Abstract

The lensless endoscope represents the ultimate limit in miniaturization of imaging tools: an image can be transmitted through a (multi-mode or multi-core) fiber by numerical or physical inversion of the fiber’s pre-measured transmission matrix. However, the transmission matrix changes completely with only minute conformational changes in the fiber, which has so far limited lensless endoscopes to fibers that must be kept static. In this paper, we report for the first time, to the best of our knowledge, a lensless endoscope that is exempt from the requirement of static fiber by designing and employing a custom-designed conformationally invariant fiber. We give experimental and theoretical validations and determine the parameter space over which the invariance is maintained.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Bending-induced inter-core group delays in multicore fibers

Viktor Tsvirkun, Siddharth Sivankutty, Géraud Bouwmans, Olivier Vanvincq, Esben Ravn Andresen, and Hervé Rigneault
Opt. Express 25(25) 31863-31875 (2017)

Measurement and compensation of residual group delay in a multi-core fiber for lensless endoscopy

Esben Ravn Andresen, Siddharth Sivankutty, Géraud Bouwmans, Laurent Gallais, Serge Monneret, and Hervé Rigneault
J. Opt. Soc. Am. B 32(6) 1221-1228 (2015)

Design of flexible multi-mode fiber endoscope

Ruo Yu Gu, Reza Nasiri Mahalati, and Joseph M. Kahn
Opt. Express 23(21) 26905-26918 (2015)

References

  • View by:
  • |
  • |
  • |

  1. Y. Ziv and K. K. Ghosh, “Miniature microscopes for large-scale imaging of neuronal activity in freely behaving rodents,” Curr. Opin. Neurobiol. 32, 141–147 (2015).
    [Crossref]
  2. D. Aharoni and T. M. Hoogland, “Circuit investigations with open-source miniaturized microscopes: past, present and future,” Front. Cell. Neurosci. 13, 141 (2019).
    [Crossref]
  3. A. Lombardini, V. Mytskaniuk, S. Sivankutty, E. R. Andresen, X. Chen, J. Wenger, M. Fabert, N. Joly, F. Louradour, A. Kudlinski, and H. Rigneault, “High-resolution multimodal flexible coherent Raman endoscope,” Light Sci. Appl. 7, 10 (2018).
    [Crossref]
  4. W. Zong, R. Wu, M. Li, Y. Hu, Y. Li, J. Li, H. Rong, H. Wu, Y. Xu, Y. Lu, H. Jia, M. Fan, Z. Zhou, Y. Zhang, A. Zang, L. Chen, and H. Cheng, “Fast high-resolution miniature two-photon microscopy for brain imaging in freely behaving mice,” Nat. Methods 14, 713–722 (2017).
    [Crossref]
  5. R. S. Pillai, D. Lorenser, and D. D. Sampson, “Deep-tissue access with confocal fluorescence microendoscopy through hypodermic needles,” Opt. Express 19, 7213–7221 (2011).
    [Crossref]
  6. B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. Cheung, and L. M. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2, 941–950 (2005).
    [Crossref]
  7. A. J. Thompson, C. Paterson, M. A. A. Neil, C. Dunsby, and P. M. W. French, “Adaptive phase compensation for ultracompact laser scanning endomicroscopy,” Opt. Lett. 36, 1707–1709 (2011).
    [Crossref]
  8. T. Cizmar and K. Dholakia, “Shaping the light transmission through a multimode optical fibre: complex transformation analysis andapplications in biophotonics,” Opt. Express 19, 18871–18884 (2011).
    [Crossref]
  9. I. N. Papadopoulos, S. Farahi, C. Moser, and D. Psaltis, “Focusing and scanning light through a multimode optical fiber using digital phase conjugation,” Opt. Express 20, 10583–10590 (2012).
    [Crossref]
  10. Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109, 203901 (2012).
    [Crossref]
  11. E. R. Andresen, G. Bouwmans, S. Monneret, and H. Rigneault, “Toward endoscopes with no distal optics: video-rate scanning microscopy through a fiber bundle,” Opt. Lett. 38, 609–611 (2013).
    [Crossref]
  12. E. R. Andresen, G. Bouwmans, S. Monneret, and H. Rigneault, “Two-photon lensless endoscope,” Opt. Express 21, 20713–20721 (2013).
    [Crossref]
  13. S. Ohayon, A. M. Caravaca-Aguirre, R. Piestun, and J. J. DiCarlo, “Minimally invasive multimode optical fiber microendoscope for deep brain fluorescence imaging,” Biomed. Opt. Express 9, 1492–1509 (2018).
    [Crossref]
  14. S. Vasquez-Lopez, R. Turcotte, V. Koren, M. Plöschner, Z. Padamsey, M. J. Booth, T. Cizmar, and N. Emptage, “Subcellular spatial resolution achieved for deep-brain imaging in vivo using a minimally invasive multimode fiber,” Light Sci. Appl. 7, 110 (2018).
    [Crossref]
  15. D. Loterie, S. Farahi, I. Papadopoulos, A. Goy, D. Psaltis, and C. Moser, “Digital confocal microscopy through a multimode fiber,” Opt. Express 23, 23845–23858 (2015).
    [Crossref]
  16. V. Tsvirkun, S. Sivankutty, E. R. Andresen, and H. Rigneault, “Wide-field lensless endoscopy with multi-core fiber,” Opt. Lett. 41, 4771–4774 (2016).
    [Crossref]
  17. S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104, 100601 (2010).
    [Crossref]
  18. M. Plöschner, T. Tyc, and T. Cizmar, “Seeing through chaos in multimode fibres,” Nat. Photonics 9, 529–535 (2015).
    [Crossref]
  19. S. Farahi, D. Ziegler, I. N. Papadopoulos, D. Psaltis, and C. Moser, “Dynamic bending compensation while focusing through a multimode fiber,” Opt. Express 21, 22504–22514 (2013).
    [Crossref]
  20. A. M. Caravaca-Aguirre, E. Niv, D. B. Conkey, and R. Piestun, “Real-time resilient focusing through a bending multimode fiber,” Opt. Express 21, 12881–12888 (2013).
    [Crossref]
  21. E. R. Andresen, S. Sivankutty, V. Tsvirkun, G. Bouwmans, and H. Rigneault, “Ultra-thin endoscopes based on multi-core fibers and adaptive optics: a status review and perspectives,” J. Biomed. Opt. 21, 121506 (2016).
    [Crossref]
  22. V. Tsvirkun, S. Sivankutty, G. Bouwmans, O. Vanvincq, E. R. Andresen, and H. Rigneault, “Bending-induced inter-core group delays in multicore fibers,” Opt. Express 25, 31863–31875 (2017).
    [Crossref]
  23. E. R. Andresen, S. Sivankutty, G. Bouwmans, L. Gallais, S. Monneret, and H. Rigneault, “Measurement and compensation of residual group delay in a multi-core fiber for lensless endoscopy,” J. Opt. Soc. Am. B 32, 1221–1228 (2015).
    [Crossref]
  24. S. Sivankutty, E. R. Andresen, G. Bouwmans, T. G. Brown, M. A. Alonso, and H. Rigneault, “Single shot polarimetry imaging of multicore fiber,” Opt. Lett. 41, 2105–2108 (2016).
    [Crossref]

