Abstract

Creating strong coupling between quantum emitters and a high-fidelity photonic platform has been a central mission in the fields of quantum optics and quantum photonics. Here, we describe the design and fabrication of a scalable atom–light photonic interface based on a silicon nitride microring resonator on a transparent silicon dioxide-nitride multi-layer membrane. This new photonic platform is fully compatible with freespace cold atom laser cooling, stable trapping, and sorting at around 100 nm from the microring surface, permitting the formation of an organized, strongly interacting atom–photonic hybrid lattice. We demonstrate small radius (around 16 μm) microring and racetrack resonators with a high quality factor (Q) of 3.2×105, projecting a single atom cooperativity parameter (C) of 25 and a vacuum Rabi frequency (2g) of 2π×340MHz for trapped cesium atoms interacting with a microring resonator mode. We show that the quality factor is currently limited by the surface roughness of the multi-layer membrane, grown using low-pressure chemical vapor deposition processes. We discuss possible further improvements to a quality factor above 5×106, potentially achieving a single atom cooperativity parameter higher than 500 for strong single atom–photon coupling. Our microring platform may also find applications in on-chip solid-state quantum photonics.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Mechanical effects of light in optical resonators

Peter Domokos and Helmut Ritsch
J. Opt. Soc. Am. B 20(5) 1098-1130 (2003)

Compact suspended silicon microring resonators with ultrahigh quality

Wei C. Jiang, Jidong Zhang, and Qiang Lin
Opt. Express 22(1) 1187-1192 (2014)

Van der Waals enhancement of optical atom potentials via resonant coupling to surface polaritons

Joseph Kerckhoff and Hideo Mabuchi
Opt. Express 17(17) 14744-14760 (2009)

References

  • View by:
  • |
  • |
  • |

  1. J. L. O’brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nat. Photonics 3, 687–695 (2009).
    [Crossref]
  2. J. I. Cirac and H. J. Kimble, “Quantum optics, what next?” Nat. Photonics 11, 18–20 (2017).
    [Crossref]
  3. D. E. Chang, J. S. Douglas, A. González-Tudela, C.-L. Hung, and H. J. Kimble, “Colloquium: quantum matter built from nanoscopic lattices of atoms and photons,” Rev. Mod. Phys. 90, 031002 (2018).
    [Crossref]
  4. E. Vetsch, D. Reitz, G. Sague, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett. 104, 203603 (2010).
    [Crossref]
  5. A. Goban, K. S. Choi, D. J. Alton, D. Ding, C. Lacroute, M. Pototschnig, T. Thiele, N. P. Stern, and H. J. Kimble, “Demonstration of a state-insensitive, compensated nanofiber trap,” Phys. Rev. Lett. 109, 033603 (2012).
    [Crossref]
  6. S. Kato and T. Aoki, “Strong coupling between a trapped single atom and an all-fiber cavity,” Phys. Rev. Lett. 115, 093603 (2015).
    [Crossref]
  7. H. Sorensen, J.-B. Beguin, K. Kluge, I. Iakoupov, A. Sorensen, J. Muller, E. Polzik, and J. Appel, “Coherent backscattering of light off one-dimensional atomic strings,” Phys. Rev. Lett. 117, 133604 (2016).
    [Crossref]
  8. N. V. Corzo, B. Gouraud, A. Chandra, A. Goban, A. S. Sheremet, D. V. Kupriyanov, and J. Laurat, “Large Bragg reflection from one-dimensional chains of trapped atoms near a nanoscale waveguide,” Phys. Rev. Lett. 117, 133603 (2016).
    [Crossref]
  9. A. Goban, C.-L. Hung, J. Hood, S.-P. Yu, J. Muniz, O. Painter, and H. Kimble, “Superradiance for atoms trapped along a photonic crystal waveguide,” Phys. Rev. Lett. 115, 063601 (2015).
    [Crossref]
  10. J. D. Thompson, T. G. Tiecke, N. P. de Leon, J. Feist, A. V. Akimov, M. Gullans, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Coupling a single trapped atom to a nanoscale optical cavity,” Science 340, 1202–1205 (2013).
    [Crossref]
  11. T. G. Tiecke, J. D. Thompson, N. P. de Leon, L. R. Liu, V. Vuletic, and M. D. Lukin, “Nanophotonic quantum phase switch with a single atom,” Nature 508, 241–244 (2014).
    [Crossref]
  12. R. Grimm, M. Weidemüller, and Y. B. Ovchinnikov, “Optical dipole traps for neutral atoms,” in Advances in Atomic, Molecular, and Optical Physics (Elsevier, 2000), Vol. 42, pp. 95–170.
  13. F. Le Kien, V. I. Balykin, and K. Hakuta, “Atom trap and waveguide using a two-color evanescent light field around a subwavelength-diameter optical fiber,” Phys. Rev. A 70, 063403 (2004).
    [Crossref]
  14. V. Balykin, K. Hakuta, F. Le Kien, J. Liang, and M. Morinaga, “Atom trapping and guiding with a subwavelength-diameter optical fiber,” Phys. Rev. A 70, 011401 (2004).
    [Crossref]
  15. C. Lacroûte, K. Choi, A. Goban, D. Alton, D. Ding, N. Stern, and H. Kimble, “A state-insensitive, compensated nanofiber trap,” New J. Phys. 14, 023056 (2012).
    [Crossref]
  16. J. Pérez-Ríos, M. E. Kim, and C.-L. Hung, “Ultracold molecule assembly with photonic crystals,” New J. Phys. 19, 123035 (2017).
    [Crossref]
  17. C.-L. Hung, S. M. Meenehan, D. E. Chang, O. Painter, and H. J. Kimble, “Trapped atoms in one-dimensional photonic crystals,” New J. Phys. 15, 083026 (2013).
    [Crossref]
  18. A. Gonzalez-Tudela, C.-L. Hung, D. E. Chang, J. I. Cirac, and H. J. Kimble, “Subwavelength vacuum lattices and atom-atom interactions in two-dimensional photonic crystals,” Nat. Photonics 9, 320–325 (2015).
    [Crossref]
  19. J. S. Douglas, H. Habibian, C.-L. Hung, A. Gorshkov, H. J. Kimble, and D. E. Chang, “Quantum many-body models with cold atoms coupled to photonic crystals,” Nat. Photonics 9, 326–331 (2015).
    [Crossref]
  20. J. D. Hood, A. Goban, A. Asenjo-Garcia, M. Lu, S.-P. Yu, D. E. Chang, and H. Kimble, “Atom–atom interactions around the band edge of a photonic crystal waveguide,” Proc. Natl. Acad. Sci. USA 113, 10507–10512 (2016).
  21. T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. Kippenberg, K. Vahala, and H. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443, 671–674 (2006).
    [Crossref]
  22. D. O’shea, C. Junge, J. Volz, and A. Rauschenbeutel, “Fiber-optical switch controlled by a single atom,” Phys. Rev. Lett. 111, 193601(2013).
    [Crossref]
  23. I. Shomroni, S. Rosenblum, Y. Lovsky, O. Bechler, G. Guendelman, and B. Dayan, “All-optical routing of single photons by a one-atom switch controlled by a single photon,” Science 345, 903–906 (2014).
    [Crossref]
  24. P. E. Barclay, K. Srinivasan, O. Painter, B. Lev, and H. Mabuchi, “Integration of fiber-coupled high-QSiNx microdisks with atom chips,” Appl. Phys. Lett. 89, 131108 (2006).
    [Crossref]
  25. D. J. Alton, “Interacting single atoms with nanophotonics for chip-integrated quantum networks,” Ph.D. thesis (California Institute of Technology, 2013).
  26. Y. Xuan, Y. Liu, L. T. Varghese, A. J. Metcalf, X. Xue, P.-H. Wang, K. Han, J. A. Jaramillo-Villegas, A. A. Noman, C. Wang, S. Kim, M. Teng, Y. J. Lee, B. Niu, L. Fan, J. Wang, D. E. Leaird, A. M. Weiner, and M. Qi, “High-Q silicon nitride microresonators exhibiting low-power frequency comb initiation,” Optica 3, 1171–1180 (2016).
    [Crossref]
  27. X. Ji, F. A. S. Barbosa, S. P. Roberts, A. Dutt, J. Cardenas, Y. Okawachi, A. Bryant, A. L. Gaeta, and M. Lipson, “Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold,” Optica 4, 619–624 (2017).
    [Crossref]
  28. P. Kaufmann, X. Ji, K. Luke, M. Lipson, and S. Ramelow, “Characterization of ultra-high-q Si3N4 micro-ring resonators with high-precision temperature control,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2018), p. JTu2A.72.
  29. M. E. Kim, T.-H. Chang, B. M. Fields, C.-A. Chen, and C.-L. Hung, “Trapping single atoms on a nanophotonic circuit with configurable tweezer lattices,” Nat. Commun. 10, 1647 (2019).
    [Crossref]
  30. https://www.lumerical.com .
  31. K. Srinivasan and O. Painter, “Mode coupling and cavity-quantum-dot interactions in a fiber-coupled microdisk cavity,” Phys. Rev. A 75, 023814 (2007).
    [Crossref]
  32. S. P. Roberts, X. Ji, J. Cardenas, A. Bryant, and M. Lipson, “Sidewall roughness in si3n4 waveguides directly measured by atomic force microscopy,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2017), p. SM3K.6.
  33. C. J. Krückel, A. Fülöp, T. Klintberg, J. Bengtsson, P. A. Andrekson, and V. Torres-Company, “Linear and nonlinear characterization of low-stress high-confinement silicon-rich nitride waveguides,” Opt. Express 23, 25827–25837 (2015).
    [Crossref]
  34. M. Borselli, T. J. Johnson, and O. Painter, “Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment,” Opt. Express 13, 1515–1530 (2005).
    [Crossref]
  35. G. A. Porkolab, P. Apiratikul, B. Wang, S. H. Guo, and C. J. K. Richardson, “Low propagation loss algaas waveguides fabricated with plasma-assisted photoresist reflow,” Opt. Express 22, 7733–7743 (2014).
    [Crossref]
  36. https://www.comsol.com .
  37. Y. Meng, J. Lee, M. Dagenais, and S. Rolston, “A nanowaveguide platform for collective atom-light interaction,” Appl. Phys. Lett. 107, 091110 (2015).
    [Crossref]
  38. T. H. Stievater, D. A. Kozak, M. W. Pruessner, R. Mahon, D. Park, W. S. Rabinovich, and F. K. Fatemi, “Modal characterization of nanophotonic waveguides for atom trapping,” Opt. Mater. Express 6, 3826–3837 (2016).
    [Crossref]
  39. Alternatively, one may also excite the blue-detuned mode via single end of the waveguide bus using a laser of finite line width δν≫β (β<2π×0.6  GHz) so that no coherent back-scattering can establish within the microring.
  40. N. P. Stern, D. J. Alton, and H. J. Kimble, “Simulations of atomic trajectories near a dielectric surface,” New J. Phys. 13, 085004 (2011).
    [Crossref]
  41. D. Barredo, S. D. Leseleuc, V. Lienhard, T. Lahaye, and A. Browaeys, “An atom-by-atom assembler of defect-free arbitrary two-dimensional atomic arrays,” Science 354, 1021–1023 (2016).
    [Crossref]
  42. C.-L. Hung, A. González-Tudela, J. I. Cirac, and H. J. Kimble, “Quantum spin dynamics with pairwise-tunable, long-range interactions,” Proc. Natl. Acad. Sci. USA 113, E4946–E4955 (2016).
    [Crossref]
  43. G. Wei, T. K. Stanev, D. A. Czaplewski, I. W. Jung, and N. P. Stern, “Silicon-nitride photonic circuits interfaced with monolayer MoS2,” Appl. Phys. Lett. 107, 091112 (2015).
    [Crossref]
  44. S. Saskin, J. Wilson, B. Grinkemeyer, and J. D. Thompson, “Narrow-line cooling and imaging of ytterbium atoms in an optical tweezer array,” Phys. Rev. Lett. 122, 143002 (2019).
    [Crossref]
  45. A. Nandi, X. Jiang, D. Pak, D. Perry, K. Han, E. S. Bielejec, Y. Xuan, and M. Hosseini, “Anomalous emission from a one-dimensional lattice of ions in silicon photonics,” arXiv:1902.08898 (2019).
  46. R. Ritter, N. Gruhler, W. Pernice, H. Kübler, T. Pfau, and R. Löw, “Coupling thermal atomic vapor to an integrated ring resonator,” New J. Phys. 18, 103031 (2016).
    [Crossref]
  47. R. Ritter, N. Gruhler, H. Dobbertin, H. Kübler, S. Scheel, W. Pernice, T. Pfau, and R. Löw, “Coupling thermal atomic vapor to slot waveguides,” Phys. Rev. X 8, 021032 (2018).

