang, L. P. Shi, R. Zhao, Y. C. Yeo, T. C. Chong, and S. R. Elliott, “Breaking the speed limits of phase-change memory,” Science 336, 1566–1569 (2012).
[Crossref]

Siegel, J.

J. Siegel, C. N. Afonso, and J. Solis, “Amorphization dynamics of Ge2Sb2Te5 films upon nano-and femtosecond laser pulse irradiation,” J. Appl. Phys. 103, 023516 (2008).
[Crossref]

J. Siegel, A. Schropp, J. Solis, C. N. Alfonso, and M. Wuttig, “Rewritable phase-change optical recording in Ge2Sb2Te5 films induced by picosecond laser pulses,” Appl. Phys. Lett. 84, 2250–2252 (2004).
[Crossref]

K. Sokolowski-Tinten, J. Solis, J. Bialkowski, J. Siegel, C. N. Afonso, and D. von der Linde, “Dynamics of ultrafast phase changes in amorphous GeSb films,” Phys. Rev. Lett. 81, 3679 (1998).
[Crossref]

Simovski, C. R.

S. B. Glybovski, S. A. Tretyakov, P. A. Belov, Y. S. Kivshar, and C. R. Simovski, “Metasurfaces: from microwaves to visible,” Phys. Rep. 634, 1–72 (2017).
[Crossref]

Simpson, R. E.

W. Dong, H. Liu, J. K. Behera, L. Lu, R. J. H. Ng, K. V. Sreekanth, X. Zhou, J. K. W. Yang, and R. E. Simpson, “Wide bandgap phase change material tuned visible photonics,” Adv. Funct. Mater. 29, 6 (2019).
[Crossref]

Sokolowski-Tinten, K.

K. Sokolowski-Tinten, J. Solis, J. Bialkowski, J. Siegel, C. N. Afonso, and D. von der Linde, “Dynamics of ultrafast phase changes in amorphous GeSb films,” Phys. Rev. Lett. 81, 3679 (1998).
[Crossref]

Solis, J.

J. Siegel, C. N. Afonso, and J. Solis, “Amorphization dynamics of Ge2Sb2Te5 films upon nano-and femtosecond laser pulse irradiation,” J. Appl. Phys. 103, 023516 (2008).
[Crossref]

J. Siegel, A. Schropp, J. Solis, C. N. Alfonso, and M. Wuttig, “Rewritable phase-change optical recording in Ge2Sb2Te5 films induced by picosecond laser pulses,” Appl. Phys. Lett. 84, 2250–2252 (2004).
[Crossref]

K. Sokolowski-Tinten, J. Solis, J. Bialkowski, J. Siegel, C. N. Afonso, and D. von der Linde, “Dynamics of ultrafast phase changes in amorphous GeSb films,” Phys. Rev. Lett. 81, 3679 (1998).
[Crossref]

Spicer, W. E.

D. T. Pierce and W. E. Spicer, “Electronic structure of amorphous Si from photoemission and optical studies,” Phys. Rev. B 5, 3017–3029 (1972).
[Crossref]

Sreekanth, K. V.

W. Dong, H. Liu, J. K. Behera, L. Lu, R. J. H. Ng, K. V. Sreekanth, X. Zhou, J. K. W. Yang, and R. E. Simpson, “Wide bandgap phase change material tuned visible photonics,” Adv. Funct. Mater. 29, 6 (2019).
[Crossref]

Sriram, S.

Staude, I.

A. Komar, Z. Fang, J. Bohn, J. Sautter, M. Decker, A. Miroschnichenko, T. Pertsch, I. Brener, Y. S. Kivshar, I. Staude, and D. N. Neshev, “Electrically tunable all-dielectric optical metasurfaces based on liquid crystals,” Appl. Phys. Lett. 110, 071109 (2017).
[Crossref]

J. Sautter, I. Staude, M. Decker, E. Rusak, D. Neshev, I. Brener, and Y. S. Kivshar, “Active tuning of all-dielectric metasurfaces,” ACS Nano. 9, 4308–4315 (2015).
[Crossref]

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric Huygen’s surfaces,” Adv. Opt. Mater. 3, 813–820 (2015).
[Crossref]

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano. 7, 7824–7832 (2013).
[Crossref]

D. Arslan, K. E. Chong, D. N. Neshev, T. Pertsch, Y. S. Kivshar, and I. Staude, “Silicon Huygens' metasurfaces at oblique incidence,” in European Conference on Lasers and Electro-Optics and European Quantum Electronics Conference (2017), paper EH_6_2.