2019 (1)

D. Aharoni and T. M. Hoogland, “Circuit investigations with open-source miniaturized microscopes: past, present and future,” Front. Cell. Neurosci. 13, 141 (2019).
[Crossref]

2018 (3)

A. Lombardini, V. Mytskaniuk, S. Sivankutty, E. R. Andresen, X. Chen, J. Wenger, M. Fabert, N. Joly, F. Louradour, A. Kudlinski, and H. Rigneault, “High-resolution multimodal flexible coherent Raman endoscope,” Light Sci. Appl. 7, 10 (2018).
[Crossref]

S. Vasquez-Lopez, R. Turcotte, V. Koren, M. Plöschner, Z. Padamsey, M. J. Booth, T. Cizmar, and N. Emptage, “Subcellular spatial resolution achieved for deep-brain imaging in vivo using a minimally invasive multimode fiber,” Light Sci. Appl. 7, 110 (2018).
[Crossref]

S. Ohayon, A. M. Caravaca-Aguirre, R. Piestun, and J. J. DiCarlo, “Minimally invasive multimode optical fiber microendoscope for deep brain fluorescence imaging,” Biomed. Opt. Express 9, 1492–1509 (2018).
[Crossref]

2017 (2)

V. Tsvirkun, S. Sivankutty, G. Bouwmans, O. Vanvincq, E. R. Andresen, and H. Rigneault, “Bending-induced inter-core group delays in multicore fibers,” Opt. Express 25, 31863–31875 (2017).
[Crossref]

W. Zong, R. Wu, M. Li, Y. Hu, Y. Li, J. Li, H. Rong, H. Wu, Y. Xu, Y. Lu, H. Jia, M. Fan, Z. Zhou, Y. Zhang, A. Zang, L. Chen, and H. Cheng, “Fast high-resolution miniature two-photon microscopy for brain imaging in freely behaving mice,” Nat. Methods 14, 713–722 (2017).
[Crossref]

2016 (3)

2015 (4)

2013 (4)

2012 (2)

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109, 203901 (2012).
[Crossref]

I. N. Papadopoulos, S. Farahi, C. Moser, and D. Psaltis, “Focusing and scanning light through a multimode optical fiber using digital phase conjugation,” Opt. Express 20, 10583–10590 (2012).
[Crossref]

2011 (3)

2010 (1)

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104, 100601 (2010).
[Crossref]

2005 (1)

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. Cheung, and L. M. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2, 941–950 (2005).
[Crossref]

Aharoni, D.