2019 (2)

M. E. Kim, T.-H. Chang, B. M. Fields, C.-A. Chen, and C.-L. Hung, “Trapping single atoms on a nanophotonic circuit with configurable tweezer lattices,” Nat. Commun. 10, 1647 (2019).
[Crossref]

S. Saskin, J. Wilson, B. Grinkemeyer, and J. D. Thompson, “Narrow-line cooling and imaging of ytterbium atoms in an optical tweezer array,” Phys. Rev. Lett. 122, 143002 (2019).
[Crossref]

2018 (2)

R. Ritter, N. Gruhler, H. Dobbertin, H. Kübler, S. Scheel, W. Pernice, T. Pfau, and R. Löw, “Coupling thermal atomic vapor to slot waveguides,” Phys. Rev. X 8, 021032 (2018).

D. E. Chang, J. S. Douglas, A. González-Tudela, C.-L. Hung, and H. J. Kimble, “Colloquium: quantum matter built from nanoscopic lattices of atoms and photons,” Rev. Mod. Phys. 90, 031002 (2018).
[Crossref]

2017 (3)

J. I. Cirac and H. J. Kimble, “Quantum optics, what next?” Nat. Photonics 11, 18–20 (2017).
[Crossref]

J. Pérez-Ríos, M. E. Kim, and C.-L. Hung, “Ultracold molecule assembly with photonic crystals,” New J. Phys. 19, 123035 (2017).
[Crossref]

X. Ji, F. A. S. Barbosa, S. P. Roberts, A. Dutt, J. Cardenas, Y. Okawachi, A. Bryant, A. L. Gaeta, and M. Lipson, “Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold,” Optica 4, 619–624 (2017).
[Crossref]

2016 (8)

Y. Xuan, Y. Liu, L. T. Varghese, A. J. Metcalf, X. Xue, P.-H. Wang, K. Han, J. A. Jaramillo-Villegas, A. A. Noman, C. Wang, S. Kim, M. Teng, Y. J. Lee, B. Niu, L. Fan, J. Wang, D. E. Leaird, A. M. Weiner, and M. Qi, “High-Q silicon nitride microresonators exhibiting low-power frequency comb initiation,” Optica 3, 1171–1180 (2016).
[Crossref]

T. H. Stievater, D. A. Kozak, M. W. Pruessner, R. Mahon, D. Park, W. S. Rabinovich, and F. K. Fatemi, “Modal characterization of nanophotonic waveguides for atom trapping,” Opt. Mater. Express 6, 3826–3837 (2016).
[Crossref]

H. Sorensen, J.-B. Beguin, K. Kluge, I. Iakoupov, A. Sorensen, J. Muller, E. Polzik, and J. Appel, “Coherent backscattering of light off one-dimensional atomic strings,” Phys. Rev. Lett. 117, 133604 (2016).
[Crossref]

N. V. Corzo, B. Gouraud, A. Chandra, A. Goban, A. S. Sheremet, D. V. Kupriyanov, and J. Laurat, “Large Bragg reflection from one-dimensional chains of trapped atoms near a nanoscale waveguide,” Phys. Rev. Lett. 117, 133603 (2016).
[Crossref]

R. Ritter, N. Gruhler, W. Pernice, H. Kübler, T. Pfau, and R. Löw, “Coupling thermal atomic vapor to an integrated ring resonator,” New J. Phys. 18, 103031 (2016).
[Crossref]

D. Barredo, S. D. Leseleuc, V. Lienhard, T. Lahaye, and A. Browaeys, “An atom-by-atom assembler of defect-free arbitrary two-dimensional atomic arrays,” Science 354, 1021–1023 (2016).
[Crossref]

C.-L. Hung, A. González-Tudela, J. I. Cirac, and H. J. Kimble, “Quantum spin dynamics with pairwise-tunable, long-range interactions,” Proc. Natl. Acad. Sci. USA 113, E4946–E4955 (2016).
[Crossref]

J. D. Hood, A. Goban, A. Asenjo-Garcia, M. Lu, S.-P. Yu, D. E. Chang, and H. Kimble, “Atom–atom interactions around the band edge of a photonic crystal waveguide,” Proc. Natl. Acad. Sci. USA 113, 10507–10512 (2016).

2015 (7)

G. Wei, T. K. Stanev, D. A. Czaplewski, I. W. Jung, and N. P. Stern, “Silicon-nitride photonic circuits interfaced with monolayer MoS2,” Appl. Phys. Lett. 107, 091112 (2015).
[Crossref]

Y. Meng, J. Lee, M. Dagenais, and S. Rolston, “A nanowaveguide platform for collective atom-light interaction,” Appl. Phys. Lett. 107, 091110 (2015).
[Crossref]

A. Goban, C.-L. Hung, J. Hood, S.-P. Yu, J. Muniz, O. Painter, and H. Kimble, “Superradiance for atoms trapped along a photonic crystal waveguide,” Phys. Rev. Lett. 115, 063601 (2015).
[Crossref]

A. Gonzalez-Tudela, C.-L. Hung, D. E. Chang, J. I. Cirac, and H. J. Kimble, “Subwavelength vacuum lattices and atom-atom interactions in two-dimensional photonic crystals,” Nat. Photonics 9, 320–325 (2015).
[Crossref]

J. S. Douglas, H. Habibian, C.-L. Hung, A. Gorshkov, H. J. Kimble, and D. E. Chang, “Quantum many-body models with cold atoms coupled to photonic crystals,” Nat. Photonics 9, 326–331 (2015).
[Crossref]

S. Kato and T. Aoki, “Strong coupling between a trapped single atom and an all-fiber cavity,” Phys. Rev. Lett. 115, 093603 (2015).
[Crossref]

C. J. Krückel, A. Fülöp, T. Klintberg, J. Bengtsson, P. A. Andrekson, and V. Torres-Company, “Linear and nonlinear characterization of low-stress high-confinement silicon-rich nitride waveguides,” Opt. Express 23, 25827–25837 (2015).
[Crossref]

2014 (3)

T. G. Tiecke, J. D. Thompson, N. P. de Leon, L. R. Liu, V. Vuletic, and M. D. Lukin, “Nanophotonic quantum phase switch with a single atom,” Nature 508, 241–244 (2014).
[Crossref]

G. A. Porkolab, P. Apiratikul, B. Wang, S. H. Guo, and C. J. K. Richardson, “Low propagation loss algaas waveguides fabricated with plasma-assisted photoresist reflow,” Opt. Express 22, 7733–7743 (2014).
[Crossref]

I. Shomroni, S. Rosenblum, Y. Lovsky, O. Bechler, G. Guendelman, and B. Dayan, “All-optical routing of single photons by a one-atom switch controlled by a single photon,” Science 345, 903–906 (2014).
[Crossref]

2013 (3)

D. O’shea, C. Junge, J. Volz, and A. Rauschenbeutel, “Fiber-optical switch controlled by a single atom,” Phys. Rev. Lett. 111, 193601(2013).
[Crossref]

C.-L. Hung, S. M. Meenehan, D. E. Chang, O. Painter, and H. J. Kimble, “Trapped atoms in one-dimensional photonic crystals,” New J. Phys. 15, 083026 (2013).
[Crossref]

J. D. Thompson, T. G. Tiecke, N. P. de Leon, J. Feist, A. V. Akimov, M. Gullans, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Coupling a single trapped atom to a nanoscale optical cavity,” Science 340, 1202–1205 (2013).
[Crossref]

2012 (2)

A. Goban, K. S. Choi, D. J. Alton, D. Ding, C. Lacroute, M. Pototschnig, T. Thiele, N. P. Stern, and H. J. Kimble, “Demonstration of a state-insensitive, compensated nanofiber trap,” Phys. Rev. Lett. 109, 033603 (2012).
[Crossref]

C. Lacroûte, K. Choi, A. Goban, D. Alton, D. Ding, N. Stern, and H. Kimble, “A state-insensitive, compensated nanofiber trap,” New J. Phys. 14, 023056 (2012).
[Crossref]

2011 (1)

N. P. Stern, D. J. Alton, and H. J. Kimble, “Simulations of atomic trajectories near a dielectric surface,” New J. Phys. 13, 085004 (2011).
[Crossref]

2010 (1)

E. Vetsch, D. Reitz, G. Sague, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett. 104, 203603 (2010).
[Crossref]

2009 (1)

J. L. O’brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nat. Photonics 3, 687–695 (2009).
[Crossref]

2007 (1)

K. Srinivasan and O. Painter, “Mode coupling and cavity-quantum-dot interactions in a fiber-coupled microdisk cavity,” Phys. Rev. A 75, 023814 (2007).
[Crossref]

2006 (2)

P. E. Barclay, K. Srinivasan, O. Painter, B. Lev, and H. Mabuchi, “Integration of fiber-coupled high-QSiNx microdisks with atom chips,” Appl. Phys. Lett. 89, 131108 (2006).
[Crossref]

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. Kippenberg, K. Vahala, and H. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443, 671–674 (2006).
[Crossref]

2005 (1)

2004 (2)

F. Le Kien, V. I. Balykin, and K. Hakuta, “Atom trap and waveguide using a two-color evanescent light field around a subwavelength-diameter optical fiber,” Phys. Rev. A 70, 063403 (2004).
[Crossref]

V. Balykin, K. Hakuta, F. Le Kien, J. Liang, and M. Morinaga, “Atom trapping and guiding with a subwavelength-diameter optical fiber,” Phys. Rev. A 70, 011401 (2004).
[Crossref]

Akimov, A. V.

