Y. Abu-Mostafa and D. Psaltis, “Optical neural computers,” Sci. Am. 256, 88–95 (1987).

[Crossref]

P. Raccuglia, K. C. Elbert, P. D. Adler, C. Falk, M. B. Wenny, A. Mollo, M. Zeller, S. A. Friedler, J. Schrier, and A. J. Norquist, “Machine-learning-assisted materials discovery using failed experiments,” Nature 533, 73–76 (2016).

[Crossref]

J. George, R. Amin, A. Mehrabian, J. Khurgin, T. El-Ghazawi, P. R. Prucnal, and V. J. Sorger, “Electrooptic nonlinear activation functions for vector matrix multiplications in optical neural networks,” in Signal Processing in Photonic Communications (Optical Society of America, 2018), paper SpW4G-3.

D. M. Farkas, K. M. Hudek, E. A. Salim, S. R. Segal, M. B. Squires, and D. Z. Anderson, “A compact, transportable, microchip-based system for high repetition rate production of Bose-Einstein condensates,” Appl. Phys. Lett. 96, 093102 (2010).

[Crossref]

S. Du, M. B. Squires, Y. Imai, L. Czaia, R. A. Saravanan, V. Bright, J. Reichel, T. W. Hansch, and D. Z. Anderson, “Atom-chip Bose-Einstein condensation in a portable vacuum cell,” Phys. Rev. A 70, 053606 (2004).

[Crossref]

G. Zhou and D. Z. Anderson, “Acoustic signal recognition with a photorefractive time-delay neural network,” Opt. Lett. 19, 655–657 (1994).

[Crossref]

D. Z. Anderson, “Optical resonators and neural networks,” AIP Conf. Proc. 151, 12 (1986).

[Crossref]

L. Larger, M. C. Soriano, D. Brunner, L. Appeltant, J. M. Gutiérrez, L. Pesquera, C. R. Mirasso, and I. Fischer, “Photonic information processing beyond Turing: an optoelectronic implementation of reservoir computing,” Opt. Express 20, 3241–3249 (2012).

[Crossref]

M. Miscuglio, A. Mehrabian, Z. Hu, S. I. Azzam, J. George, A. V. Kildishev, M. Pelton, and V. J. Sorger, “All-optical nonlinear activation function for photonic neural networks,” Opt. Mater. Express 8, 3851–3863 (2018).

[Crossref]

Y. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones, M. Hochberg, X. Sun, S. Zhao, H. Larochelle, D. Englund, and M. Soljačić, “Deep learning with coherent nanophotonic circuits,” Nat. Photonics 11, 441–446 (2017).

[Crossref]

F. Nogrette, H. Labuhn, S. Ravets, D. Barredo, L. Beguin, A. Vernier, T. Lahaye, and A. Browaeys, “Single-atom trapping in holographic 2D arrays of microtraps with arbitrary geometries,” Phys. Rev. X 4, 021034 (2014).

[Crossref]

F. Nogrette, H. Labuhn, S. Ravets, D. Barredo, L. Beguin, A. Vernier, T. Lahaye, and A. Browaeys, “Single-atom trapping in holographic 2D arrays of microtraps with arbitrary geometries,” Phys. Rev. X 4, 021034 (2014).

[Crossref]

J. Feldmann, N. Youngblood, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “All-optical spiking neurosynaptic networks with self-learning capabilities,” Nature 569, 208–214 (2019).

[Crossref]

S. Du, M. B. Squires, Y. Imai, L. Czaia, R. A. Saravanan, V. Bright, J. Reichel, T. W. Hansch, and D. Z. Anderson, “Atom-chip Bose-Einstein condensation in a portable vacuum cell,” Phys. Rev. A 70, 053606 (2004).

[Crossref]

F. Nogrette, H. Labuhn, S. Ravets, D. Barredo, L. Beguin, A. Vernier, T. Lahaye, and A. Browaeys, “Single-atom trapping in holographic 2D arrays of microtraps with arbitrary geometries,” Phys. Rev. X 4, 021034 (2014).

[Crossref]

J. Bueno, S. Maktoobi, L. Froehly, I. Fischer, M. Jacquot, L. Larger, and D. Brunner, “Reinforcement learning in a large-scale photonic recurrent neural network,” Optica 5, 756–760 (2018).

[Crossref]

L. Larger, M. C. Soriano, D. Brunner, L. Appeltant, J. M. Gutiérrez, L. Pesquera, C. R. Mirasso, and I. Fischer, “Photonic information processing beyond Turing: an optoelectronic implementation of reservoir computing,” Opt. Express 20, 3241–3249 (2012).

[Crossref]

K. T. Butler, D. W. Davies, H. Cartwright, O. Isayev, and A. Walsh, “Machine learning for molecular and materials science,” Nature 559, 547–555 (2018).

[Crossref]

E. L. Raab, M. Prentiss, A. Cable, S. Chu, and D. E. Pritchard, “Trapping of neutral sodium atoms with radiation pressure,” Phys. Rev. Lett. 59, 2631 (1987).

[Crossref]

G. Carleo and M. Troyer, “Solving the quantum many-body problem with artificial neural networks,” Science 355, 602–606 (2017).

[Crossref]

G. Carleo, C. Ignacio, C. Kyle, D. Laurent, S. Maria, T. Naftali, V.-M. Leslie, and Z. Lenka, “Machine learning and the physical sciences,” arXiv:1903.10563 (2019).

J. Carrasquilla and R. G. Melko, “Machine learning phases of matter,” Nat. Phys. 13, 431–434 (2017).

[Crossref]

K. T. Butler, D. W. Davies, H. Cartwright, O. Isayev, and A. Walsh, “Machine learning for molecular and materials science,” Nature 559, 547–555 (2018).

[Crossref]

H. J. Caulfield, J. Kinser, and S. K. Rogers, “Optical neural networks,” Proc. IEEE 77, 1573–1583 (1989).

[Crossref]

S. Zhang, J. F. Chen, C. Liu, S. Zhou, M. M. T. Loy, G. K. L. Wong, and S. Du, “A dark-line two-dimensional magneto-optical trap of 85Rb atoms with high optical depth,” Rev. Sci. Instrum. 83, 073102 (2012).

[Crossref]

Y. Zuo, B. Li, Y. Zhao, Y. Jiang, Y.-C. Chen, P. Chen, G.-B. Jo, J. Liu, and S. Du, “All optical neural network with nonlinear activation functions,” arXiv: 1904.10819 (2019).

Y. Zuo, B. Li, Y. Zhao, Y. Jiang, Y.-C. Chen, P. Chen, G.-B. Jo, J. Liu, and S. Du, “All optical neural network with nonlinear activation functions,” arXiv: 1904.10819 (2019).

E. L. Raab, M. Prentiss, A. Cable, S. Chu, and D. E. Pritchard, “Trapping of neutral sodium atoms with radiation pressure,” Phys. Rev. Lett. 59, 2631 (1987).

