Abstract

The microscale integration of mid- and long-wave-infrared photonics could enable the development of fieldable, robust chemical sensors, as well as highly efficient infrared frequency converters. However, such technology would be defined by the choice of material platform, which immediately determines the strength and types of optical nonlinearities available, the optical transparency window, modal confinement, and physical robustness. In this work, we demonstrate a new platform, suspended AlGaAs waveguides integrated on silicon, providing excellent performance in all of these metrics. We demonstrate low propagation losses within a span of nearly two octaves (1.26–4.6 μm) with exemplary performance of 0.45 dB/cm at λ=2.4μm. We exploit the high nonlinearity of this platform to demonstrate 1560 nm-pumped second-harmonic generation and octave-spanning supercontinuum reaching out to 2.3 μm with 3.4 pJ pump pulse energy. With mid-IR pumping, we generate supercontinuum spanning from 2.3 to 6.5 μm. Finally, we demonstrate the versatility of the platform with mid-infrared passive devices such as low-loss 10 μm-radius bends, compact power splitters with 96±1% efficiency, and edge couplers with 3.0±0.1dB loss. This platform has strong potential for multifunctional integrated photonic systems in the mid-infrared.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Mid-infrared integrated waveguide modulators based on silicon-on-lithium-niobate photonics

Jeff Chiles and Sasan Fathpour
Optica 1(5) 350-355 (2014)

Mid-infrared silicon photonic waveguides and devices [Invited]

Yi Zou, Swapnajit Chakravarty, Chi-Jui Chung, Xiaochuan Xu, and Ray T. Chen
Photon. Res. 6(4) 254-276 (2018)

Mid-infrared octave spanning supercontinuum generation to 8.5  μm in silicon-germanium waveguides

Milan Sinobad, Christelle Monat, Barry Luther-davies, Pan Ma, Stephen Madden, David J. Moss, Arnan Mitchell, David Allioux, Regis Orobtchouk, Salim Boutami, Jean-Michel Hartmann, Jean-Marc Fedeli, and Christian Grillet
Optica 5(4) 360-366 (2018)

References

  • View by:
  • |
  • |
  • |

  1. P. R. Griffiths and J. A. De Haseth, Fourier Transform Infrared Spectrometry, Vol. 171 of Chemical Analysis: A Series of Monographs on Analytical Chemistry and Its Applications (Wiley, 2007).
  2. F. Adler, M. J. Thorpe, K. C. Cossel, and J. Ye, “Cavity-enhanced direct frequency comb spectroscopy: technology and applications,” Ann. Rev. Anal. Chem. 3, 175–205 (2010).
    [Crossref]
  3. A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6, 440–449 (2012).
    [Crossref]
  4. I. Coddington, N. Newbury, and W. Swann, “Dual-comb spectroscopy,” Optica 3, 414–426 (2016).
    [Crossref]
  5. K. C. Cossel, E. M. Waxman, I. A. Finneran, G. A. Blake, J. Ye, and N. R. Newbury, “Gas-phase broadband spectroscopy using active sources: progress, status, and applications [Invited],” J. Opt. Soc. Am. B 34, 104–129 (2017).
    [Crossref]
  6. A. V. Muraviev, V. O. Smolski, Z. E. Loparo, and K. L. Vodopyanov, “Massively parallel sensing of trace molecules and their isotopologues with broadband subharmonic mid-infrared frequency combs,” Nat. Photonics 12, 209–214 (2018).
    [Crossref]
  7. H. Timmers, A. Kowligy, A. Lind, F. C. Cruz, N. Nader, M. Silfies, G. Ycas, T. K. Allison, P. G. Schunemann, S. B. Papp, and S. A. Diddams, “Molecular fingerprinting with bright, broadband infrared frequency combs,” Optica 5, 727–732 (2018).
    [Crossref]
  8. N. Picqué and T. W. Hänsch, “Frequency comb spectroscopy,” Nat. Photonics 13, 146–157 (2019).
    [Crossref]
  9. Z. Cheng, X. Chen, C. Y. Wong, K. Xu, and H. K. Tsang, “Mid-infrared suspended membrane waveguide and ring resonator on silicon-on-insulator,” IEEE Photon. J. 4, 1510–1519 (2012).
    [Crossref]
  10. A. Hugi, G. Villares, S. Blaser, H. C. Liu, and J. Faist, “Mid-infrared frequency comb based on a quantum cascade laser,” Nature 492, 229–233 (2012).
    [Crossref]
  11. Y. Yu, X. Gai, T. Wang, P. Ma, R. Wang, Z. Yang, D.-Y. Choi, S. Madden, and B. Luther-Davies, “Mid-infrared supercontinuum generation in chalcogenides,” Opt. Mater. Express 3, 1075–1086 (2013).
    [Crossref]
  12. R. Shankar, I. Bulu, and M. Lončar, “Integrated high-quality factor silicon-on-sapphire ring resonators for the mid-infrared,” Appl. Phys. Lett. 102, 051108 (2013).
    [Crossref]
  13. B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. W. Hänsch, J. Van Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, and N. Picqué, “An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6, 6310 (2015).
    [Crossref]
  14. J. S. Penades, A. Ortega-Moñux, M. Nedeljkovic, J. G. Wangüemert-Pérez, R. Halir, A. Z. Khokhar, C. Alonso-Ramos, Z. Qu, I. Molina-Fernández, P. Cheben, and G. Z. Mashanovich, “Suspended silicon mid-infrared waveguide devices with subwavelength grating metamaterial cladding,” Opt. Express 24, 22908–22916 (2016).
    [Crossref]
  15. A. G. Griffith, M. Yu, Y. Okawachi, J. Cardenas, A. Mohanty, A. L. Gaeta, and M. Lipson, “Coherent mid-infrared frequency combs in silicon-microresonators in the presence of Raman effects,” Opt. Express 24, 13044–13050 (2016).
    [Crossref]
  16. A. Vasiliev, A. Malik, M. Muneeb, B. Kuyken, R. Baets, and G. Roelkens, “On-chip mid-infrared photothermal spectroscopy using suspended silicon-on-insulator microring resonators,” ACS Sens. 1, 1301–1307 (2016).
    [Crossref]
  17. D. A. Kozak, T. H. Stievater, R. Mahon, and W. S. Rabinovich, “Germanium-on-silicon waveguides at wavelengths from 6.85 to 11.25 microns,” IEEE J. Sel. Top. Quantum Electron. 24, 1–4 (2018).
    [Crossref]
  18. N. Nader, D. L. Maser, F. C. Cruz, A. Kowligy, H. Timmers, J. Chiles, C. Fredrick, D. A. Westly, S. W. Nam, R. P. Mirin, J. M. Shainline, and S. Diddams, “Versatile silicon-waveguide supercontinuum for coherent mid-infrared spectroscopy,” APL Photon. 3, 36102 (2018).
    [Crossref]
  19. J. M. Ramirez, Q. Liu, V. Vakarin, J. Frigerio, A. Ballabio, X. Le Roux, D. Bouville, L. Vivien, G. Isella, and D. Marris-Morini, “Graded SiGe waveguides with broadband low-loss propagation in the mid infrared,” Opt. Express 26, 870–877 (2018).
    [Crossref]
  20. E. J. Stanton, A. Spott, J. Peters, M. L. Davenport, A. Malik, N. Volet, J. Liu, C. D. Merritt, I. Vurgaftman, C. S. Kim, J. R. Meyer, and J. E. Bowers, “Multi-spectral quantum cascade lasers on silicon with integrated multiplexers,” in Conference on Lasers and Electro-Optics (CLEO) (2019).
  21. D. Grassani, E. Tagkoudi, H. Guo, C. Herkommer, F. Yang, T. J. Kippenberg, and C.-S. Brès, “Mid infrared gas spectroscopy using efficient fiber laser driven photonic chip-based supercontinuum,” Nat. Commun. 10, 1553 (2019).
    [Crossref]
  22. L. A. Sterczewski, J. Westberg, M. Bagheri, C. Frez, I. Vurgaftman, C. L. Canedy, W. W. Bewley, C. D. Merritt, C. S. Kim, M. Kim, J. R. Meyer, and G. Wysocki, “Mid-infrared dual-comb spectroscopy with interband cascade lasers,” Opt. Lett. 44, 2113–2116 (2019).
    [Crossref]
  23. R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4, 495–497 (2010).
    [Crossref]
  24. L. A. Eyres, P. J. Tourreau, T. J. Pinguet, C. B. Ebert, J. S. Harris, M. M. Fejer, L. Becouarn, B. Gerard, and E. Lallier, “All-epitaxial fabrication of thick, orientation-patterned GaAs films for nonlinear optical frequency conversion,” Appl. Phys. Lett. 79, 904 (2001).
    [Crossref]
  25. A. S. Kowligy, A. Lind, D. D. Hickstein, D. R. Carlson, H. Timmers, N. Nader, F. C. Cruz, G. Ycas, S. B. Papp, and S. A. Diddams, “Mid-infrared frequency comb generation via cascaded quadratic nonlinearities in quasi-phase-matched waveguides,” Opt. Lett. 43, 1678–1681 (2018).
    [Crossref]
  26. J. Chiles and S. Fathpour, “Mid-infrared integrated waveguide modulators based on silicon-on-lithium-niobate photonics,” Optica 1, 350–355 (2014).
    [Crossref]
  27. E. Yablonovitch, D. M. Hwang, T. J. Gmitter, L. T. Florez, and J. P. Harbison, “Van der Waals bonding of GaAs epitaxial liftoff films onto arbitrary substrates,” Appl. Phys. Lett. 56, 2419–2421 (1990).
    [Crossref]
  28. H. Park, A. W. Fang, S. Kodama, and J. E. Bowers, “Hybrid silicon evanescent laser fabricated with a silicon waveguide and III-V offset quantum wells,” Opt. Express 13, 9460–9464 (2005).
    [Crossref]
  29. U. D. Dave, C. Ciret, S.-P. Gorza, S. Combrie, A. De Rossi, F. Raineri, G. Roelkens, and B. Kuyken, “Dispersive-wave-based octave-spanning supercontinuum generation in InGaP membrane waveguides on a silicon substrate,” Opt. Lett. 40, 3584–3587 (2015).
    [Crossref]
  30. H. Hu, F. Da Ros, M. Pu, F. Ye, K. Ingerslev, E. Porto da Silva, M. Nooruzzaman, Y. Amma, Y. Sasaki, T. Mizuno, Y. Miyamoto, L. Ottaviano, E. Semenova, P. Guan, D. Zibar, M. Galili, K. Yvind, T. Morioka, and L. K. Oxenløwe, “Single-source chip-based frequency comb enabling extreme parallel data transmission,” Nat. Photonics 12, 469–473 (2018).
    [Crossref]
  31. K. Schneider, P. Welter, Y. Baumgartner, H. Hahn, L. Czornomaz, and P. Seidler, “Gallium phosphide-on-silicon dioxide photonic devices,” J. Lightwave Technol. 36, 2994–3002 (2018).
    [Crossref]
  32. L. Chang, A. Boes, X. Guo, D. T. Spencer, M. J. Kennedy, J. D. Peters, N. Volet, J. Chiles, A. Kowligy, N. Nader, D. D. Hickstein, E. J. Stanton, S. A. Diddams, S. B. Papp, and J. E. Bowers, “Nonlinear optics: heterogeneously integrated GaAs waveguides on insulator for efficient frequency conversion,” Laser Photon. Rev. 12, 1870044 (2018).
    [Crossref]
  33. Y. Zheng, M. Pu, H. K. Sahoo, E. Semenova, and K. Yvind, “High-quality-factor AlGaAs-on-sapphire microring resonators,” J. Lightwave Technol. 37, 868–874 (2019).
    [Crossref]
  34. T. H. Stievater, R. Mahon, D. Park, W. S. Rabinovich, M. W. Pruessner, J. B. Khurgin, and C. J. K. Richardson, “Mid-infrared difference-frequency generation in suspended GaAs waveguides,” Opt. Lett. 39, 945–948 (2014).
    [Crossref]
  35. D. W. Sheibley and M. H. Fowler, “Infrared spectra of various metal oxides in the region of 2 to 26 microns,” 1966, https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19670003469.pdf .
  36. J. Chiles, S. Khan, J. Ma, and S. Fathpour, “High-contrast, all-silicon waveguiding platform for ultra-broadband mid-infrared photonics,” Appl. Phys. Lett. 103, 151106 (2013).
    [Crossref]
  37. N. Nader, J. Chiles, H. Timmers, E. J. Stanton, A. Kowligy, A. Lind, S. W. Nam, S. A. Diddams, and R. P. Mirin, “Coherent on-chip frequency combs spanning 1.5–7.5  μm for dual-comb spectroscopy,” in Advanced Photonics (BGPP, IPR, NP, NOMA, Sensors, Networks, SPPCom, SOF), OSA Technical Digest (online) (Optical Society of America, 2018), paper NpM4I.8.
  38. M. Kaminska, “EL2 defect in GaAs,” Phys. Scripta T19B, 551–557 (1987).
    [Crossref]
  39. Y. Chang, S. I. Yi, S. Shi, E. Hu, W. H. Weinberg, and J. Merz, “Long-term and thermal stability of hydrogen ion-passivated AlGaAs/GaAs near-surface quantum wells,” J. Vac. Sci. Technol. B 13, 1801–1804 (1995).
    [Crossref]
  40. X. Ji, F. A. S. Barbosa, S. P. Roberts, A. Dutt, J. Cardenas, Y. Okawachi, A. Bryant, A. L. Gaeta, and M. Lipson, “Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold,” Optica 4, 619–624 (2017).
    [Crossref]
  41. S. A. Miller, M. Yu, X. Ji, A. G. Griffith, J. Cardenas, A. L. Gaeta, and M. Lipson, “Low-loss silicon platform for broadband mid-infrared photonics,” Optica 4, 707–712 (2017).
    [Crossref]
  42. D. D. Hickstein, H. Jung, D. R. Carlson, A. Lind, I. Coddington, K. Srinivasan, G. G. Ycas, D. C. Cole, A. Kowligy, C. Fredrick, S. Droste, E. S. Lamb, N. R. Newbury, H. X. Tang, S. A. Diddams, and S. B. Papp, “Ultrabroadband supercontinuum generation and frequency-comb stabilization using on-chip waveguides with both cubic and quadratic nonlinearities,” Phys. Rev. Appl. 8, 14025 (2017).
    [Crossref]
  43. M. Yu, B. Desiatov, Y. Okawachi, A. L. Gaeta, and M. Lončar, “Coherent two-octave-spanning supercontinuum generation in lithium-niobate waveguides,” Opt. Lett. 44, 1222–1225 (2019).
    [Crossref]
  44. A. Klenner, A. S. Mayer, A. R. Johnson, K. Luke, M. R. E. Lamont, Y. Okawachi, M. Lipson, A. L. Gaeta, and U. Keller, “Gigahertz frequency comb offset stabilization based on supercontinuum generation in silicon nitride waveguides,” Opt. Express 24, 11043–11053 (2016).
    [Crossref]
  45. T. D. Shoji, W. Xie, K. L. Silverman, A. Feldman, T. Harvey, R. P. Mirin, and T. R. Schibli, “Ultra-low-noise monolithic mode-locked solid-state laser,” Optica 3, 995–998 (2016).
    [Crossref]
  46. D. R. Carlson, D. D. Hickstein, W. Zhang, A. J. Metcalf, F. Quinlan, S. A. Diddams, and S. B. Papp, “Ultrafast electro-optic light with subcycle control,” Science 361, 1358–1363 (2018).
    [Crossref]
  47. A. Rao, J. Chiles, S. Khan, S. Toroghi, M. Malinowski, G. F. Camacho-González, and S. Fathpour, “Second-harmonic generation in single-mode integrated waveguides based on mode-shape modulation,” Appl. Phys. Lett. 110, 111109 (2017).
    [Crossref]
  48. S. Roux, L. Cerutti, E. Tournie, B. Gérard, G. Patriarche, A. Grisard, and E. Lallier, “Low-loss orientation-patterned GaSb waveguides for mid-infrared parametric conversion,” Opt. Mater. Express 7, 3011–3016 (2017).
    [Crossref]
  49. F. C. Cruz, D. L. Maser, T. Johnson, G. Ycas, A. Klose, F. R. Giorgetta, I. Coddington, and S. A. Diddams, “Mid-infrared optical frequency combs based on difference frequency generation for molecular spectroscopy,” Opt. Express 23, 26814–26824 (2015).
    [Crossref]
  50. T. Tamir, G. Griffel, and H. L. Bertoni, Guided-Wave Optoelectronics: Device Characterization, Analysis, and Design (Springer, 2013).
  51. T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys. 94, 6447–6455 (2003).
    [Crossref]
  52. A. Cabello and F. Sciarrino, “Loophole-free Bell test based on local precertification of photon’s presence,” Phys. Rev. X 2, 21010 (2012).
    [Crossref]
  53. D. R. Hamel, L. K. Shalm, H. Hübel, A. J. Miller, F. Marsili, V. B. Verma, R. P. Mirin, S. W. Nam, K. J. Resch, and T. Jennewein, “Direct generation of three-photon polarization entanglement,” Nat. Photonics 8, 801–807 (2014).
    [Crossref]

