M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mane, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viegas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “Tensorflow: large-scale machine learning on heterogeneous distributed systems,” in 12th USENIX Conference on Operating Systems Design and Implementation (OSDI) (2016), pp. 265–283.

Y. Abu-Mostafa, “The complexity of information extraction,” IEEE Trans. Inf. Theory 32, 513–525 (1986).

[Crossref]

A. Loza, D. R. Bull, P. R. Hill, and A. M. Achim, “Automatic contrast enhancement of low-light images based on local statistics of wavelet coefficients,” Digital Signal Process. 23, 1856–1866 (2013).

[Crossref]

C. Ledig, L. Theis, F. Huczar, J. Caballero, A. Cunningham, A. Acosta, A. Aitken, A. Tejani, J. Totz, Z. Wang, and W. Shi, “Photo-realistic single image super-resolution using a generative adversarial network,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017), pp. 4681–4690.

J. Caballero, C. Ledig, A. Aitken, A. Acosta, J. Totz, Z. Wang, and W. Shi, “Real-time video super-resolution with spatio-temporal networks and motion compensation,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017), pp. 4778–4787.

S. W. Hasinoff, D. Sharlet, R. Geiss, A. Adams, J. T. Barron, F. Kainz, J. Chen, and M. Levoy, “Burst photography for high dynamic range and low-light imaging on mobile cameras,” ACM Trans. Graph. 35, 192 (2016).

[Crossref]

E. P. Simoncelli, W. T. Freeman, E. H. Adelson, and D. J. Heeger, “Shiftable multi-scale transforms,” IEEE Trans. Inf. Theory 38, 587–607 (1992).

[Crossref]

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mane, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viegas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “Tensorflow: large-scale machine learning on heterogeneous distributed systems,” in 12th USENIX Conference on Operating Systems Design and Implementation (OSDI) (2016), pp. 265–283.

C. C. Aggarwal, Neural Networks and Deep Learning (Springer, 2018).

S. Agmon, “The relaxation method for linear inequalities,” Can. J. Math. 6, 382–392 (1954).

[Crossref]

M. Aharon, M. Elad, and A. Bruckstein, “K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation,” IEEE Trans. Signal Process. 54, 4311–4322 (2006).

[Crossref]

M. Elad and M. Aharon, “Image denoising via learned dictionaries and sparse representation,” in IEEE Computer Society Conference on Computer Vision and Pattern Recognition (IEEE, 2006), Vol. 1, pp. 895–900.

G. B. Airy, “On the diffraction of an object-glass with circular aperture,” Trans. Cambridge Philos. Soc. 5, 283–291 (1834).

C. Ledig, L. Theis, F. Huczar, J. Caballero, A. Cunningham, A. Acosta, A. Aitken, A. Tejani, J. Totz, Z. Wang, and W. Shi, “Photo-realistic single image super-resolution using a generative adversarial network,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017), pp. 4681–4690.

J. Caballero, C. Ledig, A. Aitken, A. Acosta, J. Totz, Z. Wang, and W. Shi, “Real-time video super-resolution with spatio-temporal networks and motion compensation,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017), pp. 4778–4787.

M. A. Aizerman, E. M. Braverman, and L. I. Rozonoer, “Theoretical foundations of the potential function method in pattern recognition learning,” Autom. Remote Control 25, 917–936 (1964).

J. Johnson, A. Alahi, and L. Fei-Fei, “Perceptual losses for real-time style transfer and super-resolution,” in European Conference on Computer Vision (ECCV)/Lecture Notes on Computer Science, B. Leide, J. Matas, N. Sebe, and M. Welling, eds. (2016), vol. 9906, pp. 694–711.

M. Mardani, E. Gong, J. Y. Cheng, S. Vasanawala, G. Zaharchuk, M. Alley, N. Thakur, S. Han, W. Daly, J. M. Pauly, and L. Xing, “Deep generative adversarial networks for compressed sensing automates MRI,” arXiv:1706.00051 (2017).

G. R. Arce, D. J. Brady, L. Carin, H. Arguello, and D. S. Kittle, “Compressive coded aperture spectral imaging,” IEEE Signal Process. Mag. 31(1), 105–115 (2014).

G. R. Arce, D. J. Brady, L. Carin, H. Arguello, and D. S. Kittle, “Compressive coded aperture spectral imaging,” IEEE Signal Process. Mag. 31(1), 105–115 (2014).