Steinle, T.

X. Yin, T. Steinle, L. Huang, T. Taubner, M. Wuttig, T. Zentgraf, and H. Giessen, “Beam switching and bifocal zoom lensing using active plasmonic metasurfaces,” Light Sci. Appl. 6, e17016 (2017).
[Crossref]

Tam, W. Y.

C. Han and W. Y. Tam, “Broadband optical magnetism in chiral metallic nanohole arrays by shadowing vapor deposition,” Appl. Phys. Lett. 106, 081102 (2016).
[Crossref]

Taubert, R.

A. Tittl, P. Mai, R. Taubert, D. Dregely, N. Liu, and H. Giessen, “Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing,” Nano Lett. 11, 4366–4369 (2011).
[Crossref]

Taubner, T.

X. Yin, T. Steinle, L. Huang, T. Taubner, M. Wuttig, T. Zentgraf, and H. Giessen, “Beam switching and bifocal zoom lensing using active plasmonic metasurfaces,” Light Sci. Appl. 6, e17016 (2017).
[Crossref]

M. Wuttig, H. Bhaskaran, and T. Taubner, “Phase-change materials for non-volatile photonic applications,” Nat. Photonics 11, 465–476 (2017).
[Crossref]

A. Tittl, A. K. U. Michel, M. Schaferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid-infrared perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27, 4597–4603 (2015).
[Crossref]

Taylor, A. T.

H.-T. Chen, A. T. Taylor, and N. Yu, “A review of metasurfaces: physics and applications,” Rep. Prog. Phys. 79, 076401 (2016).
[Crossref]

Taylor, R. A.

C. Rios, P. Hosseini, R. A. Taylor, and H. Bhaskaran, “Color depth modulation and resolution in phase-change material nanodisplays,” Adv. Mater. 28, 4720–4726 (2016).
[Crossref]

Tian, J.

J. Tian, H. Luo, Y. Yang, F. Ding, Y. Qu, D. Zhao, M. Qiu, and S. I. Bozhevolnyi, “Active control of anapole states by structuring the phase-change alloy Ge2Sb2Te5,” Nat. Commun. 10, 396 (2019).
[Crossref]

Tian, X.

X. Tian and Z. Li, “Visible-near infrared ultra-broadband polarisation-independent metamaterial perfect absorber involving phase-change materials,” Opt. Express 4, 146–152 (2016).
[Crossref]

Tittl, A.

A. Tittl, A. K. U. Michel, M. Schaferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid-infrared perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27, 4597–4603 (2015).
[Crossref]

A. Tittl, P. Mai, R. Taubert, D. Dregely, N. Liu, and H. Giessen, “Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing,” Nano Lett. 11, 4366–4369 (2011).
[Crossref]

Toh, Y. T.

R. Paniagua-Domínguez, Y. F. Yu, A. E. Miroschnichenko, L. A. Krivitsky, Y. H. Fu, V. Valuckas, L. Gonzaga, Y. T. Toh, A. Y. S. Kay, B. Luk’yanchuk, and A. I. Kuznetsov, “Generalised Brewster effect in dielectric metasurfaces,” Nat. Commun. 7, 10362 (2016).
[Crossref]

Tretyakov, S. A.

S. B. Glybovski, S. A. Tretyakov, P. A. Belov, Y. S. Kivshar, and C. R. Simovski, “Metasurfaces: from microwaves to visible,” Phys. Rep. 634, 1–72 (2017).
[Crossref]

Trimby, L.

S. Garcia-Cuevas Carrillo, L. Trimby, Y.-Y. Au, V. K. Nagareddy, G. Rodriguez-Hernandez, P. Hosseini, C. Rios, H. Bhaskaran, and C. D. Wright, “A nonvolatile phase-change metamaterial color display,” Adv. Opt. Mater. 7, 1801782 (2019).
[Crossref]

L. Trimby, A. Baldycheva, and C. D. Wright, “Phase-change band-pass filters for multispectral imaging,” Proc. SPIE 10541, 105412B (2018).
[Crossref]

L. Trimby, “Phase-change meta-devices for tuneable bandpass filtering in the infrared,” Ph.D. Thesis (University of Exeter, 2019).

Valuckas, V.

