Abstract

High-power vertical-cavity surface-emitting laser (VCSEL) arrays, which can serve as the light source in modern lidar and three-dimensional optical sensing systems, have recently attracted a lot of attention. In these types of systems, the time-of-flight (ToF) technique, based on the round-trip time of short optical pulses is usually adopted. Further enhancement of the ranging distance and depth resolution in these ToF driven systems by the incorporation of a VCSEL array with a high available power, high brightness (narrow divergence angle), and fast response time is highly desirable. However, a large number of light emission apertures (several hundreds) in the VCSEL array is usually necessary to raise the output power level to several watts. This leads to a large parasitic capacitance and the RC-limited bandwidth may become the dominant limiting factor of the speed of the high-power VCSEL array. In this work, Zn-diffusion and oxide-relief apertures are used to manipulate the optical modes and reduce the parasitic capacitance, respectively, in a unit device for a 940 nm VCSEL array. The demonstrated VCSEL array has a quasi-single-mode output, high available power (4 W; 1% duty cycle), narrow divergence angle (${\sim}{14}^\circ $ at ${{1/e}^2}$) under maximum output power, and a fast rise time ($ {\lt} {100}\;{\rm ps}$). These results open up new possibilities for further enhancing the performance of ToF sensing systems at the 940 nm wavelength.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Vertical-cavity surface-emitting lasers for data communication and sensing

Anjin Liu, Philip Wolf, James A. Lott, and Dieter Bimberg
Photon. Res. 7(2) 121-136 (2019)

High-speed characteristics of vertical cavity surface emitting lasers and resonant-cavity-enhanced photodetectors based on intracavity-contacted structure

Y. M. Song, B. K. Jeong, B. H. Na, K. S. Chang, J. S. Yu, and Y. T. Lee
Appl. Opt. 48(25) F11-F17 (2009)

High-power vertical-cavity surface-emitting laser with an optimized p-contact diameter

Yan Zhang, Yongqiang Ning, Li Qin, Ye Wang, Jinjiang Cui, Guangyu Liu, Xing Zhang, Zhenfu Wang, Yanfang Sun, Yun Liu, and Lijun Wang
Appl. Opt. 49(19) 3793-3797 (2010)

References

  • View by:
  • |
  • |
  • |

  1. J.-W. Shi, J.-I. Guo, M. Kagami, P. Suni, and O. Ziemann, “Photonic technologies for autonomous cars: feature introduction,” Opt. Express 27, 7627–7628 (2019).
    [Crossref]
  2. J. Skidmore, “Semiconductor lasers for 3-D sensing,” Opt. Photonics News 30(2), 28–33 (2019).
    [Crossref]
  3. J.-F. Seurin, C. L. Ghosh, V. Khalfin, A. Miglo, G. Xu, J. D. Wynn, P. Pradhan, and L. A. D’Asaro, “High-power high-efficiency 2D VCSEL arrays,” Proc. SPIE 6908, 690808 (2008).
    [Crossref]
  4. R. F. Carson, M. E. Warren, P. Dacha, T. Wilcox, J. G. Maynard, D. J. Abell, and K. J. Otis, “Progress in high-power, high-speed VCSEL arrays,” Proc. SPIE 9766, 97660B (2016).
    [Crossref]
  5. H. Moench, S. Gronenborn, X. Gu, R. Gudde, M. Herper, J. Kolb, M. Miller, M. Smeets, and A. Weigl, “VCSELs in short-pulse operation for time-of-flight applications,” Proc. SPIE 10938, 109380E (2019).
    [Crossref]
  6. H. Wenzel, A. Klehr, M. Braun, F. Bugge, G. Erbert, J. Fricke, A. Knauer, P. Ressel, B. Sumpf, M. Weyers, and G. Traenkle, “Design and realization of high-power DFB lasers,” Proc. SPIE 5594, 110–123 (2004).
    [Crossref]
  7. G. Overton, “VCSEL illumination: high-power VCSELs rule IR illumination,” Laser Focus World 49, 29–30 (2013).
  8. N. Haghighi, P. Moser, and J. A. Lott, “Power, bandwidth, and efficiency of single VCSELs and small VCSEL arrays,” IEEE J. Sel. Top. Quantum Electron. 25, 1–15 (2019).
    [Crossref]
  9. J. E. Bowers, “High speed semiconductor laser design and performance,” Solid State Electron. 30, 1–11 (1987).
    [Crossref]
  10. J.-W. Shi, J.-C. Yan, J.-M. Wun, J. Chen, and Y.-J. Yang, “Oxide-relief and Zn-diffusion 850  nm vertical-cavity surface-emitting lasers with extremely low energy-to-data-rate ratios for 40  Gbit/sec operations,” IEEE J. Sel. Top. Quantum Electron. 19, 7900208 (2013).
    [Crossref]
  11. J.-W. Shi, Z.-R. Wei, K.-L. Chi, J.-W. Jiang, J.-M. Wun, I.-C. Lu, J. Chen, and Y.-J. Yang, “Single-mode, high-speed, and high-power vertical-cavity surface-emitting lasers at 850  nm for short to medium reach (2  km) optical interconnects,” J. Lightwave Technol. 31, 4037–4044 (2013).
    [Crossref]
  12. J.-L. Yen, X.-N. Chen, K.-L. Chi, J. Chen, and J.-W. Shi, “850  nm vertical-cavity surface-emitting laser arrays with enhanced high-speed transmission performance over a standard multimode fiber,” J. Lightwave Technol. 35, 3242–3249 (2017).
    [Crossref]
  13. C.-L. Cheng, N. Ledentsov, Z. Khan, J.-L. Yen, N. N. Ledentsov, and J.-W. Shi, “Ultrafast Zn-diffusion and oxide-relief 940  nm vertical-cavity surface-emitting lasers under high-temperature operation,” IEEE J. Sel. Top. Quantum Electron. 25, 1–7 (2019).
    [Crossref]
  14. J.-L. Yen, K.-L. Chi, J.-W. Jiang, Y.-J. Yang, and J.-W. Shi, “Single-mode vertical-cavity surface-emitting lasers array with Zn-diffusion aperture for high-power, single-spot, and narrow divergence angle performance,” IEEE J. Quantum Electron. 50, 787–794 (2014).
  15. K.-L. Chi, J.-L. Yen, J.-M. Wun, J.-W. Jiang, I.-C. Lu, J. Chen, Y.-J. Yang, and J.-W. Shi, “Strong wavelength detuning of 850  nm vertical-cavity surface-emitting lasers for high-speed (>40  Gbit/sec) and low-energy consumption operation,” IEEE J. Sel. Top. Quantum Electron. 21, 1701510 (2015).
    [Crossref]
  16. “II-VI Laser Enterprise,” http://www.laserenterprise.com/index.html , Product: APS6401010002.
  17. S. Xie, R. Herrick, G. D. Brabander, W. Widjaja, U. Koelle, A.-N. Cheng, L. Giovane, F. Hu, M. Keever, T. Osentowski, S. McHugo, M. Mayonte, S. Kim, D. Chamberlin, S. J. Rosner, and G. Girolami, “Reliability and failure mechanisms of oxide VCSELs in non-hermetic environments,” Proc. SPIE 4994, 173–180 (2003).
    [Crossref]
  18. J. Nissinen and J. Kostamovaara, “A high repetition rate CMOS driver for high-energy sub-ns laser pulse generation in SPAD-based time-of-flight range finding,” IEEE Sens. J. 16, 1628–1633 (2015).ISJEAZ
    [Crossref]