A. Goy, K. Arthur, S. Li, and G. Barbastathis, “Low photon count phase retrieval using deep learning,” Phys. Rev. Lett. 121, 243902 (2018).

[Crossref]

P. A. Morris, R. S. Aspden, J. E. Bell, R. W. Boyd, and M. J. Padgett, “Imaging with a small number of photons,” Nat. Commun. 6, 5913 (2015).

[Crossref]

J. Bect, L. Blanc-Feraud, G. Aubert, and A. Chambolle, “A l1-unified variational framework for image restoration,” in European Conference on Computer Vision (ECCV) (2004), Vol. 3024, pp. 1–13.

N. Boyd, E. Jonas, H. P. Babcock, and B. Recht, “DeepLoco: fast 3D localization microscopy using neural networks,” bioRxiv.

[Crossref]

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94, 183602 (2005).

[Crossref]

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Ghost imaging with thermal light: comparing entanglement and classical correlation,” Phys. Rev. Lett. 93, 093602 (2004).

[Crossref]

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Correlated imaging, quantum and classical,” Phys. Rev. A 70, 013802 (2004).

[Crossref]

C. Bao, H. Ji, Y. Quan, and Z. Shen, “Dictionary learning and sparse coding: algorithms and convergence analysis,” IEEE Trans. Patt. Anal. Mach. Intel. 38, 1356–1369 (2016).

[Crossref]

A. Mousavi, A. B. Patel, and R. G. Baraniuk, “A deep learning approach to structured signal recovery,” in 53rd Annual Allerton Conference on Communication, Control, and Computing (2015), pp. 1336–1343.

A. Mousavi and R. G. Baraniuk, “Learning to invert: signal recovery via deep convolutional networks,” in International Conference on Acoustics, Speech, and Signal Processing (ICASSP) (2017), pp. 2272–2276.

A. Goy, K. Arthur, S. Li, and G. Barbastathis, “Low photon count phase retrieval using deep learning,” Phys. Rev. Lett. 121, 243902 (2018).

[Crossref]

S. Li, M. Deng, J. Lee, A. Sinha, and G. Barbastathis, “Imaging through glass diffusers using densely connected convolutional networks,” Optica 5, 803–813 (2018).

[Crossref]

S. Li and G. Barbastathis, “Spectral pre-modulation of training examples enhances the spatial resolution of the phase extraction neural network (PhENN),” Opt. Express 26, 29340–29352 (2018).

[Crossref]

A. Sinha, J. Lee, S. Li, and G. Barbastathis, “Lensless computational imaging through deep learning,” Optica 4, 1117–1125 (2017).

[Crossref]

J. Lee and G. Barbastathis, “Denoised Wigner distribution deconvolution via low-rank matrix completion,” Opt. Express 24, 20069–20079 (2016).

[Crossref]

A. Pan, L. Xu, J. C. Petruccelli, R. Gupta, B. Singh, and G. Barbastathis, “Contrast enhancement in x-ray phase contrast tomography,” Opt. Express 22, 18020–18026 (2014).

[Crossref]

Y. Yunhui, A. Shanker, L. Tian, L. Waller, and G. Barbastathis, “Low-noise phase imaging by hybrid uniform and structured illumination transport of intensity equation,” Opt. Express 22, 26696–26711(2014).

[Crossref]

Y. Liu, L. Tian, C.-H. Hsieh, and G. Barbastathis, “Compressive holographic two-dimensional localization with 1/302 subpixel accuracy,” Opt. Express 22, 9774–9782 (2014).

[Crossref]

L. Tian, J. C. Petruccelli, Q. Miao, H. Kudrolli, V. Nagarkar, and G. Barbastathis, “Compressive x-ray phase tomography based on the transport of intensity equation,” Opt. Lett. 38, 3418–3421 (2013).

[Crossref]

Y. Liu, L. Tian, J. W. Lee, H. Y. H. Huang, M. S. Triantafyllou, and G. Barbastathis, “Scanning-free compressive holography for object localization with subpixel accuracy,” Opt. Lett. 37, 3357–3359(2012).

[Crossref]

L. Tian, J. C. Petruccelli, and G. Barbastathis, “Nonlinear diffusion regularization for transport of intensity phase imaging,” Opt. Lett. 37, 4131–4133 (2012).

[Crossref]

M. Deng, S. Li, and G. Barbastathis, “Learning to synthesize: splitting and recombining low and high spatial frequencies for image recovery,” arXiv:1811.07945 (2018).