[Crossref]

S. Du, M. B. Squires, Y. Imai, L. Czaia, R. A. Saravanan, V. Bright, J. Reichel, T. W. Hansch, and D. Z. Anderson, “Atom-chip Bose-Einstein condensation in a portable vacuum cell,” Phys. Rev. A 70, 053606 (2004).

[Crossref]

Y. Paquot, F. Duport, A. Smerieri, J. Dambre, B. Schrauwen, M. Haelterman, and S. Massar, “Optoelectronic reservoir computing,” Sci. Rep. 2, 287 (2012).

[Crossref]

K. T. Butler, D. W. Davies, H. Cartwright, O. Isayev, and A. Walsh, “Machine learning for molecular and materials science,” Nature 559, 547–555 (2018).

[Crossref]

S. D. Sarma, D.-L. Deng, and L.-M. Duan, “Machine learning meets quantum physics,” Phys. Today 72(3), 48–54 (2019).

[Crossref]

D.-L. Deng, X. Li, and S. D. Sarma, “Machine learning topological states,” Phys. Rev. B 96, 195145 (2017).

[Crossref]

Y. Wang, J. Li, S. Zhang, K. Su, Y. Zhou, K. Liao, S. Du, H. Yan, and S.-L. Zhu, “Efficient quantum memory for single-photon polarization qubits,” Nat. Photonics 13, 346–351 (2019).

[Crossref]

S. Zhang, J. F. Chen, C. Liu, S. Zhou, M. M. T. Loy, G. K. L. Wong, and S. Du, “A dark-line two-dimensional magneto-optical trap of 85Rb atoms with high optical depth,” Rev. Sci. Instrum. 83, 073102 (2012).

[Crossref]

S. Du, M. B. Squires, Y. Imai, L. Czaia, R. A. Saravanan, V. Bright, J. Reichel, T. W. Hansch, and D. Z. Anderson, “Atom-chip Bose-Einstein condensation in a portable vacuum cell,” Phys. Rev. A 70, 053606 (2004).

[Crossref]

Y. Zuo, B. Li, Y. Zhao, Y. Jiang, Y.-C. Chen, P. Chen, G.-B. Jo, J. Liu, and S. Du, “All optical neural network with nonlinear activation functions,” arXiv: 1904.10819 (2019).

S. D. Sarma, D.-L. Deng, and L.-M. Duan, “Machine learning meets quantum physics,” Phys. Today 72(3), 48–54 (2019).

[Crossref]

Y. Paquot, F. Duport, A. Smerieri, J. Dambre, B. Schrauwen, M. Haelterman, and S. Massar, “Optoelectronic reservoir computing,” Sci. Rep. 2, 287 (2012).

[Crossref]

F. Duport, B. Schneider, A. Smerieri, M. Haelterman, and S. Massar, “All-optical reservoir computing,” Opt. Express 20, 22783–22795(2012).

[Crossref]

P. Raccuglia, K. C. Elbert, P. D. Adler, C. Falk, M. B. Wenny, A. Mollo, M. Zeller, S. A. Friedler, J. Schrier, and A. J. Norquist, “Machine-learning-assisted materials discovery using failed experiments,” Nature 533, 73–76 (2016).

[Crossref]

J. George, R. Amin, A. Mehrabian, J. Khurgin, T. El-Ghazawi, P. R. Prucnal, and V. J. Sorger, “Electrooptic nonlinear activation functions for vector matrix multiplications in optical neural networks,” in Signal Processing in Photonic Communications (Optical Society of America, 2018), paper SpW4G-3.

Y. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones, M. Hochberg, X. Sun, S. Zhao, H. Larochelle, D. Englund, and M. Soljačić, “Deep learning with coherent nanophotonic circuits,” Nat. Photonics 11, 441–446 (2017).

[Crossref]

P. Raccuglia, K. C. Elbert, P. D. Adler, C. Falk, M. B. Wenny, A. Mollo, M. Zeller, S. A. Friedler, J. Schrier, and A. J. Norquist, “Machine-learning-assisted materials discovery using failed experiments,” Nature 533, 73–76 (2016).

[Crossref]

D. M. Farkas, K. M. Hudek, E. A. Salim, S. R. Segal, M. B. Squires, and D. Z. Anderson, “A compact, transportable, microchip-based system for high repetition rate production of Bose-Einstein condensates,” Appl. Phys. Lett. 96, 093102 (2010).

[Crossref]

J. Feldmann, N. Youngblood, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “All-optical spiking neurosynaptic networks with self-learning capabilities,” Nature 569, 208–214 (2019).

[Crossref]

J. Bueno, S. Maktoobi, L. Froehly, I. Fischer, M. Jacquot, L. Larger, and D. Brunner, “Reinforcement learning in a large-scale photonic recurrent neural network,” Optica 5, 756–760 (2018).

[Crossref]

L. Larger, M. C. Soriano, D. Brunner, L. Appeltant, J. M. Gutiérrez, L. Pesquera, C. R. Mirasso, and I. Fischer, “Photonic information processing beyond Turing: an optoelectronic implementation of reservoir computing,” Opt. Express 20, 3241–3249 (2012).

[Crossref]

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).

[Crossref]

P. Raccuglia, K. C. Elbert, P. D. Adler, C. Falk, M. B. Wenny, A. Mollo, M. Zeller, S. A. Friedler, J. Schrier, and A. J. Norquist, “Machine-learning-assisted materials discovery using failed experiments,” Nature 533, 73–76 (2016).

[Crossref]

J. Liu, Y. Qi, Z. Y. Meng, and L. Fu, “Self-learning Monte Carlo method,” Phys. Rev. B 95, 041101 (2017).

[Crossref]

J. Liu, H. Shen, Y. Qi, Z. Y. Meng, and L. Fu, “Self-learning Monte Carlo method and cumulative update in fermion systems,” Phys. Rev. B 95, 241104 (2017).

[Crossref]

M. Miscuglio, A. Mehrabian, Z. Hu, S. I. Azzam, J. George, A. V. Kildishev, M. Pelton, and V. J. Sorger, “All-optical nonlinear activation function for photonic neural networks,” Opt. Mater. Express 8, 3851–3863 (2018).

[Crossref]

J. George, R. Amin, A. Mehrabian, J. Khurgin, T. El-Ghazawi, P. R. Prucnal, and V. J. Sorger, “Electrooptic nonlinear activation functions for vector matrix multiplications in optical neural networks,” in Signal Processing in Photonic Communications (Optical Society of America, 2018), paper SpW4G-3.

L. Larger, M. C. Soriano, D. Brunner, L. Appeltant, J. M. Gutiérrez, L. Pesquera, C. R. Mirasso, and I. Fischer, “Photonic information processing beyond Turing: an optoelectronic implementation of reservoir computing,” Opt. Express 20, 3241–3249 (2012).