D. Aharoni and T. M. Hoogland, “Circuit investigations with open-source miniaturized microscopes: past, present and future,” Front. Cell. Neurosci. 13, 141 (2019).
[Crossref]

Alonso, M. A.

Andresen, E. R.

A. Lombardini, V. Mytskaniuk, S. Sivankutty, E. R. Andresen, X. Chen, J. Wenger, M. Fabert, N. Joly, F. Louradour, A. Kudlinski, and H. Rigneault, “High-resolution multimodal flexible coherent Raman endoscope,” Light Sci. Appl. 7, 10 (2018).
[Crossref]

V. Tsvirkun, S. Sivankutty, G. Bouwmans, O. Vanvincq, E. R. Andresen, and H. Rigneault, “Bending-induced inter-core group delays in multicore fibers,” Opt. Express 25, 31863–31875 (2017).
[Crossref]

V. Tsvirkun, S. Sivankutty, E. R. Andresen, and H. Rigneault, “Wide-field lensless endoscopy with multi-core fiber,” Opt. Lett. 41, 4771–4774 (2016).
[Crossref]

S. Sivankutty, E. R. Andresen, G. Bouwmans, T. G. Brown, M. A. Alonso, and H. Rigneault, “Single shot polarimetry imaging of multicore fiber,” Opt. Lett. 41, 2105–2108 (2016).
[Crossref]

E. R. Andresen, S. Sivankutty, V. Tsvirkun, G. Bouwmans, and H. Rigneault, “Ultra-thin endoscopes based on multi-core fibers and adaptive optics: a status review and perspectives,” J. Biomed. Opt. 21, 121506 (2016).
[Crossref]

E. R. Andresen, S. Sivankutty, G. Bouwmans, L. Gallais, S. Monneret, and H. Rigneault, “Measurement and compensation of residual group delay in a multi-core fiber for lensless endoscopy,” J. Opt. Soc. Am. B 32, 1221–1228 (2015).
[Crossref]

E. R. Andresen, G. Bouwmans, S. Monneret, and H. Rigneault, “Two-photon lensless endoscope,” Opt. Express 21, 20713–20721 (2013).
[Crossref]

E. R. Andresen, G. Bouwmans, S. Monneret, and H. Rigneault, “Toward endoscopes with no distal optics: video-rate scanning microscopy through a fiber bundle,” Opt. Lett. 38, 609–611 (2013).
[Crossref]

Boccara, A. C.

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104, 100601 (2010).
[Crossref]

Booth, M. J.

S. Vasquez-Lopez, R. Turcotte, V. Koren, M. Plöschner, Z. Padamsey, M. J. Booth, T. Cizmar, and N. Emptage, “Subcellular spatial resolution achieved for deep-brain imaging in vivo using a minimally invasive multimode fiber,” Light Sci. Appl. 7, 110 (2018).
[Crossref]

Bouwmans, G.

Brown, T. G.

Caravaca-Aguirre, A. M.

Carminati, R.

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104, 100601 (2010).
[Crossref]

Chen, L.

W. Zong, R. Wu, M. Li, Y. Hu, Y. Li, J. Li, H. Rong, H. Wu, Y. Xu, Y. Lu, H. Jia, M. Fan, Z. Zhou, Y. Zhang, A. Zang, L. Chen, and H. Cheng, “Fast high-resolution miniature two-photon microscopy for brain imaging in freely behaving mice,” Nat. Methods 14, 713–722 (2017).
[Crossref]

Chen, X.

A. Lombardini, V. Mytskaniuk, S. Sivankutty, E. R. Andresen, X. Chen, J. Wenger, M. Fabert, N. Joly, F. Louradour, A. Kudlinski, and H. Rigneault, “High-resolution multimodal flexible coherent Raman endoscope,” Light Sci. Appl. 7, 10 (2018).
[Crossref]

Cheng, H.

W. Zong, R. Wu, M. Li, Y. Hu, Y. Li, J. Li, H. Rong, H. Wu, Y. Xu, Y. Lu, H. Jia, M. Fan, Z. Zhou, Y. Zhang, A. Zang, L. Chen, and H. Cheng, “Fast high-resolution miniature two-photon microscopy for brain imaging in freely behaving mice,” Nat. Methods 14, 713–722 (2017).
[Crossref]

Cheung, E.

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. Cheung, and L. M. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2, 941–950 (2005).
[Crossref]

Choi, W.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109, 203901 (2012).
[Crossref]

Choi, Y.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109, 203901 (2012).
[Crossref]

Cizmar, T.