2019 (5)

2018 (10)

J. M. Ramirez, Q. Liu, V. Vakarin, J. Frigerio, A. Ballabio, X. Le Roux, D. Bouville, L. Vivien, G. Isella, and D. Marris-Morini, “Graded SiGe waveguides with broadband low-loss propagation in the mid infrared,” Opt. Express 26, 870–877 (2018).
[Crossref]

A. S. Kowligy, A. Lind, D. D. Hickstein, D. R. Carlson, H. Timmers, N. Nader, F. C. Cruz, G. Ycas, S. B. Papp, and S. A. Diddams, “Mid-infrared frequency comb generation via cascaded quadratic nonlinearities in quasi-phase-matched waveguides,” Opt. Lett. 43, 1678–1681 (2018).
[Crossref]

H. Timmers, A. Kowligy, A. Lind, F. C. Cruz, N. Nader, M. Silfies, G. Ycas, T. K. Allison, P. G. Schunemann, S. B. Papp, and S. A. Diddams, “Molecular fingerprinting with bright, broadband infrared frequency combs,” Optica 5, 727–732 (2018).
[Crossref]

K. Schneider, P. Welter, Y. Baumgartner, H. Hahn, L. Czornomaz, and P. Seidler, “Gallium phosphide-on-silicon dioxide photonic devices,” J. Lightwave Technol. 36, 2994–3002 (2018).
[Crossref]

H. Hu, F. Da Ros, M. Pu, F. Ye, K. Ingerslev, E. Porto da Silva, M. Nooruzzaman, Y. Amma, Y. Sasaki, T. Mizuno, Y. Miyamoto, L. Ottaviano, E. Semenova, P. Guan, D. Zibar, M. Galili, K. Yvind, T. Morioka, and L. K. Oxenløwe, “Single-source chip-based frequency comb enabling extreme parallel data transmission,” Nat. Photonics 12, 469–473 (2018).
[Crossref]

L. Chang, A. Boes, X. Guo, D. T. Spencer, M. J. Kennedy, J. D. Peters, N. Volet, J. Chiles, A. Kowligy, N. Nader, D. D. Hickstein, E. J. Stanton, S. A. Diddams, S. B. Papp, and J. E. Bowers, “Nonlinear optics: heterogeneously integrated GaAs waveguides on insulator for efficient frequency conversion,” Laser Photon. Rev. 12, 1870044 (2018).
[Crossref]

A. V. Muraviev, V. O. Smolski, Z. E. Loparo, and K. L. Vodopyanov, “Massively parallel sensing of trace molecules and their isotopologues with broadband subharmonic mid-infrared frequency combs,” Nat. Photonics 12, 209–214 (2018).
[Crossref]

D. A. Kozak, T. H. Stievater, R. Mahon, and W. S. Rabinovich, “Germanium-on-silicon waveguides at wavelengths from 6.85 to 11.25 microns,” IEEE J. Sel. Top. Quantum Electron. 24, 1–4 (2018).
[Crossref]

N. Nader, D. L. Maser, F. C. Cruz, A. Kowligy, H. Timmers, J. Chiles, C. Fredrick, D. A. Westly, S. W. Nam, R. P. Mirin, J. M. Shainline, and S. Diddams, “Versatile silicon-waveguide supercontinuum for coherent mid-infrared spectroscopy,” APL Photon. 3, 36102 (2018).
[Crossref]

D. R. Carlson, D. D. Hickstein, W. Zhang, A. J. Metcalf, F. Quinlan, S. A. Diddams, and S. B. Papp, “Ultrafast electro-optic light with subcycle control,” Science 361, 1358–1363 (2018).
[Crossref]

2017 (6)

A. Rao, J. Chiles, S. Khan, S. Toroghi, M. Malinowski, G. F. Camacho-González, and S. Fathpour, “Second-harmonic generation in single-mode integrated waveguides based on mode-shape modulation,” Appl. Phys. Lett. 110, 111109 (2017).
[Crossref]

D. D. Hickstein, H. Jung, D. R. Carlson, A. Lind, I. Coddington, K. Srinivasan, G. G. Ycas, D. C. Cole, A. Kowligy, C. Fredrick, S. Droste, E. S. Lamb, N. R. Newbury, H. X. Tang, S. A. Diddams, and S. B. Papp, “Ultrabroadband supercontinuum generation and frequency-comb stabilization using on-chip waveguides with both cubic and quadratic nonlinearities,” Phys. Rev. Appl. 8, 14025 (2017).
[Crossref]

K. C. Cossel, E. M. Waxman, I. A. Finneran, G. A. Blake, J. Ye, and N. R. Newbury, “Gas-phase broadband spectroscopy using active sources: progress, status, and applications [Invited],” J. Opt. Soc. Am. B 34, 104–129 (2017).
[Crossref]

X. Ji, F. A. S. Barbosa, S. P. Roberts, A. Dutt, J. Cardenas, Y. Okawachi, A. Bryant, A. L. Gaeta, and M. Lipson, “Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold,” Optica 4, 619–624 (2017).
[Crossref]

S. A. Miller, M. Yu, X. Ji, A. G. Griffith, J. Cardenas, A. L. Gaeta, and M. Lipson, “Low-loss silicon platform for broadband mid-infrared photonics,” Optica 4, 707–712 (2017).
[Crossref]

S. Roux, L. Cerutti, E. Tournie, B. Gérard, G. Patriarche, A. Grisard, and E. Lallier, “Low-loss orientation-patterned GaSb waveguides for mid-infrared parametric conversion,” Opt. Mater. Express 7, 3011–3016 (2017).
[Crossref]

2016 (6)

2015 (3)

2014 (3)

2013 (3)

Y. Yu, X. Gai, T. Wang, P. Ma, R. Wang, Z. Yang, D.-Y. Choi, S. Madden, and B. Luther-Davies, “Mid-infrared supercontinuum generation in chalcogenides,” Opt. Mater. Express 3, 1075–1086 (2013).
[Crossref]

R. Shankar, I. Bulu, and M. Lončar, “Integrated high-quality factor silicon-on-sapphire ring resonators for the mid-infrared,” Appl. Phys. Lett. 102, 051108 (2013).
[Crossref]

J. Chiles, S. Khan, J. Ma, and S. Fathpour, “High-contrast, all-silicon waveguiding platform for ultra-broadband mid-infrared photonics,” Appl. Phys. Lett. 103, 151106 (2013).
[Crossref]

2012 (4)

Z. Cheng, X. Chen, C. Y. Wong, K. Xu, and H. K. Tsang, “Mid-infrared suspended membrane waveguide and ring resonator on silicon-on-insulator,” IEEE Photon. J. 4, 1510–1519 (2012).
[Crossref]

A. Hugi, G. Villares, S. Blaser, H. C. Liu, and J. Faist, “Mid-infrared frequency comb based on a quantum cascade laser,” Nature 492, 229–233 (2012).
[Crossref]

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6, 440–449 (2012).
[Crossref]

A. Cabello and F. Sciarrino, “Loophole-free Bell test based on local precertification of photon’s presence,” Phys. Rev. X 2, 21010 (2012).
[Crossref]

2010 (2)

F. Adler, M. J. Thorpe, K. C. Cossel, and J. Ye, “Cavity-enhanced direct frequency comb spectroscopy: technology and applications,” Ann. Rev. Anal. Chem. 3, 175–205 (2010).
[Crossref]

R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4, 495–497 (2010).
[Crossref]

2005 (1)

2003 (1)

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys. 94, 6447–6455 (2003).
[Crossref]

2001 (1)

L. A. Eyres, P. J. Tourreau, T. J. Pinguet, C. B. Ebert, J. S. Harris, M. M. Fejer, L. Becouarn, B. Gerard, and E. Lallier, “All-epitaxial fabrication of thick, orientation-patterned GaAs films for nonlinear optical frequency conversion,” Appl. Phys. Lett. 79, 904 (2001).
[Crossref]

1995 (1)

Y. Chang, S. I. Yi, S. Shi, E. Hu, W. H. Weinberg, and J. Merz, “Long-term and thermal stability of hydrogen ion-passivated AlGaAs/GaAs near-surface quantum wells,” J. Vac. Sci. Technol. B 13, 1801–1804 (1995).
[Crossref]

1990 (1)

E. Yablonovitch, D. M. Hwang, T. J. Gmitter, L. T. Florez, and J. P. Harbison, “Van der Waals bonding of GaAs epitaxial liftoff films onto arbitrary substrates,” Appl. Phys. Lett. 56, 2419–2421 (1990).
[Crossref]

1987 (1)

M. Kaminska, “EL2 defect in GaAs,” Phys. Scripta T19B, 551–557 (1987).
[Crossref]

Adler, F.

F. Adler, M. J. Thorpe, K. C. Cossel, and J. Ye, “Cavity-enhanced direct frequency comb spectroscopy: technology and applications,” Ann. Rev. Anal. Chem. 3, 175–205 (2010).
[Crossref]

Allison, T. K.

Alonso-Ramos, C.

Amma, Y.

H. Hu, F. Da Ros, M. Pu, F. Ye, K. Ingerslev, E. Porto da Silva, M. Nooruzzaman, Y. Amma, Y. Sasaki, T. Mizuno, Y. Miyamoto, L. Ottaviano, E. Semenova, P. Guan, D. Zibar, M. Galili, K. Yvind, T. Morioka, and L. K. Oxenløwe, “Single-source chip-based frequency comb enabling extreme parallel data transmission,” Nat. Photonics 12, 469–473 (2018).
[Crossref]

Baets, R.

A. Vasiliev, A. Malik, M. Muneeb, B. Kuyken, R. Baets, and G. Roelkens, “On-chip mid-infrared photothermal spectroscopy using suspended silicon-on-insulator microring resonators,” ACS Sens. 1, 1301–1307 (2016).
[Crossref]

B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. W. Hänsch, J. Van Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, and N. Picqué, “An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6, 6310 (2015).
[Crossref]

Bagheri, M.

Ballabio, A.

Barbosa, F. A. S.

Baumgartner, Y.

Becouarn, L.

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys. 94, 6447–6455 (2003).
[Crossref]

L. A. Eyres, P. J. Tourreau, T. J. Pinguet, C. B. Ebert, J. S. Harris, M. M. Fejer, L. Becouarn, B. Gerard, and E. Lallier, “All-epitaxial fabrication of thick, orientation-patterned GaAs films for nonlinear optical frequency conversion,” Appl. Phys. Lett. 79, 904 (2001).
[Crossref]

Bertoni, H. L.

T. Tamir, G. Griffel, and H. L. Bertoni, Guided-Wave Optoelectronics: Device Characterization, Analysis, and Design (Springer, 2013).

Bewley, W. W.

Blake, G. A.

Blaser, S.

A. Hugi, G. Villares, S. Blaser, H. C. Liu, and J. Faist, “Mid-infrared frequency comb based on a quantum cascade laser,” Nature 492, 229–233 (2012).
[Crossref]

Boes, A.

L. Chang, A. Boes, X. Guo, D. T. Spencer, M. J. Kennedy, J. D. Peters, N. Volet, J. Chiles, A. Kowligy, N. Nader, D. D. Hickstein, E. J. Stanton, S. A. Diddams, S. B. Papp, and J. E. Bowers, “Nonlinear optics: heterogeneously integrated GaAs waveguides on insulator for efficient frequency conversion,” Laser Photon. Rev. 12, 1870044 (2018).
[Crossref]

Bouville, D.

Bowers, J. E.

L. Chang, A. Boes, X. Guo, D. T. Spencer, M. J. Kennedy, J. D. Peters, N. Volet, J. Chiles, A. Kowligy, N. Nader, D. D. Hickstein, E. J. Stanton, S. A. Diddams, S. B. Papp, and J. E. Bowers, “Nonlinear optics: heterogeneously integrated GaAs waveguides on insulator for efficient frequency conversion,” Laser Photon. Rev. 12, 1870044 (2018).
[Crossref]

H. Park, A. W. Fang, S. Kodama, and J. E. Bowers, “Hybrid silicon evanescent laser fabricated with a silicon waveguide and III-V offset quantum wells,” Opt. Express 13, 9460–9464 (2005).
[Crossref]

E. J. Stanton, A. Spott, J. Peters, M. L. Davenport, A. Malik, N. Volet, J. Liu, C. D. Merritt, I. Vurgaftman, C. S. Kim, J. R. Meyer, and J. E. Bowers, “Multi-spectral quantum cascade lasers on silicon with integrated multiplexers,” in Conference on Lasers and Electro-Optics (CLEO) (2019).

Brès, C.-S.

D. Grassani, E. Tagkoudi, H. Guo, C. Herkommer, F. Yang, T. J. Kippenberg, and C.-S. Brès, “Mid infrared gas spectroscopy using efficient fiber laser driven photonic chip-based supercontinuum,” Nat. Commun. 10, 1553 (2019).
[Crossref]

Bryant, A.

Bulu, I.

R. Shankar, I. Bulu, and M. Lončar, “Integrated high-quality factor silicon-on-sapphire ring resonators for the mid-infrared,” Appl. Phys. Lett. 102, 051108 (2013).
[Crossref]

Cabello, A.

A. Cabello and F. Sciarrino, “Loophole-free Bell test based on local precertification of photon’s presence,” Phys. Rev. X 2, 21010 (2012).
[Crossref]

Camacho-González, G. F.

A. Rao, J. Chiles, S. Khan, S. Toroghi, M. Malinowski, G. F. Camacho-González, and S. Fathpour, “Second-harmonic generation in single-mode integrated waveguides based on mode-shape modulation,” Appl. Phys. Lett. 110, 111109 (2017).
[Crossref]

Canedy, C. L.

Cardenas, J.

Carlson, D. R.