[Crossref]

F. Duport, B. Schneider, A. Smerieri, M. Haelterman, and S. Massar, “All-optical reservoir computing,” Opt. Express 20, 22783–22795(2012).

[Crossref]

Y. Paquot, F. Duport, A. Smerieri, J. Dambre, B. Schrauwen, M. Haelterman, and S. Massar, “Optoelectronic reservoir computing,” Sci. Rep. 2, 287 (2012).

[Crossref]

S. Du, M. B. Squires, Y. Imai, L. Czaia, R. A. Saravanan, V. Bright, J. Reichel, T. W. Hansch, and D. Z. Anderson, “Atom-chip Bose-Einstein condensation in a portable vacuum cell,” Phys. Rev. A 70, 053606 (2004).

[Crossref]

Y. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones, M. Hochberg, X. Sun, S. Zhao, H. Larochelle, D. Englund, and M. Soljačić, “Deep learning with coherent nanophotonic circuits,” Nat. Photonics 11, 441–446 (2017).

[Crossref]

S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36–42 (1997).

[Crossref]

A. J. Maren, C. T. Harston, and R. M. Pap, Handbook of Neural Computing Applications (Academic, 2014).

B. Wu, J. F. Hulbert, E. J. Lunt, K. Hurd, A. R. Hawkins, and H. Schmidt, “Slow light on a chip via atomic quantum state control,” Nat. Photonics 4, 776–779 (2010).

[Crossref]

Y. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones, M. Hochberg, X. Sun, S. Zhao, H. Larochelle, D. Englund, and M. Soljačić, “Deep learning with coherent nanophotonic circuits,” Nat. Photonics 11, 441–446 (2017).

[Crossref]

M. Miscuglio, A. Mehrabian, Z. Hu, S. I. Azzam, J. George, A. V. Kildishev, M. Pelton, and V. J. Sorger, “All-optical nonlinear activation function for photonic neural networks,” Opt. Mater. Express 8, 3851–3863 (2018).

[Crossref]

L. Huang and L. Wang, “Accelerated Monte Carlo simulations with restricted Boltzmann machines,” Phys. Rev. B 95, 035105 (2017).

[Crossref]

D. M. Farkas, K. M. Hudek, E. A. Salim, S. R. Segal, M. B. Squires, and D. Z. Anderson, “A compact, transportable, microchip-based system for high repetition rate production of Bose-Einstein condensates,” Appl. Phys. Lett. 96, 093102 (2010).

[Crossref]

B. Wu, J. F. Hulbert, E. J. Lunt, K. Hurd, A. R. Hawkins, and H. Schmidt, “Slow light on a chip via atomic quantum state control,” Nat. Photonics 4, 776–779 (2010).

[Crossref]

B. Wu, J. F. Hulbert, E. J. Lunt, K. Hurd, A. R. Hawkins, and H. Schmidt, “Slow light on a chip via atomic quantum state control,” Nat. Photonics 4, 776–779 (2010).

[Crossref]

G. Carleo, C. Ignacio, C. Kyle, D. Laurent, S. Maria, T. Naftali, V.-M. Leslie, and Z. Lenka, “Machine learning and the physical sciences,” arXiv:1903.10563 (2019).

S. Du, M. B. Squires, Y. Imai, L. Czaia, R. A. Saravanan, V. Bright, J. Reichel, T. W. Hansch, and D. Z. Anderson, “Atom-chip Bose-Einstein condensation in a portable vacuum cell,” Phys. Rev. A 70, 053606 (2004).

[Crossref]

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).

[Crossref]

K. T. Butler, D. W. Davies, H. Cartwright, O. Isayev, and A. Walsh, “Machine learning for molecular and materials science,” Nature 559, 547–555 (2018).

[Crossref]

X. Lin, Y. Rivenson, N. T. Yardimci, M. Veli, Y. Luo, M. Jarrahi, and A. Ozcan, “All-optical machine learning using diffractive deep neural networks,” Science 361, 1004–1008 (2018).

[Crossref]

Y. Zuo, B. Li, Y. Zhao, Y. Jiang, Y.-C. Chen, P. Chen, G.-B. Jo, J. Liu, and S. Du, “All optical neural network with nonlinear activation functions,” arXiv: 1904.10819 (2019).

Y. Zuo, B. Li, Y. Zhao, Y. Jiang, Y.-C. Chen, P. Chen, G.-B. Jo, J. Liu, and S. Du, “All optical neural network with nonlinear activation functions,” arXiv: 1904.10819 (2019).

M. I. Jordan and T. M. Mitchell, “Machine learning: trends, perspectives, and prospects,” Science 349, 255–260 (2015).

[Crossref]

S. Jutamulia and F. Yu, “Overview of hybrid optical neural networks,” Opt. Laser Technol. 28, 59–72 (1996).

[Crossref]

J. George, R. Amin, A. Mehrabian, J. Khurgin, T. El-Ghazawi, P. R. Prucnal, and V. J. Sorger, “Electrooptic nonlinear activation functions for vector matrix multiplications in optical neural networks,” in Signal Processing in Photonic Communications (Optical Society of America, 2018), paper SpW4G-3.

M. Miscuglio, A. Mehrabian, Z. Hu, S. I. Azzam, J. George, A. V. Kildishev, M. Pelton, and V. J. Sorger, “All-optical nonlinear activation function for photonic neural networks,” Opt. Mater. Express 8, 3851–3863 (2018).

[Crossref]

Y. Zhang and E.-A. Kim, “Quantum loop topography for machine learning,” Phys. Rev. Lett. 118, 216401 (2017).

[Crossref]

H. J. Caulfield, J. Kinser, and S. K. Rogers, “Optical neural networks,” Proc. IEEE 77, 1573–1583 (1989).

[Crossref]

G. Carleo, C. Ignacio, C. Kyle, D. Laurent, S. Maria, T. Naftali, V.-M. Leslie, and Z. Lenka, “Machine learning and the physical sciences,” arXiv:1903.10563 (2019).

F. Nogrette, H. Labuhn, S. Ravets, D. Barredo, L. Beguin, A. Vernier, T. Lahaye, and A. Browaeys, “Single-atom trapping in holographic 2D arrays of microtraps with arbitrary geometries,” Phys. Rev. X 4, 021034 (2014).

[Crossref]

F. Nogrette, H. Labuhn, S. Ravets, D. Barredo, L. Beguin, A. Vernier, T. Lahaye, and A. Browaeys, “Single-atom trapping in holographic 2D arrays of microtraps with arbitrary geometries,” Phys. Rev. X 4, 021034 (2014).

[Crossref]

J. Bueno, S. Maktoobi, L. Froehly, I. Fischer, M. Jacquot, L. Larger, and D. Brunner, “Reinforcement learning in a large-scale photonic recurrent neural network,” Optica 5, 756–760 (2018).