J. D. Thompson, T. G. Tiecke, N. P. de Leon, J. Feist, A. V. Akimov, M. Gullans, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Coupling a single trapped atom to a nanoscale optical cavity,” Science 340, 1202–1205 (2013).
[Crossref]

Alton, D.

C. Lacroûte, K. Choi, A. Goban, D. Alton, D. Ding, N. Stern, and H. Kimble, “A state-insensitive, compensated nanofiber trap,” New J. Phys. 14, 023056 (2012).
[Crossref]

Alton, D. J.

A. Goban, K. S. Choi, D. J. Alton, D. Ding, C. Lacroute, M. Pototschnig, T. Thiele, N. P. Stern, and H. J. Kimble, “Demonstration of a state-insensitive, compensated nanofiber trap,” Phys. Rev. Lett. 109, 033603 (2012).
[Crossref]

N. P. Stern, D. J. Alton, and H. J. Kimble, “Simulations of atomic trajectories near a dielectric surface,” New J. Phys. 13, 085004 (2011).
[Crossref]

D. J. Alton, “Interacting single atoms with nanophotonics for chip-integrated quantum networks,” Ph.D. thesis (California Institute of Technology, 2013).

Andrekson, P. A.

Aoki, T.

S. Kato and T. Aoki, “Strong coupling between a trapped single atom and an all-fiber cavity,” Phys. Rev. Lett. 115, 093603 (2015).
[Crossref]

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. Kippenberg, K. Vahala, and H. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443, 671–674 (2006).
[Crossref]

Apiratikul, P.

Appel, J.

H. Sorensen, J.-B. Beguin, K. Kluge, I. Iakoupov, A. Sorensen, J. Muller, E. Polzik, and J. Appel, “Coherent backscattering of light off one-dimensional atomic strings,” Phys. Rev. Lett. 117, 133604 (2016).
[Crossref]

Asenjo-Garcia, A.

J. D. Hood, A. Goban, A. Asenjo-Garcia, M. Lu, S.-P. Yu, D. E. Chang, and H. Kimble, “Atom–atom interactions around the band edge of a photonic crystal waveguide,” Proc. Natl. Acad. Sci. USA 113, 10507–10512 (2016).

Balykin, V.

V. Balykin, K. Hakuta, F. Le Kien, J. Liang, and M. Morinaga, “Atom trapping and guiding with a subwavelength-diameter optical fiber,” Phys. Rev. A 70, 011401 (2004).
[Crossref]

Balykin, V. I.

F. Le Kien, V. I. Balykin, and K. Hakuta, “Atom trap and waveguide using a two-color evanescent light field around a subwavelength-diameter optical fiber,” Phys. Rev. A 70, 063403 (2004).
[Crossref]

Barbosa, F. A. S.

Barclay, P. E.

P. E. Barclay, K. Srinivasan, O. Painter, B. Lev, and H. Mabuchi, “Integration of fiber-coupled high-QSiNx microdisks with atom chips,” Appl. Phys. Lett. 89, 131108 (2006).
[Crossref]

Barredo, D.

D. Barredo, S. D. Leseleuc, V. Lienhard, T. Lahaye, and A. Browaeys, “An atom-by-atom assembler of defect-free arbitrary two-dimensional atomic arrays,” Science 354, 1021–1023 (2016).
[Crossref]

Bechler, O.

I. Shomroni, S. Rosenblum, Y. Lovsky, O. Bechler, G. Guendelman, and B. Dayan, “All-optical routing of single photons by a one-atom switch controlled by a single photon,” Science 345, 903–906 (2014).
[Crossref]

Beguin, J.-B.

H. Sorensen, J.-B. Beguin, K. Kluge, I. Iakoupov, A. Sorensen, J. Muller, E. Polzik, and J. Appel, “Coherent backscattering of light off one-dimensional atomic strings,” Phys. Rev. Lett. 117, 133604 (2016).
[Crossref]

Bengtsson, J.

Bielejec, E. S.

A. Nandi, X. Jiang, D. Pak, D. Perry, K. Han, E. S. Bielejec, Y. Xuan, and M. Hosseini, “Anomalous emission from a one-dimensional lattice of ions in silicon photonics,” arXiv:1902.08898 (2019).

Borselli, M.

Bowen, W. P.

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. Kippenberg, K. Vahala, and H. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443, 671–674 (2006).
[Crossref]

Browaeys, A.

D. Barredo, S. D. Leseleuc, V. Lienhard, T. Lahaye, and A. Browaeys, “An atom-by-atom assembler of defect-free arbitrary two-dimensional atomic arrays,” Science 354, 1021–1023 (2016).
[Crossref]

Bryant, A.

X. Ji, F. A. S. Barbosa, S. P. Roberts, A. Dutt, J. Cardenas, Y. Okawachi, A. Bryant, A. L. Gaeta, and M. Lipson, “Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold,” Optica 4, 619–624 (2017).
[Crossref]

S. P. Roberts, X. Ji, J. Cardenas, A. Bryant, and M. Lipson, “Sidewall roughness in si3n4 waveguides directly measured by atomic force microscopy,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2017), p. SM3K.6.

Cardenas, J.

X. Ji, F. A. S. Barbosa, S. P. Roberts, A. Dutt, J. Cardenas, Y. Okawachi, A. Bryant, A. L. Gaeta, and M. Lipson, “Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold,” Optica 4, 619–624 (2017).
[Crossref]

S. P. Roberts, X. Ji, J. Cardenas, A. Bryant, and M. Lipson, “Sidewall roughness in si3n4 waveguides directly measured by atomic force microscopy,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2017), p. SM3K.6.

Chandra, A.

N. V. Corzo, B. Gouraud, A. Chandra, A. Goban, A. S. Sheremet, D. V. Kupriyanov, and J. Laurat, “Large Bragg reflection from one-dimensional chains of trapped atoms near a nanoscale waveguide,” Phys. Rev. Lett. 117, 133603 (2016).
[Crossref]

Chang, D. E.

D. E. Chang, J. S. Douglas, A. González-Tudela, C.-L. Hung, and H. J. Kimble, “Colloquium: quantum matter built from nanoscopic lattices of atoms and photons,” Rev. Mod. Phys. 90, 031002 (2018).
[Crossref]

J. D. Hood, A. Goban, A. Asenjo-Garcia, M. Lu, S.-P. Yu, D. E. Chang, and H. Kimble, “Atom–atom interactions around the band edge of a photonic crystal waveguide,” Proc. Natl. Acad. Sci. USA 113, 10507–10512 (2016).

A. Gonzalez-Tudela, C.-L. Hung, D. E. Chang, J. I. Cirac, and H. J. Kimble, “Subwavelength vacuum lattices and atom-atom interactions in two-dimensional photonic crystals,” Nat. Photonics 9, 320–325 (2015).
[Crossref]

J. S. Douglas, H. Habibian, C.-L. Hung, A. Gorshkov, H. J. Kimble, and D. E. Chang, “Quantum many-body models with cold atoms coupled to photonic crystals,” Nat. Photonics 9, 326–331 (2015).
[Crossref]

C.-L. Hung, S. M. Meenehan, D. E. Chang, O. Painter, and H. J. Kimble, “Trapped atoms in one-dimensional photonic crystals,” New J. Phys. 15, 083026 (2013).
[Crossref]

Chang, T.-H.

M. E. Kim, T.-H. Chang, B. M. Fields, C.-A. Chen, and C.-L. Hung, “Trapping single atoms on a nanophotonic circuit with configurable tweezer lattices,” Nat. Commun. 10, 1647 (2019).
[Crossref]

Chen, C.-A.

M. E. Kim, T.-H. Chang, B. M. Fields, C.-A. Chen, and C.-L. Hung, “Trapping single atoms on a nanophotonic circuit with configurable tweezer lattices,” Nat. Commun. 10, 1647 (2019).
[Crossref]

Choi, K.

C. Lacroûte, K. Choi, A. Goban, D. Alton, D. Ding, N. Stern, and H. Kimble, “A state-insensitive, compensated nanofiber trap,” New J. Phys. 14, 023056 (2012).
[Crossref]

Choi, K. S.

A. Goban, K. S. Choi, D. J. Alton, D. Ding, C. Lacroute, M. Pototschnig, T. Thiele, N. P. Stern, and H. J. Kimble, “Demonstration of a state-insensitive, compensated nanofiber trap,” Phys. Rev. Lett. 109, 033603 (2012).
[Crossref]

Cirac, J. I.

J. I. Cirac and H. J. Kimble, “Quantum optics, what next?” Nat. Photonics 11, 18–20 (2017).
[Crossref]

C.-L. Hung, A. González-Tudela, J. I. Cirac, and H. J. Kimble, “Quantum spin dynamics with pairwise-tunable, long-range interactions,” Proc. Natl. Acad. Sci. USA 113, E4946–E4955 (2016).
[Crossref]

A. Gonzalez-Tudela, C.-L. Hung, D. E. Chang, J. I. Cirac, and H. J. Kimble, “Subwavelength vacuum lattices and atom-atom interactions in two-dimensional photonic crystals,” Nat. Photonics 9, 320–325 (2015).
[Crossref]

Corzo, N. V.

N. V. Corzo, B. Gouraud, A. Chandra, A. Goban, A. S. Sheremet, D. V. Kupriyanov, and J. Laurat, “Large Bragg reflection from one-dimensional chains of trapped atoms near a nanoscale waveguide,” Phys. Rev. Lett. 117, 133603 (2016).
[Crossref]

Czaplewski, D. A.

G. Wei, T. K. Stanev, D. A. Czaplewski, I. W. Jung, and N. P. Stern, “Silicon-nitride photonic circuits interfaced with monolayer MoS2,” Appl. Phys. Lett. 107, 091112 (2015).
[Crossref]

Dagenais, M.

Y. Meng, J. Lee, M. Dagenais, and S. Rolston, “A nanowaveguide platform for collective atom-light interaction,” Appl. Phys. Lett. 107, 091110 (2015).
[Crossref]

Dawkins, S. T.

E. Vetsch, D. Reitz, G. Sague, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett. 104, 203603 (2010).
[Crossref]

Dayan, B.

I. Shomroni, S. Rosenblum, Y. Lovsky, O. Bechler, G. Guendelman, and B. Dayan, “All-optical routing of single photons by a one-atom switch controlled by a single photon,” Science 345, 903–906 (2014).
[Crossref]

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. Kippenberg, K. Vahala, and H. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443, 671–674 (2006).
[Crossref]

de Leon, N. P.

T. G. Tiecke, J. D. Thompson, N. P. de Leon, L. R. Liu, V. Vuletic, and M. D. Lukin, “Nanophotonic quantum phase switch with a single atom,” Nature 508, 241–244 (2014).
[Crossref]

J. D. Thompson, T. G. Tiecke, N. P. de Leon, J. Feist, A. V. Akimov, M. Gullans, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Coupling a single trapped atom to a nanoscale optical cavity,” Science 340, 1202–1205 (2013).
[Crossref]

Ding, D.