D. R. Carlson, D. D. Hickstein, W. Zhang, A. J. Metcalf, F. Quinlan, S. A. Diddams, and S. B. Papp, “Ultrafast electro-optic light with subcycle control,” Science 361, 1358–1363 (2018).
[Crossref]

A. S. Kowligy, A. Lind, D. D. Hickstein, D. R. Carlson, H. Timmers, N. Nader, F. C. Cruz, G. Ycas, S. B. Papp, and S. A. Diddams, “Mid-infrared frequency comb generation via cascaded quadratic nonlinearities in quasi-phase-matched waveguides,” Opt. Lett. 43, 1678–1681 (2018).
[Crossref]

D. D. Hickstein, H. Jung, D. R. Carlson, A. Lind, I. Coddington, K. Srinivasan, G. G. Ycas, D. C. Cole, A. Kowligy, C. Fredrick, S. Droste, E. S. Lamb, N. R. Newbury, H. X. Tang, S. A. Diddams, and S. B. Papp, “Ultrabroadband supercontinuum generation and frequency-comb stabilization using on-chip waveguides with both cubic and quadratic nonlinearities,” Phys. Rev. Appl. 8, 14025 (2017).
[Crossref]

Cerutti, L.

Chang, L.

L. Chang, A. Boes, X. Guo, D. T. Spencer, M. J. Kennedy, J. D. Peters, N. Volet, J. Chiles, A. Kowligy, N. Nader, D. D. Hickstein, E. J. Stanton, S. A. Diddams, S. B. Papp, and J. E. Bowers, “Nonlinear optics: heterogeneously integrated GaAs waveguides on insulator for efficient frequency conversion,” Laser Photon. Rev. 12, 1870044 (2018).
[Crossref]

Chang, Y.

Y. Chang, S. I. Yi, S. Shi, E. Hu, W. H. Weinberg, and J. Merz, “Long-term and thermal stability of hydrogen ion-passivated AlGaAs/GaAs near-surface quantum wells,” J. Vac. Sci. Technol. B 13, 1801–1804 (1995).
[Crossref]

Cheben, P.

Chen, X.

Z. Cheng, X. Chen, C. Y. Wong, K. Xu, and H. K. Tsang, “Mid-infrared suspended membrane waveguide and ring resonator on silicon-on-insulator,” IEEE Photon. J. 4, 1510–1519 (2012).
[Crossref]

Cheng, Z.

Z. Cheng, X. Chen, C. Y. Wong, K. Xu, and H. K. Tsang, “Mid-infrared suspended membrane waveguide and ring resonator on silicon-on-insulator,” IEEE Photon. J. 4, 1510–1519 (2012).
[Crossref]

Chiles, J.

N. Nader, D. L. Maser, F. C. Cruz, A. Kowligy, H. Timmers, J. Chiles, C. Fredrick, D. A. Westly, S. W. Nam, R. P. Mirin, J. M. Shainline, and S. Diddams, “Versatile silicon-waveguide supercontinuum for coherent mid-infrared spectroscopy,” APL Photon. 3, 36102 (2018).
[Crossref]

L. Chang, A. Boes, X. Guo, D. T. Spencer, M. J. Kennedy, J. D. Peters, N. Volet, J. Chiles, A. Kowligy, N. Nader, D. D. Hickstein, E. J. Stanton, S. A. Diddams, S. B. Papp, and J. E. Bowers, “Nonlinear optics: heterogeneously integrated GaAs waveguides on insulator for efficient frequency conversion,” Laser Photon. Rev. 12, 1870044 (2018).
[Crossref]

A. Rao, J. Chiles, S. Khan, S. Toroghi, M. Malinowski, G. F. Camacho-González, and S. Fathpour, “Second-harmonic generation in single-mode integrated waveguides based on mode-shape modulation,” Appl. Phys. Lett. 110, 111109 (2017).
[Crossref]

J. Chiles and S. Fathpour, “Mid-infrared integrated waveguide modulators based on silicon-on-lithium-niobate photonics,” Optica 1, 350–355 (2014).
[Crossref]

J. Chiles, S. Khan, J. Ma, and S. Fathpour, “High-contrast, all-silicon waveguiding platform for ultra-broadband mid-infrared photonics,” Appl. Phys. Lett. 103, 151106 (2013).
[Crossref]

N. Nader, J. Chiles, H. Timmers, E. J. Stanton, A. Kowligy, A. Lind, S. W. Nam, S. A. Diddams, and R. P. Mirin, “Coherent on-chip frequency combs spanning 1.5–7.5  μm for dual-comb spectroscopy,” in Advanced Photonics (BGPP, IPR, NP, NOMA, Sensors, Networks, SPPCom, SOF), OSA Technical Digest (online) (Optical Society of America, 2018), paper NpM4I.8.

Choi, D.-Y.

Ciret, C.

Coddington, I.

D. D. Hickstein, H. Jung, D. R. Carlson, A. Lind, I. Coddington, K. Srinivasan, G. G. Ycas, D. C. Cole, A. Kowligy, C. Fredrick, S. Droste, E. S. Lamb, N. R. Newbury, H. X. Tang, S. A. Diddams, and S. B. Papp, “Ultrabroadband supercontinuum generation and frequency-comb stabilization using on-chip waveguides with both cubic and quadratic nonlinearities,” Phys. Rev. Appl. 8, 14025 (2017).
[Crossref]

I. Coddington, N. Newbury, and W. Swann, “Dual-comb spectroscopy,” Optica 3, 414–426 (2016).
[Crossref]

F. C. Cruz, D. L. Maser, T. Johnson, G. Ycas, A. Klose, F. R. Giorgetta, I. Coddington, and S. A. Diddams, “Mid-infrared optical frequency combs based on difference frequency generation for molecular spectroscopy,” Opt. Express 23, 26814–26824 (2015).
[Crossref]

Coen, S.

B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. W. Hänsch, J. Van Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, and N. Picqué, “An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6, 6310 (2015).
[Crossref]

Cole, D. C.

D. D. Hickstein, H. Jung, D. R. Carlson, A. Lind, I. Coddington, K. Srinivasan, G. G. Ycas, D. C. Cole, A. Kowligy, C. Fredrick, S. Droste, E. S. Lamb, N. R. Newbury, H. X. Tang, S. A. Diddams, and S. B. Papp, “Ultrabroadband supercontinuum generation and frequency-comb stabilization using on-chip waveguides with both cubic and quadratic nonlinearities,” Phys. Rev. Appl. 8, 14025 (2017).
[Crossref]

Combrie, S.

Cossel, K. C.

K. C. Cossel, E. M. Waxman, I. A. Finneran, G. A. Blake, J. Ye, and N. R. Newbury, “Gas-phase broadband spectroscopy using active sources: progress, status, and applications [Invited],” J. Opt. Soc. Am. B 34, 104–129 (2017).
[Crossref]

F. Adler, M. J. Thorpe, K. C. Cossel, and J. Ye, “Cavity-enhanced direct frequency comb spectroscopy: technology and applications,” Ann. Rev. Anal. Chem. 3, 175–205 (2010).
[Crossref]

Cruz, F. C.

Czornomaz, L.

Da Ros, F.

H. Hu, F. Da Ros, M. Pu, F. Ye, K. Ingerslev, E. Porto da Silva, M. Nooruzzaman, Y. Amma, Y. Sasaki, T. Mizuno, Y. Miyamoto, L. Ottaviano, E. Semenova, P. Guan, D. Zibar, M. Galili, K. Yvind, T. Morioka, and L. K. Oxenløwe, “Single-source chip-based frequency comb enabling extreme parallel data transmission,” Nat. Photonics 12, 469–473 (2018).
[Crossref]

Dave, U. D.

Davenport, M. L.

E. J. Stanton, A. Spott, J. Peters, M. L. Davenport, A. Malik, N. Volet, J. Liu, C. D. Merritt, I. Vurgaftman, C. S. Kim, J. R. Meyer, and J. E. Bowers, “Multi-spectral quantum cascade lasers on silicon with integrated multiplexers,” in Conference on Lasers and Electro-Optics (CLEO) (2019).

De Haseth, J. A.

P. R. Griffiths and J. A. De Haseth, Fourier Transform Infrared Spectrometry, Vol. 171 of Chemical Analysis: A Series of Monographs on Analytical Chemistry and Its Applications (Wiley, 2007).

De Rossi, A.

Desiatov, B.

Diddams, S.

N. Nader, D. L. Maser, F. C. Cruz, A. Kowligy, H. Timmers, J. Chiles, C. Fredrick, D. A. Westly, S. W. Nam, R. P. Mirin, J. M. Shainline, and S. Diddams, “Versatile silicon-waveguide supercontinuum for coherent mid-infrared spectroscopy,” APL Photon. 3, 36102 (2018).
[Crossref]

Diddams, S. A.

L. Chang, A. Boes, X. Guo, D. T. Spencer, M. J. Kennedy, J. D. Peters, N. Volet, J. Chiles, A. Kowligy, N. Nader, D. D. Hickstein, E. J. Stanton, S. A. Diddams, S. B. Papp, and J. E. Bowers, “Nonlinear optics: heterogeneously integrated GaAs waveguides on insulator for efficient frequency conversion,” Laser Photon. Rev. 12, 1870044 (2018).
[Crossref]

D. R. Carlson, D. D. Hickstein, W. Zhang, A. J. Metcalf, F. Quinlan, S. A. Diddams, and S. B. Papp, “Ultrafast electro-optic light with subcycle control,” Science 361, 1358–1363 (2018).
[Crossref]

H. Timmers, A. Kowligy, A. Lind, F. C. Cruz, N. Nader, M. Silfies, G. Ycas, T. K. Allison, P. G. Schunemann, S. B. Papp, and S. A. Diddams, “Molecular fingerprinting with bright, broadband infrared frequency combs,” Optica 5, 727–732 (2018).
[Crossref]

A. S. Kowligy, A. Lind, D. D. Hickstein, D. R. Carlson, H. Timmers, N. Nader, F. C. Cruz, G. Ycas, S. B. Papp, and S. A. Diddams, “Mid-infrared frequency comb generation via cascaded quadratic nonlinearities in quasi-phase-matched waveguides,” Opt. Lett. 43, 1678–1681 (2018).
[Crossref]

D. D. Hickstein, H. Jung, D. R. Carlson, A. Lind, I. Coddington, K. Srinivasan, G. G. Ycas, D. C. Cole, A. Kowligy, C. Fredrick, S. Droste, E. S. Lamb, N. R. Newbury, H. X. Tang, S. A. Diddams, and S. B. Papp, “Ultrabroadband supercontinuum generation and frequency-comb stabilization using on-chip waveguides with both cubic and quadratic nonlinearities,” Phys. Rev. Appl. 8, 14025 (2017).
[Crossref]

F. C. Cruz, D. L. Maser, T. Johnson, G. Ycas, A. Klose, F. R. Giorgetta, I. Coddington, and S. A. Diddams, “Mid-infrared optical frequency combs based on difference frequency generation for molecular spectroscopy,” Opt. Express 23, 26814–26824 (2015).
[Crossref]

N. Nader, J. Chiles, H. Timmers, E. J. Stanton, A. Kowligy, A. Lind, S. W. Nam, S. A. Diddams, and R. P. Mirin, “Coherent on-chip frequency combs spanning 1.5–7.5  μm for dual-comb spectroscopy,” in Advanced Photonics (BGPP, IPR, NP, NOMA, Sensors, Networks, SPPCom, SOF), OSA Technical Digest (online) (Optical Society of America, 2018), paper NpM4I.8.

Droste, S.

D. D. Hickstein, H. Jung, D. R. Carlson, A. Lind, I. Coddington, K. Srinivasan, G. G. Ycas, D. C. Cole, A. Kowligy, C. Fredrick, S. Droste, E. S. Lamb, N. R. Newbury, H. X. Tang, S. A. Diddams, and S. B. Papp, “Ultrabroadband supercontinuum generation and frequency-comb stabilization using on-chip waveguides with both cubic and quadratic nonlinearities,” Phys. Rev. Appl. 8, 14025 (2017).
[Crossref]

Dutt, A.

Ebert, C. B.

L. A. Eyres, P. J. Tourreau, T. J. Pinguet, C. B. Ebert, J. S. Harris, M. M. Fejer, L. Becouarn, B. Gerard, and E. Lallier, “All-epitaxial fabrication of thick, orientation-patterned GaAs films for nonlinear optical frequency conversion,” Appl. Phys. Lett. 79, 904 (2001).
[Crossref]

Eyres, L. A.

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys. 94, 6447–6455 (2003).
[Crossref]

L. A. Eyres, P. J. Tourreau, T. J. Pinguet, C. B. Ebert, J. S. Harris, M. M. Fejer, L. Becouarn, B. Gerard, and E. Lallier, “All-epitaxial fabrication of thick, orientation-patterned GaAs films for nonlinear optical frequency conversion,” Appl. Phys. Lett. 79, 904 (2001).
[Crossref]

Faist, J.

A. Hugi, G. Villares, S. Blaser, H. C. Liu, and J. Faist, “Mid-infrared frequency comb based on a quantum cascade laser,” Nature 492, 229–233 (2012).
[Crossref]

Fang, A. W.

Fathpour, S.

A. Rao, J. Chiles, S. Khan, S. Toroghi, M. Malinowski, G. F. Camacho-González, and S. Fathpour, “Second-harmonic generation in single-mode integrated waveguides based on mode-shape modulation,” Appl. Phys. Lett. 110, 111109 (2017).
[Crossref]

J. Chiles and S. Fathpour, “Mid-infrared integrated waveguide modulators based on silicon-on-lithium-niobate photonics,” Optica 1, 350–355 (2014).
[Crossref]

J. Chiles, S. Khan, J. Ma, and S. Fathpour, “High-contrast, all-silicon waveguiding platform for ultra-broadband mid-infrared photonics,” Appl. Phys. Lett. 103, 151106 (2013).
[Crossref]

Fejer, M. M.

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys. 94, 6447–6455 (2003).
[Crossref]

L. A. Eyres, P. J. Tourreau, T. J. Pinguet, C. B. Ebert, J. S. Harris, M. M. Fejer, L. Becouarn, B. Gerard, and E. Lallier, “All-epitaxial fabrication of thick, orientation-patterned GaAs films for nonlinear optical frequency conversion,” Appl. Phys. Lett. 79, 904 (2001).
[Crossref]

Feldman, A.

Finneran, I. A.

Florez, L. T.

E. Yablonovitch, D. M. Hwang, T. J. Gmitter, L. T. Florez, and J. P. Harbison, “Van der Waals bonding of GaAs epitaxial liftoff films onto arbitrary substrates,” Appl. Phys. Lett. 56, 2419–2421 (1990).
[Crossref]

Fredrick, C.

N. Nader, D. L. Maser, F. C. Cruz, A. Kowligy, H. Timmers, J. Chiles, C. Fredrick, D. A. Westly, S. W. Nam, R. P. Mirin, J. M. Shainline, and S. Diddams, “Versatile silicon-waveguide supercontinuum for coherent mid-infrared spectroscopy,” APL Photon. 3, 36102 (2018).
[Crossref]

D. D. Hickstein, H. Jung, D. R. Carlson, A. Lind, I. Coddington, K. Srinivasan, G. G. Ycas, D. C. Cole, A. Kowligy, C. Fredrick, S. Droste, E. S. Lamb, N. R. Newbury, H. X. Tang, S. A. Diddams, and S. B. Papp, “Ultrabroadband supercontinuum generation and frequency-comb stabilization using on-chip waveguides with both cubic and quadratic nonlinearities,” Phys. Rev. Appl. 8, 14025 (2017).
[Crossref]

Frez, C.

Frigerio, J.

Gaeta, A. L.

Gai, X.

Galili, M.