R. Paniagua-Domínguez, Y. F. Yu, E. Khaidarov, S. Choi, V. Leong, R. M. Bakker, X. Liang, Y. H. Fu, V. Valuckas, L. A. Krivitsky, and A. I. Kuznetsov, “A metalens with a near-unity numerical aperture,” Nano Lett. 18, 2124–2132 (2018).
[Crossref]

R. Paniagua-Domínguez, Y. F. Yu, A. E. Miroschnichenko, L. A. Krivitsky, Y. H. Fu, V. Valuckas, L. Gonzaga, Y. T. Toh, A. Y. S. Kay, B. Luk’yanchuk, and A. I. Kuznetsov, “Generalised Brewster effect in dielectric metasurfaces,” Nat. Commun. 7, 10362 (2016).
[Crossref]

von der Linde, D.

K. Sokolowski-Tinten, J. Solis, J. Bialkowski, J. Siegel, C. N. Afonso, and D. von der Linde, “Dynamics of ultrafast phase changes in amorphous GeSb films,” Phys. Rev. Lett. 81, 3679 (1998).
[Crossref]

Wang, T.

M. R. Hashemi, S.-G. Yang, T. Wang, N. Sepulveda, and M. Jarrahi, “Electronically-controlled beam-steering through vanadium dioxide metasurfaces,” Sci. Rep. 6, 35429 (2016).
[Crossref]

Wang, W. J.

D. Loke, T. H. Lee, W. J. Wang, L. P. Shi, R. Zhao, Y. C. Yeo, T. C. Chong, and S. R. Elliott, “Breaking the speed limits of phase-change memory,” Science 336, 1566–1569 (2012).
[Crossref]

Withayachumnankul, W.

Wright, C. D.

S. Garcia-Cuevas Carrillo, L. Trimby, Y.-Y. Au, V. K. Nagareddy, G. Rodriguez-Hernandez, P. Hosseini, C. Rios, H. Bhaskaran, and C. D. Wright, “A nonvolatile phase-change metamaterial color display,” Adv. Opt. Mater. 7, 1801782 (2019).
[Crossref]

L. Trimby, A. Baldycheva, and C. D. Wright, “Phase-change band-pass filters for multispectral imaging,” Proc. SPIE 10541, 105412B (2018).
[Crossref]

C. Ruiz de Galarreta, A. M. Alexeev, Y.-Y. Au, M. Lopez-Garcia, M. Klemm, M. Cryan, J. Bertolotti, and C. D. Wright, “Nonvolatile reconfigurable phase-change metadevices for beam steering in the near infrared,” Adv. Funct. Mater. 28, 1704993 (2018).
[Crossref]

S. Garcia-Cuevas Carrillo, G. R. Nash, H. Hasan, M. J. Cryan, M. Klemm, H. Bhaskaran, and C. D. Wright, “Design of practicable phase-change metadevices for near-infrared absorber and modulation applications,” Opt. Express 24, 13563–13573 (2016).
[Crossref]

P. Hosseini, C. D. Wright, and H. Bhaskaran, “An optoelectronic framework enabled by low-dimensional phase-change films,” Nature 511, 206–211 (2014).
[Crossref]

P. Hosseini, C. D. Wright, and H. Bhaskaran, “An optoelectronic framework enabled by low-dimensional phase-change films,” Nature 511, 206–211 (2014).
[Crossref]

C. D. Wright, Y. Liu, K. I. Kohary, M. M. Aziz, and R. J. Hicken, “Arithmetic and biologically-inspired computing using phase-change materials,” Adv. Mater., 23, 3408–3413 (2011).
[Crossref]

Wuttig, M.

X. Yin, T. Steinle, L. Huang, T. Taubner, M. Wuttig, T. Zentgraf, and H. Giessen, “Beam switching and bifocal zoom lensing using active plasmonic metasurfaces,” Light Sci. Appl. 6, e17016 (2017).
[Crossref]

M. Wuttig, H. Bhaskaran, and T. Taubner, “Phase-change materials for non-volatile photonic applications,” Nat. Photonics 11, 465–476 (2017).
[Crossref]

A. Tittl, A. K. U. Michel, M. Schaferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid-infrared perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27, 4597–4603 (2015).
[Crossref]

M. Wuttig and N. Yamada, “Phase-change materials for rewritable data storage,” Nat. Mater. 6, 824–832 (2007).
[Crossref]

J. Siegel, A. Schropp, J. Solis, C. N. Alfonso, and M. Wuttig, “Rewritable phase-change optical recording in Ge2Sb2Te5 films induced by picosecond laser pulses,” Appl. Phys. Lett. 84, 2250–2252 (2004).
[Crossref]

Yamada, N.