[Crossref]

L. Larger, M. C. Soriano, D. Brunner, L. Appeltant, J. M. Gutiérrez, L. Pesquera, C. R. Mirasso, and I. Fischer, “Photonic information processing beyond Turing: an optoelectronic implementation of reservoir computing,” Opt. Express 20, 3241–3249 (2012).

[Crossref]

Y. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones, M. Hochberg, X. Sun, S. Zhao, H. Larochelle, D. Englund, and M. Soljačić, “Deep learning with coherent nanophotonic circuits,” Nat. Photonics 11, 441–446 (2017).

[Crossref]

G. Carleo, C. Ignacio, C. Kyle, D. Laurent, S. Maria, T. Naftali, V.-M. Leslie, and Z. Lenka, “Machine learning and the physical sciences,” arXiv:1903.10563 (2019).

G. Carleo, C. Ignacio, C. Kyle, D. Laurent, S. Maria, T. Naftali, V.-M. Leslie, and Z. Lenka, “Machine learning and the physical sciences,” arXiv:1903.10563 (2019).

G. Carleo, C. Ignacio, C. Kyle, D. Laurent, S. Maria, T. Naftali, V.-M. Leslie, and Z. Lenka, “Machine learning and the physical sciences,” arXiv:1903.10563 (2019).

Y. Zuo, B. Li, Y. Zhao, Y. Jiang, Y.-C. Chen, P. Chen, G.-B. Jo, J. Liu, and S. Du, “All optical neural network with nonlinear activation functions,” arXiv: 1904.10819 (2019).

Y. Wang, J. Li, S. Zhang, K. Su, Y. Zhou, K. Liao, S. Du, H. Yan, and S.-L. Zhu, “Efficient quantum memory for single-photon polarization qubits,” Nat. Photonics 13, 346–351 (2019).

[Crossref]

D.-L. Deng, X. Li, and S. D. Sarma, “Machine learning topological states,” Phys. Rev. B 96, 195145 (2017).

[Crossref]

Y. Wang, J. Li, S. Zhang, K. Su, Y. Zhou, K. Liao, S. Du, H. Yan, and S.-L. Zhu, “Efficient quantum memory for single-photon polarization qubits,” Nat. Photonics 13, 346–351 (2019).

[Crossref]

X. Lin, Y. Rivenson, N. T. Yardimci, M. Veli, Y. Luo, M. Jarrahi, and A. Ozcan, “All-optical machine learning using diffractive deep neural networks,” Science 361, 1004–1008 (2018).

[Crossref]

S. Zhang, J. F. Chen, C. Liu, S. Zhou, M. M. T. Loy, G. K. L. Wong, and S. Du, “A dark-line two-dimensional magneto-optical trap of 85Rb atoms with high optical depth,” Rev. Sci. Instrum. 83, 073102 (2012).

[Crossref]

J. Liu, H. Shen, Y. Qi, Z. Y. Meng, and L. Fu, “Self-learning Monte Carlo method and cumulative update in fermion systems,” Phys. Rev. B 95, 241104 (2017).

[Crossref]

J. Liu, Y. Qi, Z. Y. Meng, and L. Fu, “Self-learning Monte Carlo method,” Phys. Rev. B 95, 041101 (2017).

[Crossref]

Y. Zuo, B. Li, Y. Zhao, Y. Jiang, Y.-C. Chen, P. Chen, G.-B. Jo, J. Liu, and S. Du, “All optical neural network with nonlinear activation functions,” arXiv: 1904.10819 (2019).

S. Zhang, J. F. Chen, C. Liu, S. Zhou, M. M. T. Loy, G. K. L. Wong, and S. Du, “A dark-line two-dimensional magneto-optical trap of 85Rb atoms with high optical depth,” Rev. Sci. Instrum. 83, 073102 (2012).

[Crossref]

K. Lu and B. E. A. Saleh, “Theory and design of the liquid crystal TV as an optical spatial phase modulator,” Opt. Eng. 29, 240–246 (1990).

[Crossref]

B. Wu, J. F. Hulbert, E. J. Lunt, K. Hurd, A. R. Hawkins, and H. Schmidt, “Slow light on a chip via atomic quantum state control,” Nat. Photonics 4, 776–779 (2010).

[Crossref]

X. Lin, Y. Rivenson, N. T. Yardimci, M. Veli, Y. Luo, M. Jarrahi, and A. Ozcan, “All-optical machine learning using diffractive deep neural networks,” Science 361, 1004–1008 (2018).

[Crossref]

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).

[Crossref]

A. J. Maren, C. T. Harston, and R. M. Pap, Handbook of Neural Computing Applications (Academic, 2014).

G. Carleo, C. Ignacio, C. Kyle, D. Laurent, S. Maria, T. Naftali, V.-M. Leslie, and Z. Lenka, “Machine learning and the physical sciences,” arXiv:1903.10563 (2019).

Y. Paquot, F. Duport, A. Smerieri, J. Dambre, B. Schrauwen, M. Haelterman, and S. Massar, “Optoelectronic reservoir computing,” Sci. Rep. 2, 287 (2012).

[Crossref]

F. Duport, B. Schneider, A. Smerieri, M. Haelterman, and S. Massar, “All-optical reservoir computing,” Opt. Express 20, 22783–22795(2012).

[Crossref]

M. Miscuglio, A. Mehrabian, Z. Hu, S. I. Azzam, J. George, A. V. Kildishev, M. Pelton, and V. J. Sorger, “All-optical nonlinear activation function for photonic neural networks,” Opt. Mater. Express 8, 3851–3863 (2018).

[Crossref]

J. George, R. Amin, A. Mehrabian, J. Khurgin, T. El-Ghazawi, P. R. Prucnal, and V. J. Sorger, “Electrooptic nonlinear activation functions for vector matrix multiplications in optical neural networks,” in Signal Processing in Photonic Communications (Optical Society of America, 2018), paper SpW4G-3.

J. Carrasquilla and R. G. Melko, “Machine learning phases of matter,” Nat. Phys. 13, 431–434 (2017).

[Crossref]

J. Liu, Y. Qi, Z. Y. Meng, and L. Fu, “Self-learning Monte Carlo method,” Phys. Rev. B 95, 041101 (2017).

[Crossref]

J. Liu, H. Shen, Y. Qi, Z. Y. Meng, and L. Fu, “Self-learning Monte Carlo method and cumulative update in fermion systems,” Phys. Rev. B 95, 241104 (2017).

[Crossref]

H. J. Metcalf and P. van der Straten, Laser Cooling and Trapping (Springer-Verlag, 1999).

L. Larger, M. C. Soriano, D. Brunner, L. Appeltant, J. M. Gutiérrez, L. Pesquera, C. R. Mirasso, and I. Fischer, “Photonic information processing beyond Turing: an optoelectronic implementation of reservoir computing,” Opt. Express 20, 3241–3249 (2012).