A. Sinha, J. Lee, S. Li, and G. Barbastathis, “Lensless computational imaging through deep learning,” arXiv:1702.08516 (2017).

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mane, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viegas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “Tensorflow: large-scale machine learning on heterogeneous distributed systems,” in 12th USENIX Conference on Operating Systems Design and Implementation (OSDI) (2016), pp. 265–283.

S. W. Hasinoff, D. Sharlet, R. Geiss, A. Adams, J. T. Barron, F. Kainz, J. Chen, and M. Levoy, “Burst photography for high dynamic range and low-light imaging on mobile cameras,” ACM Trans. Graph. 35, 192 (2016).

[Crossref]

S. Santos, K. K. Chu, D. Lim, N. Bozinovic, T. N. Ford, C. Hourtoule, A. Bartoo, S. K. Singh, and J. Mertz, “Optically sectioned fluorescence endomicroscopy with hybrid-illumination imaging through a flexible fiber bundle,” J. Biomed. Opt. 14, 030502 (2009).

[Crossref]

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3, 793–796 (2006).

[Crossref]

J. M. Rodenburg and R. H. T. Bates, “The theory of super-resolution electron microscopy via Wigner-distribution deconvolution,” Philos. Trans. R. Soc. London A 339, 521–553 (1992).

[Crossref]

A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding algorithm for linear inverse problems,” SIAM J. Imag. Sci. 2, 183–202 (2009).

[Crossref]

J. Bect, L. Blanc-Feraud, G. Aubert, and A. Chambolle, “A l1-unified variational framework for image restoration,” in European Conference on Computer Vision (ECCV) (2004), Vol. 3024, pp. 1–13.

P. A. Morris, R. S. Aspden, J. E. Bell, R. W. Boyd, and M. J. Padgett, “Imaging with a small number of photons,” Nat. Commun. 6, 5913 (2015).

[Crossref]

Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature 521, 436–444 (2015).

[Crossref]

Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle, “Greedy layer-wise training of deep networks,” in Neural Information Processing Systems (NIPS) (2006), Vol. 19, pp. 153–160.

X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural networks,” in 14th International Conference on Artificial Intelligence and Statistics (2011), pp. 315–323.

I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning (MIT, 2016).

I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in Neural Information Processing Systems (NIPS) (2014), Vol. 27.

H. Wang, Y. Rivenson, Z. Wei, H. Gunaydin, L. Bentolila, and A. Ozcan, “Deep learning achieves super-resolution in fluorescence microscopy,” Nat. Methods (2018).

[Crossref]

A. Benveniste, M. Metivier, and P. Priouret, Adaptive Algorithms and Stochastic Approximations (Springer-Verlag, 1990).

G. B. Huang, M. Ramesh, T. Berg, and E. Learned-Miller, “Labeled faces in the wild: a database for studying face recognition in unconstrained environments,” (University of Massachusetts, 2007).

O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, and M. Bernstein, “ImageNet large scale visual recognition challenge,” Int. J. Comput. Vis. 115, 211–252(2015).

[Crossref]

M. Bertero and P. Boccacci, Introduction to Inverse Problems in Imaging (Institute of Physics, 1998).

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232–234 (2012).

[Crossref]

A. Papoulis and M. S. Bertran, “Digital filtering and prolate functions,” IEEE Trans. Circuit Theory 19, 674–681 (1972).

[Crossref]

J. Eckstein and D. P. Bertsekas, “On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators,” Math. Program. 55, 293–318 (1992).

[Crossref]

L. A. Gatys, A. S. Ecker, and M. Bethge, “A neural algorithm of artistic style,” arXiv:1508.06576 (2018).

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwarz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).

[Crossref]

E. Betzig, “Proposed method for molecular optical imaging,” Opt. Lett. 20, 237–239 (1995).

[Crossref]

S. S. Keerthi, S. K. Shevade, C. Bhattacharya, and K. R. K. Murty, “Improvements to Platt’s SMO algorithm for SVM classifier design,” Neural Comput. 13, 637–649 (2001).

[Crossref]

M. W. Marcellin, M. J. Gormish, A. Bilgin, and M. P. Boliek, “An overview of JPEG-2000,” in Data Compression Conference (2000), pp. 523–541.

J. M. Bioucas-Dias and M. A. Figueiredo, “A new twist: two-step iterative shrinkage/thresholding algorithms for image restoration,” IEEE Trans. Image Process. 16, 2992–3004 (2007).