A. Goban, K. S. Choi, D. J. Alton, D. Ding, C. Lacroute, M. Pototschnig, T. Thiele, N. P. Stern, and H. J. Kimble, “Demonstration of a state-insensitive, compensated nanofiber trap,” Phys. Rev. Lett. 109, 033603 (2012).
[Crossref]

C. Lacroûte, K. Choi, A. Goban, D. Alton, D. Ding, N. Stern, and H. Kimble, “A state-insensitive, compensated nanofiber trap,” New J. Phys. 14, 023056 (2012).
[Crossref]

Dobbertin, H.

R. Ritter, N. Gruhler, H. Dobbertin, H. Kübler, S. Scheel, W. Pernice, T. Pfau, and R. Löw, “Coupling thermal atomic vapor to slot waveguides,” Phys. Rev. X 8, 021032 (2018).

Douglas, J. S.

D. E. Chang, J. S. Douglas, A. González-Tudela, C.-L. Hung, and H. J. Kimble, “Colloquium: quantum matter built from nanoscopic lattices of atoms and photons,” Rev. Mod. Phys. 90, 031002 (2018).
[Crossref]

J. S. Douglas, H. Habibian, C.-L. Hung, A. Gorshkov, H. J. Kimble, and D. E. Chang, “Quantum many-body models with cold atoms coupled to photonic crystals,” Nat. Photonics 9, 326–331 (2015).
[Crossref]

Dutt, A.

Fan, L.

Fatemi, F. K.

Feist, J.

J. D. Thompson, T. G. Tiecke, N. P. de Leon, J. Feist, A. V. Akimov, M. Gullans, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Coupling a single trapped atom to a nanoscale optical cavity,” Science 340, 1202–1205 (2013).
[Crossref]

Fields, B. M.

M. E. Kim, T.-H. Chang, B. M. Fields, C.-A. Chen, and C.-L. Hung, “Trapping single atoms on a nanophotonic circuit with configurable tweezer lattices,” Nat. Commun. 10, 1647 (2019).
[Crossref]

Fülöp, A.

Furusawa, A.

J. L. O’brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nat. Photonics 3, 687–695 (2009).
[Crossref]

Gaeta, A. L.

Goban, A.

N. V. Corzo, B. Gouraud, A. Chandra, A. Goban, A. S. Sheremet, D. V. Kupriyanov, and J. Laurat, “Large Bragg reflection from one-dimensional chains of trapped atoms near a nanoscale waveguide,” Phys. Rev. Lett. 117, 133603 (2016).
[Crossref]

J. D. Hood, A. Goban, A. Asenjo-Garcia, M. Lu, S.-P. Yu, D. E. Chang, and H. Kimble, “Atom–atom interactions around the band edge of a photonic crystal waveguide,” Proc. Natl. Acad. Sci. USA 113, 10507–10512 (2016).

A. Goban, C.-L. Hung, J. Hood, S.-P. Yu, J. Muniz, O. Painter, and H. Kimble, “Superradiance for atoms trapped along a photonic crystal waveguide,” Phys. Rev. Lett. 115, 063601 (2015).
[Crossref]

A. Goban, K. S. Choi, D. J. Alton, D. Ding, C. Lacroute, M. Pototschnig, T. Thiele, N. P. Stern, and H. J. Kimble, “Demonstration of a state-insensitive, compensated nanofiber trap,” Phys. Rev. Lett. 109, 033603 (2012).
[Crossref]

C. Lacroûte, K. Choi, A. Goban, D. Alton, D. Ding, N. Stern, and H. Kimble, “A state-insensitive, compensated nanofiber trap,” New J. Phys. 14, 023056 (2012).
[Crossref]

Gonzalez-Tudela, A.

A. Gonzalez-Tudela, C.-L. Hung, D. E. Chang, J. I. Cirac, and H. J. Kimble, “Subwavelength vacuum lattices and atom-atom interactions in two-dimensional photonic crystals,” Nat. Photonics 9, 320–325 (2015).
[Crossref]

González-Tudela, A.

D. E. Chang, J. S. Douglas, A. González-Tudela, C.-L. Hung, and H. J. Kimble, “Colloquium: quantum matter built from nanoscopic lattices of atoms and photons,” Rev. Mod. Phys. 90, 031002 (2018).
[Crossref]

C.-L. Hung, A. González-Tudela, J. I. Cirac, and H. J. Kimble, “Quantum spin dynamics with pairwise-tunable, long-range interactions,” Proc. Natl. Acad. Sci. USA 113, E4946–E4955 (2016).
[Crossref]

Gorshkov, A.

J. S. Douglas, H. Habibian, C.-L. Hung, A. Gorshkov, H. J. Kimble, and D. E. Chang, “Quantum many-body models with cold atoms coupled to photonic crystals,” Nat. Photonics 9, 326–331 (2015).
[Crossref]

Gouraud, B.

N. V. Corzo, B. Gouraud, A. Chandra, A. Goban, A. S. Sheremet, D. V. Kupriyanov, and J. Laurat, “Large Bragg reflection from one-dimensional chains of trapped atoms near a nanoscale waveguide,” Phys. Rev. Lett. 117, 133603 (2016).
[Crossref]

Grimm, R.

R. Grimm, M. Weidemüller, and Y. B. Ovchinnikov, “Optical dipole traps for neutral atoms,” in Advances in Atomic, Molecular, and Optical Physics (Elsevier, 2000), Vol. 42, pp. 95–170.

Grinkemeyer, B.

S. Saskin, J. Wilson, B. Grinkemeyer, and J. D. Thompson, “Narrow-line cooling and imaging of ytterbium atoms in an optical tweezer array,” Phys. Rev. Lett. 122, 143002 (2019).
[Crossref]

Gruhler, N.

R. Ritter, N. Gruhler, H. Dobbertin, H. Kübler, S. Scheel, W. Pernice, T. Pfau, and R. Löw, “Coupling thermal atomic vapor to slot waveguides,” Phys. Rev. X 8, 021032 (2018).

R. Ritter, N. Gruhler, W. Pernice, H. Kübler, T. Pfau, and R. Löw, “Coupling thermal atomic vapor to an integrated ring resonator,” New J. Phys. 18, 103031 (2016).
[Crossref]

Guendelman, G.

I. Shomroni, S. Rosenblum, Y. Lovsky, O. Bechler, G. Guendelman, and B. Dayan, “All-optical routing of single photons by a one-atom switch controlled by a single photon,” Science 345, 903–906 (2014).
[Crossref]

Gullans, M.

J. D. Thompson, T. G. Tiecke, N. P. de Leon, J. Feist, A. V. Akimov, M. Gullans, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Coupling a single trapped atom to a nanoscale optical cavity,” Science 340, 1202–1205 (2013).
[Crossref]

Guo, S. H.

Habibian, H.

J. S. Douglas, H. Habibian, C.-L. Hung, A. Gorshkov, H. J. Kimble, and D. E. Chang, “Quantum many-body models with cold atoms coupled to photonic crystals,” Nat. Photonics 9, 326–331 (2015).
[Crossref]

Hakuta, K.

F. Le Kien, V. I. Balykin, and K. Hakuta, “Atom trap and waveguide using a two-color evanescent light field around a subwavelength-diameter optical fiber,” Phys. Rev. A 70, 063403 (2004).
[Crossref]

V. Balykin, K. Hakuta, F. Le Kien, J. Liang, and M. Morinaga, “Atom trapping and guiding with a subwavelength-diameter optical fiber,” Phys. Rev. A 70, 011401 (2004).
[Crossref]

Han, K.

Hood, J.

A. Goban, C.-L. Hung, J. Hood, S.-P. Yu, J. Muniz, O. Painter, and H. Kimble, “Superradiance for atoms trapped along a photonic crystal waveguide,” Phys. Rev. Lett. 115, 063601 (2015).
[Crossref]

Hood, J. D.

J. D. Hood, A. Goban, A. Asenjo-Garcia, M. Lu, S.-P. Yu, D. E. Chang, and H. Kimble, “Atom–atom interactions around the band edge of a photonic crystal waveguide,” Proc. Natl. Acad. Sci. USA 113, 10507–10512 (2016).

Hosseini, M.

A. Nandi, X. Jiang, D. Pak, D. Perry, K. Han, E. S. Bielejec, Y. Xuan, and M. Hosseini, “Anomalous emission from a one-dimensional lattice of ions in silicon photonics,” arXiv:1902.08898 (2019).

Hung, C.-L.

M. E. Kim, T.-H. Chang, B. M. Fields, C.-A. Chen, and C.-L. Hung, “Trapping single atoms on a nanophotonic circuit with configurable tweezer lattices,” Nat. Commun. 10, 1647 (2019).
[Crossref]

D. E. Chang, J. S. Douglas, A. González-Tudela, C.-L. Hung, and H. J. Kimble, “Colloquium: quantum matter built from nanoscopic lattices of atoms and photons,” Rev. Mod. Phys. 90, 031002 (2018).
[Crossref]

J. Pérez-Ríos, M. E. Kim, and C.-L. Hung, “Ultracold molecule assembly with photonic crystals,” New J. Phys. 19, 123035 (2017).
[Crossref]

C.-L. Hung, A. González-Tudela, J. I. Cirac, and H. J. Kimble, “Quantum spin dynamics with pairwise-tunable, long-range interactions,” Proc. Natl. Acad. Sci. USA 113, E4946–E4955 (2016).
[Crossref]

A. Gonzalez-Tudela, C.-L. Hung, D. E. Chang, J. I. Cirac, and H. J. Kimble, “Subwavelength vacuum lattices and atom-atom interactions in two-dimensional photonic crystals,” Nat. Photonics 9, 320–325 (2015).
[Crossref]

J. S. Douglas, H. Habibian, C.-L. Hung, A. Gorshkov, H. J. Kimble, and D. E. Chang, “Quantum many-body models with cold atoms coupled to photonic crystals,” Nat. Photonics 9, 326–331 (2015).
[Crossref]

A. Goban, C.-L. Hung, J. Hood, S.-P. Yu, J. Muniz, O. Painter, and H. Kimble, “Superradiance for atoms trapped along a photonic crystal waveguide,” Phys. Rev. Lett. 115, 063601 (2015).
[Crossref]

C.-L. Hung, S. M. Meenehan, D. E. Chang, O. Painter, and H. J. Kimble, “Trapped atoms in one-dimensional photonic crystals,” New J. Phys. 15, 083026 (2013).
[Crossref]

Iakoupov, I.

H. Sorensen, J.-B. Beguin, K. Kluge, I. Iakoupov, A. Sorensen, J. Muller, E. Polzik, and J. Appel, “Coherent backscattering of light off one-dimensional atomic strings,” Phys. Rev. Lett. 117, 133604 (2016).
[Crossref]

Jaramillo-Villegas, J. A.

Ji, X.

X. Ji, F. A. S. Barbosa, S. P. Roberts, A. Dutt, J. Cardenas, Y. Okawachi, A. Bryant, A. L. Gaeta, and M. Lipson, “Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold,” Optica 4, 619–624 (2017).
[Crossref]

S. P. Roberts, X. Ji, J. Cardenas, A. Bryant, and M. Lipson, “Sidewall roughness in si3n4 waveguides directly measured by atomic force microscopy,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2017), p. SM3K.6.