S. Vasquez-Lopez, R. Turcotte, V. Koren, M. Plöschner, Z. Padamsey, M. J. Booth, T. Cizmar, and N. Emptage, “Subcellular spatial resolution achieved for deep-brain imaging in vivo using a minimally invasive multimode fiber,” Light Sci. Appl. 7, 110 (2018).
[Crossref]

M. Plöschner, T. Tyc, and T. Cizmar, “Seeing through chaos in multimode fibres,” Nat. Photonics 9, 529–535 (2015).
[Crossref]

T. Cizmar and K. Dholakia, “Shaping the light transmission through a multimode optical fibre: complex transformation analysis andapplications in biophotonics,” Opt. Express 19, 18871–18884 (2011).
[Crossref]

Cocker, E. D.

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. Cheung, and L. M. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2, 941–950 (2005).
[Crossref]

Conkey, D. B.

Dasari, R. R.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109, 203901 (2012).
[Crossref]

Dholakia, K.

DiCarlo, J. J.

Dunsby, C.

Emptage, N.

S. Vasquez-Lopez, R. Turcotte, V. Koren, M. Plöschner, Z. Padamsey, M. J. Booth, T. Cizmar, and N. Emptage, “Subcellular spatial resolution achieved for deep-brain imaging in vivo using a minimally invasive multimode fiber,” Light Sci. Appl. 7, 110 (2018).
[Crossref]

Fabert, M.

A. Lombardini, V. Mytskaniuk, S. Sivankutty, E. R. Andresen, X. Chen, J. Wenger, M. Fabert, N. Joly, F. Louradour, A. Kudlinski, and H. Rigneault, “High-resolution multimodal flexible coherent Raman endoscope,” Light Sci. Appl. 7, 10 (2018).
[Crossref]

Fan, M.

W. Zong, R. Wu, M. Li, Y. Hu, Y. Li, J. Li, H. Rong, H. Wu, Y. Xu, Y. Lu, H. Jia, M. Fan, Z. Zhou, Y. Zhang, A. Zang, L. Chen, and H. Cheng, “Fast high-resolution miniature two-photon microscopy for brain imaging in freely behaving mice,” Nat. Methods 14, 713–722 (2017).
[Crossref]

Fang-Yen, C.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109, 203901 (2012).
[Crossref]

Farahi, S.

Fink, M.

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104, 100601 (2010).
[Crossref]

Flusberg, B. A.

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. Cheung, and L. M. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2, 941–950 (2005).
[Crossref]

French, P. M. W.

Gallais, L.

Ghosh, K. K.

Y. Ziv and K. K. Ghosh, “Miniature microscopes for large-scale imaging of neuronal activity in freely behaving rodents,” Curr. Opin. Neurobiol. 32, 141–147 (2015).
[Crossref]

Gigan, S.

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104, 100601 (2010).
[Crossref]

Goy, A.

Hoogland, T. M.

D. Aharoni and T. M. Hoogland, “Circuit investigations with open-source miniaturized microscopes: past, present and future,” Front. Cell. Neurosci. 13, 141 (2019).
[Crossref]

Hu, Y.

W. Zong, R. Wu, M. Li, Y. Hu, Y. Li, J. Li, H. Rong, H. Wu, Y. Xu, Y. Lu, H. Jia, M. Fan, Z. Zhou, Y. Zhang, A. Zang, L. Chen, and H. Cheng, “Fast high-resolution miniature two-photon microscopy for brain imaging in freely behaving mice,” Nat. Methods 14, 713–722 (2017).
[Crossref]

Jia, H.

W. Zong, R. Wu, M. Li, Y. Hu, Y. Li, J. Li, H. Rong, H. Wu, Y. Xu, Y. Lu, H. Jia, M. Fan, Z. Zhou, Y. Zhang, A. Zang, L. Chen, and H. Cheng, “Fast high-resolution miniature two-photon microscopy for brain imaging in freely behaving mice,” Nat. Methods 14, 713–722 (2017).
[Crossref]

Joly, N.

A. Lombardini, V. Mytskaniuk, S. Sivankutty, E. R. Andresen, X. Chen, J. Wenger, M. Fabert, N. Joly, F. Louradour, A. Kudlinski, and H. Rigneault, “High-resolution multimodal flexible coherent Raman endoscope,” Light Sci. Appl. 7, 10 (2018).
[Crossref]

Jung, J. C.

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. Cheung, and L. M. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2, 941–950 (2005).
[Crossref]

Kim, M.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109, 203901 (2012).
[Crossref]

Koren, V.

S. Vasquez-Lopez, R. Turcotte, V. Koren, M. Plöschner, Z. Padamsey, M. J. Booth, T. Cizmar, and N. Emptage, “Subcellular spatial resolution achieved for deep-brain imaging in vivo using a minimally invasive multimode fiber,” Light Sci. Appl. 7, 110 (2018).
[Crossref]

Kudlinski, A.