[Crossref]

C. M. Bishop, Pattern Recognition and Machine Learning (Springer, 2006).

C. M. Bishop, Neural Networks for Pattern Recognition (Clarendon, 1995).

N. Dey, L. Blanc-Feraud, C. Zimmer, P. Roux, Z. Kam, J.-C. Olivo-Marin, and J. Zerubia, “Richardson-Lucy algorithm with total variation regularization for 3D confocal microscope deconvolution,” Microsc. Res. Tech. 69, 260–266 (2006).

[Crossref]

J. Bect, L. Blanc-Feraud, G. Aubert, and A. Chambolle, “A l1-unified variational framework for image restoration,” in European Conference on Computer Vision (ECCV) (2004), Vol. 3024, pp. 1–13.

H. D. Block, “The perceptron: a model for brain functioning,” Rev. Mod. Phys. 34, 123–135 (1962).

[Crossref]

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232–234 (2012).

[Crossref]

M. Bertero and P. Boccacci, Introduction to Inverse Problems in Imaging (Institute of Physics, 1998).

S. Popoff, G. Lerosey, M. Fink, A. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1, 81 (2010).

[Crossref]

S. Popoff, G. Lerosey, R. Carminati, M. Fink, A. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104, 100601 (2010).

[Crossref]

P. Caramazza, A. Boccolini, D. Buschek, M. Hullin, C. F. Higham, R. Henderson, R. Murray-Smith, and D. Faccio, “Neural network identifcation of people hidden from view with a single-pixel, single-photon detector,” Sci. Rep. 8, 11945 (2018).

[Crossref]

M. W. Marcellin, M. J. Gormish, A. Bilgin, and M. P. Boliek, “An overview of JPEG-2000,” in Data Compression Conference (2000), pp. 523–541.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwarz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).

[Crossref]

X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural networks,” in 14th International Conference on Artificial Intelligence and Statistics (2011), pp. 315–323.

Y. LeCun, L. D. Jackel, B. Boser, J. S. Denker, H. P. Graf, I. Guyon, D. Henderson, R. E. Howard, and W. Hubbard, “Handwritten digit recognition: applications of neural network chips and automatic learning,” IEEE Commun. Mag. 27(11), 41–46 (1989).

[Crossref]

B. E. Boser, I. M. Guyon, and V. N. Vapnik, “A training algorithm for optimal margin classifiers,” in Annual Conference on Computational Learning Theory (ACM, 1992), pp. 144–152.

L. Bottou, “Online algorithms and stochastic approximations,” in Online Learning and Neural Networks, D. Saad, ed. (Cambridge University, 1998).

K. L. Bouman, “Turning corners into cameras: principles and methods,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017), pp. 2270–2278.

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. Image Proc. 13, 600–612 (2004).

[Crossref]

N. Boyd, E. Jonas, H. P. Babcock, and B. Recht, “DeepLoco: fast 3D localization microscopy using neural networks,” bioRxiv.

[Crossref]

P. A. Morris, R. S. Aspden, J. E. Bell, R. W. Boyd, and M. J. Padgett, “Imaging with a small number of photons,” Nat. Commun. 6, 5913 (2015).

[Crossref]

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization and statistical learning via the alternating direction method of multipliers,” Found. Trends Mach. Learn. 3, 1–122 (2011).

[Crossref]

S. Santos, K. K. Chu, D. Lim, N. Bozinovic, T. N. Ford, C. Hourtoule, A. Bartoo, S. K. Singh, and J. Mertz, “Optically sectioned fluorescence endomicroscopy with hybrid-illumination imaging through a flexible fiber bundle,” J. Biomed. Opt. 14, 030502 (2009).

[Crossref]

W. Zhang, L. Cao, D. J. Brady, H. Zhang, J. Cang, H. Zhang, and G. Jin, “Twin-image-free holography: a compressive sensing approach,” Phys. Rev. Lett. 121, 093902 (2018).

[Crossref]

M. Hassan, J. A. Greenberg, I. Odinaka, and D. J. Brady, “Snapshot fan beam coded aperture coherent scatter tomography,” Opt. Express 24, 18277–18289 (2016).

