Abstract

The realization of on-chip microspectrometers would allow spectroscopy and colorimetry measurement systems to be readily incorporated into platforms for which size and weight are critical, such as consumer grade electronics, smartphones, and unmanned aerial vehicles. This would allow them to find use in diverse fields such as interior design, agriculture, and in machine vision applications. All spectrometers require a detector or detector array and optical elements for spectral discrimination. A single device that combines both detection and spectral discrimination functions therefore represents an ultimate limit of miniaturization. Motivated by this, we here experimentally demonstrate a novel nanostructured silicon-based photodetector design whose responsivity can be tailored by an appropriate choice of geometric parameters. We utilize a unique doping profile with two vertically stacked, back-to-back photodiode regions, which allows us to double the number of detectors in a given on-chip footprint. By patterning the top photosensitive regions of each device with two sets of interleaved vertical slab waveguide arrays of varied width and period, we define the absorption spectra (and thus responsivity spectra) of both the upper and lower photodiode regions. We then use twenty such “fishnet pixels” to form a microspectrometer chip and demonstrate the reconstruction of four test spectra using a two-stage supervised machine-learning-based reconstruction algorithm.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
25 × 50  Gbps wavelength division multiplexing silicon photonics receiver chip based on a silicon nanowire-arrayed waveguide grating

Zhi Liu, Jiashun Zhang, Xiuli Li, Liangliang Wang, Jianguang Li, Chunlai Xue, Junming An, and Buwen Cheng
Photon. Res. 7(6) 659-663 (2019)

Waveguide based compact silicon Schottky photodetector with enhanced responsivity in the telecom spectral band

Ilya Goykhman, Boris Desiatov, Jacob Khurgin, Joseph Shappir, and Uriel Levy
Opt. Express 20(27) 28594-28602 (2012)

25  Gbps low-voltage hetero-structured silicon-germanium waveguide pin photodetectors for monolithic on-chip nanophotonic architectures

Daniel Benedikovic, Léopold Virot, Guy Aubin, Farah Amar, Bertrand Szelag, Bayram Karakus, Jean-Michel Hartmann, Carlos Alonso-Ramos, Xavier Le Roux, Paul Crozat, Eric Cassan, Delphine Marris-Morini, Charles Baudot, Frédéric Boeuf, Jean-Marc Fédéli, Christophe Kopp, and Laurent Vivien
Photon. Res. 7(4) 437-444 (2019)