A. Lombardini, V. Mytskaniuk, S. Sivankutty, E. R. Andresen, X. Chen, J. Wenger, M. Fabert, N. Joly, F. Louradour, A. Kudlinski, and H. Rigneault, “High-resolution multimodal flexible coherent Raman endoscope,” Light Sci. Appl. 7, 10 (2018).
[Crossref]

Lee, K. J.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109, 203901 (2012).
[Crossref]

Lerosey, G.

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104, 100601 (2010).
[Crossref]

Li, J.

W. Zong, R. Wu, M. Li, Y. Hu, Y. Li, J. Li, H. Rong, H. Wu, Y. Xu, Y. Lu, H. Jia, M. Fan, Z. Zhou, Y. Zhang, A. Zang, L. Chen, and H. Cheng, “Fast high-resolution miniature two-photon microscopy for brain imaging in freely behaving mice,” Nat. Methods 14, 713–722 (2017).
[Crossref]

Li, M.

W. Zong, R. Wu, M. Li, Y. Hu, Y. Li, J. Li, H. Rong, H. Wu, Y. Xu, Y. Lu, H. Jia, M. Fan, Z. Zhou, Y. Zhang, A. Zang, L. Chen, and H. Cheng, “Fast high-resolution miniature two-photon microscopy for brain imaging in freely behaving mice,” Nat. Methods 14, 713–722 (2017).
[Crossref]

Li, Y.

W. Zong, R. Wu, M. Li, Y. Hu, Y. Li, J. Li, H. Rong, H. Wu, Y. Xu, Y. Lu, H. Jia, M. Fan, Z. Zhou, Y. Zhang, A. Zang, L. Chen, and H. Cheng, “Fast high-resolution miniature two-photon microscopy for brain imaging in freely behaving mice,” Nat. Methods 14, 713–722 (2017).
[Crossref]

Lombardini, A.

A. Lombardini, V. Mytskaniuk, S. Sivankutty, E. R. Andresen, X. Chen, J. Wenger, M. Fabert, N. Joly, F. Louradour, A. Kudlinski, and H. Rigneault, “High-resolution multimodal flexible coherent Raman endoscope,” Light Sci. Appl. 7, 10 (2018).
[Crossref]

Lorenser, D.

Loterie, D.

Louradour, F.

A. Lombardini, V. Mytskaniuk, S. Sivankutty, E. R. Andresen, X. Chen, J. Wenger, M. Fabert, N. Joly, F. Louradour, A. Kudlinski, and H. Rigneault, “High-resolution multimodal flexible coherent Raman endoscope,” Light Sci. Appl. 7, 10 (2018).
[Crossref]

Lu, Y.

W. Zong, R. Wu, M. Li, Y. Hu, Y. Li, J. Li, H. Rong, H. Wu, Y. Xu, Y. Lu, H. Jia, M. Fan, Z. Zhou, Y. Zhang, A. Zang, L. Chen, and H. Cheng, “Fast high-resolution miniature two-photon microscopy for brain imaging in freely behaving mice,” Nat. Methods 14, 713–722 (2017).
[Crossref]

Monneret, S.

Moser, C.

Mytskaniuk, V.

A. Lombardini, V. Mytskaniuk, S. Sivankutty, E. R. Andresen, X. Chen, J. Wenger, M. Fabert, N. Joly, F. Louradour, A. Kudlinski, and H. Rigneault, “High-resolution multimodal flexible coherent Raman endoscope,” Light Sci. Appl. 7, 10 (2018).
[Crossref]

Neil, M. A. A.

Niv, E.

Ohayon, S.

Padamsey, Z.

S. Vasquez-Lopez, R. Turcotte, V. Koren, M. Plöschner, Z. Padamsey, M. J. Booth, T. Cizmar, and N. Emptage, “Subcellular spatial resolution achieved for deep-brain imaging in vivo using a minimally invasive multimode fiber,” Light Sci. Appl. 7, 110 (2018).
[Crossref]

Papadopoulos, I.

Papadopoulos, I. N.

Paterson, C.

Piestun, R.

Pillai, R. S.

Piyawattanametha, W.

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. Cheung, and L. M. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2, 941–950 (2005).
[Crossref]

Plöschner, M.

S. Vasquez-Lopez, R. Turcotte, V. Koren, M. Plöschner, Z. Padamsey, M. J. Booth, T. Cizmar, and N. Emptage, “Subcellular spatial resolution achieved for deep-brain imaging in vivo using a minimally invasive multimode fiber,” Light Sci. Appl. 7, 110 (2018).
[Crossref]

M. Plöschner, T. Tyc, and T. Cizmar, “Seeing through chaos in multimode fibres,” Nat. Photonics 9, 529–535 (2015).
[Crossref]

Popoff, S. M.