[Crossref]

D. J. Brady, A. Mrozack, K. MacCabe, and P. Llull, “Compressive tomography,” Adv. Opt. Photon. 7, 756–813 (2015).

[Crossref]

G. R. Arce, D. J. Brady, L. Carin, H. Arguello, and D. S. Kittle, “Compressive coded aperture spectral imaging,” IEEE Signal Process. Mag. 31(1), 105–115 (2014).

P. Llull, X. Liao, X. Yuan, J. Yang, D. Kittle, L. Carin, G. Sapiro, and D. J. Brady, “Coded aperture compressive temporal imaging,” Opt. Express 21, 10526–10545 (2013).

[Crossref]

D. J. Brady, K. Choi, D. L. Marks, R. Horisaki, and S. Lim, “Compressive holography,” Opt. Express 17, 13040–13049 (2009).

[Crossref]

D. J. Brady, Optical Imaging and Spectroscopy (Wiley, 2009).

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94, 183602 (2005).

[Crossref]

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Correlated imaging, quantum and classical,” Phys. Rev. A 70, 013802 (2004).

[Crossref]

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Ghost imaging with thermal light: comparing entanglement and classical correlation,” Phys. Rev. Lett. 93, 093602 (2004).

[Crossref]

M. A. Aizerman, E. M. Braverman, and L. I. Rozonoer, “Theoretical foundations of the potential function method in pattern recognition learning,” Autom. Remote Control 25, 917–936 (1964).

M. Liu, T. Breuel, and J. Kautz, “Unsupervised image-to-image translation networks,” in Advances in Neural Information Processing Systems 30, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, eds. (Curran Associates, 2017), pp. 700–708.

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mane, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viegas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “Tensorflow: large-scale machine learning on heterogeneous distributed systems,” in 12th USENIX Conference on Operating Systems Design and Implementation (OSDI) (2016), pp. 265–283.

O. Katz, Y. Bromberg, and Y. Silberberg, “Compressive ghost imaging,” Appl. Phys. Lett. 95, 131110 (2009).

[Crossref]

T. Remez, O. Litany, R. Giryes, and A. M. Bronstein, “Deep convolutional denoising of low-light images,” arXiv:1701.01687v1 (2017).

O. Ronneberger, P. Fischer, and T. Brox, “U-net: convolutional networks for biomedical image segmentation,” in International Conference on Medical Image Computing and Computer-Assisted Intervention (Springer, 2015), pp. 234–241.

M. Aharon, M. Elad, and A. Bruckstein, “K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation,” IEEE Trans. Signal Process. 54, 4311–4322 (2006).

[Crossref]

R. Rubinstein, A. M. Bruckstein, and M. Elad, “Dictionaries for sparse representation modeling,” Proc. IEEE 98, 1045–1057 (2010).

[Crossref]

T. Nguyen, V. Bui, and G. Nehmetallah, “Computational optical tomography using 3-D deep convolutional neural networks,” Opt. Eng. 57, 043111 (2018).

[Crossref]

T. Nguyen, V. Bui, V. Lam, C. B. Raub, L.-C. Chang, and G. Nehmetallah, “Automatic phase aberration compensation for digital holographic microscopy based on deep learning background detection,” Opt. Express 25, 15043–15057 (2017).

[Crossref]

A. Loza, D. R. Bull, P. R. Hill, and A. M. Achim, “Automatic contrast enhancement of low-light images based on local statistics of wavelet coefficients,” Digital Signal Process. 23, 1856–1866 (2013).

[Crossref]

F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David, “Phase retrieval and differential phase-contrast imaging with low-brilliance x-ray sources,” Nat. Phys. 2, 258–261 (2006).

[Crossref]

P. Caramazza, A. Boccolini, D. Buschek, M. Hullin, C. F. Higham, R. Henderson, R. Murray-Smith, and D. Faccio, “Neural network identifcation of people hidden from view with a single-pixel, single-photon detector,” Sci. Rep. 8, 11945 (2018).

[Crossref]

J. Caballero, C. Ledig, A. Aitken, A. Acosta, J. Totz, Z. Wang, and W. Shi, “Real-time video super-resolution with spatio-temporal networks and motion compensation,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017), pp. 4778–4787.

C. Ledig, L. Theis, F. Huczar, J. Caballero, A. Cunningham, A. Acosta, A. Aitken, A. Tejani, J. Totz, Z. Wang, and W. Shi, “Photo-realistic single image super-resolution using a generative adversarial network,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017), pp. 4681–4690.

J. Cai, B. Dong, S. Osher, and Z. Shen, “Image restoration: total variation, wavelet frames, and beyond,” J. Am. Math. Soc. 25, 1033–1089 (2012).