2019 (5)

J.-W. Shi, J.-I. Guo, M. Kagami, P. Suni, and O. Ziemann, “Photonic technologies for autonomous cars: feature introduction,” Opt. Express 27, 7627–7628 (2019).
[Crossref]

J. Skidmore, “Semiconductor lasers for 3-D sensing,” Opt. Photonics News 30(2), 28–33 (2019).
[Crossref]

H. Moench, S. Gronenborn, X. Gu, R. Gudde, M. Herper, J. Kolb, M. Miller, M. Smeets, and A. Weigl, “VCSELs in short-pulse operation for time-of-flight applications,” Proc. SPIE 10938, 109380E (2019).
[Crossref]

N. Haghighi, P. Moser, and J. A. Lott, “Power, bandwidth, and efficiency of single VCSELs and small VCSEL arrays,” IEEE J. Sel. Top. Quantum Electron. 25, 1–15 (2019).
[Crossref]

C.-L. Cheng, N. Ledentsov, Z. Khan, J.-L. Yen, N. N. Ledentsov, and J.-W. Shi, “Ultrafast Zn-diffusion and oxide-relief 940  nm vertical-cavity surface-emitting lasers under high-temperature operation,” IEEE J. Sel. Top. Quantum Electron. 25, 1–7 (2019).
[Crossref]

2017 (1)

2016 (1)

R. F. Carson, M. E. Warren, P. Dacha, T. Wilcox, J. G. Maynard, D. J. Abell, and K. J. Otis, “Progress in high-power, high-speed VCSEL arrays,” Proc. SPIE 9766, 97660B (2016).
[Crossref]

2015 (2)

J. Nissinen and J. Kostamovaara, “A high repetition rate CMOS driver for high-energy sub-ns laser pulse generation in SPAD-based time-of-flight range finding,” IEEE Sens. J. 16, 1628–1633 (2015).ISJEAZ
[Crossref]

K.-L. Chi, J.-L. Yen, J.-M. Wun, J.-W. Jiang, I.-C. Lu, J. Chen, Y.-J. Yang, and J.-W. Shi, “Strong wavelength detuning of 850  nm vertical-cavity surface-emitting lasers for high-speed (>40  Gbit/sec) and low-energy consumption operation,” IEEE J. Sel. Top. Quantum Electron. 21, 1701510 (2015).
[Crossref]

2014 (1)

J.-L. Yen, K.-L. Chi, J.-W. Jiang, Y.-J. Yang, and J.-W. Shi, “Single-mode vertical-cavity surface-emitting lasers array with Zn-diffusion aperture for high-power, single-spot, and narrow divergence angle performance,” IEEE J. Quantum Electron. 50, 787–794 (2014).

2013 (3)

J.-W. Shi, J.-C. Yan, J.-M. Wun, J. Chen, and Y.-J. Yang, “Oxide-relief and Zn-diffusion 850  nm vertical-cavity surface-emitting lasers with extremely low energy-to-data-rate ratios for 40  Gbit/sec operations,” IEEE J. Sel. Top. Quantum Electron. 19, 7900208 (2013).
[Crossref]

J.-W. Shi, Z.-R. Wei, K.-L. Chi, J.-W. Jiang, J.-M. Wun, I.-C. Lu, J. Chen, and Y.-J. Yang, “Single-mode, high-speed, and high-power vertical-cavity surface-emitting lasers at 850  nm for short to medium reach (2  km) optical interconnects,” J. Lightwave Technol. 31, 4037–4044 (2013).
[Crossref]

G. Overton, “VCSEL illumination: high-power VCSELs rule IR illumination,” Laser Focus World 49, 29–30 (2013).

2008 (1)

J.-F. Seurin, C. L. Ghosh, V. Khalfin, A. Miglo, G. Xu, J. D. Wynn, P. Pradhan, and L. A. D’Asaro, “High-power high-efficiency 2D VCSEL arrays,” Proc. SPIE 6908, 690808 (2008).
[Crossref]

2004 (1)

H. Wenzel, A. Klehr, M. Braun, F. Bugge, G. Erbert, J. Fricke, A. Knauer, P. Ressel, B. Sumpf, M. Weyers, and G. Traenkle, “Design and realization of high-power DFB lasers,” Proc. SPIE 5594, 110–123 (2004).
[Crossref]

2003 (1)

S. Xie, R. Herrick, G. D. Brabander, W. Widjaja, U. Koelle, A.-N. Cheng, L. Giovane, F. Hu, M. Keever, T. Osentowski, S. McHugo, M. Mayonte, S. Kim, D. Chamberlin, S. J. Rosner, and G. Girolami, “Reliability and failure mechanisms of oxide VCSELs in non-hermetic environments,” Proc. SPIE 4994, 173–180 (2003).
[Crossref]

1987 (1)

J. E. Bowers, “High speed semiconductor laser design and performance,” Solid State Electron. 30, 1–11 (1987).
[Crossref]

Abell, D. J.

R. F. Carson, M. E. Warren, P. Dacha, T. Wilcox, J. G. Maynard, D. J. Abell, and K. J. Otis, “Progress in high-power, high-speed VCSEL arrays,” Proc. SPIE 9766, 97660B (2016).
[Crossref]

Bowers, J. E.

J. E. Bowers, “High speed semiconductor laser design and performance,” Solid State Electron. 30, 1–11 (1987).
[Crossref]

Brabander, G. D.

S. Xie, R. Herrick, G. D. Brabander, W. Widjaja, U. Koelle, A.-N. Cheng, L. Giovane, F. Hu, M. Keever, T. Osentowski, S. McHugo, M. Mayonte, S. Kim, D. Chamberlin, S. J. Rosner, and G. Girolami, “Reliability and failure mechanisms of oxide VCSELs in non-hermetic environments,” Proc. SPIE 4994, 173–180 (2003).
[Crossref]

Braun, M.

H. Wenzel, A. Klehr, M. Braun, F. Bugge, G. Erbert, J. Fricke, A. Knauer, P. Ressel, B. Sumpf, M. Weyers, and G. Traenkle, “Design and realization of high-power DFB lasers,” Proc. SPIE 5594, 110–123 (2004).
[Crossref]

Bugge, F.