P. Kaufmann, X. Ji, K. Luke, M. Lipson, and S. Ramelow, “Characterization of ultra-high-q Si3N4 micro-ring resonators with high-precision temperature control,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2018), p. JTu2A.72.

Jiang, X.

A. Nandi, X. Jiang, D. Pak, D. Perry, K. Han, E. S. Bielejec, Y. Xuan, and M. Hosseini, “Anomalous emission from a one-dimensional lattice of ions in silicon photonics,” arXiv:1902.08898 (2019).

Johnson, T. J.

Jung, I. W.

G. Wei, T. K. Stanev, D. A. Czaplewski, I. W. Jung, and N. P. Stern, “Silicon-nitride photonic circuits interfaced with monolayer MoS2,” Appl. Phys. Lett. 107, 091112 (2015).
[Crossref]

Junge, C.

D. O’shea, C. Junge, J. Volz, and A. Rauschenbeutel, “Fiber-optical switch controlled by a single atom,” Phys. Rev. Lett. 111, 193601(2013).
[Crossref]

Kato, S.

S. Kato and T. Aoki, “Strong coupling between a trapped single atom and an all-fiber cavity,” Phys. Rev. Lett. 115, 093603 (2015).
[Crossref]

Kaufmann, P.

P. Kaufmann, X. Ji, K. Luke, M. Lipson, and S. Ramelow, “Characterization of ultra-high-q Si3N4 micro-ring resonators with high-precision temperature control,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2018), p. JTu2A.72.

Kim, M. E.

M. E. Kim, T.-H. Chang, B. M. Fields, C.-A. Chen, and C.-L. Hung, “Trapping single atoms on a nanophotonic circuit with configurable tweezer lattices,” Nat. Commun. 10, 1647 (2019).
[Crossref]

J. Pérez-Ríos, M. E. Kim, and C.-L. Hung, “Ultracold molecule assembly with photonic crystals,” New J. Phys. 19, 123035 (2017).
[Crossref]

Kim, S.

Kimble, H.

J. D. Hood, A. Goban, A. Asenjo-Garcia, M. Lu, S.-P. Yu, D. E. Chang, and H. Kimble, “Atom–atom interactions around the band edge of a photonic crystal waveguide,” Proc. Natl. Acad. Sci. USA 113, 10507–10512 (2016).

A. Goban, C.-L. Hung, J. Hood, S.-P. Yu, J. Muniz, O. Painter, and H. Kimble, “Superradiance for atoms trapped along a photonic crystal waveguide,” Phys. Rev. Lett. 115, 063601 (2015).
[Crossref]

C. Lacroûte, K. Choi, A. Goban, D. Alton, D. Ding, N. Stern, and H. Kimble, “A state-insensitive, compensated nanofiber trap,” New J. Phys. 14, 023056 (2012).
[Crossref]

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. Kippenberg, K. Vahala, and H. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443, 671–674 (2006).
[Crossref]

Kimble, H. J.

D. E. Chang, J. S. Douglas, A. González-Tudela, C.-L. Hung, and H. J. Kimble, “Colloquium: quantum matter built from nanoscopic lattices of atoms and photons,” Rev. Mod. Phys. 90, 031002 (2018).
[Crossref]

J. I. Cirac and H. J. Kimble, “Quantum optics, what next?” Nat. Photonics 11, 18–20 (2017).
[Crossref]

C.-L. Hung, A. González-Tudela, J. I. Cirac, and H. J. Kimble, “Quantum spin dynamics with pairwise-tunable, long-range interactions,” Proc. Natl. Acad. Sci. USA 113, E4946–E4955 (2016).
[Crossref]

A. Gonzalez-Tudela, C.-L. Hung, D. E. Chang, J. I. Cirac, and H. J. Kimble, “Subwavelength vacuum lattices and atom-atom interactions in two-dimensional photonic crystals,” Nat. Photonics 9, 320–325 (2015).
[Crossref]

J. S. Douglas, H. Habibian, C.-L. Hung, A. Gorshkov, H. J. Kimble, and D. E. Chang, “Quantum many-body models with cold atoms coupled to photonic crystals,” Nat. Photonics 9, 326–331 (2015).
[Crossref]

C.-L. Hung, S. M. Meenehan, D. E. Chang, O. Painter, and H. J. Kimble, “Trapped atoms in one-dimensional photonic crystals,” New J. Phys. 15, 083026 (2013).
[Crossref]

A. Goban, K. S. Choi, D. J. Alton, D. Ding, C. Lacroute, M. Pototschnig, T. Thiele, N. P. Stern, and H. J. Kimble, “Demonstration of a state-insensitive, compensated nanofiber trap,” Phys. Rev. Lett. 109, 033603 (2012).
[Crossref]

N. P. Stern, D. J. Alton, and H. J. Kimble, “Simulations of atomic trajectories near a dielectric surface,” New J. Phys. 13, 085004 (2011).
[Crossref]

Kippenberg, T.

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. Kippenberg, K. Vahala, and H. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443, 671–674 (2006).
[Crossref]

Klintberg, T.

Kluge, K.

H. Sorensen, J.-B. Beguin, K. Kluge, I. Iakoupov, A. Sorensen, J. Muller, E. Polzik, and J. Appel, “Coherent backscattering of light off one-dimensional atomic strings,” Phys. Rev. Lett. 117, 133604 (2016).
[Crossref]

Kozak, D. A.

Krückel, C. J.

Kübler, H.

R. Ritter, N. Gruhler, H. Dobbertin, H. Kübler, S. Scheel, W. Pernice, T. Pfau, and R. Löw, “Coupling thermal atomic vapor to slot waveguides,” Phys. Rev. X 8, 021032 (2018).

R. Ritter, N. Gruhler, W. Pernice, H. Kübler, T. Pfau, and R. Löw, “Coupling thermal atomic vapor to an integrated ring resonator,” New J. Phys. 18, 103031 (2016).
[Crossref]

Kupriyanov, D. V.

N. V. Corzo, B. Gouraud, A. Chandra, A. Goban, A. S. Sheremet, D. V. Kupriyanov, and J. Laurat, “Large Bragg reflection from one-dimensional chains of trapped atoms near a nanoscale waveguide,” Phys. Rev. Lett. 117, 133603 (2016).
[Crossref]

Lacroute, C.

A. Goban, K. S. Choi, D. J. Alton, D. Ding, C. Lacroute, M. Pototschnig, T. Thiele, N. P. Stern, and H. J. Kimble, “Demonstration of a state-insensitive, compensated nanofiber trap,” Phys. Rev. Lett. 109, 033603 (2012).
[Crossref]

Lacroûte, C.

C. Lacroûte, K. Choi, A. Goban, D. Alton, D. Ding, N. Stern, and H. Kimble, “A state-insensitive, compensated nanofiber trap,” New J. Phys. 14, 023056 (2012).
[Crossref]

Lahaye, T.

D. Barredo, S. D. Leseleuc, V. Lienhard, T. Lahaye, and A. Browaeys, “An atom-by-atom assembler of defect-free arbitrary two-dimensional atomic arrays,” Science 354, 1021–1023 (2016).
[Crossref]

Laurat, J.

N. V. Corzo, B. Gouraud, A. Chandra, A. Goban, A. S. Sheremet, D. V. Kupriyanov, and J. Laurat, “Large Bragg reflection from one-dimensional chains of trapped atoms near a nanoscale waveguide,” Phys. Rev. Lett. 117, 133603 (2016).
[Crossref]

Le Kien, F.

V. Balykin, K. Hakuta, F. Le Kien, J. Liang, and M. Morinaga, “Atom trapping and guiding with a subwavelength-diameter optical fiber,” Phys. Rev. A 70, 011401 (2004).
[Crossref]

F. Le Kien, V. I. Balykin, and K. Hakuta, “Atom trap and waveguide using a two-color evanescent light field around a subwavelength-diameter optical fiber,” Phys. Rev. A 70, 063403 (2004).
[Crossref]

Leaird, D. E.

Lee, J.

Y. Meng, J. Lee, M. Dagenais, and S. Rolston, “A nanowaveguide platform for collective atom-light interaction,” Appl. Phys. Lett. 107, 091110 (2015).
[Crossref]

Lee, Y. J.

Leseleuc, S. D.

D. Barredo, S. D. Leseleuc, V. Lienhard, T. Lahaye, and A. Browaeys, “An atom-by-atom assembler of defect-free arbitrary two-dimensional atomic arrays,” Science 354, 1021–1023 (2016).
[Crossref]

Lev, B.

P. E. Barclay, K. Srinivasan, O. Painter, B. Lev, and H. Mabuchi, “Integration of fiber-coupled high-QSiNx microdisks with atom chips,” Appl. Phys. Lett. 89, 131108 (2006).
[Crossref]

Liang, J.

V. Balykin, K. Hakuta, F. Le Kien, J. Liang, and M. Morinaga, “Atom trapping and guiding with a subwavelength-diameter optical fiber,” Phys. Rev. A 70, 011401 (2004).
[Crossref]

Lienhard, V.

D. Barredo, S. D. Leseleuc, V. Lienhard, T. Lahaye, and A. Browaeys, “An atom-by-atom assembler of defect-free arbitrary two-dimensional atomic arrays,” Science 354, 1021–1023 (2016).
[Crossref]

Lipson, M.

X. Ji, F. A. S. Barbosa, S. P. Roberts, A. Dutt, J. Cardenas, Y. Okawachi, A. Bryant, A. L. Gaeta, and M. Lipson, “Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold,” Optica 4, 619–624 (2017).
[Crossref]

S. P. Roberts, X. Ji, J. Cardenas, A. Bryant, and M. Lipson, “Sidewall roughness in si3n4 waveguides directly measured by atomic force microscopy,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2017), p. SM3K.6.

P. Kaufmann, X. Ji, K. Luke, M. Lipson, and S. Ramelow, “Characterization of ultra-high-q Si3N4 micro-ring resonators with high-precision temperature control,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2018), p. JTu2A.72.

Liu, L. R.

T. G. Tiecke, J. D. Thompson, N. P. de Leon, L. R. Liu, V. Vuletic, and M. D. Lukin, “Nanophotonic quantum phase switch with a single atom,” Nature 508, 241–244 (2014).
[Crossref]

Liu, Y.

Lovsky, Y.

I. Shomroni, S. Rosenblum, Y. Lovsky, O. Bechler, G. Guendelman, and B. Dayan, “All-optical routing of single photons by a one-atom switch controlled by a single photon,” Science 345, 903–906 (2014).
[Crossref]

Löw, R.

R. Ritter, N. Gruhler, H. Dobbertin, H. Kübler, S. Scheel, W. Pernice, T. Pfau, and R. Löw, “Coupling thermal atomic vapor to slot waveguides,” Phys. Rev. X 8, 021032 (2018).

R. Ritter, N. Gruhler, W. Pernice, H. Kübler, T. Pfau, and R. Löw, “Coupling thermal atomic vapor to an integrated ring resonator,” New J. Phys. 18, 103031 (2016).
[Crossref]

Lu, M.