H. Hu, F. Da Ros, M. Pu, F. Ye, K. Ingerslev, E. Porto da Silva, M. Nooruzzaman, Y. Amma, Y. Sasaki, T. Mizuno, Y. Miyamoto, L. Ottaviano, E. Semenova, P. Guan, D. Zibar, M. Galili, K. Yvind, T. Morioka, and L. K. Oxenløwe, “Single-source chip-based frequency comb enabling extreme parallel data transmission,” Nat. Photonics 12, 469–473 (2018).
[Crossref]

Gerard, B.

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys. 94, 6447–6455 (2003).
[Crossref]

L. A. Eyres, P. J. Tourreau, T. J. Pinguet, C. B. Ebert, J. S. Harris, M. M. Fejer, L. Becouarn, B. Gerard, and E. Lallier, “All-epitaxial fabrication of thick, orientation-patterned GaAs films for nonlinear optical frequency conversion,” Appl. Phys. Lett. 79, 904 (2001).
[Crossref]

Gérard, B.

Giorgetta, F. R.

Gmitter, T. J.

E. Yablonovitch, D. M. Hwang, T. J. Gmitter, L. T. Florez, and J. P. Harbison, “Van der Waals bonding of GaAs epitaxial liftoff films onto arbitrary substrates,” Appl. Phys. Lett. 56, 2419–2421 (1990).
[Crossref]

Gorza, S.-P.

Grassani, D.

D. Grassani, E. Tagkoudi, H. Guo, C. Herkommer, F. Yang, T. J. Kippenberg, and C.-S. Brès, “Mid infrared gas spectroscopy using efficient fiber laser driven photonic chip-based supercontinuum,” Nat. Commun. 10, 1553 (2019).
[Crossref]

Griffel, G.

T. Tamir, G. Griffel, and H. L. Bertoni, Guided-Wave Optoelectronics: Device Characterization, Analysis, and Design (Springer, 2013).

Griffith, A. G.

Griffiths, P. R.

P. R. Griffiths and J. A. De Haseth, Fourier Transform Infrared Spectrometry, Vol. 171 of Chemical Analysis: A Series of Monographs on Analytical Chemistry and Its Applications (Wiley, 2007).

Grisard, A.

Guan, P.

H. Hu, F. Da Ros, M. Pu, F. Ye, K. Ingerslev, E. Porto da Silva, M. Nooruzzaman, Y. Amma, Y. Sasaki, T. Mizuno, Y. Miyamoto, L. Ottaviano, E. Semenova, P. Guan, D. Zibar, M. Galili, K. Yvind, T. Morioka, and L. K. Oxenløwe, “Single-source chip-based frequency comb enabling extreme parallel data transmission,” Nat. Photonics 12, 469–473 (2018).
[Crossref]

Guo, H.

D. Grassani, E. Tagkoudi, H. Guo, C. Herkommer, F. Yang, T. J. Kippenberg, and C.-S. Brès, “Mid infrared gas spectroscopy using efficient fiber laser driven photonic chip-based supercontinuum,” Nat. Commun. 10, 1553 (2019).
[Crossref]

Guo, X.

L. Chang, A. Boes, X. Guo, D. T. Spencer, M. J. Kennedy, J. D. Peters, N. Volet, J. Chiles, A. Kowligy, N. Nader, D. D. Hickstein, E. J. Stanton, S. A. Diddams, S. B. Papp, and J. E. Bowers, “Nonlinear optics: heterogeneously integrated GaAs waveguides on insulator for efficient frequency conversion,” Laser Photon. Rev. 12, 1870044 (2018).
[Crossref]

Hahn, H.

Halir, R.

Hamel, D. R.

D. R. Hamel, L. K. Shalm, H. Hübel, A. J. Miller, F. Marsili, V. B. Verma, R. P. Mirin, S. W. Nam, K. J. Resch, and T. Jennewein, “Direct generation of three-photon polarization entanglement,” Nat. Photonics 8, 801–807 (2014).
[Crossref]

Hänsch, T. W.

N. Picqué and T. W. Hänsch, “Frequency comb spectroscopy,” Nat. Photonics 13, 146–157 (2019).
[Crossref]

B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. W. Hänsch, J. Van Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, and N. Picqué, “An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6, 6310 (2015).
[Crossref]

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6, 440–449 (2012).
[Crossref]

Harbison, J. P.

E. Yablonovitch, D. M. Hwang, T. J. Gmitter, L. T. Florez, and J. P. Harbison, “Van der Waals bonding of GaAs epitaxial liftoff films onto arbitrary substrates,” Appl. Phys. Lett. 56, 2419–2421 (1990).
[Crossref]

Harris, J. S.

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys. 94, 6447–6455 (2003).
[Crossref]

L. A. Eyres, P. J. Tourreau, T. J. Pinguet, C. B. Ebert, J. S. Harris, M. M. Fejer, L. Becouarn, B. Gerard, and E. Lallier, “All-epitaxial fabrication of thick, orientation-patterned GaAs films for nonlinear optical frequency conversion,” Appl. Phys. Lett. 79, 904 (2001).
[Crossref]

Harvey, T.

Herkommer, C.

D. Grassani, E. Tagkoudi, H. Guo, C. Herkommer, F. Yang, T. J. Kippenberg, and C.-S. Brès, “Mid infrared gas spectroscopy using efficient fiber laser driven photonic chip-based supercontinuum,” Nat. Commun. 10, 1553 (2019).
[Crossref]

Hickstein, D. D.

L. Chang, A. Boes, X. Guo, D. T. Spencer, M. J. Kennedy, J. D. Peters, N. Volet, J. Chiles, A. Kowligy, N. Nader, D. D. Hickstein, E. J. Stanton, S. A. Diddams, S. B. Papp, and J. E. Bowers, “Nonlinear optics: heterogeneously integrated GaAs waveguides on insulator for efficient frequency conversion,” Laser Photon. Rev. 12, 1870044 (2018).
[Crossref]

D. R. Carlson, D. D. Hickstein, W. Zhang, A. J. Metcalf, F. Quinlan, S. A. Diddams, and S. B. Papp, “Ultrafast electro-optic light with subcycle control,” Science 361, 1358–1363 (2018).
[Crossref]

A. S. Kowligy, A. Lind, D. D. Hickstein, D. R. Carlson, H. Timmers, N. Nader, F. C. Cruz, G. Ycas, S. B. Papp, and S. A. Diddams, “Mid-infrared frequency comb generation via cascaded quadratic nonlinearities in quasi-phase-matched waveguides,” Opt. Lett. 43, 1678–1681 (2018).
[Crossref]

D. D. Hickstein, H. Jung, D. R. Carlson, A. Lind, I. Coddington, K. Srinivasan, G. G. Ycas, D. C. Cole, A. Kowligy, C. Fredrick, S. Droste, E. S. Lamb, N. R. Newbury, H. X. Tang, S. A. Diddams, and S. B. Papp, “Ultrabroadband supercontinuum generation and frequency-comb stabilization using on-chip waveguides with both cubic and quadratic nonlinearities,” Phys. Rev. Appl. 8, 14025 (2017).
[Crossref]

Holzner, S.

B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. W. Hänsch, J. Van Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, and N. Picqué, “An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6, 6310 (2015).
[Crossref]

Hu, E.

Y. Chang, S. I. Yi, S. Shi, E. Hu, W. H. Weinberg, and J. Merz, “Long-term and thermal stability of hydrogen ion-passivated AlGaAs/GaAs near-surface quantum wells,” J. Vac. Sci. Technol. B 13, 1801–1804 (1995).
[Crossref]

Hu, H.

H. Hu, F. Da Ros, M. Pu, F. Ye, K. Ingerslev, E. Porto da Silva, M. Nooruzzaman, Y. Amma, Y. Sasaki, T. Mizuno, Y. Miyamoto, L. Ottaviano, E. Semenova, P. Guan, D. Zibar, M. Galili, K. Yvind, T. Morioka, and L. K. Oxenløwe, “Single-source chip-based frequency comb enabling extreme parallel data transmission,” Nat. Photonics 12, 469–473 (2018).
[Crossref]

Hübel, H.

D. R. Hamel, L. K. Shalm, H. Hübel, A. J. Miller, F. Marsili, V. B. Verma, R. P. Mirin, S. W. Nam, K. J. Resch, and T. Jennewein, “Direct generation of three-photon polarization entanglement,” Nat. Photonics 8, 801–807 (2014).
[Crossref]

Hugi, A.

A. Hugi, G. Villares, S. Blaser, H. C. Liu, and J. Faist, “Mid-infrared frequency comb based on a quantum cascade laser,” Nature 492, 229–233 (2012).
[Crossref]

Hwang, D. M.

E. Yablonovitch, D. M. Hwang, T. J. Gmitter, L. T. Florez, and J. P. Harbison, “Van der Waals bonding of GaAs epitaxial liftoff films onto arbitrary substrates,” Appl. Phys. Lett. 56, 2419–2421 (1990).
[Crossref]

Ideguchi, T.

B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. W. Hänsch, J. Van Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, and N. Picqué, “An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6, 6310 (2015).
[Crossref]

Ingerslev, K.

H. Hu, F. Da Ros, M. Pu, F. Ye, K. Ingerslev, E. Porto da Silva, M. Nooruzzaman, Y. Amma, Y. Sasaki, T. Mizuno, Y. Miyamoto, L. Ottaviano, E. Semenova, P. Guan, D. Zibar, M. Galili, K. Yvind, T. Morioka, and L. K. Oxenløwe, “Single-source chip-based frequency comb enabling extreme parallel data transmission,” Nat. Photonics 12, 469–473 (2018).
[Crossref]

Isella, G.

Jennewein, T.

D. R. Hamel, L. K. Shalm, H. Hübel, A. J. Miller, F. Marsili, V. B. Verma, R. P. Mirin, S. W. Nam, K. J. Resch, and T. Jennewein, “Direct generation of three-photon polarization entanglement,” Nat. Photonics 8, 801–807 (2014).
[Crossref]

Ji, X.

Johnson, A. R.

Johnson, T.

Jung, H.

D. D. Hickstein, H. Jung, D. R. Carlson, A. Lind, I. Coddington, K. Srinivasan, G. G. Ycas, D. C. Cole, A. Kowligy, C. Fredrick, S. Droste, E. S. Lamb, N. R. Newbury, H. X. Tang, S. A. Diddams, and S. B. Papp, “Ultrabroadband supercontinuum generation and frequency-comb stabilization using on-chip waveguides with both cubic and quadratic nonlinearities,” Phys. Rev. Appl. 8, 14025 (2017).
[Crossref]

Kaminska, M.

M. Kaminska, “EL2 defect in GaAs,” Phys. Scripta T19B, 551–557 (1987).
[Crossref]

Keller, U.

Kennedy, M. J.

L. Chang, A. Boes, X. Guo, D. T. Spencer, M. J. Kennedy, J. D. Peters, N. Volet, J. Chiles, A. Kowligy, N. Nader, D. D. Hickstein, E. J. Stanton, S. A. Diddams, S. B. Papp, and J. E. Bowers, “Nonlinear optics: heterogeneously integrated GaAs waveguides on insulator for efficient frequency conversion,” Laser Photon. Rev. 12, 1870044 (2018).
[Crossref]

Khan, S.

A. Rao, J. Chiles, S. Khan, S. Toroghi, M. Malinowski, G. F. Camacho-González, and S. Fathpour, “Second-harmonic generation in single-mode integrated waveguides based on mode-shape modulation,” Appl. Phys. Lett. 110, 111109 (2017).
[Crossref]

J. Chiles, S. Khan, J. Ma, and S. Fathpour, “High-contrast, all-silicon waveguiding platform for ultra-broadband mid-infrared photonics,” Appl. Phys. Lett. 103, 151106 (2013).
[Crossref]

Khokhar, A. Z.

Khurgin, J. B.

Kim, C. S.

L. A. Sterczewski, J. Westberg, M. Bagheri, C. Frez, I. Vurgaftman, C. L. Canedy, W. W. Bewley, C. D. Merritt, C. S. Kim, M. Kim, J. R. Meyer, and G. Wysocki, “Mid-infrared dual-comb spectroscopy with interband cascade lasers,” Opt. Lett. 44, 2113–2116 (2019).
[Crossref]

E. J. Stanton, A. Spott, J. Peters, M. L. Davenport, A. Malik, N. Volet, J. Liu, C. D. Merritt, I. Vurgaftman, C. S. Kim, J. R. Meyer, and J. E. Bowers, “Multi-spectral quantum cascade lasers on silicon with integrated multiplexers,” in Conference on Lasers and Electro-Optics (CLEO) (2019).

Kim, M.

Kippenberg, T. J.

D. Grassani, E. Tagkoudi, H. Guo, C. Herkommer, F. Yang, T. J. Kippenberg, and C.-S. Brès, “Mid infrared gas spectroscopy using efficient fiber laser driven photonic chip-based supercontinuum,” Nat. Commun. 10, 1553 (2019).
[Crossref]

Klenner, A.

Klose, A.

Kodama, S.

Kowligy, A.

L. Chang, A. Boes, X. Guo, D. T. Spencer, M. J. Kennedy, J. D. Peters, N. Volet, J. Chiles, A. Kowligy, N. Nader, D. D. Hickstein, E. J. Stanton, S. A. Diddams, S. B. Papp, and J. E. Bowers, “Nonlinear optics: heterogeneously integrated GaAs waveguides on insulator for efficient frequency conversion,” Laser Photon. Rev. 12, 1870044 (2018).
[Crossref]

N. Nader, D. L. Maser, F. C. Cruz, A. Kowligy, H. Timmers, J. Chiles, C. Fredrick, D. A. Westly, S. W. Nam, R. P. Mirin, J. M. Shainline, and S. Diddams, “Versatile silicon-waveguide supercontinuum for coherent mid-infrared spectroscopy,” APL Photon. 3, 36102 (2018).
[Crossref]

H. Timmers, A. Kowligy, A. Lind, F. C. Cruz, N. Nader, M. Silfies, G. Ycas, T. K. Allison, P. G. Schunemann, S. B. Papp, and S. A. Diddams, “Molecular fingerprinting with bright, broadband infrared frequency combs,” Optica 5, 727–732 (2018).
[Crossref]

D. D. Hickstein, H. Jung, D. R. Carlson, A. Lind, I. Coddington, K. Srinivasan, G. G. Ycas, D. C. Cole, A. Kowligy, C. Fredrick, S. Droste, E. S. Lamb, N. R. Newbury, H. X. Tang, S. A. Diddams, and S. B. Papp, “Ultrabroadband supercontinuum generation and frequency-comb stabilization using on-chip waveguides with both cubic and quadratic nonlinearities,” Phys. Rev. Appl. 8, 14025 (2017).
[Crossref]

N. Nader, J. Chiles, H. Timmers, E. J. Stanton, A. Kowligy, A. Lind, S. W. Nam, S. A. Diddams, and R. P. Mirin, “Coherent on-chip frequency combs spanning 1.5–7.5  μm for dual-comb spectroscopy,” in Advanced Photonics (BGPP, IPR, NP, NOMA, Sensors, Networks, SPPCom, SOF), OSA Technical Digest (online) (Optical Society of America, 2018), paper NpM4I.8.

Kowligy, A. S.

Kozak, D. A.

D. A. Kozak, T. H. Stievater, R. Mahon, and W. S. Rabinovich, “Germanium-on-silicon waveguides at wavelengths from 6.85 to 11.25 microns,” IEEE J. Sel. Top. Quantum Electron. 24, 1–4 (2018).
[Crossref]

Kuo, P. S.

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys. 94, 6447–6455 (2003).
[Crossref]

Kuyken, B.