References

  • View by:
  • |
  • |
  • |

  1. J. Bao and M. G. Bawendi, “A colloidal quantum dot spectrometer,” Nature 523, 67–70 (2015).
    [Crossref]
  2. S.-W. Wang, C. Xia, X. Chen, W. Lu, M. Li, H. Wang, W. Zheng, and T. Zhang, “Concept of a high-resolution miniature spectrometer using an integrated filter array,” Opt. Lett. 32, 632–634 (2007).
    [Crossref]
  3. J. C. Demro, R. Hartshorne, L. M. Woody, P. A. Levine, and J. R. Tower, “Design of a multispectral, wedge filter, remote-sensing instrument incorporating a multiport, thinned, CCD area array,” in Imaging Spectrometry (International Society for Optics and Photonics, 1995), pp. 280–287.
  4. E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nat. Photonics 2, 161–164 (2008).
    [Crossref]
  5. U. Kurokawa, B. I. Choi, and C.-C. Chang, “Filter-based miniature spectrometers: spectrum reconstruction using adaptive regularization,” IEEE Sens. J. 11, 1556–1563 (2011).
    [Crossref]
  6. B. Craig, V. R. Shrestha, J. Meng, J. J. Cadusch, and K. B. Crozier, “Experimental demonstration of infrared spectral reconstruction using plasmonic metasurfaces,” Opt. Lett. 43, 4481–4484 (2018).
    [Crossref]
  7. A. Wang and Y. Dan, “Mid-infrared plasmonic multispectral filters,” Sci. Rep. 8, 11257 (2018).
    [Crossref]
  8. B. Ai, L. Wang, H. Möhwald, Y. Yu, and G. Zhang, “Asymmetric half-cone/nanohole array films with structural and directional reshaping of extraordinary optical transmission,” Nanoscale 6, 8997–9005 (2014).
    [Crossref]
  9. E. R. Fossum, “CMOS image sensors: electronic camera-on-a-chip,” IEEE Trans. Electron. Dev. 44, 1689–1698 (1997).
    [Crossref]
  10. H. Park, Y. Dan, K. Seo, Y. J. Yu, P. K. Duane, M. Wober, and K. B. Crozier, “Filter-free image sensor pixels comprising silicon nanowires with selective color absorption,” Nano Lett. 14, 1804–1809 (2014).
    [Crossref]
  11. H. Park and K. B. Crozier, “Vertically stacked photodetector devices containing silicon nanowires with engineered absorption spectra,” ACS Photon. 2, 544–549 (2015).
    [Crossref]
  12. A. Solanki, S. Li, H. Park, and K. B. Crozier, “Harnessing the interplay between photonic resonances and carrier extraction for narrowband germanium nanowire photodetectors spanning the visible to infrared,” ACS Photon. 5, 520–527 (2017).
    [Crossref]
  13. D. Taillaert, P. Bienstman, and R. Baets, “Compact efficient broadband grating coupler for silicon-on-insulator waveguides,” Opt. Lett. 29, 2749–2751 (2004).
    [Crossref]
  14. X. Li, “Metal assisted chemical etching for high aspect ratio nanostructures: a review of characteristics and applications in photovoltaics,” Curr. Opin. Solid State Mater. Sci. 16, 71–81 (2012).
    [Crossref]
  15. B. Redding, S. M. Popoff, and H. Cao, “All-fiber spectrometer based on speckle pattern reconstruction,” Opt. Express 21, 6584–6600 (2013).
    [Crossref]
  16. C. J. Chang-Hasnain and W. Yang, “High-contrast gratings for integrated optoelectronics,” Adv. Opt. Photon. 4, 379–440 (2012).
    [Crossref]
  17. V. Karagodsky, F. G. Sedgwick, and C. J. Chang-Hasnain, “Theoretical analysis of subwavelength high contrast grating reflectors,” Opt. Express 18, 16973–16988 (2010).
    [Crossref]
  18. S. Kim, Z. Wang, S. Brodbeck, C. Schneider, S. Höfling, and H. Deng, “Monolithic high-contrast grating based polariton laser,” ACS Photon. 6, 18–22 (2018).
  19. R. Newman, “Visible light from a silicon p–n junction,” Phys. Rev. 100, 700 (1955).
    [Crossref]
  20. S. Pang, D. Rathman, D. Silversmith, R. Mountain, and P. DeGraff, “Damage induced in Si by ion milling or reactive ion etching,” J. Appl. Phys. 54, 3272–3277 (1983).
    [Crossref]
  21. Y. Dan, K. Seo, K. Takei, J. H. Meza, A. Javey, and K. B. Crozier, “Dramatic reduction of surface recombination by in situ surface passivation of silicon nanowires,” Nano Lett. 11, 2527–2532 (2011).
    [Crossref]
  22. H. Savin, P. Repo, G. Von Gastrow, P. Ortega, E. Calle, M. Garín, and R. Alcubilla, “Black silicon solar cells with interdigitated back-contacts achieve 22.1% efficiency,” Nat. Nanotechnol. 10, 624–628 (2015).
    [Crossref]
  23. N. Jiang, “Electron beam damage in oxides: a review,” Rep. Prog. Phys. 79, 016501 (2015).
    [Crossref]
  24. A. Baldridge, S. Hook, C. Grove, and G. Rivera, “The ASTER spectral library version 2.0,” Remote Sens. Environ. 113, 711–715 (2009).
    [Crossref]
  25. F. Stanco, S. Battiato, and G. Gallo, Digital Imaging for Cultural Heritage Preservation: Analysis, Restoration, and Reconstruction of Ancient Artworks (CRC Press, 2011).
  26. J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9, 279–282 (2008).
    [Crossref]

2018 (3)

A. Wang and Y. Dan, “Mid-infrared plasmonic multispectral filters,” Sci. Rep. 8, 11257 (2018).
[Crossref]

S. Kim, Z. Wang, S. Brodbeck, C. Schneider, S. Höfling, and H. Deng, “Monolithic high-contrast grating based polariton laser,” ACS Photon. 6, 18–22 (2018).

B. Craig, V. R. Shrestha, J. Meng, J. J. Cadusch, and K. B. Crozier, “Experimental demonstration of infrared spectral reconstruction using plasmonic metasurfaces,” Opt. Lett. 43, 4481–4484 (2018).
[Crossref]

2017 (1)

A. Solanki, S. Li, H. Park, and K. B. Crozier, “Harnessing the interplay between photonic resonances and carrier extraction for narrowband germanium nanowire photodetectors spanning the visible to infrared,” ACS Photon. 5, 520–527 (2017).
[Crossref]

2015 (4)

H. Park and K. B. Crozier, “Vertically stacked photodetector devices containing silicon nanowires with engineered absorption spectra,” ACS Photon. 2, 544–549 (2015).
[Crossref]

J. Bao and M. G. Bawendi, “A colloidal quantum dot spectrometer,” Nature 523, 67–70 (2015).
[Crossref]

H. Savin, P. Repo, G. Von Gastrow, P. Ortega, E. Calle, M. Garín, and R. Alcubilla, “Black silicon solar cells with interdigitated back-contacts achieve 22.1% efficiency,” Nat. Nanotechnol. 10, 624–628 (2015).
[Crossref]