J. D. Hood, A. Goban, A. Asenjo-Garcia, M. Lu, S.-P. Yu, D. E. Chang, and H. Kimble, “Atom–atom interactions around the band edge of a photonic crystal waveguide,” Proc. Natl. Acad. Sci. USA 113, 10507–10512 (2016).

Luke, K.

P. Kaufmann, X. Ji, K. Luke, M. Lipson, and S. Ramelow, “Characterization of ultra-high-q Si3N4 micro-ring resonators with high-precision temperature control,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2018), p. JTu2A.72.

Lukin, M. D.

T. G. Tiecke, J. D. Thompson, N. P. de Leon, L. R. Liu, V. Vuletic, and M. D. Lukin, “Nanophotonic quantum phase switch with a single atom,” Nature 508, 241–244 (2014).
[Crossref]

J. D. Thompson, T. G. Tiecke, N. P. de Leon, J. Feist, A. V. Akimov, M. Gullans, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Coupling a single trapped atom to a nanoscale optical cavity,” Science 340, 1202–1205 (2013).
[Crossref]

Mabuchi, H.

P. E. Barclay, K. Srinivasan, O. Painter, B. Lev, and H. Mabuchi, “Integration of fiber-coupled high-QSiNx microdisks with atom chips,” Appl. Phys. Lett. 89, 131108 (2006).
[Crossref]

Mahon, R.

Meenehan, S. M.

C.-L. Hung, S. M. Meenehan, D. E. Chang, O. Painter, and H. J. Kimble, “Trapped atoms in one-dimensional photonic crystals,” New J. Phys. 15, 083026 (2013).
[Crossref]

Meng, Y.

Y. Meng, J. Lee, M. Dagenais, and S. Rolston, “A nanowaveguide platform for collective atom-light interaction,” Appl. Phys. Lett. 107, 091110 (2015).
[Crossref]

Metcalf, A. J.

Morinaga, M.

V. Balykin, K. Hakuta, F. Le Kien, J. Liang, and M. Morinaga, “Atom trapping and guiding with a subwavelength-diameter optical fiber,” Phys. Rev. A 70, 011401 (2004).
[Crossref]

Muller, J.

H. Sorensen, J.-B. Beguin, K. Kluge, I. Iakoupov, A. Sorensen, J. Muller, E. Polzik, and J. Appel, “Coherent backscattering of light off one-dimensional atomic strings,” Phys. Rev. Lett. 117, 133604 (2016).
[Crossref]

Muniz, J.

A. Goban, C.-L. Hung, J. Hood, S.-P. Yu, J. Muniz, O. Painter, and H. Kimble, “Superradiance for atoms trapped along a photonic crystal waveguide,” Phys. Rev. Lett. 115, 063601 (2015).
[Crossref]

Nandi, A.

A. Nandi, X. Jiang, D. Pak, D. Perry, K. Han, E. S. Bielejec, Y. Xuan, and M. Hosseini, “Anomalous emission from a one-dimensional lattice of ions in silicon photonics,” arXiv:1902.08898 (2019).

Niu, B.

Noman, A. A.

O’brien, J. L.

J. L. O’brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nat. Photonics 3, 687–695 (2009).
[Crossref]

O’shea, D.

D. O’shea, C. Junge, J. Volz, and A. Rauschenbeutel, “Fiber-optical switch controlled by a single atom,” Phys. Rev. Lett. 111, 193601(2013).
[Crossref]

Okawachi, Y.

Ovchinnikov, Y. B.

R. Grimm, M. Weidemüller, and Y. B. Ovchinnikov, “Optical dipole traps for neutral atoms,” in Advances in Atomic, Molecular, and Optical Physics (Elsevier, 2000), Vol. 42, pp. 95–170.

Painter, O.

A. Goban, C.-L. Hung, J. Hood, S.-P. Yu, J. Muniz, O. Painter, and H. Kimble, “Superradiance for atoms trapped along a photonic crystal waveguide,” Phys. Rev. Lett. 115, 063601 (2015).
[Crossref]

C.-L. Hung, S. M. Meenehan, D. E. Chang, O. Painter, and H. J. Kimble, “Trapped atoms in one-dimensional photonic crystals,” New J. Phys. 15, 083026 (2013).
[Crossref]

K. Srinivasan and O. Painter, “Mode coupling and cavity-quantum-dot interactions in a fiber-coupled microdisk cavity,” Phys. Rev. A 75, 023814 (2007).
[Crossref]

P. E. Barclay, K. Srinivasan, O. Painter, B. Lev, and H. Mabuchi, “Integration of fiber-coupled high-QSiNx microdisks with atom chips,” Appl. Phys. Lett. 89, 131108 (2006).
[Crossref]

M. Borselli, T. J. Johnson, and O. Painter, “Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment,” Opt. Express 13, 1515–1530 (2005).
[Crossref]

Pak, D.

A. Nandi, X. Jiang, D. Pak, D. Perry, K. Han, E. S. Bielejec, Y. Xuan, and M. Hosseini, “Anomalous emission from a one-dimensional lattice of ions in silicon photonics,” arXiv:1902.08898 (2019).

Park, D.

Parkins, A. S.

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. Kippenberg, K. Vahala, and H. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443, 671–674 (2006).
[Crossref]

Pérez-Ríos, J.

J. Pérez-Ríos, M. E. Kim, and C.-L. Hung, “Ultracold molecule assembly with photonic crystals,” New J. Phys. 19, 123035 (2017).
[Crossref]

Pernice, W.

R. Ritter, N. Gruhler, H. Dobbertin, H. Kübler, S. Scheel, W. Pernice, T. Pfau, and R. Löw, “Coupling thermal atomic vapor to slot waveguides,” Phys. Rev. X 8, 021032 (2018).

R. Ritter, N. Gruhler, W. Pernice, H. Kübler, T. Pfau, and R. Löw, “Coupling thermal atomic vapor to an integrated ring resonator,” New J. Phys. 18, 103031 (2016).
[Crossref]

Perry, D.

A. Nandi, X. Jiang, D. Pak, D. Perry, K. Han, E. S. Bielejec, Y. Xuan, and M. Hosseini, “Anomalous emission from a one-dimensional lattice of ions in silicon photonics,” arXiv:1902.08898 (2019).

Pfau, T.

R. Ritter, N. Gruhler, H. Dobbertin, H. Kübler, S. Scheel, W. Pernice, T. Pfau, and R. Löw, “Coupling thermal atomic vapor to slot waveguides,” Phys. Rev. X 8, 021032 (2018).

R. Ritter, N. Gruhler, W. Pernice, H. Kübler, T. Pfau, and R. Löw, “Coupling thermal atomic vapor to an integrated ring resonator,” New J. Phys. 18, 103031 (2016).
[Crossref]

Polzik, E.

H. Sorensen, J.-B. Beguin, K. Kluge, I. Iakoupov, A. Sorensen, J. Muller, E. Polzik, and J. Appel, “Coherent backscattering of light off one-dimensional atomic strings,” Phys. Rev. Lett. 117, 133604 (2016).
[Crossref]

Porkolab, G. A.

Pototschnig, M.

A. Goban, K. S. Choi, D. J. Alton, D. Ding, C. Lacroute, M. Pototschnig, T. Thiele, N. P. Stern, and H. J. Kimble, “Demonstration of a state-insensitive, compensated nanofiber trap,” Phys. Rev. Lett. 109, 033603 (2012).
[Crossref]

Pruessner, M. W.

Qi, M.

Rabinovich, W. S.

Ramelow, S.

P. Kaufmann, X. Ji, K. Luke, M. Lipson, and S. Ramelow, “Characterization of ultra-high-q Si3N4 micro-ring resonators with high-precision temperature control,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2018), p. JTu2A.72.

Rauschenbeutel, A.

D. O’shea, C. Junge, J. Volz, and A. Rauschenbeutel, “Fiber-optical switch controlled by a single atom,” Phys. Rev. Lett. 111, 193601(2013).
[Crossref]

E. Vetsch, D. Reitz, G. Sague, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett. 104, 203603 (2010).
[Crossref]

Reitz, D.

E. Vetsch, D. Reitz, G. Sague, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett. 104, 203603 (2010).
[Crossref]

Richardson, C. J. K.

Ritter, R.

R. Ritter, N. Gruhler, H. Dobbertin, H. Kübler, S. Scheel, W. Pernice, T. Pfau, and R. Löw, “Coupling thermal atomic vapor to slot waveguides,” Phys. Rev. X 8, 021032 (2018).

R. Ritter, N. Gruhler, W. Pernice, H. Kübler, T. Pfau, and R. Löw, “Coupling thermal atomic vapor to an integrated ring resonator,” New J. Phys. 18, 103031 (2016).
[Crossref]

Roberts, S. P.

X. Ji, F. A. S. Barbosa, S. P. Roberts, A. Dutt, J. Cardenas, Y. Okawachi, A. Bryant, A. L. Gaeta, and M. Lipson, “Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold,” Optica 4, 619–624 (2017).
[Crossref]

S. P. Roberts, X. Ji, J. Cardenas, A. Bryant, and M. Lipson, “Sidewall roughness in si3n4 waveguides directly measured by atomic force microscopy,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2017), p. SM3K.6.

Rolston, S.

Y. Meng, J. Lee, M. Dagenais, and S. Rolston, “A nanowaveguide platform for collective atom-light interaction,” Appl. Phys. Lett. 107, 091110 (2015).
[Crossref]

Rosenblum, S.

I. Shomroni, S. Rosenblum, Y. Lovsky, O. Bechler, G. Guendelman, and B. Dayan, “All-optical routing of single photons by a one-atom switch controlled by a single photon,” Science 345, 903–906 (2014).
[Crossref]

Sague, G.

E. Vetsch, D. Reitz, G. Sague, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett. 104, 203603 (2010).
[Crossref]

Saskin, S.

S. Saskin, J. Wilson, B. Grinkemeyer, and J. D. Thompson, “Narrow-line cooling and imaging of ytterbium atoms in an optical tweezer array,” Phys. Rev. Lett. 122, 143002 (2019).
[Crossref]

Scheel, S.

R. Ritter, N. Gruhler, H. Dobbertin, H. Kübler, S. Scheel, W. Pernice, T. Pfau, and R. Löw, “Coupling thermal atomic vapor to slot waveguides,” Phys. Rev. X 8, 021032 (2018).

Schmidt, R.

E. Vetsch, D. Reitz, G. Sague, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett. 104, 203603 (2010).
[Crossref]

Sheremet, A. S.

N. V. Corzo, B. Gouraud, A. Chandra, A. Goban, A. S. Sheremet, D. V. Kupriyanov, and J. Laurat, “Large Bragg reflection from one-dimensional chains of trapped atoms near a nanoscale waveguide,” Phys. Rev. Lett. 117, 133603 (2016).
[Crossref]

Shomroni, I.

I. Shomroni, S. Rosenblum, Y. Lovsky, O. Bechler, G. Guendelman, and B. Dayan, “All-optical routing of single photons by a one-atom switch controlled by a single photon,” Science 345, 903–906 (2014).
[Crossref]

Sorensen, A.