A. Vasiliev, A. Malik, M. Muneeb, B. Kuyken, R. Baets, and G. Roelkens, “On-chip mid-infrared photothermal spectroscopy using suspended silicon-on-insulator microring resonators,” ACS Sens. 1, 1301–1307 (2016).
[Crossref]

B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. W. Hänsch, J. Van Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, and N. Picqué, “An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6, 6310 (2015).
[Crossref]

U. D. Dave, C. Ciret, S.-P. Gorza, S. Combrie, A. De Rossi, F. Raineri, G. Roelkens, and B. Kuyken, “Dispersive-wave-based octave-spanning supercontinuum generation in InGaP membrane waveguides on a silicon substrate,” Opt. Lett. 40, 3584–3587 (2015).
[Crossref]

Lallier, E.

S. Roux, L. Cerutti, E. Tournie, B. Gérard, G. Patriarche, A. Grisard, and E. Lallier, “Low-loss orientation-patterned GaSb waveguides for mid-infrared parametric conversion,” Opt. Mater. Express 7, 3011–3016 (2017).
[Crossref]

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys. 94, 6447–6455 (2003).
[Crossref]

L. A. Eyres, P. J. Tourreau, T. J. Pinguet, C. B. Ebert, J. S. Harris, M. M. Fejer, L. Becouarn, B. Gerard, and E. Lallier, “All-epitaxial fabrication of thick, orientation-patterned GaAs films for nonlinear optical frequency conversion,” Appl. Phys. Lett. 79, 904 (2001).
[Crossref]

Lamb, E. S.

D. D. Hickstein, H. Jung, D. R. Carlson, A. Lind, I. Coddington, K. Srinivasan, G. G. Ycas, D. C. Cole, A. Kowligy, C. Fredrick, S. Droste, E. S. Lamb, N. R. Newbury, H. X. Tang, S. A. Diddams, and S. B. Papp, “Ultrabroadband supercontinuum generation and frequency-comb stabilization using on-chip waveguides with both cubic and quadratic nonlinearities,” Phys. Rev. Appl. 8, 14025 (2017).
[Crossref]

Lamont, M. R. E.

Le Roux, X.

Leo, F.

B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. W. Hänsch, J. Van Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, and N. Picqué, “An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6, 6310 (2015).
[Crossref]

Levi, O.

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys. 94, 6447–6455 (2003).
[Crossref]

Lind, A.

A. S. Kowligy, A. Lind, D. D. Hickstein, D. R. Carlson, H. Timmers, N. Nader, F. C. Cruz, G. Ycas, S. B. Papp, and S. A. Diddams, “Mid-infrared frequency comb generation via cascaded quadratic nonlinearities in quasi-phase-matched waveguides,” Opt. Lett. 43, 1678–1681 (2018).
[Crossref]

H. Timmers, A. Kowligy, A. Lind, F. C. Cruz, N. Nader, M. Silfies, G. Ycas, T. K. Allison, P. G. Schunemann, S. B. Papp, and S. A. Diddams, “Molecular fingerprinting with bright, broadband infrared frequency combs,” Optica 5, 727–732 (2018).
[Crossref]

D. D. Hickstein, H. Jung, D. R. Carlson, A. Lind, I. Coddington, K. Srinivasan, G. G. Ycas, D. C. Cole, A. Kowligy, C. Fredrick, S. Droste, E. S. Lamb, N. R. Newbury, H. X. Tang, S. A. Diddams, and S. B. Papp, “Ultrabroadband supercontinuum generation and frequency-comb stabilization using on-chip waveguides with both cubic and quadratic nonlinearities,” Phys. Rev. Appl. 8, 14025 (2017).
[Crossref]

N. Nader, J. Chiles, H. Timmers, E. J. Stanton, A. Kowligy, A. Lind, S. W. Nam, S. A. Diddams, and R. P. Mirin, “Coherent on-chip frequency combs spanning 1.5–7.5  μm for dual-comb spectroscopy,” in Advanced Photonics (BGPP, IPR, NP, NOMA, Sensors, Networks, SPPCom, SOF), OSA Technical Digest (online) (Optical Society of America, 2018), paper NpM4I.8.

Lipson, M.

Liu, H. C.

A. Hugi, G. Villares, S. Blaser, H. C. Liu, and J. Faist, “Mid-infrared frequency comb based on a quantum cascade laser,” Nature 492, 229–233 (2012).
[Crossref]

Liu, J.

E. J. Stanton, A. Spott, J. Peters, M. L. Davenport, A. Malik, N. Volet, J. Liu, C. D. Merritt, I. Vurgaftman, C. S. Kim, J. R. Meyer, and J. E. Bowers, “Multi-spectral quantum cascade lasers on silicon with integrated multiplexers,” in Conference on Lasers and Electro-Optics (CLEO) (2019).

Liu, Q.

Loncar, M.

M. Yu, B. Desiatov, Y. Okawachi, A. L. Gaeta, and M. Lončar, “Coherent two-octave-spanning supercontinuum generation in lithium-niobate waveguides,” Opt. Lett. 44, 1222–1225 (2019).
[Crossref]

R. Shankar, I. Bulu, and M. Lončar, “Integrated high-quality factor silicon-on-sapphire ring resonators for the mid-infrared,” Appl. Phys. Lett. 102, 051108 (2013).
[Crossref]

Loparo, Z. E.

A. V. Muraviev, V. O. Smolski, Z. E. Loparo, and K. L. Vodopyanov, “Massively parallel sensing of trace molecules and their isotopologues with broadband subharmonic mid-infrared frequency combs,” Nat. Photonics 12, 209–214 (2018).
[Crossref]

Luke, K.

Luther-Davies, B.

Ma, J.

J. Chiles, S. Khan, J. Ma, and S. Fathpour, “High-contrast, all-silicon waveguiding platform for ultra-broadband mid-infrared photonics,” Appl. Phys. Lett. 103, 151106 (2013).
[Crossref]

Ma, P.

Madden, S.

Mahon, R.

D. A. Kozak, T. H. Stievater, R. Mahon, and W. S. Rabinovich, “Germanium-on-silicon waveguides at wavelengths from 6.85 to 11.25 microns,” IEEE J. Sel. Top. Quantum Electron. 24, 1–4 (2018).
[Crossref]

T. H. Stievater, R. Mahon, D. Park, W. S. Rabinovich, M. W. Pruessner, J. B. Khurgin, and C. J. K. Richardson, “Mid-infrared difference-frequency generation in suspended GaAs waveguides,” Opt. Lett. 39, 945–948 (2014).
[Crossref]

Malik, A.

A. Vasiliev, A. Malik, M. Muneeb, B. Kuyken, R. Baets, and G. Roelkens, “On-chip mid-infrared photothermal spectroscopy using suspended silicon-on-insulator microring resonators,” ACS Sens. 1, 1301–1307 (2016).
[Crossref]

E. J. Stanton, A. Spott, J. Peters, M. L. Davenport, A. Malik, N. Volet, J. Liu, C. D. Merritt, I. Vurgaftman, C. S. Kim, J. R. Meyer, and J. E. Bowers, “Multi-spectral quantum cascade lasers on silicon with integrated multiplexers,” in Conference on Lasers and Electro-Optics (CLEO) (2019).

Malinowski, M.

A. Rao, J. Chiles, S. Khan, S. Toroghi, M. Malinowski, G. F. Camacho-González, and S. Fathpour, “Second-harmonic generation in single-mode integrated waveguides based on mode-shape modulation,” Appl. Phys. Lett. 110, 111109 (2017).
[Crossref]

Marris-Morini, D.

Marsili, F.

D. R. Hamel, L. K. Shalm, H. Hübel, A. J. Miller, F. Marsili, V. B. Verma, R. P. Mirin, S. W. Nam, K. J. Resch, and T. Jennewein, “Direct generation of three-photon polarization entanglement,” Nat. Photonics 8, 801–807 (2014).
[Crossref]

Maser, D. L.

N. Nader, D. L. Maser, F. C. Cruz, A. Kowligy, H. Timmers, J. Chiles, C. Fredrick, D. A. Westly, S. W. Nam, R. P. Mirin, J. M. Shainline, and S. Diddams, “Versatile silicon-waveguide supercontinuum for coherent mid-infrared spectroscopy,” APL Photon. 3, 36102 (2018).
[Crossref]

F. C. Cruz, D. L. Maser, T. Johnson, G. Ycas, A. Klose, F. R. Giorgetta, I. Coddington, and S. A. Diddams, “Mid-infrared optical frequency combs based on difference frequency generation for molecular spectroscopy,” Opt. Express 23, 26814–26824 (2015).
[Crossref]

Mashanovich, G. Z.

Mayer, A. S.

Merritt, C. D.

L. A. Sterczewski, J. Westberg, M. Bagheri, C. Frez, I. Vurgaftman, C. L. Canedy, W. W. Bewley, C. D. Merritt, C. S. Kim, M. Kim, J. R. Meyer, and G. Wysocki, “Mid-infrared dual-comb spectroscopy with interband cascade lasers,” Opt. Lett. 44, 2113–2116 (2019).
[Crossref]

E. J. Stanton, A. Spott, J. Peters, M. L. Davenport, A. Malik, N. Volet, J. Liu, C. D. Merritt, I. Vurgaftman, C. S. Kim, J. R. Meyer, and J. E. Bowers, “Multi-spectral quantum cascade lasers on silicon with integrated multiplexers,” in Conference on Lasers and Electro-Optics (CLEO) (2019).

Merz, J.

Y. Chang, S. I. Yi, S. Shi, E. Hu, W. H. Weinberg, and J. Merz, “Long-term and thermal stability of hydrogen ion-passivated AlGaAs/GaAs near-surface quantum wells,” J. Vac. Sci. Technol. B 13, 1801–1804 (1995).
[Crossref]

Metcalf, A. J.

D. R. Carlson, D. D. Hickstein, W. Zhang, A. J. Metcalf, F. Quinlan, S. A. Diddams, and S. B. Papp, “Ultrafast electro-optic light with subcycle control,” Science 361, 1358–1363 (2018).
[Crossref]

Meyer, J. R.

L. A. Sterczewski, J. Westberg, M. Bagheri, C. Frez, I. Vurgaftman, C. L. Canedy, W. W. Bewley, C. D. Merritt, C. S. Kim, M. Kim, J. R. Meyer, and G. Wysocki, “Mid-infrared dual-comb spectroscopy with interband cascade lasers,” Opt. Lett. 44, 2113–2116 (2019).
[Crossref]

E. J. Stanton, A. Spott, J. Peters, M. L. Davenport, A. Malik, N. Volet, J. Liu, C. D. Merritt, I. Vurgaftman, C. S. Kim, J. R. Meyer, and J. E. Bowers, “Multi-spectral quantum cascade lasers on silicon with integrated multiplexers,” in Conference on Lasers and Electro-Optics (CLEO) (2019).

Miller, A. J.

D. R. Hamel, L. K. Shalm, H. Hübel, A. J. Miller, F. Marsili, V. B. Verma, R. P. Mirin, S. W. Nam, K. J. Resch, and T. Jennewein, “Direct generation of three-photon polarization entanglement,” Nat. Photonics 8, 801–807 (2014).
[Crossref]

Miller, S. A.

Mirin, R. P.

N. Nader, D. L. Maser, F. C. Cruz, A. Kowligy, H. Timmers, J. Chiles, C. Fredrick, D. A. Westly, S. W. Nam, R. P. Mirin, J. M. Shainline, and S. Diddams, “Versatile silicon-waveguide supercontinuum for coherent mid-infrared spectroscopy,” APL Photon. 3, 36102 (2018).
[Crossref]

T. D. Shoji, W. Xie, K. L. Silverman, A. Feldman, T. Harvey, R. P. Mirin, and T. R. Schibli, “Ultra-low-noise monolithic mode-locked solid-state laser,” Optica 3, 995–998 (2016).
[Crossref]

D. R. Hamel, L. K. Shalm, H. Hübel, A. J. Miller, F. Marsili, V. B. Verma, R. P. Mirin, S. W. Nam, K. J. Resch, and T. Jennewein, “Direct generation of three-photon polarization entanglement,” Nat. Photonics 8, 801–807 (2014).
[Crossref]

N. Nader, J. Chiles, H. Timmers, E. J. Stanton, A. Kowligy, A. Lind, S. W. Nam, S. A. Diddams, and R. P. Mirin, “Coherent on-chip frequency combs spanning 1.5–7.5  μm for dual-comb spectroscopy,” in Advanced Photonics (BGPP, IPR, NP, NOMA, Sensors, Networks, SPPCom, SOF), OSA Technical Digest (online) (Optical Society of America, 2018), paper NpM4I.8.

Miyamoto, Y.

H. Hu, F. Da Ros, M. Pu, F. Ye, K. Ingerslev, E. Porto da Silva, M. Nooruzzaman, Y. Amma, Y. Sasaki, T. Mizuno, Y. Miyamoto, L. Ottaviano, E. Semenova, P. Guan, D. Zibar, M. Galili, K. Yvind, T. Morioka, and L. K. Oxenløwe, “Single-source chip-based frequency comb enabling extreme parallel data transmission,” Nat. Photonics 12, 469–473 (2018).
[Crossref]

Mizuno, T.

H. Hu, F. Da Ros, M. Pu, F. Ye, K. Ingerslev, E. Porto da Silva, M. Nooruzzaman, Y. Amma, Y. Sasaki, T. Mizuno, Y. Miyamoto, L. Ottaviano, E. Semenova, P. Guan, D. Zibar, M. Galili, K. Yvind, T. Morioka, and L. K. Oxenløwe, “Single-source chip-based frequency comb enabling extreme parallel data transmission,” Nat. Photonics 12, 469–473 (2018).
[Crossref]

Mohanty, A.

Molina-Fernández, I.

Morioka, T.

H. Hu, F. Da Ros, M. Pu, F. Ye, K. Ingerslev, E. Porto da Silva, M. Nooruzzaman, Y. Amma, Y. Sasaki, T. Mizuno, Y. Miyamoto, L. Ottaviano, E. Semenova, P. Guan, D. Zibar, M. Galili, K. Yvind, T. Morioka, and L. K. Oxenløwe, “Single-source chip-based frequency comb enabling extreme parallel data transmission,” Nat. Photonics 12, 469–473 (2018).
[Crossref]

Muneeb, M.

A. Vasiliev, A. Malik, M. Muneeb, B. Kuyken, R. Baets, and G. Roelkens, “On-chip mid-infrared photothermal spectroscopy using suspended silicon-on-insulator microring resonators,” ACS Sens. 1, 1301–1307 (2016).
[Crossref]

Muraviev, A. V.

A. V. Muraviev, V. O. Smolski, Z. E. Loparo, and K. L. Vodopyanov, “Massively parallel sensing of trace molecules and their isotopologues with broadband subharmonic mid-infrared frequency combs,” Nat. Photonics 12, 209–214 (2018).
[Crossref]

Nader, N.