M. Wuttig and N. Yamada, “Phase-change materials for rewritable data storage,” Nat. Mater. 6, 824–832 (2007).
[Crossref]

Yang, J. K. W.

W. Dong, H. Liu, J. K. Behera, L. Lu, R. J. H. Ng, K. V. Sreekanth, X. Zhou, J. K. W. Yang, and R. E. Simpson, “Wide bandgap phase change material tuned visible photonics,” Adv. Funct. Mater. 29, 6 (2019).
[Crossref]

Yang, S.-G.

M. R. Hashemi, S.-G. Yang, T. Wang, N. Sepulveda, and M. Jarrahi, “Electronically-controlled beam-steering through vanadium dioxide metasurfaces,” Sci. Rep. 6, 35429 (2016).
[Crossref]

Yang, Y.

J. Tian, H. Luo, Y. Yang, F. Ding, Y. Qu, D. Zhao, M. Qiu, and S. I. Bozhevolnyi, “Active control of anapole states by structuring the phase-change alloy Ge2Sb2Te5,” Nat. Commun. 10, 396 (2019).
[Crossref]

G. Ding, Y. Yang, R. A. Deshpande, and S. I. Bozhevolnyi, “A review of gap surface plasmon metasurfaces: fundamentals and applications,” Nanophotonics 7, 1129–1156 (2018).
[Crossref]

Yeo, Y. C.

D. Loke, T. H. Lee, W. J. Wang, L. P. Shi, R. Zhao, Y. C. Yeo, T. C. Chong, and S. R. Elliott, “Breaking the speed limits of phase-change memory,” Science 336, 1566–1569 (2012).
[Crossref]

Yin, X.

X. Yin, T. Steinle, L. Huang, T. Taubner, M. Wuttig, T. Zentgraf, and H. Giessen, “Beam switching and bifocal zoom lensing using active plasmonic metasurfaces,” Light Sci. Appl. 6, e17016 (2017).
[Crossref]

A. Tittl, A. K. U. Michel, M. Schaferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid-infrared perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27, 4597–4603 (2015).
[Crossref]

Yu, N.

H.-T. Chen, A. T. Taylor, and N. Yu, “A review of metasurfaces: physics and applications,” Rep. Prog. Phys. 79, 076401 (2016).
[Crossref]

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13, 139–150 (2014).
[Crossref]

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, G. Zeno, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12, 4932–4936 (2012).
[Crossref]

Yu, Y. F.

R. Paniagua-Domínguez, Y. F. Yu, E. Khaidarov, S. Choi, V. Leong, R. M. Bakker, X. Liang, Y. H. Fu, V. Valuckas, L. A. Krivitsky, and A. I. Kuznetsov, “A metalens with a near-unity numerical aperture,” Nano Lett. 18, 2124–2132 (2018).
[Crossref]

R. Paniagua-Domínguez, Y. F. Yu, A. E. Miroschnichenko, L. A. Krivitsky, Y. H. Fu, V. Valuckas, L. Gonzaga, Y. T. Toh, A. Y. S. Kay, B. Luk’yanchuk, and A. I. Kuznetsov, “Generalised Brewster effect in dielectric metasurfaces,” Nat. Commun. 7, 10362 (2016).
[Crossref]

Y. F. Yu, A. Y. Zhu, R. Paniagua-Dominguez, Y. H. Fu, B. Luk’yanchuk, and A. I. Kuznetsov, “High-transmission dielectric metasurfaces with 2π phase control at visible wavelengths,” Laser Photon. Rev. 9, 412–418 (2015).
[Crossref]

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
[Crossref]

Zeno, G.

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, G. Zeno, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12, 4932–4936 (2012).
[Crossref]

Zentgraf, T.

X. Yin, T. Steinle, L. Huang, T. Taubner, M. Wuttig, T. Zentgraf, and H. Giessen, “Beam switching and bifocal zoom lensing using active plasmonic metasurfaces,” Light Sci. Appl. 6, e17016 (2017).
[Crossref]

Zhang, J.

B. Gholipour, J. Zhang, K. F. MacDonald, D. W. Hewak, and N. I. Zheludev, “An all-optical, non-volatile, bidirectional, phase-change meta-switch,” Adv. Mater. 25, 3050–3054 (2013).
[Crossref]

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2012).
[Crossref]

Zhao, D.