N. Jiang, “Electron beam damage in oxides: a review,” Rep. Prog. Phys. 79, 016501 (2015).
[Crossref]

2014 (2)

B. Ai, L. Wang, H. Möhwald, Y. Yu, and G. Zhang, “Asymmetric half-cone/nanohole array films with structural and directional reshaping of extraordinary optical transmission,” Nanoscale 6, 8997–9005 (2014).
[Crossref]

H. Park, Y. Dan, K. Seo, Y. J. Yu, P. K. Duane, M. Wober, and K. B. Crozier, “Filter-free image sensor pixels comprising silicon nanowires with selective color absorption,” Nano Lett. 14, 1804–1809 (2014).
[Crossref]

2013 (1)

2012 (2)

C. J. Chang-Hasnain and W. Yang, “High-contrast gratings for integrated optoelectronics,” Adv. Opt. Photon. 4, 379–440 (2012).
[Crossref]

X. Li, “Metal assisted chemical etching for high aspect ratio nanostructures: a review of characteristics and applications in photovoltaics,” Curr. Opin. Solid State Mater. Sci. 16, 71–81 (2012).
[Crossref]

2011 (2)

U. Kurokawa, B. I. Choi, and C.-C. Chang, “Filter-based miniature spectrometers: spectrum reconstruction using adaptive regularization,” IEEE Sens. J. 11, 1556–1563 (2011).
[Crossref]

Y. Dan, K. Seo, K. Takei, J. H. Meza, A. Javey, and K. B. Crozier, “Dramatic reduction of surface recombination by in situ surface passivation of silicon nanowires,” Nano Lett. 11, 2527–2532 (2011).
[Crossref]

2010 (1)

2009 (1)

A. Baldridge, S. Hook, C. Grove, and G. Rivera, “The ASTER spectral library version 2.0,” Remote Sens. Environ. 113, 711–715 (2009).
[Crossref]

2008 (2)

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9, 279–282 (2008).
[Crossref]

E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nat. Photonics 2, 161–164 (2008).
[Crossref]

2007 (1)

2004 (1)

1997 (1)

E. R. Fossum, “CMOS image sensors: electronic camera-on-a-chip,” IEEE Trans. Electron. Dev. 44, 1689–1698 (1997).
[Crossref]

1983 (1)

S. Pang, D. Rathman, D. Silversmith, R. Mountain, and P. DeGraff, “Damage induced in Si by ion milling or reactive ion etching,” J. Appl. Phys. 54, 3272–3277 (1983).
[Crossref]

1955 (1)

R. Newman, “Visible light from a silicon p–n junction,” Phys. Rev. 100, 700 (1955).
[Crossref]

Ai, B.

B. Ai, L. Wang, H. Möhwald, Y. Yu, and G. Zhang, “Asymmetric half-cone/nanohole array films with structural and directional reshaping of extraordinary optical transmission,” Nanoscale 6, 8997–9005 (2014).
[Crossref]

Alcubilla, R.

H. Savin, P. Repo, G. Von Gastrow, P. Ortega, E. Calle, M. Garín, and R. Alcubilla, “Black silicon solar cells with interdigitated back-contacts achieve 22.1% efficiency,” Nat. Nanotechnol. 10, 624–628 (2015).
[Crossref]

Baets, R.

Baldridge, A.

A. Baldridge, S. Hook, C. Grove, and G. Rivera, “The ASTER spectral library version 2.0,” Remote Sens. Environ. 113, 711–715 (2009).
[Crossref]

Bao, J.

J. Bao and M. G. Bawendi, “A colloidal quantum dot spectrometer,” Nature 523, 67–70 (2015).
[Crossref]

Battiato, S.

F. Stanco, S. Battiato, and G. Gallo, Digital Imaging for Cultural Heritage Preservation: Analysis, Restoration, and Reconstruction of Ancient Artworks (CRC Press, 2011).

Bawendi, M. G.

J. Bao and M. G. Bawendi, “A colloidal quantum dot spectrometer,” Nature 523, 67–70 (2015).
[Crossref]

Bienstman, P.

Brodbeck, S.

S. Kim, Z. Wang, S. Brodbeck, C. Schneider, S. Höfling, and H. Deng, “Monolithic high-contrast grating based polariton laser,” ACS Photon. 6, 18–22 (2018).

Burkhard, G. F.

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9, 279–282 (2008).
[Crossref]

Cadusch, J. J.

Calle, E.

H. Savin, P. Repo, G. Von Gastrow, P. Ortega, E. Calle, M. Garín, and R. Alcubilla, “Black silicon solar cells with interdigitated back-contacts achieve 22.1% efficiency,” Nat. Nanotechnol. 10, 624–628 (2015).
[Crossref]

Cao, H.