[Crossref]

M. Miscuglio, A. Mehrabian, Z. Hu, S. I. Azzam, J. George, A. V. Kildishev, M. Pelton, and V. J. Sorger, “All-optical nonlinear activation function for photonic neural networks,” Opt. Mater. Express 8, 3851–3863 (2018).

[Crossref]

M. I. Jordan and T. M. Mitchell, “Machine learning: trends, perspectives, and prospects,” Science 349, 255–260 (2015).

[Crossref]

P. Raccuglia, K. C. Elbert, P. D. Adler, C. Falk, M. B. Wenny, A. Mollo, M. Zeller, S. A. Friedler, J. Schrier, and A. J. Norquist, “Machine-learning-assisted materials discovery using failed experiments,” Nature 533, 73–76 (2016).

[Crossref]

G. Carleo, C. Ignacio, C. Kyle, D. Laurent, S. Maria, T. Naftali, V.-M. Leslie, and Z. Lenka, “Machine learning and the physical sciences,” arXiv:1903.10563 (2019).

D. Woods and T. J. Naughton, “Photonic neural networks,” Nat. Phys. 8, 257–259 (2012).

[Crossref]

F. Nogrette, H. Labuhn, S. Ravets, D. Barredo, L. Beguin, A. Vernier, T. Lahaye, and A. Browaeys, “Single-atom trapping in holographic 2D arrays of microtraps with arbitrary geometries,” Phys. Rev. X 4, 021034 (2014).

[Crossref]

P. Raccuglia, K. C. Elbert, P. D. Adler, C. Falk, M. B. Wenny, A. Mollo, M. Zeller, S. A. Friedler, J. Schrier, and A. J. Norquist, “Machine-learning-assisted materials discovery using failed experiments,” Nature 533, 73–76 (2016).

[Crossref]

X. Lin, Y. Rivenson, N. T. Yardimci, M. Veli, Y. Luo, M. Jarrahi, and A. Ozcan, “All-optical machine learning using diffractive deep neural networks,” Science 361, 1004–1008 (2018).

[Crossref]

A. J. Maren, C. T. Harston, and R. M. Pap, Handbook of Neural Computing Applications (Academic, 2014).

Y. Paquot, F. Duport, A. Smerieri, J. Dambre, B. Schrauwen, M. Haelterman, and S. Massar, “Optoelectronic reservoir computing,” Sci. Rep. 2, 287 (2012).

[Crossref]

M. Miscuglio, A. Mehrabian, Z. Hu, S. I. Azzam, J. George, A. V. Kildishev, M. Pelton, and V. J. Sorger, “All-optical nonlinear activation function for photonic neural networks,” Opt. Mater. Express 8, 3851–3863 (2018).

[Crossref]

J. Feldmann, N. Youngblood, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “All-optical spiking neurosynaptic networks with self-learning capabilities,” Nature 569, 208–214 (2019).

[Crossref]

L. Larger, M. C. Soriano, D. Brunner, L. Appeltant, J. M. Gutiérrez, L. Pesquera, C. R. Mirasso, and I. Fischer, “Photonic information processing beyond Turing: an optoelectronic implementation of reservoir computing,” Opt. Express 20, 3241–3249 (2012).

[Crossref]

Y. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones, M. Hochberg, X. Sun, S. Zhao, H. Larochelle, D. Englund, and M. Soljačić, “Deep learning with coherent nanophotonic circuits,” Nat. Photonics 11, 441–446 (2017).

[Crossref]

E. L. Raab, M. Prentiss, A. Cable, S. Chu, and D. E. Pritchard, “Trapping of neutral sodium atoms with radiation pressure,” Phys. Rev. Lett. 59, 2631 (1987).

[Crossref]

E. L. Raab, M. Prentiss, A. Cable, S. Chu, and D. E. Pritchard, “Trapping of neutral sodium atoms with radiation pressure,” Phys. Rev. Lett. 59, 2631 (1987).

[Crossref]

J. George, R. Amin, A. Mehrabian, J. Khurgin, T. El-Ghazawi, P. R. Prucnal, and V. J. Sorger, “Electrooptic nonlinear activation functions for vector matrix multiplications in optical neural networks,” in Signal Processing in Photonic Communications (Optical Society of America, 2018), paper SpW4G-3.

Y. Abu-Mostafa and D. Psaltis, “Optical neural computers,” Sci. Am. 256, 88–95 (1987).

[Crossref]

J. Liu, H. Shen, Y. Qi, Z. Y. Meng, and L. Fu, “Self-learning Monte Carlo method and cumulative update in fermion systems,” Phys. Rev. B 95, 241104 (2017).

[Crossref]

J. Liu, Y. Qi, Z. Y. Meng, and L. Fu, “Self-learning Monte Carlo method,” Phys. Rev. B 95, 041101 (2017).

[Crossref]

E. L. Raab, M. Prentiss, A. Cable, S. Chu, and D. E. Pritchard, “Trapping of neutral sodium atoms with radiation pressure,” Phys. Rev. Lett. 59, 2631 (1987).

[Crossref]

P. Raccuglia, K. C. Elbert, P. D. Adler, C. Falk, M. B. Wenny, A. Mollo, M. Zeller, S. A. Friedler, J. Schrier, and A. J. Norquist, “Machine-learning-assisted materials discovery using failed experiments,” Nature 533, 73–76 (2016).

[Crossref]

F. Nogrette, H. Labuhn, S. Ravets, D. Barredo, L. Beguin, A. Vernier, T. Lahaye, and A. Browaeys, “Single-atom trapping in holographic 2D arrays of microtraps with arbitrary geometries,” Phys. Rev. X 4, 021034 (2014).

[Crossref]

S. Du, M. B. Squires, Y. Imai, L. Czaia, R. A. Saravanan, V. Bright, J. Reichel, T. W. Hansch, and D. Z. Anderson, “Atom-chip Bose-Einstein condensation in a portable vacuum cell,” Phys. Rev. A 70, 053606 (2004).

[Crossref]

X. Lin, Y. Rivenson, N. T. Yardimci, M. Veli, Y. Luo, M. Jarrahi, and A. Ozcan, “All-optical machine learning using diffractive deep neural networks,” Science 361, 1004–1008 (2018).

[Crossref]

H. J. Caulfield, J. Kinser, and S. K. Rogers, “Optical neural networks,” Proc. IEEE 77, 1573–1583 (1989).

[Crossref]

K. Lu and B. E. A. Saleh, “Theory and design of the liquid crystal TV as an optical spatial phase modulator,” Opt. Eng. 29, 240–246 (1990).

[Crossref]

D. M. Farkas, K. M. Hudek, E. A. Salim, S. R. Segal, M. B. Squires, and D. Z. Anderson, “A compact, transportable, microchip-based system for high repetition rate production of Bose-Einstein condensates,” Appl. Phys. Lett. 96, 093102 (2010).