J. Tian, H. Luo, Y. Yang, F. Ding, Y. Qu, D. Zhao, M. Qiu, and S. I. Bozhevolnyi, “Active control of anapole states by structuring the phase-change alloy Ge2Sb2Te5,” Nat. Commun. 10, 396 (2019).
[Crossref]

Zhao, R.

D. Loke, T. H. Lee, W. J. Wang, L. P. Shi, R. Zhao, Y. C. Yeo, T. C. Chong, and S. R. Elliott, “Breaking the speed limits of phase-change memory,” Science 336, 1566–1569 (2012).
[Crossref]

Zheludev, N. I.

A. Karvounis, B. Gholipur, K. F. MacDonald, and N. I. Zheludev, “All-dielectric phase-change reconfigurable metasurface,” Appl. Phys. Lett. 109, 051103 (2016).
[Crossref]

B. Gholipour, J. Zhang, K. F. MacDonald, D. W. Hewak, and N. I. Zheludev, “An all-optical, non-volatile, bidirectional, phase-change meta-switch,” Adv. Mater. 25, 3050–3054 (2013).
[Crossref]

Zhou, X.

W. Dong, H. Liu, J. K. Behera, L. Lu, R. J. H. Ng, K. V. Sreekanth, X. Zhou, J. K. W. Yang, and R. E. Simpson, “Wide bandgap phase change material tuned visible photonics,” Adv. Funct. Mater. 29, 6 (2019).
[Crossref]

Zhu, A. Y.

Y. F. Yu, A. Y. Zhu, R. Paniagua-Dominguez, Y. H. Fu, B. Luk’yanchuk, and A. I. Kuznetsov, “High-transmission dielectric metasurfaces with 2π phase control at visible wavelengths,” Laser Photon. Rev. 9, 412–418 (2015).
[Crossref]

Zou, L.

Zywietz, U.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region, Nano Lett. 12, 3749–3755 (2012).
[Crossref]

ACS Nano. (2)

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano. 7, 7824–7832 (2013).
[Crossref]

J. Sautter, I. Staude, M. Decker, E. Rusak, D. Neshev, I. Brener, and Y. S. Kivshar, “Active tuning of all-dielectric metasurfaces,” ACS Nano. 9, 4308–4315 (2015).
[Crossref]

Adv. Funct. Mater. (2)

C. Ruiz de Galarreta, A. M. Alexeev, Y.-Y. Au, M. Lopez-Garcia, M. Klemm, M. Cryan, J. Bertolotti, and C. D. Wright, “Nonvolatile reconfigurable phase-change metadevices for beam steering in the near infrared,” Adv. Funct. Mater. 28, 1704993 (2018).
[Crossref]

W. Dong, H. Liu, J. K. Behera, L. Lu, R. J. H. Ng, K. V. Sreekanth, X. Zhou, J. K. W. Yang, and R. E. Simpson, “Wide bandgap phase change material tuned visible photonics,” Adv. Funct. Mater. 29, 6 (2019).
[Crossref]

Adv. Mater. (4)

C. D. Wright, Y. Liu, K. I. Kohary, M. M. Aziz, and R. J. Hicken, “Arithmetic and biologically-inspired computing using phase-change materials,” Adv. Mater., 23, 3408–3413 (2011).
[Crossref]

C. Rios, P. Hosseini, R. A. Taylor, and H. Bhaskaran, “Color depth modulation and resolution in phase-change material nanodisplays,” Adv. Mater. 28, 4720–4726 (2016).
[Crossref]

B. Gholipour, J. Zhang, K. F. MacDonald, D. W. Hewak, and N. I. Zheludev, “An all-optical, non-volatile, bidirectional, phase-change meta-switch,” Adv. Mater. 25, 3050–3054 (2013).
[Crossref]

A. Tittl, A. K. U. Michel, M. Schaferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid-infrared perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27, 4597–4603 (2015).
[Crossref]

Adv. Opt. Mater. (2)

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric Huygen’s surfaces,” Adv. Opt. Mater. 3, 813–820 (2015).
[Crossref]

S. Garcia-Cuevas Carrillo, L. Trimby, Y.-Y. Au, V. K. Nagareddy, G. Rodriguez-Hernandez, P. Hosseini, C. Rios, H. Bhaskaran, and C. D. Wright, “A nonvolatile phase-change metamaterial color display,” Adv. Opt. Mater. 7, 1801782 (2019).
[Crossref]

Appl. Phys. Lett. (4)