Chang, C.-C.

U. Kurokawa, B. I. Choi, and C.-C. Chang, “Filter-based miniature spectrometers: spectrum reconstruction using adaptive regularization,” IEEE Sens. J. 11, 1556–1563 (2011).
[Crossref]

Chang-Hasnain, C. J.

Chen, X.

Choi, B. I.

U. Kurokawa, B. I. Choi, and C.-C. Chang, “Filter-based miniature spectrometers: spectrum reconstruction using adaptive regularization,” IEEE Sens. J. 11, 1556–1563 (2011).
[Crossref]

Connor, S. T.

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9, 279–282 (2008).
[Crossref]

Craig, B.

Crozier, K. B.

B. Craig, V. R. Shrestha, J. Meng, J. J. Cadusch, and K. B. Crozier, “Experimental demonstration of infrared spectral reconstruction using plasmonic metasurfaces,” Opt. Lett. 43, 4481–4484 (2018).
[Crossref]

A. Solanki, S. Li, H. Park, and K. B. Crozier, “Harnessing the interplay between photonic resonances and carrier extraction for narrowband germanium nanowire photodetectors spanning the visible to infrared,” ACS Photon. 5, 520–527 (2017).
[Crossref]

H. Park and K. B. Crozier, “Vertically stacked photodetector devices containing silicon nanowires with engineered absorption spectra,” ACS Photon. 2, 544–549 (2015).
[Crossref]

H. Park, Y. Dan, K. Seo, Y. J. Yu, P. K. Duane, M. Wober, and K. B. Crozier, “Filter-free image sensor pixels comprising silicon nanowires with selective color absorption,” Nano Lett. 14, 1804–1809 (2014).
[Crossref]

Y. Dan, K. Seo, K. Takei, J. H. Meza, A. Javey, and K. B. Crozier, “Dramatic reduction of surface recombination by in situ surface passivation of silicon nanowires,” Nano Lett. 11, 2527–2532 (2011).
[Crossref]

Cui, Y.

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9, 279–282 (2008).
[Crossref]

Dan, Y.

A. Wang and Y. Dan, “Mid-infrared plasmonic multispectral filters,” Sci. Rep. 8, 11257 (2018).
[Crossref]

H. Park, Y. Dan, K. Seo, Y. J. Yu, P. K. Duane, M. Wober, and K. B. Crozier, “Filter-free image sensor pixels comprising silicon nanowires with selective color absorption,” Nano Lett. 14, 1804–1809 (2014).
[Crossref]

Y. Dan, K. Seo, K. Takei, J. H. Meza, A. Javey, and K. B. Crozier, “Dramatic reduction of surface recombination by in situ surface passivation of silicon nanowires,” Nano Lett. 11, 2527–2532 (2011).
[Crossref]

DeGraff, P.

S. Pang, D. Rathman, D. Silversmith, R. Mountain, and P. DeGraff, “Damage induced in Si by ion milling or reactive ion etching,” J. Appl. Phys. 54, 3272–3277 (1983).
[Crossref]

Demro, J. C.

J. C. Demro, R. Hartshorne, L. M. Woody, P. A. Levine, and J. R. Tower, “Design of a multispectral, wedge filter, remote-sensing instrument incorporating a multiport, thinned, CCD area array,” in Imaging Spectrometry (International Society for Optics and Photonics, 1995), pp. 280–287.

Deng, H.

S. Kim, Z. Wang, S. Brodbeck, C. Schneider, S. Höfling, and H. Deng, “Monolithic high-contrast grating based polariton laser,” ACS Photon. 6, 18–22 (2018).

Duane, P. K.

H. Park, Y. Dan, K. Seo, Y. J. Yu, P. K. Duane, M. Wober, and K. B. Crozier, “Filter-free image sensor pixels comprising silicon nanowires with selective color absorption,” Nano Lett. 14, 1804–1809 (2014).
[Crossref]

Ebbesen, T. W.

E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nat. Photonics 2, 161–164 (2008).
[Crossref]

Fan, S.

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9, 279–282 (2008).
[Crossref]

Fossum, E. R.

E. R. Fossum, “CMOS image sensors: electronic camera-on-a-chip,” IEEE Trans. Electron. Dev. 44, 1689–1698 (1997).
[Crossref]

Gallo, G.

F. Stanco, S. Battiato, and G. Gallo, Digital Imaging for Cultural Heritage Preservation: Analysis, Restoration, and Reconstruction of Ancient Artworks (CRC Press, 2011).

Garín, M.