H. Wenzel, A. Klehr, M. Braun, F. Bugge, G. Erbert, J. Fricke, A. Knauer, P. Ressel, B. Sumpf, M. Weyers, and G. Traenkle, “Design and realization of high-power DFB lasers,” Proc. SPIE 5594, 110–123 (2004).
[Crossref]

Carson, R. F.

R. F. Carson, M. E. Warren, P. Dacha, T. Wilcox, J. G. Maynard, D. J. Abell, and K. J. Otis, “Progress in high-power, high-speed VCSEL arrays,” Proc. SPIE 9766, 97660B (2016).
[Crossref]

Chamberlin, D.

S. Xie, R. Herrick, G. D. Brabander, W. Widjaja, U. Koelle, A.-N. Cheng, L. Giovane, F. Hu, M. Keever, T. Osentowski, S. McHugo, M. Mayonte, S. Kim, D. Chamberlin, S. J. Rosner, and G. Girolami, “Reliability and failure mechanisms of oxide VCSELs in non-hermetic environments,” Proc. SPIE 4994, 173–180 (2003).
[Crossref]

Chen, J.

J.-L. Yen, X.-N. Chen, K.-L. Chi, J. Chen, and J.-W. Shi, “850  nm vertical-cavity surface-emitting laser arrays with enhanced high-speed transmission performance over a standard multimode fiber,” J. Lightwave Technol. 35, 3242–3249 (2017).
[Crossref]

K.-L. Chi, J.-L. Yen, J.-M. Wun, J.-W. Jiang, I.-C. Lu, J. Chen, Y.-J. Yang, and J.-W. Shi, “Strong wavelength detuning of 850  nm vertical-cavity surface-emitting lasers for high-speed (>40  Gbit/sec) and low-energy consumption operation,” IEEE J. Sel. Top. Quantum Electron. 21, 1701510 (2015).
[Crossref]

J.-W. Shi, J.-C. Yan, J.-M. Wun, J. Chen, and Y.-J. Yang, “Oxide-relief and Zn-diffusion 850  nm vertical-cavity surface-emitting lasers with extremely low energy-to-data-rate ratios for 40  Gbit/sec operations,” IEEE J. Sel. Top. Quantum Electron. 19, 7900208 (2013).
[Crossref]

J.-W. Shi, Z.-R. Wei, K.-L. Chi, J.-W. Jiang, J.-M. Wun, I.-C. Lu, J. Chen, and Y.-J. Yang, “Single-mode, high-speed, and high-power vertical-cavity surface-emitting lasers at 850  nm for short to medium reach (2  km) optical interconnects,” J. Lightwave Technol. 31, 4037–4044 (2013).
[Crossref]

Chen, X.-N.

Cheng, A.-N.

S. Xie, R. Herrick, G. D. Brabander, W. Widjaja, U. Koelle, A.-N. Cheng, L. Giovane, F. Hu, M. Keever, T. Osentowski, S. McHugo, M. Mayonte, S. Kim, D. Chamberlin, S. J. Rosner, and G. Girolami, “Reliability and failure mechanisms of oxide VCSELs in non-hermetic environments,” Proc. SPIE 4994, 173–180 (2003).
[Crossref]

Cheng, C.-L.

C.-L. Cheng, N. Ledentsov, Z. Khan, J.-L. Yen, N. N. Ledentsov, and J.-W. Shi, “Ultrafast Zn-diffusion and oxide-relief 940  nm vertical-cavity surface-emitting lasers under high-temperature operation,” IEEE J. Sel. Top. Quantum Electron. 25, 1–7 (2019).
[Crossref]

Chi, K.-L.

J.-L. Yen, X.-N. Chen, K.-L. Chi, J. Chen, and J.-W. Shi, “850  nm vertical-cavity surface-emitting laser arrays with enhanced high-speed transmission performance over a standard multimode fiber,” J. Lightwave Technol. 35, 3242–3249 (2017).
[Crossref]

K.-L. Chi, J.-L. Yen, J.-M. Wun, J.-W. Jiang, I.-C. Lu, J. Chen, Y.-J. Yang, and J.-W. Shi, “Strong wavelength detuning of 850  nm vertical-cavity surface-emitting lasers for high-speed (>40  Gbit/sec) and low-energy consumption operation,” IEEE J. Sel. Top. Quantum Electron. 21, 1701510 (2015).
[Crossref]

J.-L. Yen, K.-L. Chi, J.-W. Jiang, Y.-J. Yang, and J.-W. Shi, “Single-mode vertical-cavity surface-emitting lasers array with Zn-diffusion aperture for high-power, single-spot, and narrow divergence angle performance,” IEEE J. Quantum Electron. 50, 787–794 (2014).

J.-W. Shi, Z.-R. Wei, K.-L. Chi, J.-W. Jiang, J.-M. Wun, I.-C. Lu, J. Chen, and Y.-J. Yang, “Single-mode, high-speed, and high-power vertical-cavity surface-emitting lasers at 850  nm for short to medium reach (2  km) optical interconnects,” J. Lightwave Technol. 31, 4037–4044 (2013).
[Crossref]

D’Asaro, L. A.

J.-F. Seurin, C. L. Ghosh, V. Khalfin, A. Miglo, G. Xu, J. D. Wynn, P. Pradhan, and L. A. D’Asaro, “High-power high-efficiency 2D VCSEL arrays,” Proc. SPIE 6908, 690808 (2008).
[Crossref]

Dacha, P.

R. F. Carson, M. E. Warren, P. Dacha, T. Wilcox, J. G. Maynard, D. J. Abell, and K. J. Otis, “Progress in high-power, high-speed VCSEL arrays,” Proc. SPIE 9766, 97660B (2016).
[Crossref]

Erbert, G.

H. Wenzel, A. Klehr, M. Braun, F. Bugge, G. Erbert, J. Fricke, A. Knauer, P. Ressel, B. Sumpf, M. Weyers, and G. Traenkle, “Design and realization of high-power DFB lasers,” Proc. SPIE 5594, 110–123 (2004).
[Crossref]

Fricke, J.

H. Wenzel, A. Klehr, M. Braun, F. Bugge, G. Erbert, J. Fricke, A. Knauer, P. Ressel, B. Sumpf, M. Weyers, and G. Traenkle, “Design and realization of high-power DFB lasers,” Proc. SPIE 5594, 110–123 (2004).
[Crossref]

Ghosh, C. L.

J.-F. Seurin, C. L. Ghosh, V. Khalfin, A. Miglo, G. Xu, J. D. Wynn, P. Pradhan, and L. A. D’Asaro, “High-power high-efficiency 2D VCSEL arrays,” Proc. SPIE 6908, 690808 (2008).
[Crossref]

Giovane, L.