N. Nader, D. L. Maser, F. C. Cruz, A. Kowligy, H. Timmers, J. Chiles, C. Fredrick, D. A. Westly, S. W. Nam, R. P. Mirin, J. M. Shainline, and S. Diddams, “Versatile silicon-waveguide supercontinuum for coherent mid-infrared spectroscopy,” APL Photon. 3, 36102 (2018).
[Crossref]

L. Chang, A. Boes, X. Guo, D. T. Spencer, M. J. Kennedy, J. D. Peters, N. Volet, J. Chiles, A. Kowligy, N. Nader, D. D. Hickstein, E. J. Stanton, S. A. Diddams, S. B. Papp, and J. E. Bowers, “Nonlinear optics: heterogeneously integrated GaAs waveguides on insulator for efficient frequency conversion,” Laser Photon. Rev. 12, 1870044 (2018).
[Crossref]

A. S. Kowligy, A. Lind, D. D. Hickstein, D. R. Carlson, H. Timmers, N. Nader, F. C. Cruz, G. Ycas, S. B. Papp, and S. A. Diddams, “Mid-infrared frequency comb generation via cascaded quadratic nonlinearities in quasi-phase-matched waveguides,” Opt. Lett. 43, 1678–1681 (2018).
[Crossref]

H. Timmers, A. Kowligy, A. Lind, F. C. Cruz, N. Nader, M. Silfies, G. Ycas, T. K. Allison, P. G. Schunemann, S. B. Papp, and S. A. Diddams, “Molecular fingerprinting with bright, broadband infrared frequency combs,” Optica 5, 727–732 (2018).
[Crossref]

N. Nader, J. Chiles, H. Timmers, E. J. Stanton, A. Kowligy, A. Lind, S. W. Nam, S. A. Diddams, and R. P. Mirin, “Coherent on-chip frequency combs spanning 1.5–7.5  μm for dual-comb spectroscopy,” in Advanced Photonics (BGPP, IPR, NP, NOMA, Sensors, Networks, SPPCom, SOF), OSA Technical Digest (online) (Optical Society of America, 2018), paper NpM4I.8.

Nam, S. W.

N. Nader, D. L. Maser, F. C. Cruz, A. Kowligy, H. Timmers, J. Chiles, C. Fredrick, D. A. Westly, S. W. Nam, R. P. Mirin, J. M. Shainline, and S. Diddams, “Versatile silicon-waveguide supercontinuum for coherent mid-infrared spectroscopy,” APL Photon. 3, 36102 (2018).
[Crossref]

D. R. Hamel, L. K. Shalm, H. Hübel, A. J. Miller, F. Marsili, V. B. Verma, R. P. Mirin, S. W. Nam, K. J. Resch, and T. Jennewein, “Direct generation of three-photon polarization entanglement,” Nat. Photonics 8, 801–807 (2014).
[Crossref]

N. Nader, J. Chiles, H. Timmers, E. J. Stanton, A. Kowligy, A. Lind, S. W. Nam, S. A. Diddams, and R. P. Mirin, “Coherent on-chip frequency combs spanning 1.5–7.5  μm for dual-comb spectroscopy,” in Advanced Photonics (BGPP, IPR, NP, NOMA, Sensors, Networks, SPPCom, SOF), OSA Technical Digest (online) (Optical Society of America, 2018), paper NpM4I.8.

Nedeljkovic, M.

Newbury, N.

Newbury, N. R.

D. D. Hickstein, H. Jung, D. R. Carlson, A. Lind, I. Coddington, K. Srinivasan, G. G. Ycas, D. C. Cole, A. Kowligy, C. Fredrick, S. Droste, E. S. Lamb, N. R. Newbury, H. X. Tang, S. A. Diddams, and S. B. Papp, “Ultrabroadband supercontinuum generation and frequency-comb stabilization using on-chip waveguides with both cubic and quadratic nonlinearities,” Phys. Rev. Appl. 8, 14025 (2017).
[Crossref]

K. C. Cossel, E. M. Waxman, I. A. Finneran, G. A. Blake, J. Ye, and N. R. Newbury, “Gas-phase broadband spectroscopy using active sources: progress, status, and applications [Invited],” J. Opt. Soc. Am. B 34, 104–129 (2017).
[Crossref]

Nooruzzaman, M.

H. Hu, F. Da Ros, M. Pu, F. Ye, K. Ingerslev, E. Porto da Silva, M. Nooruzzaman, Y. Amma, Y. Sasaki, T. Mizuno, Y. Miyamoto, L. Ottaviano, E. Semenova, P. Guan, D. Zibar, M. Galili, K. Yvind, T. Morioka, and L. K. Oxenløwe, “Single-source chip-based frequency comb enabling extreme parallel data transmission,” Nat. Photonics 12, 469–473 (2018).
[Crossref]

Okawachi, Y.

Ortega-Moñux, A.

Ottaviano, L.

H. Hu, F. Da Ros, M. Pu, F. Ye, K. Ingerslev, E. Porto da Silva, M. Nooruzzaman, Y. Amma, Y. Sasaki, T. Mizuno, Y. Miyamoto, L. Ottaviano, E. Semenova, P. Guan, D. Zibar, M. Galili, K. Yvind, T. Morioka, and L. K. Oxenløwe, “Single-source chip-based frequency comb enabling extreme parallel data transmission,” Nat. Photonics 12, 469–473 (2018).
[Crossref]

Oxenløwe, L. K.

H. Hu, F. Da Ros, M. Pu, F. Ye, K. Ingerslev, E. Porto da Silva, M. Nooruzzaman, Y. Amma, Y. Sasaki, T. Mizuno, Y. Miyamoto, L. Ottaviano, E. Semenova, P. Guan, D. Zibar, M. Galili, K. Yvind, T. Morioka, and L. K. Oxenløwe, “Single-source chip-based frequency comb enabling extreme parallel data transmission,” Nat. Photonics 12, 469–473 (2018).
[Crossref]

Papp, S. B.

L. Chang, A. Boes, X. Guo, D. T. Spencer, M. J. Kennedy, J. D. Peters, N. Volet, J. Chiles, A. Kowligy, N. Nader, D. D. Hickstein, E. J. Stanton, S. A. Diddams, S. B. Papp, and J. E. Bowers, “Nonlinear optics: heterogeneously integrated GaAs waveguides on insulator for efficient frequency conversion,” Laser Photon. Rev. 12, 1870044 (2018).
[Crossref]

D. R. Carlson, D. D. Hickstein, W. Zhang, A. J. Metcalf, F. Quinlan, S. A. Diddams, and S. B. Papp, “Ultrafast electro-optic light with subcycle control,” Science 361, 1358–1363 (2018).
[Crossref]

A. S. Kowligy, A. Lind, D. D. Hickstein, D. R. Carlson, H. Timmers, N. Nader, F. C. Cruz, G. Ycas, S. B. Papp, and S. A. Diddams, “Mid-infrared frequency comb generation via cascaded quadratic nonlinearities in quasi-phase-matched waveguides,” Opt. Lett. 43, 1678–1681 (2018).
[Crossref]

H. Timmers, A. Kowligy, A. Lind, F. C. Cruz, N. Nader, M. Silfies, G. Ycas, T. K. Allison, P. G. Schunemann, S. B. Papp, and S. A. Diddams, “Molecular fingerprinting with bright, broadband infrared frequency combs,” Optica 5, 727–732 (2018).
[Crossref]

D. D. Hickstein, H. Jung, D. R. Carlson, A. Lind, I. Coddington, K. Srinivasan, G. G. Ycas, D. C. Cole, A. Kowligy, C. Fredrick, S. Droste, E. S. Lamb, N. R. Newbury, H. X. Tang, S. A. Diddams, and S. B. Papp, “Ultrabroadband supercontinuum generation and frequency-comb stabilization using on-chip waveguides with both cubic and quadratic nonlinearities,” Phys. Rev. Appl. 8, 14025 (2017).
[Crossref]

Park, D.

Park, H.

Patriarche, G.

Penades, J. S.

Peters, J.

E. J. Stanton, A. Spott, J. Peters, M. L. Davenport, A. Malik, N. Volet, J. Liu, C. D. Merritt, I. Vurgaftman, C. S. Kim, J. R. Meyer, and J. E. Bowers, “Multi-spectral quantum cascade lasers on silicon with integrated multiplexers,” in Conference on Lasers and Electro-Optics (CLEO) (2019).

Peters, J. D.

L. Chang, A. Boes, X. Guo, D. T. Spencer, M. J. Kennedy, J. D. Peters, N. Volet, J. Chiles, A. Kowligy, N. Nader, D. D. Hickstein, E. J. Stanton, S. A. Diddams, S. B. Papp, and J. E. Bowers, “Nonlinear optics: heterogeneously integrated GaAs waveguides on insulator for efficient frequency conversion,” Laser Photon. Rev. 12, 1870044 (2018).
[Crossref]

Picqué, N.

N. Picqué and T. W. Hänsch, “Frequency comb spectroscopy,” Nat. Photonics 13, 146–157 (2019).
[Crossref]

B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. W. Hänsch, J. Van Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, and N. Picqué, “An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6, 6310 (2015).
[Crossref]

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6, 440–449 (2012).
[Crossref]

Pinguet, T. J.

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys. 94, 6447–6455 (2003).
[Crossref]

L. A. Eyres, P. J. Tourreau, T. J. Pinguet, C. B. Ebert, J. S. Harris, M. M. Fejer, L. Becouarn, B. Gerard, and E. Lallier, “All-epitaxial fabrication of thick, orientation-patterned GaAs films for nonlinear optical frequency conversion,” Appl. Phys. Lett. 79, 904 (2001).
[Crossref]

Porto da Silva, E.

H. Hu, F. Da Ros, M. Pu, F. Ye, K. Ingerslev, E. Porto da Silva, M. Nooruzzaman, Y. Amma, Y. Sasaki, T. Mizuno, Y. Miyamoto, L. Ottaviano, E. Semenova, P. Guan, D. Zibar, M. Galili, K. Yvind, T. Morioka, and L. K. Oxenløwe, “Single-source chip-based frequency comb enabling extreme parallel data transmission,” Nat. Photonics 12, 469–473 (2018).
[Crossref]

Pruessner, M. W.

Pu, M.

Y. Zheng, M. Pu, H. K. Sahoo, E. Semenova, and K. Yvind, “High-quality-factor AlGaAs-on-sapphire microring resonators,” J. Lightwave Technol. 37, 868–874 (2019).
[Crossref]

H. Hu, F. Da Ros, M. Pu, F. Ye, K. Ingerslev, E. Porto da Silva, M. Nooruzzaman, Y. Amma, Y. Sasaki, T. Mizuno, Y. Miyamoto, L. Ottaviano, E. Semenova, P. Guan, D. Zibar, M. Galili, K. Yvind, T. Morioka, and L. K. Oxenløwe, “Single-source chip-based frequency comb enabling extreme parallel data transmission,” Nat. Photonics 12, 469–473 (2018).
[Crossref]

Qu, Z.

Quinlan, F.

D. R. Carlson, D. D. Hickstein, W. Zhang, A. J. Metcalf, F. Quinlan, S. A. Diddams, and S. B. Papp, “Ultrafast electro-optic light with subcycle control,” Science 361, 1358–1363 (2018).
[Crossref]

Rabinovich, W. S.

D. A. Kozak, T. H. Stievater, R. Mahon, and W. S. Rabinovich, “Germanium-on-silicon waveguides at wavelengths from 6.85 to 11.25 microns,” IEEE J. Sel. Top. Quantum Electron. 24, 1–4 (2018).
[Crossref]

T. H. Stievater, R. Mahon, D. Park, W. S. Rabinovich, M. W. Pruessner, J. B. Khurgin, and C. J. K. Richardson, “Mid-infrared difference-frequency generation in suspended GaAs waveguides,” Opt. Lett. 39, 945–948 (2014).
[Crossref]

Raineri, F.

Ramirez, J. M.

Rao, A.

A. Rao, J. Chiles, S. Khan, S. Toroghi, M. Malinowski, G. F. Camacho-González, and S. Fathpour, “Second-harmonic generation in single-mode integrated waveguides based on mode-shape modulation,” Appl. Phys. Lett. 110, 111109 (2017).
[Crossref]

Resch, K. J.

D. R. Hamel, L. K. Shalm, H. Hübel, A. J. Miller, F. Marsili, V. B. Verma, R. P. Mirin, S. W. Nam, K. J. Resch, and T. Jennewein, “Direct generation of three-photon polarization entanglement,” Nat. Photonics 8, 801–807 (2014).
[Crossref]

Richardson, C. J. K.

Roberts, S. P.

Roelkens, G.

A. Vasiliev, A. Malik, M. Muneeb, B. Kuyken, R. Baets, and G. Roelkens, “On-chip mid-infrared photothermal spectroscopy using suspended silicon-on-insulator microring resonators,” ACS Sens. 1, 1301–1307 (2016).
[Crossref]

B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. W. Hänsch, J. Van Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, and N. Picqué, “An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6, 6310 (2015).
[Crossref]

U. D. Dave, C. Ciret, S.-P. Gorza, S. Combrie, A. De Rossi, F. Raineri, G. Roelkens, and B. Kuyken, “Dispersive-wave-based octave-spanning supercontinuum generation in InGaP membrane waveguides on a silicon substrate,” Opt. Lett. 40, 3584–3587 (2015).
[Crossref]

Roux, S.

Sahoo, H. K.

Sasaki, Y.

H. Hu, F. Da Ros, M. Pu, F. Ye, K. Ingerslev, E. Porto da Silva, M. Nooruzzaman, Y. Amma, Y. Sasaki, T. Mizuno, Y. Miyamoto, L. Ottaviano, E. Semenova, P. Guan, D. Zibar, M. Galili, K. Yvind, T. Morioka, and L. K. Oxenløwe, “Single-source chip-based frequency comb enabling extreme parallel data transmission,” Nat. Photonics 12, 469–473 (2018).
[Crossref]

Schibli, T. R.

Schliesser, A.

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6, 440–449 (2012).
[Crossref]

Schneider, K.

Schunemann, P. G.

Sciarrino, F.

A. Cabello and F. Sciarrino, “Loophole-free Bell test based on local precertification of photon’s presence,” Phys. Rev. X 2, 21010 (2012).
[Crossref]

Seidler, P.

Semenova, E.

Y. Zheng, M. Pu, H. K. Sahoo, E. Semenova, and K. Yvind, “High-quality-factor AlGaAs-on-sapphire microring resonators,” J. Lightwave Technol. 37, 868–874 (2019).
[Crossref]

H. Hu, F. Da Ros, M. Pu, F. Ye, K. Ingerslev, E. Porto da Silva, M. Nooruzzaman, Y. Amma, Y. Sasaki, T. Mizuno, Y. Miyamoto, L. Ottaviano, E. Semenova, P. Guan, D. Zibar, M. Galili, K. Yvind, T. Morioka, and L. K. Oxenløwe, “Single-source chip-based frequency comb enabling extreme parallel data transmission,” Nat. Photonics 12, 469–473 (2018).
[Crossref]

Shainline, J. M.

N. Nader, D. L. Maser, F. C. Cruz, A. Kowligy, H. Timmers, J. Chiles, C. Fredrick, D. A. Westly, S. W. Nam, R. P. Mirin, J. M. Shainline, and S. Diddams, “Versatile silicon-waveguide supercontinuum for coherent mid-infrared spectroscopy,” APL Photon. 3, 36102 (2018).
[Crossref]

Shalm, L. K.

D. R. Hamel, L. K. Shalm, H. Hübel, A. J. Miller, F. Marsili, V. B. Verma, R. P. Mirin, S. W. Nam, K. J. Resch, and T. Jennewein, “Direct generation of three-photon polarization entanglement,” Nat. Photonics 8, 801–807 (2014).
[Crossref]

Shankar, R.

R. Shankar, I. Bulu, and M. Lončar, “Integrated high-quality factor silicon-on-sapphire ring resonators for the mid-infrared,” Appl. Phys. Lett. 102, 051108 (2013).
[Crossref]

Shi, S.

Y. Chang, S. I. Yi, S. Shi, E. Hu, W. H. Weinberg, and J. Merz, “Long-term and thermal stability of hydrogen ion-passivated AlGaAs/GaAs near-surface quantum wells,” J. Vac. Sci. Technol. B 13, 1801–1804 (1995).
[Crossref]

Shoji, T. D.