[Crossref]

E. Candès and T. Tao, “Near optimal signal recovery from random projections: universal encoding strategies?” IEEE Trans. Inform. Theory 52, 5406–5425 (2006).

[Crossref]

E. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: exact signal reconstruction from highly incomplete Fourier information,” IEEE Trans. Inform. Theory 52, 489–509 (2006).

[Crossref]

E. Candès, J. Romberg, and T. Tao, “Stable signal recovery from incomplete and inaccurate measurements,” Commun. Pure Appl. Math. 59, 1207–1223 (2006).

[Crossref]

E. Candès and T. Tao, “Decoding by linear programming,” IEEE Trans. Inform. Theory 51, 4203–4215 (2005).

[Crossref]

W. Zhang, L. Cao, D. J. Brady, H. Zhang, J. Cang, H. Zhang, and G. Jin, “Twin-image-free holography: a compressive sensing approach,” Phys. Rev. Lett. 121, 093902 (2018).

[Crossref]

T. G. Stockham, T. M. Cannon, and R. B. Ingebretsen, “Blind deconvolution through digital signal processing,” Proc. IEEE 63, 678–692 (1975).

[Crossref]

W. Zhang, L. Cao, D. J. Brady, H. Zhang, J. Cang, H. Zhang, and G. Jin, “Twin-image-free holography: a compressive sensing approach,” Phys. Rev. Lett. 121, 093902 (2018).

[Crossref]

J. Sun, W. Cao, Z. Xu, and J. Ponce, “Learning a convolutional neural network for non-uniform motion blur removal,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2015).

P. Caramazza, A. Boccolini, D. Buschek, M. Hullin, C. F. Higham, R. Henderson, R. Murray-Smith, and D. Faccio, “Neural network identifcation of people hidden from view with a single-pixel, single-photon detector,” Sci. Rep. 8, 11945 (2018).

[Crossref]

G. R. Arce, D. J. Brady, L. Carin, H. Arguello, and D. S. Kittle, “Compressive coded aperture spectral imaging,” IEEE Signal Process. Mag. 31(1), 105–115 (2014).

P. Llull, X. Liao, X. Yuan, J. Yang, D. Kittle, L. Carin, G. Sapiro, and D. J. Brady, “Coded aperture compressive temporal imaging,” Opt. Express 21, 10526–10545 (2013).

[Crossref]

S. Popoff, G. Lerosey, R. Carminati, M. Fink, A. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104, 100601 (2010).

[Crossref]

B. Zhu, J. Z. Liu, S. F. Cauley, B. R. Rosen, and M. S. Rosen, “Image reconstruction by domain-transform manifold learning,” Nature 555, 487–492 (2018).

[Crossref]

T. Kim, M. Cha, H. Kim, J. K. Lee, and J. Kim, “Learning to discover cross-domain correlations with generative adversarial networks,” in 34th International Conference on Machine Learning (2017), Vol. 70, pp. 1857–1865.

J. Bect, L. Blanc-Feraud, G. Aubert, and A. Chambolle, “A l1-unified variational framework for image restoration,” in European Conference on Computer Vision (ECCV) (2004), Vol. 3024, pp. 1–13.

R. Chan, T. Chan, L. Shen, and Z. Shen, “Wavelet algorithms for high-resolution image reconstruction,” SIAM J. Sci. Comput. 24, 1408–1432 (2003).

[Crossref]

R. Chan, T. Chan, L. Shen, and Z. Shen, “Wavelet algorithms for high-resolution image reconstruction,” SIAM J. Sci. Comput. 24, 1408–1432 (2003).

[Crossref]

E. Charniak, Introduction to Deep Learning (MIT, 2018).

C. Chen, Q. Chen, J. Xu, and V. Koltun, “Learning to see in the dark,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018), pp. 3291–3300.

S. W. Hasinoff, D. Sharlet, R. Geiss, A. Adams, J. T. Barron, F. Kainz, J. Chen, and M. Levoy, “Burst photography for high dynamic range and low-light imaging on mobile cameras,” ACM Trans. Graph. 35, 192 (2016).

[Crossref]

C. Zhao, W. Gong, M. Chen, E. Li, H. Wang, W. Xu, and S. Han, “Ghost imaging lidar via sparsity constraints,” Appl. Phys. Lett. 101, 141123 (2012).