S. Xie, R. Herrick, G. D. Brabander, W. Widjaja, U. Koelle, A.-N. Cheng, L. Giovane, F. Hu, M. Keever, T. Osentowski, S. McHugo, M. Mayonte, S. Kim, D. Chamberlin, S. J. Rosner, and G. Girolami, “Reliability and failure mechanisms of oxide VCSELs in non-hermetic environments,” Proc. SPIE 4994, 173–180 (2003).
[Crossref]

Girolami, G.

S. Xie, R. Herrick, G. D. Brabander, W. Widjaja, U. Koelle, A.-N. Cheng, L. Giovane, F. Hu, M. Keever, T. Osentowski, S. McHugo, M. Mayonte, S. Kim, D. Chamberlin, S. J. Rosner, and G. Girolami, “Reliability and failure mechanisms of oxide VCSELs in non-hermetic environments,” Proc. SPIE 4994, 173–180 (2003).
[Crossref]

Gronenborn, S.

H. Moench, S. Gronenborn, X. Gu, R. Gudde, M. Herper, J. Kolb, M. Miller, M. Smeets, and A. Weigl, “VCSELs in short-pulse operation for time-of-flight applications,” Proc. SPIE 10938, 109380E (2019).
[Crossref]

Gu, X.

H. Moench, S. Gronenborn, X. Gu, R. Gudde, M. Herper, J. Kolb, M. Miller, M. Smeets, and A. Weigl, “VCSELs in short-pulse operation for time-of-flight applications,” Proc. SPIE 10938, 109380E (2019).
[Crossref]

Gudde, R.

H. Moench, S. Gronenborn, X. Gu, R. Gudde, M. Herper, J. Kolb, M. Miller, M. Smeets, and A. Weigl, “VCSELs in short-pulse operation for time-of-flight applications,” Proc. SPIE 10938, 109380E (2019).
[Crossref]

Guo, J.-I.

Haghighi, N.

N. Haghighi, P. Moser, and J. A. Lott, “Power, bandwidth, and efficiency of single VCSELs and small VCSEL arrays,” IEEE J. Sel. Top. Quantum Electron. 25, 1–15 (2019).
[Crossref]

Herper, M.

H. Moench, S. Gronenborn, X. Gu, R. Gudde, M. Herper, J. Kolb, M. Miller, M. Smeets, and A. Weigl, “VCSELs in short-pulse operation for time-of-flight applications,” Proc. SPIE 10938, 109380E (2019).
[Crossref]

Herrick, R.

S. Xie, R. Herrick, G. D. Brabander, W. Widjaja, U. Koelle, A.-N. Cheng, L. Giovane, F. Hu, M. Keever, T. Osentowski, S. McHugo, M. Mayonte, S. Kim, D. Chamberlin, S. J. Rosner, and G. Girolami, “Reliability and failure mechanisms of oxide VCSELs in non-hermetic environments,” Proc. SPIE 4994, 173–180 (2003).
[Crossref]

Hu, F.

S. Xie, R. Herrick, G. D. Brabander, W. Widjaja, U. Koelle, A.-N. Cheng, L. Giovane, F. Hu, M. Keever, T. Osentowski, S. McHugo, M. Mayonte, S. Kim, D. Chamberlin, S. J. Rosner, and G. Girolami, “Reliability and failure mechanisms of oxide VCSELs in non-hermetic environments,” Proc. SPIE 4994, 173–180 (2003).
[Crossref]

Jiang, J.-W.

K.-L. Chi, J.-L. Yen, J.-M. Wun, J.-W. Jiang, I.-C. Lu, J. Chen, Y.-J. Yang, and J.-W. Shi, “Strong wavelength detuning of 850  nm vertical-cavity surface-emitting lasers for high-speed (>40  Gbit/sec) and low-energy consumption operation,” IEEE J. Sel. Top. Quantum Electron. 21, 1701510 (2015).
[Crossref]

J.-L. Yen, K.-L. Chi, J.-W. Jiang, Y.-J. Yang, and J.-W. Shi, “Single-mode vertical-cavity surface-emitting lasers array with Zn-diffusion aperture for high-power, single-spot, and narrow divergence angle performance,” IEEE J. Quantum Electron. 50, 787–794 (2014).

J.-W. Shi, Z.-R. Wei, K.-L. Chi, J.-W. Jiang, J.-M. Wun, I.-C. Lu, J. Chen, and Y.-J. Yang, “Single-mode, high-speed, and high-power vertical-cavity surface-emitting lasers at 850  nm for short to medium reach (2  km) optical interconnects,” J. Lightwave Technol. 31, 4037–4044 (2013).
[Crossref]

Kagami, M.

Keever, M.

S. Xie, R. Herrick, G. D. Brabander, W. Widjaja, U. Koelle, A.-N. Cheng, L. Giovane, F. Hu, M. Keever, T. Osentowski, S. McHugo, M. Mayonte, S. Kim, D. Chamberlin, S. J. Rosner, and G. Girolami, “Reliability and failure mechanisms of oxide VCSELs in non-hermetic environments,” Proc. SPIE 4994, 173–180 (2003).
[Crossref]

Khalfin, V.

J.-F. Seurin, C. L. Ghosh, V. Khalfin, A. Miglo, G. Xu, J. D. Wynn, P. Pradhan, and L. A. D’Asaro, “High-power high-efficiency 2D VCSEL arrays,” Proc. SPIE 6908, 690808 (2008).
[Crossref]

Khan, Z.

C.-L. Cheng, N. Ledentsov, Z. Khan, J.-L. Yen, N. N. Ledentsov, and J.-W. Shi, “Ultrafast Zn-diffusion and oxide-relief 940  nm vertical-cavity surface-emitting lasers under high-temperature operation,” IEEE J. Sel. Top. Quantum Electron. 25, 1–7 (2019).
[Crossref]

Kim, S.

S. Xie, R. Herrick, G. D. Brabander, W. Widjaja, U. Koelle, A.-N. Cheng, L. Giovane, F. Hu, M. Keever, T. Osentowski, S. McHugo, M. Mayonte, S. Kim, D. Chamberlin, S. J. Rosner, and G. Girolami, “Reliability and failure mechanisms of oxide VCSELs in non-hermetic environments,” Proc. SPIE 4994, 173–180 (2003).
[Crossref]

Klehr, A.

H. Wenzel, A. Klehr, M. Braun, F. Bugge, G. Erbert, J. Fricke, A. Knauer, P. Ressel, B. Sumpf, M. Weyers, and G. Traenkle, “Design and realization of high-power DFB lasers,” Proc. SPIE 5594, 110–123 (2004).
[Crossref]

Knauer, A.

H. Wenzel, A. Klehr, M. Braun, F. Bugge, G. Erbert, J. Fricke, A. Knauer, P. Ressel, B. Sumpf, M. Weyers, and G. Traenkle, “Design and realization of high-power DFB lasers,” Proc. SPIE 5594, 110–123 (2004).
[Crossref]

Koelle, U.