Silfies, M.

Silverman, K. L.

Skauli, T.

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys. 94, 6447–6455 (2003).
[Crossref]

Smolski, V. O.

A. V. Muraviev, V. O. Smolski, Z. E. Loparo, and K. L. Vodopyanov, “Massively parallel sensing of trace molecules and their isotopologues with broadband subharmonic mid-infrared frequency combs,” Nat. Photonics 12, 209–214 (2018).
[Crossref]

Soref, R.

R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4, 495–497 (2010).
[Crossref]

Spencer, D. T.

L. Chang, A. Boes, X. Guo, D. T. Spencer, M. J. Kennedy, J. D. Peters, N. Volet, J. Chiles, A. Kowligy, N. Nader, D. D. Hickstein, E. J. Stanton, S. A. Diddams, S. B. Papp, and J. E. Bowers, “Nonlinear optics: heterogeneously integrated GaAs waveguides on insulator for efficient frequency conversion,” Laser Photon. Rev. 12, 1870044 (2018).
[Crossref]

Spott, A.

E. J. Stanton, A. Spott, J. Peters, M. L. Davenport, A. Malik, N. Volet, J. Liu, C. D. Merritt, I. Vurgaftman, C. S. Kim, J. R. Meyer, and J. E. Bowers, “Multi-spectral quantum cascade lasers on silicon with integrated multiplexers,” in Conference on Lasers and Electro-Optics (CLEO) (2019).

Srinivasan, K.

D. D. Hickstein, H. Jung, D. R. Carlson, A. Lind, I. Coddington, K. Srinivasan, G. G. Ycas, D. C. Cole, A. Kowligy, C. Fredrick, S. Droste, E. S. Lamb, N. R. Newbury, H. X. Tang, S. A. Diddams, and S. B. Papp, “Ultrabroadband supercontinuum generation and frequency-comb stabilization using on-chip waveguides with both cubic and quadratic nonlinearities,” Phys. Rev. Appl. 8, 14025 (2017).
[Crossref]

Stanton, E. J.

L. Chang, A. Boes, X. Guo, D. T. Spencer, M. J. Kennedy, J. D. Peters, N. Volet, J. Chiles, A. Kowligy, N. Nader, D. D. Hickstein, E. J. Stanton, S. A. Diddams, S. B. Papp, and J. E. Bowers, “Nonlinear optics: heterogeneously integrated GaAs waveguides on insulator for efficient frequency conversion,” Laser Photon. Rev. 12, 1870044 (2018).
[Crossref]

N. Nader, J. Chiles, H. Timmers, E. J. Stanton, A. Kowligy, A. Lind, S. W. Nam, S. A. Diddams, and R. P. Mirin, “Coherent on-chip frequency combs spanning 1.5–7.5  μm for dual-comb spectroscopy,” in Advanced Photonics (BGPP, IPR, NP, NOMA, Sensors, Networks, SPPCom, SOF), OSA Technical Digest (online) (Optical Society of America, 2018), paper NpM4I.8.

E. J. Stanton, A. Spott, J. Peters, M. L. Davenport, A. Malik, N. Volet, J. Liu, C. D. Merritt, I. Vurgaftman, C. S. Kim, J. R. Meyer, and J. E. Bowers, “Multi-spectral quantum cascade lasers on silicon with integrated multiplexers,” in Conference on Lasers and Electro-Optics (CLEO) (2019).

Sterczewski, L. A.

Stievater, T. H.

D. A. Kozak, T. H. Stievater, R. Mahon, and W. S. Rabinovich, “Germanium-on-silicon waveguides at wavelengths from 6.85 to 11.25 microns,” IEEE J. Sel. Top. Quantum Electron. 24, 1–4 (2018).
[Crossref]

T. H. Stievater, R. Mahon, D. Park, W. S. Rabinovich, M. W. Pruessner, J. B. Khurgin, and C. J. K. Richardson, “Mid-infrared difference-frequency generation in suspended GaAs waveguides,” Opt. Lett. 39, 945–948 (2014).
[Crossref]

Swann, W.

Tagkoudi, E.

D. Grassani, E. Tagkoudi, H. Guo, C. Herkommer, F. Yang, T. J. Kippenberg, and C.-S. Brès, “Mid infrared gas spectroscopy using efficient fiber laser driven photonic chip-based supercontinuum,” Nat. Commun. 10, 1553 (2019).
[Crossref]

Tamir, T.

T. Tamir, G. Griffel, and H. L. Bertoni, Guided-Wave Optoelectronics: Device Characterization, Analysis, and Design (Springer, 2013).

Tang, H. X.

D. D. Hickstein, H. Jung, D. R. Carlson, A. Lind, I. Coddington, K. Srinivasan, G. G. Ycas, D. C. Cole, A. Kowligy, C. Fredrick, S. Droste, E. S. Lamb, N. R. Newbury, H. X. Tang, S. A. Diddams, and S. B. Papp, “Ultrabroadband supercontinuum generation and frequency-comb stabilization using on-chip waveguides with both cubic and quadratic nonlinearities,” Phys. Rev. Appl. 8, 14025 (2017).
[Crossref]

Thorpe, M. J.

F. Adler, M. J. Thorpe, K. C. Cossel, and J. Ye, “Cavity-enhanced direct frequency comb spectroscopy: technology and applications,” Ann. Rev. Anal. Chem. 3, 175–205 (2010).
[Crossref]

Timmers, H.

N. Nader, D. L. Maser, F. C. Cruz, A. Kowligy, H. Timmers, J. Chiles, C. Fredrick, D. A. Westly, S. W. Nam, R. P. Mirin, J. M. Shainline, and S. Diddams, “Versatile silicon-waveguide supercontinuum for coherent mid-infrared spectroscopy,” APL Photon. 3, 36102 (2018).
[Crossref]

H. Timmers, A. Kowligy, A. Lind, F. C. Cruz, N. Nader, M. Silfies, G. Ycas, T. K. Allison, P. G. Schunemann, S. B. Papp, and S. A. Diddams, “Molecular fingerprinting with bright, broadband infrared frequency combs,” Optica 5, 727–732 (2018).
[Crossref]

A. S. Kowligy, A. Lind, D. D. Hickstein, D. R. Carlson, H. Timmers, N. Nader, F. C. Cruz, G. Ycas, S. B. Papp, and S. A. Diddams, “Mid-infrared frequency comb generation via cascaded quadratic nonlinearities in quasi-phase-matched waveguides,” Opt. Lett. 43, 1678–1681 (2018).
[Crossref]

N. Nader, J. Chiles, H. Timmers, E. J. Stanton, A. Kowligy, A. Lind, S. W. Nam, S. A. Diddams, and R. P. Mirin, “Coherent on-chip frequency combs spanning 1.5–7.5  μm for dual-comb spectroscopy,” in Advanced Photonics (BGPP, IPR, NP, NOMA, Sensors, Networks, SPPCom, SOF), OSA Technical Digest (online) (Optical Society of America, 2018), paper NpM4I.8.

Toroghi, S.

A. Rao, J. Chiles, S. Khan, S. Toroghi, M. Malinowski, G. F. Camacho-González, and S. Fathpour, “Second-harmonic generation in single-mode integrated waveguides based on mode-shape modulation,” Appl. Phys. Lett. 110, 111109 (2017).
[Crossref]

Tournie, E.

Tourreau, P. J.

L. A. Eyres, P. J. Tourreau, T. J. Pinguet, C. B. Ebert, J. S. Harris, M. M. Fejer, L. Becouarn, B. Gerard, and E. Lallier, “All-epitaxial fabrication of thick, orientation-patterned GaAs films for nonlinear optical frequency conversion,” Appl. Phys. Lett. 79, 904 (2001).
[Crossref]

Tsang, H. K.

Z. Cheng, X. Chen, C. Y. Wong, K. Xu, and H. K. Tsang, “Mid-infrared suspended membrane waveguide and ring resonator on silicon-on-insulator,” IEEE Photon. J. 4, 1510–1519 (2012).
[Crossref]

Vakarin, V.

Van Campenhout, J.

B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. W. Hänsch, J. Van Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, and N. Picqué, “An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6, 6310 (2015).
[Crossref]

Vasiliev, A.

A. Vasiliev, A. Malik, M. Muneeb, B. Kuyken, R. Baets, and G. Roelkens, “On-chip mid-infrared photothermal spectroscopy using suspended silicon-on-insulator microring resonators,” ACS Sens. 1, 1301–1307 (2016).
[Crossref]

Verheyen, P.

B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. W. Hänsch, J. Van Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, and N. Picqué, “An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6, 6310 (2015).
[Crossref]

Verma, V. B.

D. R. Hamel, L. K. Shalm, H. Hübel, A. J. Miller, F. Marsili, V. B. Verma, R. P. Mirin, S. W. Nam, K. J. Resch, and T. Jennewein, “Direct generation of three-photon polarization entanglement,” Nat. Photonics 8, 801–807 (2014).
[Crossref]

Villares, G.

A. Hugi, G. Villares, S. Blaser, H. C. Liu, and J. Faist, “Mid-infrared frequency comb based on a quantum cascade laser,” Nature 492, 229–233 (2012).
[Crossref]

Vivien, L.

Vodopyanov, K. L.

A. V. Muraviev, V. O. Smolski, Z. E. Loparo, and K. L. Vodopyanov, “Massively parallel sensing of trace molecules and their isotopologues with broadband subharmonic mid-infrared frequency combs,” Nat. Photonics 12, 209–214 (2018).
[Crossref]

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys. 94, 6447–6455 (2003).
[Crossref]

Volet, N.

L. Chang, A. Boes, X. Guo, D. T. Spencer, M. J. Kennedy, J. D. Peters, N. Volet, J. Chiles, A. Kowligy, N. Nader, D. D. Hickstein, E. J. Stanton, S. A. Diddams, S. B. Papp, and J. E. Bowers, “Nonlinear optics: heterogeneously integrated GaAs waveguides on insulator for efficient frequency conversion,” Laser Photon. Rev. 12, 1870044 (2018).
[Crossref]

E. J. Stanton, A. Spott, J. Peters, M. L. Davenport, A. Malik, N. Volet, J. Liu, C. D. Merritt, I. Vurgaftman, C. S. Kim, J. R. Meyer, and J. E. Bowers, “Multi-spectral quantum cascade lasers on silicon with integrated multiplexers,” in Conference on Lasers and Electro-Optics (CLEO) (2019).

Vurgaftman, I.

L. A. Sterczewski, J. Westberg, M. Bagheri, C. Frez, I. Vurgaftman, C. L. Canedy, W. W. Bewley, C. D. Merritt, C. S. Kim, M. Kim, J. R. Meyer, and G. Wysocki, “Mid-infrared dual-comb spectroscopy with interband cascade lasers,” Opt. Lett. 44, 2113–2116 (2019).
[Crossref]

E. J. Stanton, A. Spott, J. Peters, M. L. Davenport, A. Malik, N. Volet, J. Liu, C. D. Merritt, I. Vurgaftman, C. S. Kim, J. R. Meyer, and J. E. Bowers, “Multi-spectral quantum cascade lasers on silicon with integrated multiplexers,” in Conference on Lasers and Electro-Optics (CLEO) (2019).

Wang, R.

Wang, T.

Wangüemert-Pérez, J. G.

Waxman, E. M.

Weinberg, W. H.

Y. Chang, S. I. Yi, S. Shi, E. Hu, W. H. Weinberg, and J. Merz, “Long-term and thermal stability of hydrogen ion-passivated AlGaAs/GaAs near-surface quantum wells,” J. Vac. Sci. Technol. B 13, 1801–1804 (1995).
[Crossref]

Welter, P.

Westberg, J.

Westly, D. A.

N. Nader, D. L. Maser, F. C. Cruz, A. Kowligy, H. Timmers, J. Chiles, C. Fredrick, D. A. Westly, S. W. Nam, R. P. Mirin, J. M. Shainline, and S. Diddams, “Versatile silicon-waveguide supercontinuum for coherent mid-infrared spectroscopy,” APL Photon. 3, 36102 (2018).
[Crossref]

Wong, C. Y.

Z. Cheng, X. Chen, C. Y. Wong, K. Xu, and H. K. Tsang, “Mid-infrared suspended membrane waveguide and ring resonator on silicon-on-insulator,” IEEE Photon. J. 4, 1510–1519 (2012).
[Crossref]

Wysocki, G.

Xie, W.

Xu, K.

Z. Cheng, X. Chen, C. Y. Wong, K. Xu, and H. K. Tsang, “Mid-infrared suspended membrane waveguide and ring resonator on silicon-on-insulator,” IEEE Photon. J. 4, 1510–1519 (2012).
[Crossref]

Yablonovitch, E.

E. Yablonovitch, D. M. Hwang, T. J. Gmitter, L. T. Florez, and J. P. Harbison, “Van der Waals bonding of GaAs epitaxial liftoff films onto arbitrary substrates,” Appl. Phys. Lett. 56, 2419–2421 (1990).
[Crossref]

Yan, M.

B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. W. Hänsch, J. Van Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, and N. Picqué, “An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6, 6310 (2015).
[Crossref]

Yang, F.

D. Grassani, E. Tagkoudi, H. Guo, C. Herkommer, F. Yang, T. J. Kippenberg, and C.-S. Brès, “Mid infrared gas spectroscopy using efficient fiber laser driven photonic chip-based supercontinuum,” Nat. Commun. 10, 1553 (2019).
[Crossref]

Yang, Z.

Ycas, G.

Ycas, G. G.

D. D. Hickstein, H. Jung, D. R. Carlson, A. Lind, I. Coddington, K. Srinivasan, G. G. Ycas, D. C. Cole, A. Kowligy, C. Fredrick, S. Droste, E. S. Lamb, N. R. Newbury, H. X. Tang, S. A. Diddams, and S. B. Papp, “Ultrabroadband supercontinuum generation and frequency-comb stabilization using on-chip waveguides with both cubic and quadratic nonlinearities,” Phys. Rev. Appl. 8, 14025 (2017).
[Crossref]

Ye, F.

H. Hu, F. Da Ros, M. Pu, F. Ye, K. Ingerslev, E. Porto da Silva, M. Nooruzzaman, Y. Amma, Y. Sasaki, T. Mizuno, Y. Miyamoto, L. Ottaviano, E. Semenova, P. Guan, D. Zibar, M. Galili, K. Yvind, T. Morioka, and L. K. Oxenløwe, “Single-source chip-based frequency comb enabling extreme parallel data transmission,” Nat. Photonics 12, 469–473 (2018).
[Crossref]

Ye, J.

K. C. Cossel, E. M. Waxman, I. A. Finneran, G. A. Blake, J. Ye, and N. R. Newbury, “Gas-phase broadband spectroscopy using active sources: progress, status, and applications [Invited],” J. Opt. Soc. Am. B 34, 104–129 (2017).
[Crossref]

F. Adler, M. J. Thorpe, K. C. Cossel, and J. Ye, “Cavity-enhanced direct frequency comb spectroscopy: technology and applications,” Ann. Rev. Anal. Chem. 3, 175–205 (2010).
[Crossref]

Yi, S. I.

Y. Chang, S. I. Yi, S. Shi, E. Hu, W. H. Weinberg, and J. Merz, “Long-term and thermal stability of hydrogen ion-passivated AlGaAs/GaAs near-surface quantum wells,” J. Vac. Sci. Technol. B 13, 1801–1804 (1995).
[Crossref]

Yu, M.