[Crossref]

M. Lyu, W. Wang, H. Wang, H. Wang, G. Li, N. Chen, and G. Situ, “Deep-learning-based ghost imaging,” Sci. Rep. 7, 17865 (2017).

[Crossref]

C. Chen, Q. Chen, J. Xu, and V. Koltun, “Learning to see in the dark,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018), pp. 3291–3300.

Q. Chen and V. Koltun, “Photographic image synthesis with cascaded refinement networks,” in International Conference on Computer Vision (ICCV) (2017), pp. 1511–1520.

R. Horstmeyer, R. Y. Chen, B. Kappes, and B. Judkewitz, “Convolutional neural networks that teach microscopes how to image,” arXiv:1709.07223 (2017).

Y. Chen, W. Yu, and T. Peck, “On learning optimized reaction diffusion processes for effective image restoration,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2015), pp. 5261–5269.

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mane, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viegas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “Tensorflow: large-scale machine learning on heterogeneous distributed systems,” in 12th USENIX Conference on Operating Systems Design and Implementation (OSDI) (2016), pp. 265–283.

M. Mardani, E. Gong, J. Y. Cheng, S. Vasanawala, G. Zaharchuk, M. Alley, N. Thakur, S. Han, W. Daly, J. M. Pauly, and L. Xing, “Deep generative adversarial networks for compressed sensing automates MRI,” arXiv:1706.00051 (2017).

V. N. Vapnik and A. Chervonenkis, “On the uniform convergence of relative frequencies of events to their probabilities,” Theory Prob. Appl. 16, 264–280 (1971).

[Crossref]

Y.-J. Jo, H. Cho, S. Y. Lee, G. Choi, G. Kim, H.-S. Min, and Y.-K. Park, “Quantitative phase imaging and artificial intelligence: a review,” IEEE J. Sel. Top. Quantum Electron. 25, 6800914 (2019).

[Crossref]

Y.-J. Jo, H. Cho, S. Y. Lee, G. Choi, G. Kim, H.-S. Min, and Y.-K. Park, “Quantitative phase imaging and artificial intelligence: a review,” IEEE J. Sel. Top. Quantum Electron. 25, 6800914 (2019).

[Crossref]

C. J. R. Sheppard and A. Choudhury, “Image formation in the scanning microscope,” Opt. Acta 24, 1051–1073 (1977).

[Crossref]

C. J. Schuler, H. Christopher Burger, S. Harmeling, and B. Scholkopf, “A machine learning approach for non-blind image deconvolution,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2013).

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization and statistical learning via the alternating direction method of multipliers,” Found. Trends Mach. Learn. 3, 1–122 (2011).

[Crossref]

S. Santos, K. K. Chu, D. Lim, N. Bozinovic, T. N. Ford, C. Hourtoule, A. Bartoo, S. K. Singh, and J. Mertz, “Optically sectioned fluorescence endomicroscopy with hybrid-illumination imaging through a flexible fiber bundle,” J. Biomed. Opt. 14, 030502 (2009).

[Crossref]

D. Lim, K. K. Chu, and J. Mertz, “Wide-field fluorescence sectioning with hybrid speckle and uniform-illumination microscopy,” Opt. Lett. 33, 1819–1821 (2008).

[Crossref]

M. J. Cieslak, K. A. A. Gamage, and R. Glover, “Coded-aperture imaging systems: past, present and future development–a review,” Radiat. Meas. 92, 59–71 (2016).

[Crossref]

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mane, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viegas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “Tensorflow: large-scale machine learning on heterogeneous distributed systems,” in 12th USENIX Conference on Operating Systems Design and Implementation (OSDI) (2016), pp. 265–283.

H. Malm, M. Oskarsson, E. Warrant, P. Clarberg, J. Hasselgren, and C. Lejdfors, “Adaptive enhancement and noise reduction in very low light-level video,” in International Conference on Computer Vision (ICCV) (2007), pp. 1631–1638.

C. J. R. Sheppard and C. J. Cogswell, “Three-dimensional image formation in confocal microscopy,” J. Microsc. 159, 179–194(1990).

[Crossref]

A. L. Cohen, “Anti-pinhole imaging,” Opt. Acta 29, 63–67 (1982).

[Crossref]

J. Yang, Z. Wang, Z. Lin, S. Cohen, and T. Huang, “Coupled dictionary training for image super-resolution,” IEEE Trans. Image Proc. 21, 3467–3478 (2012).