S. Xie, R. Herrick, G. D. Brabander, W. Widjaja, U. Koelle, A.-N. Cheng, L. Giovane, F. Hu, M. Keever, T. Osentowski, S. McHugo, M. Mayonte, S. Kim, D. Chamberlin, S. J. Rosner, and G. Girolami, “Reliability and failure mechanisms of oxide VCSELs in non-hermetic environments,” Proc. SPIE 4994, 173–180 (2003).
[Crossref]

Kolb, J.

H. Moench, S. Gronenborn, X. Gu, R. Gudde, M. Herper, J. Kolb, M. Miller, M. Smeets, and A. Weigl, “VCSELs in short-pulse operation for time-of-flight applications,” Proc. SPIE 10938, 109380E (2019).
[Crossref]

Kostamovaara, J.

J. Nissinen and J. Kostamovaara, “A high repetition rate CMOS driver for high-energy sub-ns laser pulse generation in SPAD-based time-of-flight range finding,” IEEE Sens. J. 16, 1628–1633 (2015).ISJEAZ
[Crossref]

Ledentsov, N.

C.-L. Cheng, N. Ledentsov, Z. Khan, J.-L. Yen, N. N. Ledentsov, and J.-W. Shi, “Ultrafast Zn-diffusion and oxide-relief 940  nm vertical-cavity surface-emitting lasers under high-temperature operation,” IEEE J. Sel. Top. Quantum Electron. 25, 1–7 (2019).
[Crossref]

Ledentsov, N. N.

C.-L. Cheng, N. Ledentsov, Z. Khan, J.-L. Yen, N. N. Ledentsov, and J.-W. Shi, “Ultrafast Zn-diffusion and oxide-relief 940  nm vertical-cavity surface-emitting lasers under high-temperature operation,” IEEE J. Sel. Top. Quantum Electron. 25, 1–7 (2019).
[Crossref]

Lott, J. A.

N. Haghighi, P. Moser, and J. A. Lott, “Power, bandwidth, and efficiency of single VCSELs and small VCSEL arrays,” IEEE J. Sel. Top. Quantum Electron. 25, 1–15 (2019).
[Crossref]

Lu, I.-C.

K.-L. Chi, J.-L. Yen, J.-M. Wun, J.-W. Jiang, I.-C. Lu, J. Chen, Y.-J. Yang, and J.-W. Shi, “Strong wavelength detuning of 850  nm vertical-cavity surface-emitting lasers for high-speed (>40  Gbit/sec) and low-energy consumption operation,” IEEE J. Sel. Top. Quantum Electron. 21, 1701510 (2015).
[Crossref]

J.-W. Shi, Z.-R. Wei, K.-L. Chi, J.-W. Jiang, J.-M. Wun, I.-C. Lu, J. Chen, and Y.-J. Yang, “Single-mode, high-speed, and high-power vertical-cavity surface-emitting lasers at 850  nm for short to medium reach (2  km) optical interconnects,” J. Lightwave Technol. 31, 4037–4044 (2013).
[Crossref]

Maynard, J. G.

R. F. Carson, M. E. Warren, P. Dacha, T. Wilcox, J. G. Maynard, D. J. Abell, and K. J. Otis, “Progress in high-power, high-speed VCSEL arrays,” Proc. SPIE 9766, 97660B (2016).
[Crossref]

Mayonte, M.

S. Xie, R. Herrick, G. D. Brabander, W. Widjaja, U. Koelle, A.-N. Cheng, L. Giovane, F. Hu, M. Keever, T. Osentowski, S. McHugo, M. Mayonte, S. Kim, D. Chamberlin, S. J. Rosner, and G. Girolami, “Reliability and failure mechanisms of oxide VCSELs in non-hermetic environments,” Proc. SPIE 4994, 173–180 (2003).
[Crossref]

McHugo, S.

S. Xie, R. Herrick, G. D. Brabander, W. Widjaja, U. Koelle, A.-N. Cheng, L. Giovane, F. Hu, M. Keever, T. Osentowski, S. McHugo, M. Mayonte, S. Kim, D. Chamberlin, S. J. Rosner, and G. Girolami, “Reliability and failure mechanisms of oxide VCSELs in non-hermetic environments,” Proc. SPIE 4994, 173–180 (2003).
[Crossref]

Miglo, A.

J.-F. Seurin, C. L. Ghosh, V. Khalfin, A. Miglo, G. Xu, J. D. Wynn, P. Pradhan, and L. A. D’Asaro, “High-power high-efficiency 2D VCSEL arrays,” Proc. SPIE 6908, 690808 (2008).
[Crossref]

Miller, M.

H. Moench, S. Gronenborn, X. Gu, R. Gudde, M. Herper, J. Kolb, M. Miller, M. Smeets, and A. Weigl, “VCSELs in short-pulse operation for time-of-flight applications,” Proc. SPIE 10938, 109380E (2019).
[Crossref]

Moench, H.

H. Moench, S. Gronenborn, X. Gu, R. Gudde, M. Herper, J. Kolb, M. Miller, M. Smeets, and A. Weigl, “VCSELs in short-pulse operation for time-of-flight applications,” Proc. SPIE 10938, 109380E (2019).
[Crossref]

Moser, P.

N. Haghighi, P. Moser, and J. A. Lott, “Power, bandwidth, and efficiency of single VCSELs and small VCSEL arrays,” IEEE J. Sel. Top. Quantum Electron. 25, 1–15 (2019).
[Crossref]

Nissinen, J.

J. Nissinen and J. Kostamovaara, “A high repetition rate CMOS driver for high-energy sub-ns laser pulse generation in SPAD-based time-of-flight range finding,” IEEE Sens. J. 16, 1628–1633 (2015).ISJEAZ
[Crossref]

Osentowski, T.

S. Xie, R. Herrick, G. D. Brabander, W. Widjaja, U. Koelle, A.-N. Cheng, L. Giovane, F. Hu, M. Keever, T. Osentowski, S. McHugo, M. Mayonte, S. Kim, D. Chamberlin, S. J. Rosner, and G. Girolami, “Reliability and failure mechanisms of oxide VCSELs in non-hermetic environments,” Proc. SPIE 4994, 173–180 (2003).
[Crossref]

Otis, K. J.

R. F. Carson, M. E. Warren, P. Dacha, T. Wilcox, J. G. Maynard, D. J. Abell, and K. J. Otis, “Progress in high-power, high-speed VCSEL arrays,” Proc. SPIE 9766, 97660B (2016).
[Crossref]

Overton, G.

G. Overton, “VCSEL illumination: high-power VCSELs rule IR illumination,” Laser Focus World 49, 29–30 (2013).

Pradhan, P.

J.-F. Seurin, C. L. Ghosh, V. Khalfin, A. Miglo, G. Xu, J. D. Wynn, P. Pradhan, and L. A. D’Asaro, “High-power high-efficiency 2D VCSEL arrays,” Proc. SPIE 6908, 690808 (2008).
[Crossref]

Ressel, P.