A. Komar, Z. Fang, J. Bohn, J. Sautter, M. Decker, A. Miroschnichenko, T. Pertsch, I. Brener, Y. S. Kivshar, I. Staude, and D. N. Neshev, “Electrically tunable all-dielectric optical metasurfaces based on liquid crystals,” Appl. Phys. Lett. 110, 071109 (2017).
[Crossref]

J. Siegel, A. Schropp, J. Solis, C. N. Alfonso, and M. Wuttig, “Rewritable phase-change optical recording in Ge2Sb2Te5 films induced by picosecond laser pulses,” Appl. Phys. Lett. 84, 2250–2252 (2004).
[Crossref]

A. Karvounis, B. Gholipur, K. F. MacDonald, and N. I. Zheludev, “All-dielectric phase-change reconfigurable metasurface,” Appl. Phys. Lett. 109, 051103 (2016).
[Crossref]

C. Han and W. Y. Tam, “Broadband optical magnetism in chiral metallic nanohole arrays by shadowing vapor deposition,” Appl. Phys. Lett. 106, 081102 (2016).
[Crossref]

J. Appl. Phys. (1)

J. Siegel, C. N. Afonso, and J. Solis, “Amorphization dynamics of Ge2Sb2Te5 films upon nano-and femtosecond laser pulse irradiation,” J. Appl. Phys. 103, 023516 (2008).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (1)

J. Phys. Conf. Ser. (1)

D. N. Jones, N. Liu, B. Corbett, P. Lovera, A. J. Quinn, and A. O’Riordan, “Surface plasmon assisted extraordinary transmission in metallic nanohole arrays and its suitability as a bio sensor,” J. Phys. Conf. Ser. 307, 012005 (2011).
[Crossref]

Laser Photon. Rev. (1)

Y. F. Yu, A. Y. Zhu, R. Paniagua-Dominguez, Y. H. Fu, B. Luk’yanchuk, and A. I. Kuznetsov, “High-transmission dielectric metasurfaces with 2π phase control at visible wavelengths,” Laser Photon. Rev. 9, 412–418 (2015).
[Crossref]

Light Sci. Appl. (1)

X. Yin, T. Steinle, L. Huang, T. Taubner, M. Wuttig, T. Zentgraf, and H. Giessen, “Beam switching and bifocal zoom lensing using active plasmonic metasurfaces,” Light Sci. Appl. 6, e17016 (2017).
[Crossref]

Nano Lett. (6)

A. Tittl, P. Mai, R. Taubert, D. Dregely, N. Liu, and H. Giessen, “Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing,” Nano Lett. 11, 4366–4369 (2011).
[Crossref]

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, G. Zeno, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12, 4932–4936 (2012).
[Crossref]

R. Paniagua-Domínguez, Y. F. Yu, E. Khaidarov, S. Choi, V. Leong, R. M. Bakker, X. Liang, Y. H. Fu, V. Valuckas, L. A. Krivitsky, and A. I. Kuznetsov, “A metalens with a near-unity numerical aperture,” Nano Lett. 18, 2124–2132 (2018).
[Crossref]

S. Makarov, S. Kudryashov, I. Mukhin, A. Mozharov, V. Milichko, A. Krasnok, and P. Belov, “Tuning of magnetic optical response in a dielectric nanoparticle by ultrafast photoexcitation of dense electron-hole plasma,” Nano Lett. 15, 6187–6192 (2015).
[Crossref]

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region, Nano Lett. 12, 3749–3755 (2012).
[Crossref]

J. Cambiasso, G. Grinblat, Y. Li, A. Rakovich, E. Cortes, and S. A. Maier, “Bridging the gap between dielectric nanophotonics and the visible regime with effectively lossless gallium phosphide antennas,” Nano Lett. 17, 1219–1225 (2017).
[Crossref]

Nanophotonics (1)

G. Ding, Y. Yang, R. A. Deshpande, and S. I. Bozhevolnyi, “A review of gap surface plasmon metasurfaces: fundamentals and applications,” Nanophotonics 7, 1129–1156 (2018).
[Crossref]

Nat. Commun. (3)

J. Tian, H. Luo, Y. Yang, F. Ding, Y. Qu, D. Zhao, M. Qiu, and S. I. Bozhevolnyi, “Active control of anapole states by structuring the phase-change alloy Ge2Sb2Te5,” Nat. Commun. 10, 396 (2019).
[Crossref]

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
[Crossref]