[Crossref]

S. Du, M. B. Squires, Y. Imai, L. Czaia, R. A. Saravanan, V. Bright, J. Reichel, T. W. Hansch, and D. Z. Anderson, “Atom-chip Bose-Einstein condensation in a portable vacuum cell,” Phys. Rev. A 70, 053606 (2004).

[Crossref]

S. D. Sarma, D.-L. Deng, and L.-M. Duan, “Machine learning meets quantum physics,” Phys. Today 72(3), 48–54 (2019).

[Crossref]

D.-L. Deng, X. Li, and S. D. Sarma, “Machine learning topological states,” Phys. Rev. B 96, 195145 (2017).

[Crossref]

B. Wu, J. F. Hulbert, E. J. Lunt, K. Hurd, A. R. Hawkins, and H. Schmidt, “Slow light on a chip via atomic quantum state control,” Nat. Photonics 4, 776–779 (2010).

[Crossref]

Y. Paquot, F. Duport, A. Smerieri, J. Dambre, B. Schrauwen, M. Haelterman, and S. Massar, “Optoelectronic reservoir computing,” Sci. Rep. 2, 287 (2012).

[Crossref]

P. Raccuglia, K. C. Elbert, P. D. Adler, C. Falk, M. B. Wenny, A. Mollo, M. Zeller, S. A. Friedler, J. Schrier, and A. J. Norquist, “Machine-learning-assisted materials discovery using failed experiments,” Nature 533, 73–76 (2016).

[Crossref]

D. M. Farkas, K. M. Hudek, E. A. Salim, S. R. Segal, M. B. Squires, and D. Z. Anderson, “A compact, transportable, microchip-based system for high repetition rate production of Bose-Einstein condensates,” Appl. Phys. Lett. 96, 093102 (2010).

[Crossref]

J. Liu, H. Shen, Y. Qi, Z. Y. Meng, and L. Fu, “Self-learning Monte Carlo method and cumulative update in fermion systems,” Phys. Rev. B 95, 241104 (2017).

[Crossref]

Y. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones, M. Hochberg, X. Sun, S. Zhao, H. Larochelle, D. Englund, and M. Soljačić, “Deep learning with coherent nanophotonic circuits,” Nat. Photonics 11, 441–446 (2017).

[Crossref]

Y. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones, M. Hochberg, X. Sun, S. Zhao, H. Larochelle, D. Englund, and M. Soljačić, “Deep learning with coherent nanophotonic circuits,” Nat. Photonics 11, 441–446 (2017).

[Crossref]

Y. Paquot, F. Duport, A. Smerieri, J. Dambre, B. Schrauwen, M. Haelterman, and S. Massar, “Optoelectronic reservoir computing,” Sci. Rep. 2, 287 (2012).

[Crossref]

F. Duport, B. Schneider, A. Smerieri, M. Haelterman, and S. Massar, “All-optical reservoir computing,” Opt. Express 20, 22783–22795(2012).

[Crossref]

Y. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones, M. Hochberg, X. Sun, S. Zhao, H. Larochelle, D. Englund, and M. Soljačić, “Deep learning with coherent nanophotonic circuits,” Nat. Photonics 11, 441–446 (2017).

[Crossref]

M. Miscuglio, A. Mehrabian, Z. Hu, S. I. Azzam, J. George, A. V. Kildishev, M. Pelton, and V. J. Sorger, “All-optical nonlinear activation function for photonic neural networks,” Opt. Mater. Express 8, 3851–3863 (2018).

[Crossref]

J. George, R. Amin, A. Mehrabian, J. Khurgin, T. El-Ghazawi, P. R. Prucnal, and V. J. Sorger, “Electrooptic nonlinear activation functions for vector matrix multiplications in optical neural networks,” in Signal Processing in Photonic Communications (Optical Society of America, 2018), paper SpW4G-3.

L. Larger, M. C. Soriano, D. Brunner, L. Appeltant, J. M. Gutiérrez, L. Pesquera, C. R. Mirasso, and I. Fischer, “Photonic information processing beyond Turing: an optoelectronic implementation of reservoir computing,” Opt. Express 20, 3241–3249 (2012).

[Crossref]

D. M. Farkas, K. M. Hudek, E. A. Salim, S. R. Segal, M. B. Squires, and D. Z. Anderson, “A compact, transportable, microchip-based system for high repetition rate production of Bose-Einstein condensates,” Appl. Phys. Lett. 96, 093102 (2010).

[Crossref]

S. Du, M. B. Squires, Y. Imai, L. Czaia, R. A. Saravanan, V. Bright, J. Reichel, T. W. Hansch, and D. Z. Anderson, “Atom-chip Bose-Einstein condensation in a portable vacuum cell,” Phys. Rev. A 70, 053606 (2004).

[Crossref]

Y. Wang, J. Li, S. Zhang, K. Su, Y. Zhou, K. Liao, S. Du, H. Yan, and S.-L. Zhu, “Efficient quantum memory for single-photon polarization qubits,” Nat. Photonics 13, 346–351 (2019).

[Crossref]

Y. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones, M. Hochberg, X. Sun, S. Zhao, H. Larochelle, D. Englund, and M. Soljačić, “Deep learning with coherent nanophotonic circuits,” Nat. Photonics 11, 441–446 (2017).

[Crossref]

G. Carleo and M. Troyer, “Solving the quantum many-body problem with artificial neural networks,” Science 355, 602–606 (2017).

[Crossref]

H. J. Metcalf and P. van der Straten, Laser Cooling and Trapping (Springer-Verlag, 1999).

X. Lin, Y. Rivenson, N. T. Yardimci, M. Veli, Y. Luo, M. Jarrahi, and A. Ozcan, “All-optical machine learning using diffractive deep neural networks,” Science 361, 1004–1008 (2018).

[Crossref]

F. Nogrette, H. Labuhn, S. Ravets, D. Barredo, L. Beguin, A. Vernier, T. Lahaye, and A. Browaeys, “Single-atom trapping in holographic 2D arrays of microtraps with arbitrary geometries,” Phys. Rev. X 4, 021034 (2014).

[Crossref]

K. T. Butler, D. W. Davies, H. Cartwright, O. Isayev, and A. Walsh, “Machine learning for molecular and materials science,” Nature 559, 547–555 (2018).

[Crossref]

C. Wang and H. Zhai, “Machine learning of frustrated classical spin models. I. Principal component analysis,” Phys. Rev. B 96, 144432 (2017).

[Crossref]

L. Huang and L. Wang, “Accelerated Monte Carlo simulations with restricted Boltzmann machines,” Phys. Rev. B 95, 035105 (2017).

[Crossref]

Y. Wang, J. Li, S. Zhang, K. Su, Y. Zhou, K. Liao, S. Du, H. Yan, and S.-L. Zhu, “Efficient quantum memory for single-photon polarization qubits,” Nat. Photonics 13, 346–351 (2019).