H. Sorensen, J.-B. Beguin, K. Kluge, I. Iakoupov, A. Sorensen, J. Muller, E. Polzik, and J. Appel, “Coherent backscattering of light off one-dimensional atomic strings,” Phys. Rev. Lett. 117, 133604 (2016).
[Crossref]

Sorensen, H.

H. Sorensen, J.-B. Beguin, K. Kluge, I. Iakoupov, A. Sorensen, J. Muller, E. Polzik, and J. Appel, “Coherent backscattering of light off one-dimensional atomic strings,” Phys. Rev. Lett. 117, 133604 (2016).
[Crossref]

Srinivasan, K.

K. Srinivasan and O. Painter, “Mode coupling and cavity-quantum-dot interactions in a fiber-coupled microdisk cavity,” Phys. Rev. A 75, 023814 (2007).
[Crossref]

P. E. Barclay, K. Srinivasan, O. Painter, B. Lev, and H. Mabuchi, “Integration of fiber-coupled high-QSiNx microdisks with atom chips,” Appl. Phys. Lett. 89, 131108 (2006).
[Crossref]

Stanev, T. K.

G. Wei, T. K. Stanev, D. A. Czaplewski, I. W. Jung, and N. P. Stern, “Silicon-nitride photonic circuits interfaced with monolayer MoS2,” Appl. Phys. Lett. 107, 091112 (2015).
[Crossref]

Stern, N.

C. Lacroûte, K. Choi, A. Goban, D. Alton, D. Ding, N. Stern, and H. Kimble, “A state-insensitive, compensated nanofiber trap,” New J. Phys. 14, 023056 (2012).
[Crossref]

Stern, N. P.

G. Wei, T. K. Stanev, D. A. Czaplewski, I. W. Jung, and N. P. Stern, “Silicon-nitride photonic circuits interfaced with monolayer MoS2,” Appl. Phys. Lett. 107, 091112 (2015).
[Crossref]

A. Goban, K. S. Choi, D. J. Alton, D. Ding, C. Lacroute, M. Pototschnig, T. Thiele, N. P. Stern, and H. J. Kimble, “Demonstration of a state-insensitive, compensated nanofiber trap,” Phys. Rev. Lett. 109, 033603 (2012).
[Crossref]

N. P. Stern, D. J. Alton, and H. J. Kimble, “Simulations of atomic trajectories near a dielectric surface,” New J. Phys. 13, 085004 (2011).
[Crossref]

Stievater, T. H.

Teng, M.

Thiele, T.

A. Goban, K. S. Choi, D. J. Alton, D. Ding, C. Lacroute, M. Pototschnig, T. Thiele, N. P. Stern, and H. J. Kimble, “Demonstration of a state-insensitive, compensated nanofiber trap,” Phys. Rev. Lett. 109, 033603 (2012).
[Crossref]

Thompson, J. D.

S. Saskin, J. Wilson, B. Grinkemeyer, and J. D. Thompson, “Narrow-line cooling and imaging of ytterbium atoms in an optical tweezer array,” Phys. Rev. Lett. 122, 143002 (2019).
[Crossref]

T. G. Tiecke, J. D. Thompson, N. P. de Leon, L. R. Liu, V. Vuletic, and M. D. Lukin, “Nanophotonic quantum phase switch with a single atom,” Nature 508, 241–244 (2014).
[Crossref]

J. D. Thompson, T. G. Tiecke, N. P. de Leon, J. Feist, A. V. Akimov, M. Gullans, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Coupling a single trapped atom to a nanoscale optical cavity,” Science 340, 1202–1205 (2013).
[Crossref]

Tiecke, T. G.

T. G. Tiecke, J. D. Thompson, N. P. de Leon, L. R. Liu, V. Vuletic, and M. D. Lukin, “Nanophotonic quantum phase switch with a single atom,” Nature 508, 241–244 (2014).
[Crossref]

J. D. Thompson, T. G. Tiecke, N. P. de Leon, J. Feist, A. V. Akimov, M. Gullans, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Coupling a single trapped atom to a nanoscale optical cavity,” Science 340, 1202–1205 (2013).
[Crossref]

Torres-Company, V.

Vahala, K.

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. Kippenberg, K. Vahala, and H. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443, 671–674 (2006).
[Crossref]

Varghese, L. T.

Vetsch, E.

E. Vetsch, D. Reitz, G. Sague, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett. 104, 203603 (2010).
[Crossref]

Volz, J.

D. O’shea, C. Junge, J. Volz, and A. Rauschenbeutel, “Fiber-optical switch controlled by a single atom,” Phys. Rev. Lett. 111, 193601(2013).
[Crossref]

Vuckovic, J.

J. L. O’brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nat. Photonics 3, 687–695 (2009).
[Crossref]

Vuletic, V.

T. G. Tiecke, J. D. Thompson, N. P. de Leon, L. R. Liu, V. Vuletic, and M. D. Lukin, “Nanophotonic quantum phase switch with a single atom,” Nature 508, 241–244 (2014).
[Crossref]

J. D. Thompson, T. G. Tiecke, N. P. de Leon, J. Feist, A. V. Akimov, M. Gullans, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Coupling a single trapped atom to a nanoscale optical cavity,” Science 340, 1202–1205 (2013).
[Crossref]

Wang, B.

Wang, C.

Wang, J.

Wang, P.-H.

Wei, G.

G. Wei, T. K. Stanev, D. A. Czaplewski, I. W. Jung, and N. P. Stern, “Silicon-nitride photonic circuits interfaced with monolayer MoS2,” Appl. Phys. Lett. 107, 091112 (2015).
[Crossref]

Weidemüller, M.

R. Grimm, M. Weidemüller, and Y. B. Ovchinnikov, “Optical dipole traps for neutral atoms,” in Advances in Atomic, Molecular, and Optical Physics (Elsevier, 2000), Vol. 42, pp. 95–170.

Weiner, A. M.

Wilcut, E.

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. Kippenberg, K. Vahala, and H. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443, 671–674 (2006).
[Crossref]

Wilson, J.

S. Saskin, J. Wilson, B. Grinkemeyer, and J. D. Thompson, “Narrow-line cooling and imaging of ytterbium atoms in an optical tweezer array,” Phys. Rev. Lett. 122, 143002 (2019).
[Crossref]

Xuan, Y.

Xue, X.

Yu, S.-P.

J. D. Hood, A. Goban, A. Asenjo-Garcia, M. Lu, S.-P. Yu, D. E. Chang, and H. Kimble, “Atom–atom interactions around the band edge of a photonic crystal waveguide,” Proc. Natl. Acad. Sci. USA 113, 10507–10512 (2016).

A. Goban, C.-L. Hung, J. Hood, S.-P. Yu, J. Muniz, O. Painter, and H. Kimble, “Superradiance for atoms trapped along a photonic crystal waveguide,” Phys. Rev. Lett. 115, 063601 (2015).
[Crossref]

Zibrov, A. S.

J. D. Thompson, T. G. Tiecke, N. P. de Leon, J. Feist, A. V. Akimov, M. Gullans, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Coupling a single trapped atom to a nanoscale optical cavity,” Science 340, 1202–1205 (2013).
[Crossref]

Appl. Phys. Lett. (3)

P. E. Barclay, K. Srinivasan, O. Painter, B. Lev, and H. Mabuchi, “Integration of fiber-coupled high-QSiNx microdisks with atom chips,” Appl. Phys. Lett. 89, 131108 (2006).
[Crossref]

Y. Meng, J. Lee, M. Dagenais, and S. Rolston, “A nanowaveguide platform for collective atom-light interaction,” Appl. Phys. Lett. 107, 091110 (2015).
[Crossref]

G. Wei, T. K. Stanev, D. A. Czaplewski, I. W. Jung, and N. P. Stern, “Silicon-nitride photonic circuits interfaced with monolayer MoS2,” Appl. Phys. Lett. 107, 091112 (2015).
[Crossref]

Nat. Commun. (1)

M. E. Kim, T.-H. Chang, B. M. Fields, C.-A. Chen, and C.-L. Hung, “Trapping single atoms on a nanophotonic circuit with configurable tweezer lattices,” Nat. Commun. 10, 1647 (2019).
[Crossref]

Nat. Photonics (4)

J. L. O’brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nat. Photonics 3, 687–695 (2009).
[Crossref]

J. I. Cirac and H. J. Kimble, “Quantum optics, what next?” Nat. Photonics 11, 18–20 (2017).
[Crossref]

A. Gonzalez-Tudela, C.-L. Hung, D. E. Chang, J. I. Cirac, and H. J. Kimble, “Subwavelength vacuum lattices and atom-atom interactions in two-dimensional photonic crystals,” Nat. Photonics 9, 320–325 (2015).
[Crossref]

J. S. Douglas, H. Habibian, C.-L. Hung, A. Gorshkov, H. J. Kimble, and D. E. Chang, “Quantum many-body models with cold atoms coupled to photonic crystals,” Nat. Photonics 9, 326–331 (2015).
[Crossref]

Nature (2)

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. Kippenberg, K. Vahala, and H. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443, 671–674 (2006).
[Crossref]

T. G. Tiecke, J. D. Thompson, N. P. de Leon, L. R. Liu, V. Vuletic, and M. D. Lukin, “Nanophotonic quantum phase switch with a single atom,” Nature 508, 241–244 (2014).
[Crossref]

New J. Phys. (5)

C. Lacroûte, K. Choi, A. Goban, D. Alton, D. Ding, N. Stern, and H. Kimble, “A state-insensitive, compensated nanofiber trap,” New J. Phys. 14, 023056 (2012).
[Crossref]

J. Pérez-Ríos, M. E. Kim, and C.-L. Hung, “Ultracold molecule assembly with photonic crystals,” New J. Phys. 19, 123035 (2017).
[Crossref]

C.-L. Hung, S. M. Meenehan, D. E. Chang, O. Painter, and H. J. Kimble, “Trapped atoms in one-dimensional photonic crystals,” New J. Phys. 15, 083026 (2013).
[Crossref]

N. P. Stern, D. J. Alton, and H. J. Kimble, “Simulations of atomic trajectories near a dielectric surface,” New J. Phys. 13, 085004 (2011).
[Crossref]

R. Ritter, N. Gruhler, W. Pernice, H. Kübler, T. Pfau, and R. Löw, “Coupling thermal atomic vapor to an integrated ring resonator,” New J. Phys. 18, 103031 (2016).
[Crossref]

Opt. Express (3)

Opt. Mater. Express (1)

Optica (2)

Phys. Rev. A (3)

K. Srinivasan and O. Painter, “Mode coupling and cavity-quantum-dot interactions in a fiber-coupled microdisk cavity,” Phys. Rev. A 75, 023814 (2007).
[Crossref]

F. Le Kien, V. I. Balykin, and K. Hakuta, “Atom trap and waveguide using a two-color evanescent light field around a subwavelength-diameter optical fiber,” Phys. Rev. A 70, 063403 (2004).
[Crossref]

V. Balykin, K. Hakuta, F. Le Kien, J. Liang, and M. Morinaga, “Atom trapping and guiding with a subwavelength-diameter optical fiber,” Phys. Rev. A 70, 011401 (2004).
[Crossref]