Yu, Y.

Yvind, K.

Y. Zheng, M. Pu, H. K. Sahoo, E. Semenova, and K. Yvind, “High-quality-factor AlGaAs-on-sapphire microring resonators,” J. Lightwave Technol. 37, 868–874 (2019).
[Crossref]

H. Hu, F. Da Ros, M. Pu, F. Ye, K. Ingerslev, E. Porto da Silva, M. Nooruzzaman, Y. Amma, Y. Sasaki, T. Mizuno, Y. Miyamoto, L. Ottaviano, E. Semenova, P. Guan, D. Zibar, M. Galili, K. Yvind, T. Morioka, and L. K. Oxenløwe, “Single-source chip-based frequency comb enabling extreme parallel data transmission,” Nat. Photonics 12, 469–473 (2018).
[Crossref]

Zhang, W.

D. R. Carlson, D. D. Hickstein, W. Zhang, A. J. Metcalf, F. Quinlan, S. A. Diddams, and S. B. Papp, “Ultrafast electro-optic light with subcycle control,” Science 361, 1358–1363 (2018).
[Crossref]

Zheng, Y.

Zibar, D.

H. Hu, F. Da Ros, M. Pu, F. Ye, K. Ingerslev, E. Porto da Silva, M. Nooruzzaman, Y. Amma, Y. Sasaki, T. Mizuno, Y. Miyamoto, L. Ottaviano, E. Semenova, P. Guan, D. Zibar, M. Galili, K. Yvind, T. Morioka, and L. K. Oxenløwe, “Single-source chip-based frequency comb enabling extreme parallel data transmission,” Nat. Photonics 12, 469–473 (2018).
[Crossref]

ACS Sens. (1)

A. Vasiliev, A. Malik, M. Muneeb, B. Kuyken, R. Baets, and G. Roelkens, “On-chip mid-infrared photothermal spectroscopy using suspended silicon-on-insulator microring resonators,” ACS Sens. 1, 1301–1307 (2016).
[Crossref]

Ann. Rev. Anal. Chem. (1)

F. Adler, M. J. Thorpe, K. C. Cossel, and J. Ye, “Cavity-enhanced direct frequency comb spectroscopy: technology and applications,” Ann. Rev. Anal. Chem. 3, 175–205 (2010).
[Crossref]

APL Photon. (1)

N. Nader, D. L. Maser, F. C. Cruz, A. Kowligy, H. Timmers, J. Chiles, C. Fredrick, D. A. Westly, S. W. Nam, R. P. Mirin, J. M. Shainline, and S. Diddams, “Versatile silicon-waveguide supercontinuum for coherent mid-infrared spectroscopy,” APL Photon. 3, 36102 (2018).
[Crossref]

Appl. Phys. Lett. (5)

R. Shankar, I. Bulu, and M. Lončar, “Integrated high-quality factor silicon-on-sapphire ring resonators for the mid-infrared,” Appl. Phys. Lett. 102, 051108 (2013).
[Crossref]

L. A. Eyres, P. J. Tourreau, T. J. Pinguet, C. B. Ebert, J. S. Harris, M. M. Fejer, L. Becouarn, B. Gerard, and E. Lallier, “All-epitaxial fabrication of thick, orientation-patterned GaAs films for nonlinear optical frequency conversion,” Appl. Phys. Lett. 79, 904 (2001).
[Crossref]

E. Yablonovitch, D. M. Hwang, T. J. Gmitter, L. T. Florez, and J. P. Harbison, “Van der Waals bonding of GaAs epitaxial liftoff films onto arbitrary substrates,” Appl. Phys. Lett. 56, 2419–2421 (1990).
[Crossref]

J. Chiles, S. Khan, J. Ma, and S. Fathpour, “High-contrast, all-silicon waveguiding platform for ultra-broadband mid-infrared photonics,” Appl. Phys. Lett. 103, 151106 (2013).
[Crossref]

A. Rao, J. Chiles, S. Khan, S. Toroghi, M. Malinowski, G. F. Camacho-González, and S. Fathpour, “Second-harmonic generation in single-mode integrated waveguides based on mode-shape modulation,” Appl. Phys. Lett. 110, 111109 (2017).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

D. A. Kozak, T. H. Stievater, R. Mahon, and W. S. Rabinovich, “Germanium-on-silicon waveguides at wavelengths from 6.85 to 11.25 microns,” IEEE J. Sel. Top. Quantum Electron. 24, 1–4 (2018).
[Crossref]

IEEE Photon. J. (1)

Z. Cheng, X. Chen, C. Y. Wong, K. Xu, and H. K. Tsang, “Mid-infrared suspended membrane waveguide and ring resonator on silicon-on-insulator,” IEEE Photon. J. 4, 1510–1519 (2012).
[Crossref]

J. Appl. Phys. (1)

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys. 94, 6447–6455 (2003).
[Crossref]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. B (1)

J. Vac. Sci. Technol. B (1)

Y. Chang, S. I. Yi, S. Shi, E. Hu, W. H. Weinberg, and J. Merz, “Long-term and thermal stability of hydrogen ion-passivated AlGaAs/GaAs near-surface quantum wells,” J. Vac. Sci. Technol. B 13, 1801–1804 (1995).
[Crossref]

Laser Photon. Rev. (1)

L. Chang, A. Boes, X. Guo, D. T. Spencer, M. J. Kennedy, J. D. Peters, N. Volet, J. Chiles, A. Kowligy, N. Nader, D. D. Hickstein, E. J. Stanton, S. A. Diddams, S. B. Papp, and J. E. Bowers, “Nonlinear optics: heterogeneously integrated GaAs waveguides on insulator for efficient frequency conversion,” Laser Photon. Rev. 12, 1870044 (2018).
[Crossref]

Nat. Commun. (2)

D. Grassani, E. Tagkoudi, H. Guo, C. Herkommer, F. Yang, T. J. Kippenberg, and C.-S. Brès, “Mid infrared gas spectroscopy using efficient fiber laser driven photonic chip-based supercontinuum,” Nat. Commun. 10, 1553 (2019).
[Crossref]

B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. W. Hänsch, J. Van Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, and N. Picqué, “An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6, 6310 (2015).
[Crossref]

Nat. Photonics (6)

A. V. Muraviev, V. O. Smolski, Z. E. Loparo, and K. L. Vodopyanov, “Massively parallel sensing of trace molecules and their isotopologues with broadband subharmonic mid-infrared frequency combs,” Nat. Photonics 12, 209–214 (2018).
[Crossref]

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6, 440–449 (2012).
[Crossref]

N. Picqué and T. W. Hänsch, “Frequency comb spectroscopy,” Nat. Photonics 13, 146–157 (2019).
[Crossref]

R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4, 495–497 (2010).
[Crossref]

H. Hu, F. Da Ros, M. Pu, F. Ye, K. Ingerslev, E. Porto da Silva, M. Nooruzzaman, Y. Amma, Y. Sasaki, T. Mizuno, Y. Miyamoto, L. Ottaviano, E. Semenova, P. Guan, D. Zibar, M. Galili, K. Yvind, T. Morioka, and L. K. Oxenløwe, “Single-source chip-based frequency comb enabling extreme parallel data transmission,” Nat. Photonics 12, 469–473 (2018).
[Crossref]

D. R. Hamel, L. K. Shalm, H. Hübel, A. J. Miller, F. Marsili, V. B. Verma, R. P. Mirin, S. W. Nam, K. J. Resch, and T. Jennewein, “Direct generation of three-photon polarization entanglement,” Nat. Photonics 8, 801–807 (2014).
[Crossref]

Nature (1)

A. Hugi, G. Villares, S. Blaser, H. C. Liu, and J. Faist, “Mid-infrared frequency comb based on a quantum cascade laser,” Nature 492, 229–233 (2012).
[Crossref]

Opt. Express (6)

J. S. Penades, A. Ortega-Moñux, M. Nedeljkovic, J. G. Wangüemert-Pérez, R. Halir, A. Z. Khokhar, C. Alonso-Ramos, Z. Qu, I. Molina-Fernández, P. Cheben, and G. Z. Mashanovich, “Suspended silicon mid-infrared waveguide devices with subwavelength grating metamaterial cladding,” Opt. Express 24, 22908–22916 (2016).
[Crossref]

A. G. Griffith, M. Yu, Y. Okawachi, J. Cardenas, A. Mohanty, A. L. Gaeta, and M. Lipson, “Coherent mid-infrared frequency combs in silicon-microresonators in the presence of Raman effects,” Opt. Express 24, 13044–13050 (2016).
[Crossref]

J. M. Ramirez, Q. Liu, V. Vakarin, J. Frigerio, A. Ballabio, X. Le Roux, D. Bouville, L. Vivien, G. Isella, and D. Marris-Morini, “Graded SiGe waveguides with broadband low-loss propagation in the mid infrared,” Opt. Express 26, 870–877 (2018).
[Crossref]

H. Park, A. W. Fang, S. Kodama, and J. E. Bowers, “Hybrid silicon evanescent laser fabricated with a silicon waveguide and III-V offset quantum wells,” Opt. Express 13, 9460–9464 (2005).
[Crossref]

F. C. Cruz, D. L. Maser, T. Johnson, G. Ycas, A. Klose, F. R. Giorgetta, I. Coddington, and S. A. Diddams, “Mid-infrared optical frequency combs based on difference frequency generation for molecular spectroscopy,” Opt. Express 23, 26814–26824 (2015).
[Crossref]

A. Klenner, A. S. Mayer, A. R. Johnson, K. Luke, M. R. E. Lamont, Y. Okawachi, M. Lipson, A. L. Gaeta, and U. Keller, “Gigahertz frequency comb offset stabilization based on supercontinuum generation in silicon nitride waveguides,” Opt. Express 24, 11043–11053 (2016).
[Crossref]

Opt. Lett. (5)

Opt. Mater. Express (2)

Optica (6)

Phys. Rev. Appl. (1)

D. D. Hickstein, H. Jung, D. R. Carlson, A. Lind, I. Coddington, K. Srinivasan, G. G. Ycas, D. C. Cole, A. Kowligy, C. Fredrick, S. Droste, E. S. Lamb, N. R. Newbury, H. X. Tang, S. A. Diddams, and S. B. Papp, “Ultrabroadband supercontinuum generation and frequency-comb stabilization using on-chip waveguides with both cubic and quadratic nonlinearities,” Phys. Rev. Appl. 8, 14025 (2017).
[Crossref]

Phys. Rev. X (1)

A. Cabello and F. Sciarrino, “Loophole-free Bell test based on local precertification of photon’s presence,” Phys. Rev. X 2, 21010 (2012).
[Crossref]

Phys. Scripta (1)

M. Kaminska, “EL2 defect in GaAs,” Phys. Scripta T19B, 551–557 (1987).
[Crossref]

Science (1)

D. R. Carlson, D. D. Hickstein, W. Zhang, A. J. Metcalf, F. Quinlan, S. A. Diddams, and S. B. Papp, “Ultrafast electro-optic light with subcycle control,” Science 361, 1358–1363 (2018).
[Crossref]

Other (5)

N. Nader, J. Chiles, H. Timmers, E. J. Stanton, A. Kowligy, A. Lind, S. W. Nam, S. A. Diddams, and R. P. Mirin, “Coherent on-chip frequency combs spanning 1.5–7.5  μm for dual-comb spectroscopy,” in Advanced Photonics (BGPP, IPR, NP, NOMA, Sensors, Networks, SPPCom, SOF), OSA Technical Digest (online) (Optical Society of America, 2018), paper NpM4I.8.

T. Tamir, G. Griffel, and H. L. Bertoni, Guided-Wave Optoelectronics: Device Characterization, Analysis, and Design (Springer, 2013).

D. W. Sheibley and M. H. Fowler, “Infrared spectra of various metal oxides in the region of 2 to 26 microns,” 1966, https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19670003469.pdf .

P. R. Griffiths and J. A. De Haseth, Fourier Transform Infrared Spectrometry, Vol. 171 of Chemical Analysis: A Series of Monographs on Analytical Chemistry and Its Applications (Wiley, 2007).

E. J. Stanton, A. Spott, J. Peters, M. L. Davenport, A. Malik, N. Volet, J. Liu, C. D. Merritt, I. Vurgaftman, C. S. Kim, J. R. Meyer, and J. E. Bowers, “Multi-spectral quantum cascade lasers on silicon with integrated multiplexers,” in Conference on Lasers and Electro-Optics (CLEO) (2019).

Supplementary Material (1)

NameDescription
» Supplement 1       Supplemental document

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Suspended AlGaAs on silicon platform. (a), (b) SEM images of a typical waveguide facet produced by dry etching; (c) photograph of a processed wafer prior to die release (an AlGaAs film was bonded over the entire surface, but devices were only fabricated in the middle dashed portion to limit e-beam lithography write time); (d) fabrication flow broken into six essential processing steps; (e) focus-stacked image of a microring resonator die after release from the wafer.
Fig. 2.
Fig. 2. Characterization of microring resonators. (a) SEM image of a resonator, showing pulley-coupler region and sidewall roughness of a ring; (b) dark-field optical micrograph of the top view of a fabricated resonator. Suspended regions encompass all waveguide features on the substrate. (c) Ring waveguide width versus propagation loss for resonances taken at λ = 1564 , 1556, and 1592 nm, from left to right. (d) Compiled propagation loss data versus wavelength. The first two data points (1260 and 1592 nm) use the intrinsic rather than loaded Q . For the others, the signal was AC-coupled (giving uncertain extinction ratio), so we used loaded Q . (e)–(i) Experimental and fitted traces for the resonance considered in each datapoint of subplot (d). W , width of ring waveguide; R , radius of ring resonator; Q , loaded quality factor.
Fig. 3.
Fig. 3. Experimental characterization of passive suspended AlGaAs components. (a) Loss-per-edge-coupler at different wavelengths. Top inset, inverted taper geometry, showing tip width w t , and taper sections T 1 and T 2 (see Table 1); bottom inset, optical micrograph of an inverted taper edge coupler; (b) bend radius versus single-bend loss at λ = 4.6 μm for a 1.4 μm-wide waveguide; (c) experimentally measured MMI power splitter efficiency for several variations on the length and width of the multimode propagation section; (d), (e) optical micrographs of cutback structures used to measure single-bend and single-splitter loss, respectively. Top inset of (e): zoom view of consecutive MMIs. Bottom inset of (e): top view of the simulated optical intensity of the designed MMI splitter.
Fig. 4.
Fig. 4. Supercontinuum generation from a 1560 nm pump. (a) Experimentally measured spectra for different waveguide-coupled pulse energies. Octave-spanning bandwidth is highlighted for the case of 3.4 pJ. Trace-to-trace offset is 20 dB. (b) Polarized supercontinuum output of a similar waveguide for the TE- and TM-pass cases, showing suppression of the second-harmonic peak for TE pass; (c) simulated waveguide GVD; inset, intensity profile for the mode under consideration.
Fig. 5.
Fig. 5. (a) Supercontinuum generation from a 3060 nm pump; experimentally measured spectra for different waveguide-coupled pulse energies (solid lines), and simulated spectrum at 45 pJ waveguide-coupled pulse energy (dotted line); trace-to-trace offset, 30 dB; (b) supercontinuum output for various total waveguide lengths at 67 pJ pulse energy; trace-to-trace offset, 20 dB; inset, optical micrograph of a paper-clip structure used for length variations. Dashed gray lines in (a, b) indicate approximate noise floor for each trace. (c) Simulated waveguide GVD; inset, intensity profile for the mode under consideration.

Tables (1)

Tables Icon

Table 1. Edge Coupler Geometries