H. Wenzel, A. Klehr, M. Braun, F. Bugge, G. Erbert, J. Fricke, A. Knauer, P. Ressel, B. Sumpf, M. Weyers, and G. Traenkle, “Design and realization of high-power DFB lasers,” Proc. SPIE 5594, 110–123 (2004).
[Crossref]

Rosner, S. J.

S. Xie, R. Herrick, G. D. Brabander, W. Widjaja, U. Koelle, A.-N. Cheng, L. Giovane, F. Hu, M. Keever, T. Osentowski, S. McHugo, M. Mayonte, S. Kim, D. Chamberlin, S. J. Rosner, and G. Girolami, “Reliability and failure mechanisms of oxide VCSELs in non-hermetic environments,” Proc. SPIE 4994, 173–180 (2003).
[Crossref]

Seurin, J.-F.

J.-F. Seurin, C. L. Ghosh, V. Khalfin, A. Miglo, G. Xu, J. D. Wynn, P. Pradhan, and L. A. D’Asaro, “High-power high-efficiency 2D VCSEL arrays,” Proc. SPIE 6908, 690808 (2008).
[Crossref]

Shi, J.-W.

C.-L. Cheng, N. Ledentsov, Z. Khan, J.-L. Yen, N. N. Ledentsov, and J.-W. Shi, “Ultrafast Zn-diffusion and oxide-relief 940  nm vertical-cavity surface-emitting lasers under high-temperature operation,” IEEE J. Sel. Top. Quantum Electron. 25, 1–7 (2019).
[Crossref]

J.-W. Shi, J.-I. Guo, M. Kagami, P. Suni, and O. Ziemann, “Photonic technologies for autonomous cars: feature introduction,” Opt. Express 27, 7627–7628 (2019).
[Crossref]

J.-L. Yen, X.-N. Chen, K.-L. Chi, J. Chen, and J.-W. Shi, “850  nm vertical-cavity surface-emitting laser arrays with enhanced high-speed transmission performance over a standard multimode fiber,” J. Lightwave Technol. 35, 3242–3249 (2017).
[Crossref]

K.-L. Chi, J.-L. Yen, J.-M. Wun, J.-W. Jiang, I.-C. Lu, J. Chen, Y.-J. Yang, and J.-W. Shi, “Strong wavelength detuning of 850  nm vertical-cavity surface-emitting lasers for high-speed (>40  Gbit/sec) and low-energy consumption operation,” IEEE J. Sel. Top. Quantum Electron. 21, 1701510 (2015).
[Crossref]

J.-L. Yen, K.-L. Chi, J.-W. Jiang, Y.-J. Yang, and J.-W. Shi, “Single-mode vertical-cavity surface-emitting lasers array with Zn-diffusion aperture for high-power, single-spot, and narrow divergence angle performance,” IEEE J. Quantum Electron. 50, 787–794 (2014).

J.-W. Shi, J.-C. Yan, J.-M. Wun, J. Chen, and Y.-J. Yang, “Oxide-relief and Zn-diffusion 850  nm vertical-cavity surface-emitting lasers with extremely low energy-to-data-rate ratios for 40  Gbit/sec operations,” IEEE J. Sel. Top. Quantum Electron. 19, 7900208 (2013).
[Crossref]

J.-W. Shi, Z.-R. Wei, K.-L. Chi, J.-W. Jiang, J.-M. Wun, I.-C. Lu, J. Chen, and Y.-J. Yang, “Single-mode, high-speed, and high-power vertical-cavity surface-emitting lasers at 850  nm for short to medium reach (2  km) optical interconnects,” J. Lightwave Technol. 31, 4037–4044 (2013).
[Crossref]

Skidmore, J.

J. Skidmore, “Semiconductor lasers for 3-D sensing,” Opt. Photonics News 30(2), 28–33 (2019).
[Crossref]

Smeets, M.

H. Moench, S. Gronenborn, X. Gu, R. Gudde, M. Herper, J. Kolb, M. Miller, M. Smeets, and A. Weigl, “VCSELs in short-pulse operation for time-of-flight applications,” Proc. SPIE 10938, 109380E (2019).
[Crossref]

Sumpf, B.

H. Wenzel, A. Klehr, M. Braun, F. Bugge, G. Erbert, J. Fricke, A. Knauer, P. Ressel, B. Sumpf, M. Weyers, and G. Traenkle, “Design and realization of high-power DFB lasers,” Proc. SPIE 5594, 110–123 (2004).
[Crossref]

Suni, P.

Traenkle, G.

H. Wenzel, A. Klehr, M. Braun, F. Bugge, G. Erbert, J. Fricke, A. Knauer, P. Ressel, B. Sumpf, M. Weyers, and G. Traenkle, “Design and realization of high-power DFB lasers,” Proc. SPIE 5594, 110–123 (2004).
[Crossref]

Warren, M. E.

R. F. Carson, M. E. Warren, P. Dacha, T. Wilcox, J. G. Maynard, D. J. Abell, and K. J. Otis, “Progress in high-power, high-speed VCSEL arrays,” Proc. SPIE 9766, 97660B (2016).
[Crossref]

Wei, Z.-R.

Weigl, A.

H. Moench, S. Gronenborn, X. Gu, R. Gudde, M. Herper, J. Kolb, M. Miller, M. Smeets, and A. Weigl, “VCSELs in short-pulse operation for time-of-flight applications,” Proc. SPIE 10938, 109380E (2019).
[Crossref]

Wenzel, H.

H. Wenzel, A. Klehr, M. Braun, F. Bugge, G. Erbert, J. Fricke, A. Knauer, P. Ressel, B. Sumpf, M. Weyers, and G. Traenkle, “Design and realization of high-power DFB lasers,” Proc. SPIE 5594, 110–123 (2004).
[Crossref]

Weyers, M.

H. Wenzel, A. Klehr, M. Braun, F. Bugge, G. Erbert, J. Fricke, A. Knauer, P. Ressel, B. Sumpf, M. Weyers, and G. Traenkle, “Design and realization of high-power DFB lasers,” Proc. SPIE 5594, 110–123 (2004).
[Crossref]

Widjaja, W.

S. Xie, R. Herrick, G. D. Brabander, W. Widjaja, U. Koelle, A.-N. Cheng, L. Giovane, F. Hu, M. Keever, T. Osentowski, S. McHugo, M. Mayonte, S. Kim, D. Chamberlin, S. J. Rosner, and G. Girolami, “Reliability and failure mechanisms of oxide VCSELs in non-hermetic environments,” Proc. SPIE 4994, 173–180 (2003).
[Crossref]

Wilcox, T.

R. F. Carson, M. E. Warren, P. Dacha, T. Wilcox, J. G. Maynard, D. J. Abell, and K. J. Otis, “Progress in high-power, high-speed VCSEL arrays,” Proc. SPIE 9766, 97660B (2016).
[Crossref]

Wun, J.-M.