H. Savin, P. Repo, G. Von Gastrow, P. Ortega, E. Calle, M. Garín, and R. Alcubilla, “Black silicon solar cells with interdigitated back-contacts achieve 22.1% efficiency,” Nat. Nanotechnol. 10, 624–628 (2015).
[Crossref]

Genet, C.

E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nat. Photonics 2, 161–164 (2008).
[Crossref]

Grove, C.

A. Baldridge, S. Hook, C. Grove, and G. Rivera, “The ASTER spectral library version 2.0,” Remote Sens. Environ. 113, 711–715 (2009).
[Crossref]

Hartshorne, R.

J. C. Demro, R. Hartshorne, L. M. Woody, P. A. Levine, and J. R. Tower, “Design of a multispectral, wedge filter, remote-sensing instrument incorporating a multiport, thinned, CCD area array,” in Imaging Spectrometry (International Society for Optics and Photonics, 1995), pp. 280–287.

Höfling, S.

S. Kim, Z. Wang, S. Brodbeck, C. Schneider, S. Höfling, and H. Deng, “Monolithic high-contrast grating based polariton laser,” ACS Photon. 6, 18–22 (2018).

Hook, S.

A. Baldridge, S. Hook, C. Grove, and G. Rivera, “The ASTER spectral library version 2.0,” Remote Sens. Environ. 113, 711–715 (2009).
[Crossref]

Hsu, C.-M.

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9, 279–282 (2008).
[Crossref]

Javey, A.

Y. Dan, K. Seo, K. Takei, J. H. Meza, A. Javey, and K. B. Crozier, “Dramatic reduction of surface recombination by in situ surface passivation of silicon nanowires,” Nano Lett. 11, 2527–2532 (2011).
[Crossref]

Jiang, N.

N. Jiang, “Electron beam damage in oxides: a review,” Rep. Prog. Phys. 79, 016501 (2015).
[Crossref]

Karagodsky, V.

Kim, S.

S. Kim, Z. Wang, S. Brodbeck, C. Schneider, S. Höfling, and H. Deng, “Monolithic high-contrast grating based polariton laser,” ACS Photon. 6, 18–22 (2018).

Kurokawa, U.

U. Kurokawa, B. I. Choi, and C.-C. Chang, “Filter-based miniature spectrometers: spectrum reconstruction using adaptive regularization,” IEEE Sens. J. 11, 1556–1563 (2011).
[Crossref]

Laux, E.

E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nat. Photonics 2, 161–164 (2008).
[Crossref]

Levine, P. A.

J. C. Demro, R. Hartshorne, L. M. Woody, P. A. Levine, and J. R. Tower, “Design of a multispectral, wedge filter, remote-sensing instrument incorporating a multiport, thinned, CCD area array,” in Imaging Spectrometry (International Society for Optics and Photonics, 1995), pp. 280–287.

Li, M.

Li, S.

A. Solanki, S. Li, H. Park, and K. B. Crozier, “Harnessing the interplay between photonic resonances and carrier extraction for narrowband germanium nanowire photodetectors spanning the visible to infrared,” ACS Photon. 5, 520–527 (2017).
[Crossref]

Li, X.

X. Li, “Metal assisted chemical etching for high aspect ratio nanostructures: a review of characteristics and applications in photovoltaics,” Curr. Opin. Solid State Mater. Sci. 16, 71–81 (2012).
[Crossref]

Lu, W.

McGehee, M.

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9, 279–282 (2008).
[Crossref]

Meng, J.

Meza, J. H.

Y. Dan, K. Seo, K. Takei, J. H. Meza, A. Javey, and K. B. Crozier, “Dramatic reduction of surface recombination by in situ surface passivation of silicon nanowires,” Nano Lett. 11, 2527–2532 (2011).
[Crossref]

Möhwald, H.

B. Ai, L. Wang, H. Möhwald, Y. Yu, and G. Zhang, “Asymmetric half-cone/nanohole array films with structural and directional reshaping of extraordinary optical transmission,” Nanoscale 6, 8997–9005 (2014).
[Crossref]

Mountain, R.

S. Pang, D. Rathman, D. Silversmith, R. Mountain, and P. DeGraff, “Damage induced in Si by ion milling or reactive ion etching,” J. Appl. Phys. 54, 3272–3277 (1983).
[Crossref]

Newman, R.

R. Newman, “Visible light from a silicon p–n junction,” Phys. Rev. 100, 700 (1955).
[Crossref]

Ortega, P.

H. Savin, P. Repo, G. Von Gastrow, P. Ortega, E. Calle, M. Garín, and R. Alcubilla, “Black silicon solar cells with interdigitated back-contacts achieve 22.1% efficiency,” Nat. Nanotechnol. 10, 624–628 (2015).
[Crossref]

Pang, S.