Phys. Rev. Lett. (8)

D. O’shea, C. Junge, J. Volz, and A. Rauschenbeutel, “Fiber-optical switch controlled by a single atom,” Phys. Rev. Lett. 111, 193601(2013).
[Crossref]

E. Vetsch, D. Reitz, G. Sague, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett. 104, 203603 (2010).
[Crossref]

A. Goban, K. S. Choi, D. J. Alton, D. Ding, C. Lacroute, M. Pototschnig, T. Thiele, N. P. Stern, and H. J. Kimble, “Demonstration of a state-insensitive, compensated nanofiber trap,” Phys. Rev. Lett. 109, 033603 (2012).
[Crossref]

S. Kato and T. Aoki, “Strong coupling between a trapped single atom and an all-fiber cavity,” Phys. Rev. Lett. 115, 093603 (2015).
[Crossref]

H. Sorensen, J.-B. Beguin, K. Kluge, I. Iakoupov, A. Sorensen, J. Muller, E. Polzik, and J. Appel, “Coherent backscattering of light off one-dimensional atomic strings,” Phys. Rev. Lett. 117, 133604 (2016).
[Crossref]

N. V. Corzo, B. Gouraud, A. Chandra, A. Goban, A. S. Sheremet, D. V. Kupriyanov, and J. Laurat, “Large Bragg reflection from one-dimensional chains of trapped atoms near a nanoscale waveguide,” Phys. Rev. Lett. 117, 133603 (2016).
[Crossref]

A. Goban, C.-L. Hung, J. Hood, S.-P. Yu, J. Muniz, O. Painter, and H. Kimble, “Superradiance for atoms trapped along a photonic crystal waveguide,” Phys. Rev. Lett. 115, 063601 (2015).
[Crossref]

S. Saskin, J. Wilson, B. Grinkemeyer, and J. D. Thompson, “Narrow-line cooling and imaging of ytterbium atoms in an optical tweezer array,” Phys. Rev. Lett. 122, 143002 (2019).
[Crossref]

Phys. Rev. X (1)

R. Ritter, N. Gruhler, H. Dobbertin, H. Kübler, S. Scheel, W. Pernice, T. Pfau, and R. Löw, “Coupling thermal atomic vapor to slot waveguides,” Phys. Rev. X 8, 021032 (2018).

Proc. Natl. Acad. Sci. USA (2)

C.-L. Hung, A. González-Tudela, J. I. Cirac, and H. J. Kimble, “Quantum spin dynamics with pairwise-tunable, long-range interactions,” Proc. Natl. Acad. Sci. USA 113, E4946–E4955 (2016).
[Crossref]

J. D. Hood, A. Goban, A. Asenjo-Garcia, M. Lu, S.-P. Yu, D. E. Chang, and H. Kimble, “Atom–atom interactions around the band edge of a photonic crystal waveguide,” Proc. Natl. Acad. Sci. USA 113, 10507–10512 (2016).

Rev. Mod. Phys. (1)

D. E. Chang, J. S. Douglas, A. González-Tudela, C.-L. Hung, and H. J. Kimble, “Colloquium: quantum matter built from nanoscopic lattices of atoms and photons,” Rev. Mod. Phys. 90, 031002 (2018).
[Crossref]

Science (3)

J. D. Thompson, T. G. Tiecke, N. P. de Leon, J. Feist, A. V. Akimov, M. Gullans, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Coupling a single trapped atom to a nanoscale optical cavity,” Science 340, 1202–1205 (2013).
[Crossref]

I. Shomroni, S. Rosenblum, Y. Lovsky, O. Bechler, G. Guendelman, and B. Dayan, “All-optical routing of single photons by a one-atom switch controlled by a single photon,” Science 345, 903–906 (2014).
[Crossref]

D. Barredo, S. D. Leseleuc, V. Lienhard, T. Lahaye, and A. Browaeys, “An atom-by-atom assembler of defect-free arbitrary two-dimensional atomic arrays,” Science 354, 1021–1023 (2016).
[Crossref]

Other (8)

Alternatively, one may also excite the blue-detuned mode via single end of the waveguide bus using a laser of finite line width δν≫β (β<2π×0.6  GHz) so that no coherent back-scattering can establish within the microring.

https://www.comsol.com .

S. P. Roberts, X. Ji, J. Cardenas, A. Bryant, and M. Lipson, “Sidewall roughness in si3n4 waveguides directly measured by atomic force microscopy,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2017), p. SM3K.6.

https://www.lumerical.com .

P. Kaufmann, X. Ji, K. Luke, M. Lipson, and S. Ramelow, “Characterization of ultra-high-q Si3N4 micro-ring resonators with high-precision temperature control,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2018), p. JTu2A.72.

D. J. Alton, “Interacting single atoms with nanophotonics for chip-integrated quantum networks,” Ph.D. thesis (California Institute of Technology, 2013).

R. Grimm, M. Weidemüller, and Y. B. Ovchinnikov, “Optical dipole traps for neutral atoms,” in Advances in Atomic, Molecular, and Optical Physics (Elsevier, 2000), Vol. 42, pp. 95–170.

A. Nandi, X. Jiang, D. Pak, D. Perry, K. Han, E. S. Bielejec, Y. Xuan, and M. Hosseini, “Anomalous emission from a one-dimensional lattice of ions in silicon photonics,” arXiv:1902.08898 (2019).

Supplementary Material (1)

NameDescription
» Supplement 1       Supplemental document

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Interfacing single atoms with a microring structure on a membrane for strong atom–light interactions. (a) Schematics of a silicon nitride microring (radius R) on a dioxide-nitride membrane, with a single trapped atom (green sphere). Curved arrows depict single atom–photon coupling rate, g, to the resonator modes. Wavy arrows depict intrinsic resonator loss (at rate κi) and the atomic decay (at rate γ), respectively. A linear bus waveguide couples to and from the resonator modes at rates κc (depicted by crossed solid and dashed arrows). (b) Eeffective mode area Am of a microring of width W=1.1μm, height H=0.29μm, and radius R16μm; Am5.2μm2 at the depicted atom location (ρa,za)=(R,100nm). Shaded structures mark the microring waveguide (Si3N4) and supporting membrane (SiO2 and Si3N4 layers), respectively. (c) Atom–photon coupling strength g(z) along a vertical dashed line in (b); g(za)/2π=200MHz is marked by the dotted lines.
Fig. 2.
Fig. 2. Fabricated small radius microring/racetrack resonators and optical quality measurements. (a) Optical image of an array of microrings (i) coupled to a linear waveguide bus (ii) for fiber edge coupling in a U-groove (iii). Membrane area is enclosed in a dashed box. (b) Overview of the optical chip. The membrane is suspended within a 2mm×8mm window. (c), (d) SEM of fabricated (c) microring and (d) racetrack resonators, both with width W=0.95μm and height H=0.36μm. (e) Scattering intensity measurements near the resonance of a racetrack resonator. Solid line is a fit, giving (κ,β,ω0)/2π=(1.01,0.655,334.792×103)GHz.
Fig. 3.
Fig. 3. Cooperativity optimization via scanning the microring geometry, with the surface roughness parameters (σ±, L±, σt, Lt, σb, Lb)= (a) (2,60,1.4,73,1.6,84) nm and (b) (1.4,39,0.1,10,0.1,10) nm, respectively.
Fig. 4.
Fig. 4. Two-color evanescent field trap. (a), (c) The coupling schemes are schematically shown in (a) for a microring and (c) for a racetrack resonator, where the injected lights are marked by red (ωr) and blue (ωb) arrows and the ± signs mark the direction of coupling. Sample total potential cross section Utot(ρ,0,z) in the near-field region above the resonators (enclosed by dashed boxes) are displayed accordingly, where the top surfaces of the resonator waveguides are centered at (ρ,z)=(ρw,0). Green spheres indicate the trap center and red spheres mark the positions of potential saddle points beyond which the trap opens. (b), (d) Trap depth ΔU (red curves) and the vertical trap position zt (black curves) can be adjusted by tuning the ratio of energy build-up factors Ir/Ib between the ωr and ωb modes; Ib = (b) 5.4×105 and (d) 8.0×104. For a microring trap (b), radial trap position |ρtρw| (blue curve) remains roughly unchanged until the trap completely opens; for a racetrack trap (d), ρt=ρw. (e), (f) Injected light frequencies and build-up factors I (black curves) around the microring resonances. In (e), ωr (red dashed line) is chosen to maximize the visibility V (red curve) and to eliminate the vector light shift (Supplement 1 Section 2). In (f), ωb modes (blue dashed line) are symmetrically excited around ω0,b to maximize Ib± and to eliminate potential corrugation and vector light shifts. Parameters used in (e), (f): (κ,κc,β)=2π×(1,0.5,0.6)GHz.
Fig. 5.
Fig. 5. Evanescent field lattice potential on (a) a microring and (b) racetrack resonator, respectively. Top panels show the potential cross sections Utot(ρt,l,z) while the bottom panels show Utot(ρ,l,zt). The lattice constant is d=290nm. Parameters used are identical to those in Figs. 4(a) and 4(c).
Fig. 6.
Fig. 6. Top-illuminating optical trap. (a) A tightly focused optical beam (an optical tweezers) creates a lattice of microtraps on top of the resonator waveguide. Inset shows the total potential cross-section Utot(ρ,z) of the nearest trap site above the surface. Green sphere marks the trap center at zt=150nm. Potential contours are KB×25μK, 50 μK, 75 μK, and 100 μK above Utot(ρw,zt)kB×1.57mK at the trap center. (b) Scanning the trap center zt by tuning the thickness of the dioxide layer and keeping the thickness of the bottom nitride layer fixed at 600 nm. Filled circle marks the geometry parameter for (a).
Fig. 7.
Fig. 7. Atom transport in an evanescent field lattice trap. (a)–(c) Illustration of tweezers trap transfer. Potential cross-sections Utot=Uev+Utw+Ucp are shown with a tweezers trap centered at l=d=290nm, and with increasing tweezers power, Ptw= (a) 2 mW, (b) 4 mW, and (c) 6 mW. (d)–(f) Trapped atom transport from l=d to l=0. Potential cross-sections Utot are shown with a fixed tweezers power Ptw=6mW and shifted tweezers trap center at l/d= (d) -0.5, (e) -0.44, and (f) -0.37. Vertical arrows indicate the center of the tweezers trap. Filled circles mark the position of trapped atoms in the target site center, which is enclosed by potential contours that are KB×25μK, 50 μK, and 100 μK, respectively, above the local potential minimum at zt200nm.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Am(ρa,za)=ϵ(ρ,z)|E(ρ,z)|2dρdzϵ(ρa,za)|E(ρa,za)|2.
|E(r)|2=I|E(ρ,z)|2[1±Vsin(2kl±ξ)],
I(α)=κcPwω|α|2+β2|α2+β2|2.
V(α)=2v|αβ|(|α|2+β2),
Uev(r)=αr(0)Ir|Er(ρ,z)|2[1+Vcos(2krl)]αb(0)Ib|Eb(ρ,z)|2,
Utot(r)=Uev(r)+Ucp(r)

Metrics