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104, 100601 (2010).
[Crossref]

Psaltis, D.

Rigneault, H.

A. Lombardini, V. Mytskaniuk, S. Sivankutty, E. R. Andresen, X. Chen, J. Wenger, M. Fabert, N. Joly, F. Louradour, A. Kudlinski, and H. Rigneault, “High-resolution multimodal flexible coherent Raman endoscope,” Light Sci. Appl. 7, 10 (2018).
[Crossref]

V. Tsvirkun, S. Sivankutty, G. Bouwmans, O. Vanvincq, E. R. Andresen, and H. Rigneault, “Bending-induced inter-core group delays in multicore fibers,” Opt. Express 25, 31863–31875 (2017).
[Crossref]

S. Sivankutty, E. R. Andresen, G. Bouwmans, T. G. Brown, M. A. Alonso, and H. Rigneault, “Single shot polarimetry imaging of multicore fiber,” Opt. Lett. 41, 2105–2108 (2016).
[Crossref]

V. Tsvirkun, S. Sivankutty, E. R. Andresen, and H. Rigneault, “Wide-field lensless endoscopy with multi-core fiber,” Opt. Lett. 41, 4771–4774 (2016).
[Crossref]

E. R. Andresen, S. Sivankutty, V. Tsvirkun, G. Bouwmans, and H. Rigneault, “Ultra-thin endoscopes based on multi-core fibers and adaptive optics: a status review and perspectives,” J. Biomed. Opt. 21, 121506 (2016).
[Crossref]

E. R. Andresen, S. Sivankutty, G. Bouwmans, L. Gallais, S. Monneret, and H. Rigneault, “Measurement and compensation of residual group delay in a multi-core fiber for lensless endoscopy,” J. Opt. Soc. Am. B 32, 1221–1228 (2015).
[Crossref]

E. R. Andresen, G. Bouwmans, S. Monneret, and H. Rigneault, “Two-photon lensless endoscope,” Opt. Express 21, 20713–20721 (2013).
[Crossref]

E. R. Andresen, G. Bouwmans, S. Monneret, and H. Rigneault, “Toward endoscopes with no distal optics: video-rate scanning microscopy through a fiber bundle,” Opt. Lett. 38, 609–611 (2013).
[Crossref]

Rong, H.

W. Zong, R. Wu, M. Li, Y. Hu, Y. Li, J. Li, H. Rong, H. Wu, Y. Xu, Y. Lu, H. Jia, M. Fan, Z. Zhou, Y. Zhang, A. Zang, L. Chen, and H. Cheng, “Fast high-resolution miniature two-photon microscopy for brain imaging in freely behaving mice,” Nat. Methods 14, 713–722 (2017).
[Crossref]

Sampson, D. D.

Schnitzer, L. M.

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. Cheung, and L. M. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2, 941–950 (2005).
[Crossref]

Sivankutty, S.

Thompson, A. J.

Tsvirkun, V.

Turcotte, R.

S. Vasquez-Lopez, R. Turcotte, V. Koren, M. Plöschner, Z. Padamsey, M. J. Booth, T. Cizmar, and N. Emptage, “Subcellular spatial resolution achieved for deep-brain imaging in vivo using a minimally invasive multimode fiber,” Light Sci. Appl. 7, 110 (2018).
[Crossref]

Tyc, T.

M. Plöschner, T. Tyc, and T. Cizmar, “Seeing through chaos in multimode fibres,” Nat. Photonics 9, 529–535 (2015).
[Crossref]

Vanvincq, O.

Vasquez-Lopez, S.

S. Vasquez-Lopez, R. Turcotte, V. Koren, M. Plöschner, Z. Padamsey, M. J. Booth, T. Cizmar, and N. Emptage, “Subcellular spatial resolution achieved for deep-brain imaging in vivo using a minimally invasive multimode fiber,” Light Sci. Appl. 7, 110 (2018).
[Crossref]

Wenger, J.

A. Lombardini, V. Mytskaniuk, S. Sivankutty, E. R. Andresen, X. Chen, J. Wenger, M. Fabert, N. Joly, F. Louradour, A. Kudlinski, and H. Rigneault, “High-resolution multimodal flexible coherent Raman endoscope,” Light Sci. Appl. 7, 10 (2018).
[Crossref]

Wu, H.

W. Zong, R. Wu, M. Li, Y. Hu, Y. Li, J. Li, H. Rong, H. Wu, Y. Xu, Y. Lu, H. Jia, M. Fan, Z. Zhou, Y. Zhang, A. Zang, L. Chen, and H. Cheng, “Fast high-resolution miniature two-photon microscopy for brain imaging in freely behaving mice,” Nat. Methods 14, 713–722 (2017).
[Crossref]

Wu, R.