S. Pang, D. Rathman, D. Silversmith, R. Mountain, and P. DeGraff, “Damage induced in Si by ion milling or reactive ion etching,” J. Appl. Phys. 54, 3272–3277 (1983).
[Crossref]

Park, H.

A. Solanki, S. Li, H. Park, and K. B. Crozier, “Harnessing the interplay between photonic resonances and carrier extraction for narrowband germanium nanowire photodetectors spanning the visible to infrared,” ACS Photon. 5, 520–527 (2017).
[Crossref]

H. Park and K. B. Crozier, “Vertically stacked photodetector devices containing silicon nanowires with engineered absorption spectra,” ACS Photon. 2, 544–549 (2015).
[Crossref]

H. Park, Y. Dan, K. Seo, Y. J. Yu, P. K. Duane, M. Wober, and K. B. Crozier, “Filter-free image sensor pixels comprising silicon nanowires with selective color absorption,” Nano Lett. 14, 1804–1809 (2014).
[Crossref]

Popoff, S. M.

Rathman, D.

S. Pang, D. Rathman, D. Silversmith, R. Mountain, and P. DeGraff, “Damage induced in Si by ion milling or reactive ion etching,” J. Appl. Phys. 54, 3272–3277 (1983).
[Crossref]

Redding, B.

Repo, P.

H. Savin, P. Repo, G. Von Gastrow, P. Ortega, E. Calle, M. Garín, and R. Alcubilla, “Black silicon solar cells with interdigitated back-contacts achieve 22.1% efficiency,” Nat. Nanotechnol. 10, 624–628 (2015).
[Crossref]

Rivera, G.

A. Baldridge, S. Hook, C. Grove, and G. Rivera, “The ASTER spectral library version 2.0,” Remote Sens. Environ. 113, 711–715 (2009).
[Crossref]

Savin, H.

H. Savin, P. Repo, G. Von Gastrow, P. Ortega, E. Calle, M. Garín, and R. Alcubilla, “Black silicon solar cells with interdigitated back-contacts achieve 22.1% efficiency,” Nat. Nanotechnol. 10, 624–628 (2015).
[Crossref]

Schneider, C.

S. Kim, Z. Wang, S. Brodbeck, C. Schneider, S. Höfling, and H. Deng, “Monolithic high-contrast grating based polariton laser,” ACS Photon. 6, 18–22 (2018).

Sedgwick, F. G.

Seo, K.

H. Park, Y. Dan, K. Seo, Y. J. Yu, P. K. Duane, M. Wober, and K. B. Crozier, “Filter-free image sensor pixels comprising silicon nanowires with selective color absorption,” Nano Lett. 14, 1804–1809 (2014).
[Crossref]

Y. Dan, K. Seo, K. Takei, J. H. Meza, A. Javey, and K. B. Crozier, “Dramatic reduction of surface recombination by in situ surface passivation of silicon nanowires,” Nano Lett. 11, 2527–2532 (2011).
[Crossref]

Shrestha, V. R.

Silversmith, D.

S. Pang, D. Rathman, D. Silversmith, R. Mountain, and P. DeGraff, “Damage induced in Si by ion milling or reactive ion etching,” J. Appl. Phys. 54, 3272–3277 (1983).
[Crossref]

Skauli, T.

E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nat. Photonics 2, 161–164 (2008).
[Crossref]

Solanki, A.

A. Solanki, S. Li, H. Park, and K. B. Crozier, “Harnessing the interplay between photonic resonances and carrier extraction for narrowband germanium nanowire photodetectors spanning the visible to infrared,” ACS Photon. 5, 520–527 (2017).
[Crossref]

Stanco, F.

F. Stanco, S. Battiato, and G. Gallo, Digital Imaging for Cultural Heritage Preservation: Analysis, Restoration, and Reconstruction of Ancient Artworks (CRC Press, 2011).

Taillaert, D.

Takei, K.

Y. Dan, K. Seo, K. Takei, J. H. Meza, A. Javey, and K. B. Crozier, “Dramatic reduction of surface recombination by in situ surface passivation of silicon nanowires,” Nano Lett. 11, 2527–2532 (2011).
[Crossref]

Tower, J. R.

J. C. Demro, R. Hartshorne, L. M. Woody, P. A. Levine, and J. R. Tower, “Design of a multispectral, wedge filter, remote-sensing instrument incorporating a multiport, thinned, CCD area array,” in Imaging Spectrometry (International Society for Optics and Photonics, 1995), pp. 280–287.

Von Gastrow, G.

H. Savin, P. Repo, G. Von Gastrow, P. Ortega, E. Calle, M. Garín, and R. Alcubilla, “Black silicon solar cells with interdigitated back-contacts achieve 22.1% efficiency,” Nat. Nanotechnol. 10, 624–628 (2015).
[Crossref]

Wang, A.