[Crossref]

P. Raccuglia, K. C. Elbert, P. D. Adler, C. Falk, M. B. Wenny, A. Mollo, M. Zeller, S. A. Friedler, J. Schrier, and A. J. Norquist, “Machine-learning-assisted materials discovery using failed experiments,” Nature 533, 73–76 (2016).

[Crossref]

S. Zhang, J. F. Chen, C. Liu, S. Zhou, M. M. T. Loy, G. K. L. Wong, and S. Du, “A dark-line two-dimensional magneto-optical trap of 85Rb atoms with high optical depth,” Rev. Sci. Instrum. 83, 073102 (2012).

[Crossref]

D. Woods and T. J. Naughton, “Photonic neural networks,” Nat. Phys. 8, 257–259 (2012).

[Crossref]

J. Feldmann, N. Youngblood, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “All-optical spiking neurosynaptic networks with self-learning capabilities,” Nature 569, 208–214 (2019).

[Crossref]

B. Wu, J. F. Hulbert, E. J. Lunt, K. Hurd, A. R. Hawkins, and H. Schmidt, “Slow light on a chip via atomic quantum state control,” Nat. Photonics 4, 776–779 (2010).

[Crossref]

Y. Wang, J. Li, S. Zhang, K. Su, Y. Zhou, K. Liao, S. Du, H. Yan, and S.-L. Zhu, “Efficient quantum memory for single-photon polarization qubits,” Nat. Photonics 13, 346–351 (2019).

[Crossref]

X. Lin, Y. Rivenson, N. T. Yardimci, M. Veli, Y. Luo, M. Jarrahi, and A. Ozcan, “All-optical machine learning using diffractive deep neural networks,” Science 361, 1004–1008 (2018).

[Crossref]

J. Feldmann, N. Youngblood, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “All-optical spiking neurosynaptic networks with self-learning capabilities,” Nature 569, 208–214 (2019).

[Crossref]

S. Jutamulia and F. Yu, “Overview of hybrid optical neural networks,” Opt. Laser Technol. 28, 59–72 (1996).

[Crossref]

P. Raccuglia, K. C. Elbert, P. D. Adler, C. Falk, M. B. Wenny, A. Mollo, M. Zeller, S. A. Friedler, J. Schrier, and A. J. Norquist, “Machine-learning-assisted materials discovery using failed experiments,” Nature 533, 73–76 (2016).

[Crossref]

C. Wang and H. Zhai, “Machine learning of frustrated classical spin models. I. Principal component analysis,” Phys. Rev. B 96, 144432 (2017).

[Crossref]

Y. Wang, J. Li, S. Zhang, K. Su, Y. Zhou, K. Liao, S. Du, H. Yan, and S.-L. Zhu, “Efficient quantum memory for single-photon polarization qubits,” Nat. Photonics 13, 346–351 (2019).

[Crossref]

S. Zhang, J. F. Chen, C. Liu, S. Zhou, M. M. T. Loy, G. K. L. Wong, and S. Du, “A dark-line two-dimensional magneto-optical trap of 85Rb atoms with high optical depth,” Rev. Sci. Instrum. 83, 073102 (2012).

[Crossref]

Y. Zhang and E.-A. Kim, “Quantum loop topography for machine learning,” Phys. Rev. Lett. 118, 216401 (2017).

[Crossref]

Y. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones, M. Hochberg, X. Sun, S. Zhao, H. Larochelle, D. Englund, and M. Soljačić, “Deep learning with coherent nanophotonic circuits,” Nat. Photonics 11, 441–446 (2017).

[Crossref]

Y. Zuo, B. Li, Y. Zhao, Y. Jiang, Y.-C. Chen, P. Chen, G.-B. Jo, J. Liu, and S. Du, “All optical neural network with nonlinear activation functions,” arXiv: 1904.10819 (2019).

S. Zhang, J. F. Chen, C. Liu, S. Zhou, M. M. T. Loy, G. K. L. Wong, and S. Du, “A dark-line two-dimensional magneto-optical trap of 85Rb atoms with high optical depth,” Rev. Sci. Instrum. 83, 073102 (2012).

[Crossref]

Y. Wang, J. Li, S. Zhang, K. Su, Y. Zhou, K. Liao, S. Du, H. Yan, and S.-L. Zhu, “Efficient quantum memory for single-photon polarization qubits,” Nat. Photonics 13, 346–351 (2019).

[Crossref]

Y. Wang, J. Li, S. Zhang, K. Su, Y. Zhou, K. Liao, S. Du, H. Yan, and S.-L. Zhu, “Efficient quantum memory for single-photon polarization qubits,” Nat. Photonics 13, 346–351 (2019).

[Crossref]

Y. Zuo, B. Li, Y. Zhao, Y. Jiang, Y.-C. Chen, P. Chen, G.-B. Jo, J. Liu, and S. Du, “All optical neural network with nonlinear activation functions,” arXiv: 1904.10819 (2019).

D. Z. Anderson, “Optical resonators and neural networks,” AIP Conf. Proc. 151, 12 (1986).

[Crossref]

D. M. Farkas, K. M. Hudek, E. A. Salim, S. R. Segal, M. B. Squires, and D. Z. Anderson, “A compact, transportable, microchip-based system for high repetition rate production of Bose-Einstein condensates,” Appl. Phys. Lett. 96, 093102 (2010).

[Crossref]

B. Wu, J. F. Hulbert, E. J. Lunt, K. Hurd, A. R. Hawkins, and H. Schmidt, “Slow light on a chip via atomic quantum state control,” Nat. Photonics 4, 776–779 (2010).

[Crossref]

Y. Wang, J. Li, S. Zhang, K. Su, Y. Zhou, K. Liao, S. Du, H. Yan, and S.-L. Zhu, “Efficient quantum memory for single-photon polarization qubits,” Nat. Photonics 13, 346–351 (2019).

[Crossref]

Y. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones, M. Hochberg, X. Sun, S. Zhao, H. Larochelle, D. Englund, and M. Soljačić, “Deep learning with coherent nanophotonic circuits,” Nat. Photonics 11, 441–446 (2017).

[Crossref]

D. Woods and T. J. Naughton, “Photonic neural networks,” Nat. Phys. 8, 257–259 (2012).

[Crossref]

J. Carrasquilla and R. G. Melko, “Machine learning phases of matter,” Nat. Phys. 13, 431–434 (2017).

[Crossref]

P. Raccuglia, K. C. Elbert, P. D. Adler, C. Falk, M. B. Wenny, A. Mollo, M. Zeller, S. A. Friedler, J. Schrier, and A. J. Norquist, “Machine-learning-assisted materials discovery using failed experiments,” Nature 533, 73–76 (2016).

[Crossref]

K. T. Butler, D. W. Davies, H. Cartwright, O. Isayev, and A. Walsh, “Machine learning for molecular and materials science,” Nature 559, 547–555 (2018).

[Crossref]

J. Feldmann, N. Youngblood, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “All-optical spiking neurosynaptic networks with self-learning capabilities,” Nature 569, 208–214 (2019).