W. Zong, R. Wu, M. Li, Y. Hu, Y. Li, J. Li, H. Rong, H. Wu, Y. Xu, Y. Lu, H. Jia, M. Fan, Z. Zhou, Y. Zhang, A. Zang, L. Chen, and H. Cheng, “Fast high-resolution miniature two-photon microscopy for brain imaging in freely behaving mice,” Nat. Methods 14, 713–722 (2017).
[Crossref]

Xu, Y.

W. Zong, R. Wu, M. Li, Y. Hu, Y. Li, J. Li, H. Rong, H. Wu, Y. Xu, Y. Lu, H. Jia, M. Fan, Z. Zhou, Y. Zhang, A. Zang, L. Chen, and H. Cheng, “Fast high-resolution miniature two-photon microscopy for brain imaging in freely behaving mice,” Nat. Methods 14, 713–722 (2017).
[Crossref]

Yang, T. D.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109, 203901 (2012).
[Crossref]

Yoon, C.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109, 203901 (2012).
[Crossref]

Zang, A.

W. Zong, R. Wu, M. Li, Y. Hu, Y. Li, J. Li, H. Rong, H. Wu, Y. Xu, Y. Lu, H. Jia, M. Fan, Z. Zhou, Y. Zhang, A. Zang, L. Chen, and H. Cheng, “Fast high-resolution miniature two-photon microscopy for brain imaging in freely behaving mice,” Nat. Methods 14, 713–722 (2017).
[Crossref]

Zhang, Y.

W. Zong, R. Wu, M. Li, Y. Hu, Y. Li, J. Li, H. Rong, H. Wu, Y. Xu, Y. Lu, H. Jia, M. Fan, Z. Zhou, Y. Zhang, A. Zang, L. Chen, and H. Cheng, “Fast high-resolution miniature two-photon microscopy for brain imaging in freely behaving mice,” Nat. Methods 14, 713–722 (2017).
[Crossref]

Zhou, Z.

W. Zong, R. Wu, M. Li, Y. Hu, Y. Li, J. Li, H. Rong, H. Wu, Y. Xu, Y. Lu, H. Jia, M. Fan, Z. Zhou, Y. Zhang, A. Zang, L. Chen, and H. Cheng, “Fast high-resolution miniature two-photon microscopy for brain imaging in freely behaving mice,” Nat. Methods 14, 713–722 (2017).
[Crossref]

Ziegler, D.

Ziv, Y.

Y. Ziv and K. K. Ghosh, “Miniature microscopes for large-scale imaging of neuronal activity in freely behaving rodents,” Curr. Opin. Neurobiol. 32, 141–147 (2015).
[Crossref]

Zong, W.

W. Zong, R. Wu, M. Li, Y. Hu, Y. Li, J. Li, H. Rong, H. Wu, Y. Xu, Y. Lu, H. Jia, M. Fan, Z. Zhou, Y. Zhang, A. Zang, L. Chen, and H. Cheng, “Fast high-resolution miniature two-photon microscopy for brain imaging in freely behaving mice,” Nat. Methods 14, 713–722 (2017).
[Crossref]

Biomed. Opt. Express (1)

Curr. Opin. Neurobiol. (1)

Y. Ziv and K. K. Ghosh, “Miniature microscopes for large-scale imaging of neuronal activity in freely behaving rodents,” Curr. Opin. Neurobiol. 32, 141–147 (2015).
[Crossref]

Front. Cell. Neurosci. (1)

D. Aharoni and T. M. Hoogland, “Circuit investigations with open-source miniaturized microscopes: past, present and future,” Front. Cell. Neurosci. 13, 141 (2019).
[Crossref]

J. Biomed. Opt. (1)

E. R. Andresen, S. Sivankutty, V. Tsvirkun, G. Bouwmans, and H. Rigneault, “Ultra-thin endoscopes based on multi-core fibers and adaptive optics: a status review and perspectives,” J. Biomed. Opt. 21, 121506 (2016).
[Crossref]

J. Opt. Soc. Am. B (1)

Light Sci. Appl. (2)

S. Vasquez-Lopez, R. Turcotte, V. Koren, M. Plöschner, Z. Padamsey, M. J. Booth, T. Cizmar, and N. Emptage, “Subcellular spatial resolution achieved for deep-brain imaging in vivo using a minimally invasive multimode fiber,” Light Sci. Appl. 7, 110 (2018).
[Crossref]

A. Lombardini, V. Mytskaniuk, S. Sivankutty, E. R. Andresen, X. Chen, J. Wenger, M. Fabert, N. Joly, F. Louradour, A. Kudlinski, and H. Rigneault, “High-resolution multimodal flexible coherent Raman endoscope,” Light Sci. Appl. 7, 10 (2018).
[Crossref]

Nat. Methods (2)