A. Wang and Y. Dan, “Mid-infrared plasmonic multispectral filters,” Sci. Rep. 8, 11257 (2018).
[Crossref]

Wang, H.

Wang, L.

B. Ai, L. Wang, H. Möhwald, Y. Yu, and G. Zhang, “Asymmetric half-cone/nanohole array films with structural and directional reshaping of extraordinary optical transmission,” Nanoscale 6, 8997–9005 (2014).
[Crossref]

Wang, Q.

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9, 279–282 (2008).
[Crossref]

Wang, S.-W.

Wang, Z.

S. Kim, Z. Wang, S. Brodbeck, C. Schneider, S. Höfling, and H. Deng, “Monolithic high-contrast grating based polariton laser,” ACS Photon. 6, 18–22 (2018).

Wober, M.

H. Park, Y. Dan, K. Seo, Y. J. Yu, P. K. Duane, M. Wober, and K. B. Crozier, “Filter-free image sensor pixels comprising silicon nanowires with selective color absorption,” Nano Lett. 14, 1804–1809 (2014).
[Crossref]

Woody, L. M.

J. C. Demro, R. Hartshorne, L. M. Woody, P. A. Levine, and J. R. Tower, “Design of a multispectral, wedge filter, remote-sensing instrument incorporating a multiport, thinned, CCD area array,” in Imaging Spectrometry (International Society for Optics and Photonics, 1995), pp. 280–287.

Xia, C.

Xu, Y.

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9, 279–282 (2008).
[Crossref]

Yang, W.

Yu, Y.

B. Ai, L. Wang, H. Möhwald, Y. Yu, and G. Zhang, “Asymmetric half-cone/nanohole array films with structural and directional reshaping of extraordinary optical transmission,” Nanoscale 6, 8997–9005 (2014).
[Crossref]

Yu, Y. J.

H. Park, Y. Dan, K. Seo, Y. J. Yu, P. K. Duane, M. Wober, and K. B. Crozier, “Filter-free image sensor pixels comprising silicon nanowires with selective color absorption,” Nano Lett. 14, 1804–1809 (2014).
[Crossref]

Yu, Z.

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9, 279–282 (2008).
[Crossref]

Zhang, G.

B. Ai, L. Wang, H. Möhwald, Y. Yu, and G. Zhang, “Asymmetric half-cone/nanohole array films with structural and directional reshaping of extraordinary optical transmission,” Nanoscale 6, 8997–9005 (2014).
[Crossref]

Zhang, T.

Zheng, W.

Zhu, J.

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9, 279–282 (2008).
[Crossref]

ACS Photon. (3)

H. Park and K. B. Crozier, “Vertically stacked photodetector devices containing silicon nanowires with engineered absorption spectra,” ACS Photon. 2, 544–549 (2015).
[Crossref]

A. Solanki, S. Li, H. Park, and K. B. Crozier, “Harnessing the interplay between photonic resonances and carrier extraction for narrowband germanium nanowire photodetectors spanning the visible to infrared,” ACS Photon. 5, 520–527 (2017).
[Crossref]

S. Kim, Z. Wang, S. Brodbeck, C. Schneider, S. Höfling, and H. Deng, “Monolithic high-contrast grating based polariton laser,” ACS Photon. 6, 18–22 (2018).

Adv. Opt. Photon. (1)

Curr. Opin. Solid State Mater. Sci. (1)

X. Li, “Metal assisted chemical etching for high aspect ratio nanostructures: a review of characteristics and applications in photovoltaics,” Curr. Opin. Solid State Mater. Sci. 16, 71–81 (2012).
[Crossref]

IEEE Sens. J. (1)

U. Kurokawa, B. I. Choi, and C.-C. Chang, “Filter-based miniature spectrometers: spectrum reconstruction using adaptive regularization,” IEEE Sens. J. 11, 1556–1563 (2011).
[Crossref]

IEEE Trans. Electron. Dev. (1)

E. R. Fossum, “CMOS image sensors: electronic camera-on-a-chip,” IEEE Trans. Electron. Dev. 44, 1689–1698 (1997).
[Crossref]

J. Appl. Phys. (1)

S. Pang, D. Rathman, D. Silversmith, R. Mountain, and P. DeGraff, “Damage induced in Si by ion milling or reactive ion etching,” J. Appl. Phys. 54, 3272–3277 (1983).
[Crossref]

Nano Lett. (3)

Y. Dan, K. Seo, K. Takei, J. H. Meza, A. Javey, and K. B. Crozier, “Dramatic reduction of surface recombination by in situ surface passivation of silicon nanowires,” Nano Lett. 11, 2527–2532 (2011).
[Crossref]

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9, 279–282 (2008).
[Crossref]