K.-L. Chi, J.-L. Yen, J.-M. Wun, J.-W. Jiang, I.-C. Lu, J. Chen, Y.-J. Yang, and J.-W. Shi, “Strong wavelength detuning of 850  nm vertical-cavity surface-emitting lasers for high-speed (>40  Gbit/sec) and low-energy consumption operation,” IEEE J. Sel. Top. Quantum Electron. 21, 1701510 (2015).
[Crossref]

J.-W. Shi, J.-C. Yan, J.-M. Wun, J. Chen, and Y.-J. Yang, “Oxide-relief and Zn-diffusion 850  nm vertical-cavity surface-emitting lasers with extremely low energy-to-data-rate ratios for 40  Gbit/sec operations,” IEEE J. Sel. Top. Quantum Electron. 19, 7900208 (2013).
[Crossref]

J.-W. Shi, Z.-R. Wei, K.-L. Chi, J.-W. Jiang, J.-M. Wun, I.-C. Lu, J. Chen, and Y.-J. Yang, “Single-mode, high-speed, and high-power vertical-cavity surface-emitting lasers at 850  nm for short to medium reach (2  km) optical interconnects,” J. Lightwave Technol. 31, 4037–4044 (2013).
[Crossref]

Wynn, J. D.

J.-F. Seurin, C. L. Ghosh, V. Khalfin, A. Miglo, G. Xu, J. D. Wynn, P. Pradhan, and L. A. D’Asaro, “High-power high-efficiency 2D VCSEL arrays,” Proc. SPIE 6908, 690808 (2008).
[Crossref]

Xie, S.

S. Xie, R. Herrick, G. D. Brabander, W. Widjaja, U. Koelle, A.-N. Cheng, L. Giovane, F. Hu, M. Keever, T. Osentowski, S. McHugo, M. Mayonte, S. Kim, D. Chamberlin, S. J. Rosner, and G. Girolami, “Reliability and failure mechanisms of oxide VCSELs in non-hermetic environments,” Proc. SPIE 4994, 173–180 (2003).
[Crossref]

Xu, G.

J.-F. Seurin, C. L. Ghosh, V. Khalfin, A. Miglo, G. Xu, J. D. Wynn, P. Pradhan, and L. A. D’Asaro, “High-power high-efficiency 2D VCSEL arrays,” Proc. SPIE 6908, 690808 (2008).
[Crossref]

Yan, J.-C.

J.-W. Shi, J.-C. Yan, J.-M. Wun, J. Chen, and Y.-J. Yang, “Oxide-relief and Zn-diffusion 850  nm vertical-cavity surface-emitting lasers with extremely low energy-to-data-rate ratios for 40  Gbit/sec operations,” IEEE J. Sel. Top. Quantum Electron. 19, 7900208 (2013).
[Crossref]

Yang, Y.-J.

K.-L. Chi, J.-L. Yen, J.-M. Wun, J.-W. Jiang, I.-C. Lu, J. Chen, Y.-J. Yang, and J.-W. Shi, “Strong wavelength detuning of 850  nm vertical-cavity surface-emitting lasers for high-speed (>40  Gbit/sec) and low-energy consumption operation,” IEEE J. Sel. Top. Quantum Electron. 21, 1701510 (2015).
[Crossref]

J.-L. Yen, K.-L. Chi, J.-W. Jiang, Y.-J. Yang, and J.-W. Shi, “Single-mode vertical-cavity surface-emitting lasers array with Zn-diffusion aperture for high-power, single-spot, and narrow divergence angle performance,” IEEE J. Quantum Electron. 50, 787–794 (2014).

J.-W. Shi, J.-C. Yan, J.-M. Wun, J. Chen, and Y.-J. Yang, “Oxide-relief and Zn-diffusion 850  nm vertical-cavity surface-emitting lasers with extremely low energy-to-data-rate ratios for 40  Gbit/sec operations,” IEEE J. Sel. Top. Quantum Electron. 19, 7900208 (2013).
[Crossref]

J.-W. Shi, Z.-R. Wei, K.-L. Chi, J.-W. Jiang, J.-M. Wun, I.-C. Lu, J. Chen, and Y.-J. Yang, “Single-mode, high-speed, and high-power vertical-cavity surface-emitting lasers at 850  nm for short to medium reach (2  km) optical interconnects,” J. Lightwave Technol. 31, 4037–4044 (2013).
[Crossref]

Yen, J.-L.

C.-L. Cheng, N. Ledentsov, Z. Khan, J.-L. Yen, N. N. Ledentsov, and J.-W. Shi, “Ultrafast Zn-diffusion and oxide-relief 940  nm vertical-cavity surface-emitting lasers under high-temperature operation,” IEEE J. Sel. Top. Quantum Electron. 25, 1–7 (2019).
[Crossref]

J.-L. Yen, X.-N. Chen, K.-L. Chi, J. Chen, and J.-W. Shi, “850  nm vertical-cavity surface-emitting laser arrays with enhanced high-speed transmission performance over a standard multimode fiber,” J. Lightwave Technol. 35, 3242–3249 (2017).
[Crossref]

K.-L. Chi, J.-L. Yen, J.-M. Wun, J.-W. Jiang, I.-C. Lu, J. Chen, Y.-J. Yang, and J.-W. Shi, “Strong wavelength detuning of 850  nm vertical-cavity surface-emitting lasers for high-speed (>40  Gbit/sec) and low-energy consumption operation,” IEEE J. Sel. Top. Quantum Electron. 21, 1701510 (2015).
[Crossref]

J.-L. Yen, K.-L. Chi, J.-W. Jiang, Y.-J. Yang, and J.-W. Shi, “Single-mode vertical-cavity surface-emitting lasers array with Zn-diffusion aperture for high-power, single-spot, and narrow divergence angle performance,” IEEE J. Quantum Electron. 50, 787–794 (2014).

Ziemann, O.

IEEE J. Quantum Electron. (1)

J.-L. Yen, K.-L. Chi, J.-W. Jiang, Y.-J. Yang, and J.-W. Shi, “Single-mode vertical-cavity surface-emitting lasers array with Zn-diffusion aperture for high-power, single-spot, and narrow divergence angle performance,” IEEE J. Quantum Electron. 50, 787–794 (2014).