W. Zong, R. Wu, M. Li, Y. Hu, Y. Li, J. Li, H. Rong, H. Wu, Y. Xu, Y. Lu, H. Jia, M. Fan, Z. Zhou, Y. Zhang, A. Zang, L. Chen, and H. Cheng, “Fast high-resolution miniature two-photon microscopy for brain imaging in freely behaving mice,” Nat. Methods 14, 713–722 (2017).
[Crossref]

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. Cheung, and L. M. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2, 941–950 (2005).
[Crossref]

Nat. Photonics (1)

M. Plöschner, T. Tyc, and T. Cizmar, “Seeing through chaos in multimode fibres,” Nat. Photonics 9, 529–535 (2015).
[Crossref]

Opt. Express (8)

V. Tsvirkun, S. Sivankutty, G. Bouwmans, O. Vanvincq, E. R. Andresen, and H. Rigneault, “Bending-induced inter-core group delays in multicore fibers,” Opt. Express 25, 31863–31875 (2017).
[Crossref]

R. S. Pillai, D. Lorenser, and D. D. Sampson, “Deep-tissue access with confocal fluorescence microendoscopy through hypodermic needles,” Opt. Express 19, 7213–7221 (2011).
[Crossref]

D. Loterie, S. Farahi, I. Papadopoulos, A. Goy, D. Psaltis, and C. Moser, “Digital confocal microscopy through a multimode fiber,” Opt. Express 23, 23845–23858 (2015).
[Crossref]

T. Cizmar and K. Dholakia, “Shaping the light transmission through a multimode optical fibre: complex transformation analysis andapplications in biophotonics,” Opt. Express 19, 18871–18884 (2011).
[Crossref]

I. N. Papadopoulos, S. Farahi, C. Moser, and D. Psaltis, “Focusing and scanning light through a multimode optical fiber using digital phase conjugation,” Opt. Express 20, 10583–10590 (2012).
[Crossref]

A. M. Caravaca-Aguirre, E. Niv, D. B. Conkey, and R. Piestun, “Real-time resilient focusing through a bending multimode fiber,” Opt. Express 21, 12881–12888 (2013).
[Crossref]

E. R. Andresen, G. Bouwmans, S. Monneret, and H. Rigneault, “Two-photon lensless endoscope,” Opt. Express 21, 20713–20721 (2013).
[Crossref]

S. Farahi, D. Ziegler, I. N. Papadopoulos, D. Psaltis, and C. Moser, “Dynamic bending compensation while focusing through a multimode fiber,” Opt. Express 21, 22504–22514 (2013).
[Crossref]

Opt. Lett. (4)

Phys. Rev. Lett. (2)

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104, 100601 (2010).
[Crossref]

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109, 203901 (2012).
[Crossref]

Supplementary Material (3)

NameDescription
» Supplement 1       Experimental setup and techniques; fabrication of twisted MCF; analytical and FEM models of twisted MCF
» Visualization 1       Point-spread function of twisted multi-core fiber
» Visualization 2       Point-spread function of untwisted multi-core fiber

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. (a) Scanning electron micrograph of the fabricated MCF. Twisted and non-twisted MCFs have the same appearance. (b) Coordinate system and parameter set for the bent, twisted MCF.
Fig. 2.
Fig. 2. (a) Measured group delays in MCF1 (P1=33mm) and MCF2 (P1=8.2mm) compared with results of the analytical model. (b) Measured mode field diameters in MCF1, MCF2, and non-twisted MCF. The dashed line denotes the mean, and the gray area denotes two standard deviations. (c) Measured attenuation in MCF1, MCF2, and non-twisted MCF0. The solid line is a guide to the eye. (d) Measured θ(i) in MCF2 as a function of d(i), the radial offset of core number i. See the inset for the definition of θ(i).
Fig. 3.
Fig. 3. (a) Image of distal focus for the twisted MCF2 (P=8.2mm) with L2=0.345m and R=; (b) with R0.06m; see Visualization 1 for the corresponding video. (c) Same for the non-twisted MCF0 with L=0.34m and R=; (d) with minor bending corresponding to R0.60m); see Visualization 2 for the corresponding video. Insets show the corresponding MCF geometry.
Fig. 4.
Fig. 4. (a) Digital confocal two-photon image of a test target, obtained using the twisted MCF2 (P=8.2mm) with L=0.345m and R= and (b) with R0.06m. See text for details. (c) MCF2 experimental geometries for experiments (a), (b). Δα is the angle between the input and output end of the MCF. (d) Imaged area mapped from a widefield target illumination.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

H=X^H0,
L(i)=LP(2πd(i))2+P2.
Δϕ(i)=ϕ(i)ϕ(0)=2πλneff(0)(L(i)L).
Δτ(i)τ(i)τ(0)=neff(0)L(i)Lc.
sin[θ(i)]=neff(0)sin{atan[2πd(i)P]}.