H. Park, Y. Dan, K. Seo, Y. J. Yu, P. K. Duane, M. Wober, and K. B. Crozier, “Filter-free image sensor pixels comprising silicon nanowires with selective color absorption,” Nano Lett. 14, 1804–1809 (2014).
[Crossref]

Nanoscale (1)

B. Ai, L. Wang, H. Möhwald, Y. Yu, and G. Zhang, “Asymmetric half-cone/nanohole array films with structural and directional reshaping of extraordinary optical transmission,” Nanoscale 6, 8997–9005 (2014).
[Crossref]

Nat. Nanotechnol. (1)

H. Savin, P. Repo, G. Von Gastrow, P. Ortega, E. Calle, M. Garín, and R. Alcubilla, “Black silicon solar cells with interdigitated back-contacts achieve 22.1% efficiency,” Nat. Nanotechnol. 10, 624–628 (2015).
[Crossref]

Nat. Photonics (1)

E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nat. Photonics 2, 161–164 (2008).
[Crossref]

Nature (1)

J. Bao and M. G. Bawendi, “A colloidal quantum dot spectrometer,” Nature 523, 67–70 (2015).
[Crossref]

Opt. Express (2)

Opt. Lett. (3)

Phys. Rev. (1)

R. Newman, “Visible light from a silicon p–n junction,” Phys. Rev. 100, 700 (1955).
[Crossref]

Remote Sens. Environ. (1)

A. Baldridge, S. Hook, C. Grove, and G. Rivera, “The ASTER spectral library version 2.0,” Remote Sens. Environ. 113, 711–715 (2009).
[Crossref]

Rep. Prog. Phys. (1)

N. Jiang, “Electron beam damage in oxides: a review,” Rep. Prog. Phys. 79, 016501 (2015).
[Crossref]

Sci. Rep. (1)

A. Wang and Y. Dan, “Mid-infrared plasmonic multispectral filters,” Sci. Rep. 8, 11257 (2018).
[Crossref]

Other (2)

J. C. Demro, R. Hartshorne, L. M. Woody, P. A. Levine, and J. R. Tower, “Design of a multispectral, wedge filter, remote-sensing instrument incorporating a multiport, thinned, CCD area array,” in Imaging Spectrometry (International Society for Optics and Photonics, 1995), pp. 280–287.

F. Stanco, S. Battiato, and G. Gallo, Digital Imaging for Cultural Heritage Preservation: Analysis, Restoration, and Reconstruction of Ancient Artworks (CRC Press, 2011).

Supplementary Material (1)

NameDescription
» Supplement 1       Further information on waveguide modes, reconstruction methods, fishnet parameters and detector linearity.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. (a) Schematic illustration of fishnet pixel showing the fishnet region, pad mesa top contact, and common back contact. Pink, green, and blue colors indicate p+, i(n), and n+ doping, respectively. Inset: top-down view showing the fishnet’s geometric parameters. (b) Cross-sectional schematic diagram of the nanostructured fishnet and unpatterned mesa regions, with dimensions and doping type indicated. Equivalent circuit, i.e., counterfacing photodiodes, of the device. (c) SEM image of the fabricated fishnet pixel with 50 μm scale bar. Inset: zoom-in of fishnet pattern with 2 μm scale bar.
Fig. 2.
Fig. 2. (a) FEM calculated fractional absorption of TM-polarized light for a 300 nm period Si waveguide array (WGA) as a function of waveguide width overlaid with the analytically calculated TM mode cutoff wavelengths (red curves). (b) FEM absorption spectrum (blue line) for a WGA comprised of 75 nm wide Si fins and analytic TM2 mode cutoff wavelength (red-dashed line). (c) Normalized absorption density maps for light well below (i), at (ii) and well above (iii) the TM2 cutoff wavelength [indicated in 2(b)]. For clarity, the values in (i) and (iii) are multiplied by 2 and 20 respectively.
Fig. 3.
Fig. 3. (a) Responsivity spectra (solid lines) and external quantum efficiency (dashed lines) from fishnet pixel 9 for forward (red lines) and reverse (blue lines) bias. (b) Current-voltage characteristics of fishnet pixel 9 under dark (blue line) and bright (red line) conditions. Inset: transient response of the detector to light from monochromator (at wavelength 560 nm) that has been optically chopped at 83 Hz. (c) and (d) Measured normalized responsivity of each (c) fishnet and (d) mesa detector in a microspectrometer chip.
Fig. 4.
Fig. 4. (a)–(d) Measured (blue line) and reconstructed (red line) spectra of (a) a white LED lamp, filtered through (b) red-, (c) green-, and (d) blue-colored glass filters. (e) Calculated CIE1931 xy color values for the four spectra used in (a)–(d) from the measured (blue squares) and reconstructed (red squares) data.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

1nsitan(πsλc)tan(π(Λs)λc)=0,

Metrics