[Crossref]

K. Lu and B. E. A. Saleh, “Theory and design of the liquid crystal TV as an optical spatial phase modulator,” Opt. Eng. 29, 240–246 (1990).

[Crossref]

L. Larger, M. C. Soriano, D. Brunner, L. Appeltant, J. M. Gutiérrez, L. Pesquera, C. R. Mirasso, and I. Fischer, “Photonic information processing beyond Turing: an optoelectronic implementation of reservoir computing,” Opt. Express 20, 3241–3249 (2012).

[Crossref]

F. Duport, B. Schneider, A. Smerieri, M. Haelterman, and S. Massar, “All-optical reservoir computing,” Opt. Express 20, 22783–22795(2012).

[Crossref]

L. R. Di, F. Ianni, and G. Ruocco, “Computer generation of optimal holograms for optical trap arrays,” Opt. Express 15, 1913–1922 (2007).

[Crossref]

S. Jutamulia and F. Yu, “Overview of hybrid optical neural networks,” Opt. Laser Technol. 28, 59–72 (1996).

[Crossref]

M. Miscuglio, A. Mehrabian, Z. Hu, S. I. Azzam, J. George, A. V. Kildishev, M. Pelton, and V. J. Sorger, “All-optical nonlinear activation function for photonic neural networks,” Opt. Mater. Express 8, 3851–3863 (2018).

[Crossref]

J. Bueno, S. Maktoobi, L. Froehly, I. Fischer, M. Jacquot, L. Larger, and D. Brunner, “Reinforcement learning in a large-scale photonic recurrent neural network,” Optica 5, 756–760 (2018).

[Crossref]

T. W. Hughes, M. Minkov, Y. Shi, and S. Fan, “Training of photonic neural networks through in situ backpropagation and gradient measurement,” Optica 5, 864–871 (2018).

[Crossref]

S. Du, M. B. Squires, Y. Imai, L. Czaia, R. A. Saravanan, V. Bright, J. Reichel, T. W. Hansch, and D. Z. Anderson, “Atom-chip Bose-Einstein condensation in a portable vacuum cell,” Phys. Rev. A 70, 053606 (2004).

[Crossref]

C. Wang and H. Zhai, “Machine learning of frustrated classical spin models. I. Principal component analysis,” Phys. Rev. B 96, 144432 (2017).

[Crossref]

J. Liu, Y. Qi, Z. Y. Meng, and L. Fu, “Self-learning Monte Carlo method,” Phys. Rev. B 95, 041101 (2017).

[Crossref]

L. Huang and L. Wang, “Accelerated Monte Carlo simulations with restricted Boltzmann machines,” Phys. Rev. B 95, 035105 (2017).

[Crossref]

D.-L. Deng, X. Li, and S. D. Sarma, “Machine learning topological states,” Phys. Rev. B 96, 195145 (2017).

[Crossref]

J. Liu, H. Shen, Y. Qi, Z. Y. Meng, and L. Fu, “Self-learning Monte Carlo method and cumulative update in fermion systems,” Phys. Rev. B 95, 241104 (2017).

[Crossref]

Y. Zhang and E.-A. Kim, “Quantum loop topography for machine learning,” Phys. Rev. Lett. 118, 216401 (2017).

[Crossref]

E. L. Raab, M. Prentiss, A. Cable, S. Chu, and D. E. Pritchard, “Trapping of neutral sodium atoms with radiation pressure,” Phys. Rev. Lett. 59, 2631 (1987).

[Crossref]

F. Nogrette, H. Labuhn, S. Ravets, D. Barredo, L. Beguin, A. Vernier, T. Lahaye, and A. Browaeys, “Single-atom trapping in holographic 2D arrays of microtraps with arbitrary geometries,” Phys. Rev. X 4, 021034 (2014).

[Crossref]

S. D. Sarma, D.-L. Deng, and L.-M. Duan, “Machine learning meets quantum physics,” Phys. Today 72(3), 48–54 (2019).

[Crossref]

S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36–42 (1997).

[Crossref]

H. J. Caulfield, J. Kinser, and S. K. Rogers, “Optical neural networks,” Proc. IEEE 77, 1573–1583 (1989).

[Crossref]

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).

[Crossref]

S. Zhang, J. F. Chen, C. Liu, S. Zhou, M. M. T. Loy, G. K. L. Wong, and S. Du, “A dark-line two-dimensional magneto-optical trap of 85Rb atoms with high optical depth,” Rev. Sci. Instrum. 83, 073102 (2012).

[Crossref]

Y. Abu-Mostafa and D. Psaltis, “Optical neural computers,” Sci. Am. 256, 88–95 (1987).

[Crossref]

Y. Paquot, F. Duport, A. Smerieri, J. Dambre, B. Schrauwen, M. Haelterman, and S. Massar, “Optoelectronic reservoir computing,” Sci. Rep. 2, 287 (2012).

[Crossref]

X. Lin, Y. Rivenson, N. T. Yardimci, M. Veli, Y. Luo, M. Jarrahi, and A. Ozcan, “All-optical machine learning using diffractive deep neural networks,” Science 361, 1004–1008 (2018).

[Crossref]

G. Carleo and M. Troyer, “Solving the quantum many-body problem with artificial neural networks,” Science 355, 602–606 (2017).

[Crossref]

M. I. Jordan and T. M. Mitchell, “Machine learning: trends, perspectives, and prospects,” Science 349, 255–260 (2015).

[Crossref]

A. J. Maren, C. T. Harston, and R. M. Pap, Handbook of Neural Computing Applications (Academic, 2014).

G. Carleo, C. Ignacio, C. Kyle, D. Laurent, S. Maria, T. Naftali, V.-M. Leslie, and Z. Lenka, “Machine learning and the physical sciences,” arXiv:1903.10563 (2019).

See the supplemental material and Refs. [33–39] for (S1) the technical information of SLM; (S2) the Gerchberg–Saxton algorithm and feedback iteration process; (S3) the principle of linear optical power summation; (S4) the two matrices used for testing the linear operation; (S5) the operation of 2D MOT; (S6) the two-layer AONN implementation; (S7) the training of two-layer AONN; and (S8) Ising model related data processing.

J. George, R. Amin, A. Mehrabian, J. Khurgin, T. El-Ghazawi, P. R. Prucnal, and V. J. Sorger, “Electrooptic nonlinear activation functions for vector matrix multiplications in optical neural networks,” in Signal Processing in Photonic Communications (Optical Society of America, 2018), paper SpW4G-3.

Y. Zuo, B. Li, Y. Zhao, Y. Jiang, Y.-C. Chen, P. Chen, G.-B. Jo, J. Liu, and S. Du, “All optical neural network with nonlinear activation functions,” arXiv: 1904.10819 (2019).

H. J. Metcalf and P. van der Straten, Laser Cooling and Trapping (Springer-Verlag, 1999).