R. Paniagua-Domínguez, Y. F. Yu, A. E. Miroschnichenko, L. A. Krivitsky, Y. H. Fu, V. Valuckas, L. Gonzaga, Y. T. Toh, A. Y. S. Kay, B. Luk’yanchuk, and A. I. Kuznetsov, “Generalised Brewster effect in dielectric metasurfaces,” Nat. Commun. 7, 10362 (2016).
[Crossref]

Nat. Mater. (2)

M. Wuttig and N. Yamada, “Phase-change materials for rewritable data storage,” Nat. Mater. 6, 824–832 (2007).
[Crossref]

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13, 139–150 (2014).
[Crossref]

Nat. Photonics (1)

M. Wuttig, H. Bhaskaran, and T. Taubner, “Phase-change materials for non-volatile photonic applications,” Nat. Photonics 11, 465–476 (2017).
[Crossref]

Nature (2)

P. Hosseini, C. D. Wright, and H. Bhaskaran, “An optoelectronic framework enabled by low-dimensional phase-change films,” Nature 511, 206–211 (2014).
[Crossref]

P. Hosseini, C. D. Wright, and H. Bhaskaran, “An optoelectronic framework enabled by low-dimensional phase-change films,” Nature 511, 206–211 (2014).
[Crossref]

Opt. Express (3)

Optica (1)

Phys. Rep. (1)

S. B. Glybovski, S. A. Tretyakov, P. A. Belov, Y. S. Kivshar, and C. R. Simovski, “Metasurfaces: from microwaves to visible,” Phys. Rep. 634, 1–72 (2017).
[Crossref]

Phys. Rev. B (1)

D. T. Pierce and W. E. Spicer, “Electronic structure of amorphous Si from photoemission and optical studies,” Phys. Rev. B 5, 3017–3029 (1972).
[Crossref]

Phys. Rev. Lett. (1)

K. Sokolowski-Tinten, J. Solis, J. Bialkowski, J. Siegel, C. N. Afonso, and D. von der Linde, “Dynamics of ultrafast phase changes in amorphous GeSb films,” Phys. Rev. Lett. 81, 3679 (1998).
[Crossref]

Proc. SPIE (1)

L. Trimby, A. Baldycheva, and C. D. Wright, “Phase-change band-pass filters for multispectral imaging,” Proc. SPIE 10541, 105412B (2018).
[Crossref]

Rep. Prog. Phys. (1)

H.-T. Chen, A. T. Taylor, and N. Yu, “A review of metasurfaces: physics and applications,” Rep. Prog. Phys. 79, 076401 (2016).
[Crossref]

Sci. Rep. (2)

M. R. Hashemi, S.-G. Yang, T. Wang, N. Sepulveda, and M. Jarrahi, “Electronically-controlled beam-steering through vanadium dioxide metasurfaces,” Sci. Rep. 6, 35429 (2016).
[Crossref]

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2012).
[Crossref]

Science (3)

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Lukyanchuk, “Optically resonant dielectric nanaostructures,” Science 354, aag2472 (2016).
[Crossref]

D. Loke, T. H. Lee, W. J. Wang, L. P. Shi, R. Zhao, Y. C. Yeo, T. C. Chong, and S. R. Elliott, “Breaking the speed limits of phase-change memory,” Science 336, 1566–1569 (2012).
[Crossref]

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339, 1232009 (2013).
[Crossref]

Other (3)

I. S. Kim, “High performance PRAM cell scalable to sub-20nm technology with below 4F2 cell size, extendable to DRAM applications,” in IEEE Symposium on VLSI Technology, IEEE, Honolulu, Hawaii, USA, 2010, p. 203.

D. Arslan, K. E. Chong, D. N. Neshev, T. Pertsch, Y. S. Kivshar, and I. Staude, “Silicon Huygens' metasurfaces at oblique incidence,” in European Conference on Lasers and Electro-Optics and European Quantum Electronics Conference (2017), paper EH_6_2.

L. Trimby, “Phase-change meta-devices for tuneable bandpass filtering in the infrared,” Ph.D. Thesis (University of Exeter, 2019).