IEEE J. Sel. Top. Quantum Electron. (4)

K.-L. Chi, J.-L. Yen, J.-M. Wun, J.-W. Jiang, I.-C. Lu, J. Chen, Y.-J. Yang, and J.-W. Shi, “Strong wavelength detuning of 850  nm vertical-cavity surface-emitting lasers for high-speed (>40  Gbit/sec) and low-energy consumption operation,” IEEE J. Sel. Top. Quantum Electron. 21, 1701510 (2015).
[Crossref]

N. Haghighi, P. Moser, and J. A. Lott, “Power, bandwidth, and efficiency of single VCSELs and small VCSEL arrays,” IEEE J. Sel. Top. Quantum Electron. 25, 1–15 (2019).
[Crossref]

J.-W. Shi, J.-C. Yan, J.-M. Wun, J. Chen, and Y.-J. Yang, “Oxide-relief and Zn-diffusion 850  nm vertical-cavity surface-emitting lasers with extremely low energy-to-data-rate ratios for 40  Gbit/sec operations,” IEEE J. Sel. Top. Quantum Electron. 19, 7900208 (2013).
[Crossref]

C.-L. Cheng, N. Ledentsov, Z. Khan, J.-L. Yen, N. N. Ledentsov, and J.-W. Shi, “Ultrafast Zn-diffusion and oxide-relief 940  nm vertical-cavity surface-emitting lasers under high-temperature operation,” IEEE J. Sel. Top. Quantum Electron. 25, 1–7 (2019).
[Crossref]

IEEE Sens. J. (1)

J. Nissinen and J. Kostamovaara, “A high repetition rate CMOS driver for high-energy sub-ns laser pulse generation in SPAD-based time-of-flight range finding,” IEEE Sens. J. 16, 1628–1633 (2015).ISJEAZ
[Crossref]

J. Lightwave Technol. (2)

Laser Focus World (1)

G. Overton, “VCSEL illumination: high-power VCSELs rule IR illumination,” Laser Focus World 49, 29–30 (2013).

Opt. Express (1)

Opt. Photonics News (1)

J. Skidmore, “Semiconductor lasers for 3-D sensing,” Opt. Photonics News 30(2), 28–33 (2019).
[Crossref]

Proc. SPIE (5)

J.-F. Seurin, C. L. Ghosh, V. Khalfin, A. Miglo, G. Xu, J. D. Wynn, P. Pradhan, and L. A. D’Asaro, “High-power high-efficiency 2D VCSEL arrays,” Proc. SPIE 6908, 690808 (2008).
[Crossref]

R. F. Carson, M. E. Warren, P. Dacha, T. Wilcox, J. G. Maynard, D. J. Abell, and K. J. Otis, “Progress in high-power, high-speed VCSEL arrays,” Proc. SPIE 9766, 97660B (2016).
[Crossref]

H. Moench, S. Gronenborn, X. Gu, R. Gudde, M. Herper, J. Kolb, M. Miller, M. Smeets, and A. Weigl, “VCSELs in short-pulse operation for time-of-flight applications,” Proc. SPIE 10938, 109380E (2019).
[Crossref]

H. Wenzel, A. Klehr, M. Braun, F. Bugge, G. Erbert, J. Fricke, A. Knauer, P. Ressel, B. Sumpf, M. Weyers, and G. Traenkle, “Design and realization of high-power DFB lasers,” Proc. SPIE 5594, 110–123 (2004).
[Crossref]

S. Xie, R. Herrick, G. D. Brabander, W. Widjaja, U. Koelle, A.-N. Cheng, L. Giovane, F. Hu, M. Keever, T. Osentowski, S. McHugo, M. Mayonte, S. Kim, D. Chamberlin, S. J. Rosner, and G. Girolami, “Reliability and failure mechanisms of oxide VCSELs in non-hermetic environments,” Proc. SPIE 4994, 173–180 (2003).
[Crossref]

Solid State Electron. (1)

J. E. Bowers, “High speed semiconductor laser design and performance,” Solid State Electron. 30, 1–11 (1987).
[Crossref]

Other (1)

“II-VI Laser Enterprise,” http://www.laserenterprise.com/index.html , Product: APS6401010002.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1.
Fig. 1. Top view of the (a) single reference VCSEL unit, (b) VCSEL array, and (c) conceptual cross-sectional view of the VCSEL unit with the corresponding equivalent-circuit model of the demonstrated device (${{\rm W}_o}/{{\rm W}_Z}/{\rm d}:\;{9}.{\rm 5/7}.{\rm 5/1}.{7}\;{\unicode{x00B5}{\rm m}}$).
Fig. 2.
Fig. 2. (a) Measured L-I-V curve of a single VCSEL unit, (b) measured optical spectra of a single VCSEL unit at different bias currents (${{\rm W}_o}/{{\rm W}_Z}/{\rm d}:\;{9}.{\rm 5/7}.{\rm 5/1}.{7}\;{\unicode{x00B5}{\rm m}}$).
Fig. 3.
Fig. 3. One-dimensional (1D) (in the ${ x}$-direction) and 2D far-field patterns of a single device measured under different bias currents (${{\rm W}_o}/{{\rm W}_Z}/{\rm d}:\;{9}.{\rm 5/7}.{\rm 5/1}.{7}\;{\unicode{x00B5}{\rm m}}$).
Fig. 4.
Fig. 4. (a) Measured L-I-V curve of a single-mode reference VCSEL unit, (b) measured optical spectra at different bias currents (${{\rm W}_o}/{{\rm W}_Z}/{\rm d}:\;{10}.{\rm 5/7}.{\rm 5/1}.{7}\;{\unicode{x00B5}{\rm m}}$).
Fig. 5.
Fig. 5. L-I-V curves of our array measured under (a) CW and (b) pulsed mode operation, respectively.
Fig. 6.
Fig. 6. Bias-dependent optical spectra measured at different positions on our array under continuous-wave (CW) operation.
Fig. 7.
Fig. 7. Bias-dependent optical spectra at different positions on our array measured under pulsed mode operation.
Fig. 8.
Fig. 8. Measured one-dimensional (1D) (in the ${ x}$-direction) and 2D far-field patterns of the VCSEL array under lower pulse bias currents (0.7 and 1 A).
Fig. 9.
Fig. 9. Measured one-dimensional (1D) (in the ${x}$-direction) and 2D far-field patterns of the VCSEL array under higher pulse bias currents (2–6 A).
Fig. 10.
Fig. 10. 1D patterns measured using a rotating slit under pulsed mode operation.
Fig. 11.
Fig. 11. Measured electrical-to-optical (E-O) frequency response of a single reference device at different bias currents.
Fig. 12.
Fig. 12. Waveform of the rise time (${t_r}$) of a single reference device measured at different operating currents.
Fig. 13.
Fig. 13. Measured electrical-to-optical (E-O) frequency response of the demonstrated VCSEL array under CW operation.
Fig. 14.
Fig. 14. (a) Measured and fitted ${{S}_{11}}$ traces (microwave reflection coefficients) on a Smith chart for single device and the array under bias currents of 1 and 600 mA. (b) RC-limited frequency responses for the two devices extracted under the same average bias current (${\sim}{1}\;{\rm mA}$).
Fig. 15.
Fig. 15. Rise time (${t_r}$) waveforms of our array measured under different CW pre-bias currents.

Tables (1)

Tables Icon

Table 1. Values of the Circuit Elements Used for the Fitting Processes