Supplementary Material (1)

NameDescription
» Supplement 1       supplementary info

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. (a) Schematics of the proposed hybrid silicon/PCM metasurface, consisting of arrays of silicon/GST nanodisks on a ${{\rm SiO}_2}$ substrate in this example. (b) Refractive index (left) and the absorption coefficient (right) of amorphous GST (a-GST), crystalline GST (c-GST), and (amorphous) silicon. The spectral region of interest is highlighted in yellow: in this region, $n$ and $k$ of a-GST and silicon are closely matched. (c) Generic scheme of the device working principle: the hybrid silicon/GST cylinders effectively behave as silicon-only when the GST is amorphous, and the resonant modes supported by the array (thus its optical response) can be modified on demand by switching the GST layer between its amorphous and crystalline states.
Fig. 2.
Fig. 2. (a) Schematics and dimensions of the unit cell of an array of cylinders fully made of silicon (top), and corresponding reflectance spectrum (bottom), showing a dual-band-filtering behavior where MD and ED are located at the O and C telecommunication bands. (b) Schematics and dimensions of the unit cell of arrays with direct structuring of GST (top), and corresponding reflectance spectrum for amorphous and crystalline states (bottom), where the optical response is degraded due to the presence of relatively high dielectric losses. (c) Schematics and dimensions of the unit cell considering a hybrid silicon/GST cylinder design (top), and corresponding reflectance spectrum (bottom) for amorphous and crystalline phases. The optical performance of silicon-only cylinders is maintained (green line), and selective control of the ED can be achieved via crystallization of the GST later (red line). (d) and (e) Electromagnetic field distribution of the electric (d) and magnetic (e) resonances for amorphous and crystalline phases of the GST.
Fig. 3.
Fig. 3. (a) and (b) Angular reflectance under TM polarization for (a) amorphous and (b) crystalline states, showing splitting of the MD with the angle of incidence, and cancellation of the ED in the crystalline phase. (c) and (d) Angular reflectance under TE polarization for (c) amorphous and (d) crystalline states, showing a dispersionless behavior of the MD, and cancellation of the ED in the crystalline phase.
Fig. 4.
Fig. 4. Measured optical response of the fabricated meta-devices. (a) SEM image of (part of) a typical as-fabricated hybrid silicon/GST all-dielectric metasurface device, here showing six unit cells. (b) Experimentally obtained reflectance spectra for the as-fabricated device with the GST layer in both amorphous and crystalline states. (c)–(f) Experimentally measured angular reflectance spectra: (c) and (d) under TM excitation when the GST is (c) amorphous and (d) crystalline; (e) and (f) under TE excitation when GST is (e) amorphous and (f) crystalline. The experimental angular reflectance spectra show good agreement with simulation [as in Figs. 3(c)3(f)] and confirm robustness of device performance against the angle of incidence for TE illumination, but dispersion of the MD-associated mode with the angle for TM illumination.
Fig. 5.
Fig. 5. (a) Experimental demonstration of multilevel tuning of the hybrid silicon/GST metasurface. Starting from the as-deposited amorphous state (bottom panel), the metasurface is first switched to the crystalline state (Scan 1) by excitation with a train of laser pulses with a fluence of $1 . 28 \;{{\rm mJ/cm}^2}$. Multilevel switching from the fully crystalline state back to amorphous GST (Scans 2 to 7) was carried out using a single-pulse regime with fluences linearly increasing from 6.4 up to $19 . 2 \;{{\rm mJ/cm}^2}$. (b) FEM simulation of the multilevel switching process (see Supplement 1 Section 7).
Fig. 6.
Fig. 6. (a) Refractive index and absorption coefficient of ${{\rm TiO}_2}$ (rutile), amorphous and crystalline ${{\rm Sb}_2}{{\rm S}_3}$ (${\rm a} - {{\rm Sb}_2}{{\rm S}_3}$ and ${\rm c} - {{\rm Sb}_2}{{\rm S}_3}$), taken from [41,51]. (b) Schematics of the hybrid ${{\rm TiO}_2}/{{\rm Sb}_2}{{\rm S}_3}$ nanocylinder, showing geometrical dimensions and the PCM distribution in the optimized structure. (c) Reflectance (left) and transmittance (right) spectra for amorphous and crystalline ${{\rm Sb}_2}{{\rm S}_3}$ states. Insets show the resultant color, based on chromaticity calculations employing a standard D65 illuminant. (d) Electric field distribution for amorphous (top) and crystalline (bottom) ${{\rm Sb}_2}{{\rm S}_3}$, excited at a wavelength of $\lambda = 520 \;{\rm nm}$, confirming attenuation of the ED mode after crystallization. (e) Chromaticity objective coordinates (black dots) and obtained coordinates (blue dots) in reflection (left), and subsequent resulting coordinates in transmission (right).