[Crossref]

R. Coifman and D. L. Donoho, “Translation invariant denoising,” in Wavelets and Statistics, Lecture Notes in Statistics (Springer-Verlag, 1995), Vol. 103, pp. 120–150.

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mane, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viegas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “Tensorflow: large-scale machine learning on heterogeneous distributed systems,” in 12th USENIX Conference on Operating Systems Design and Implementation (OSDI) (2016), pp. 265–283.

I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning (MIT, 2016).

I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in Neural Information Processing Systems (NIPS) (2014), Vol. 27.

T. M. Cover and J. A. Thomas, Elements of Information Theory (Wiley, 1991).

T. M. Cover and J. A. Thomas, Information Theory (Wiley, 1991), chap. 7, pp. 144–182.

R. Heintzmann and C. G. Cremer, “Laterally modulated excitation microscopy: improvement of resolution by using a diffraction grating,” Proc. SPIE 3568, 185–196 (1999).

[Crossref]

R. M. Dickson, A. B. Cubitt, R. Y. Tsien, and W. E. Moerner, “On/off blinking and switching behaviour of single molecules of green fluorescent protein,” Nature 388, 355–358 (1997).

[Crossref]

C. Ledig, L. Theis, F. Huczar, J. Caballero, A. Cunningham, A. Acosta, A. Aitken, A. Tejani, J. Totz, Z. Wang, and W. Shi, “Photo-realistic single image super-resolution using a generative adversarial network,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017), pp. 4681–4690.

A. Valencia, G. Scarcelli, M. D’Angelo, and Y. H. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94, 063601 (2005).

[Crossref]

K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image denoising by sparse 3-d transform-domain collaborative filtering,” IEEE Trans. Image Proc. 16, 2080–2095 (2007).

[Crossref]

M. Mardani, E. Gong, J. Y. Cheng, S. Vasanawala, G. Zaharchuk, M. Alley, N. Thakur, S. Han, W. Daly, J. M. Pauly, and L. Xing, “Deep generative adversarial networks for compressed sensing automates MRI,” arXiv:1706.00051 (2017).

Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarma, and T. Darrell, “Caffe: convolutional architecture for fast feature embedding,” in 22nd ACM International Conference on Multimedia (ACM, 2014), pp. 675–678.

I. Daubechies, M. Defrise, and C. D. Mol, “An iterative thresholding algorithm for linear inverse problems with a sparsity constraint,” Commun. Pure Appl. Math. 57, 1413–1457 (2004).

[Crossref]

A. Drémeau, A. Liutkus, D. Martina, O. Katz, C. Schülke, F. Krzakala, S. Gigan, and L. Daudet, “Reference-less measurement of the transmission matrix of a highly scattering material using a DMD and phase retrieval techniques,” Opt. Express 23, 11898–11911 (2015).

[Crossref]

F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David, “Phase retrieval and differential phase-contrast imaging with low-brilliance x-ray sources,” Nat. Phys. 2, 258–261 (2006).

[Crossref]

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwarz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).

[Crossref]

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mane, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viegas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “Tensorflow: large-scale machine learning on heterogeneous distributed systems,” in 12th USENIX Conference on Operating Systems Design and Implementation (OSDI) (2016), pp. 265–283.

A. Kirmani, T. Hutchinson, J. Davis, and R. Raskar, “Looking around the corner using ultrafast transient imaging,” Int. J. Comput. Vision 95, 13–28 (2011).

[Crossref]

S. C. Mayo, T. J. Davis, T. E. Gureyev, P. R. Miller, D. Paganin, A. Pogany, A. W. Stevenson, and S. W. Wilkins, “X-ray phase-contrast microscopy and microtomography,” Opt. Express 11, 2289–2302 (2003).

[Crossref]

P.-T. de Boer, D. P. Kroese, S. Mannor, and R. Rubinstein, “A tutorial on the cross-entropy method,” Ann. Oper. Res. 134, 19–67 (2005).

[Crossref]

T. Liu, K. de Haan, Y. Rivenson, Z. Wei, X. Zeng, Y. Zhang, and A. Ozcan, “Deep learning-based super-resolution in coherent imaging systems,” arXiv:1810.06611 (2018).

R. Meyers, K. S. Deacon, and Y. Shih, “Ghost-imaging experiment by measuring reflected photons,” Phys. Rev. A 77, 041801 (2008).

[Crossref]

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mane, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viegas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “Tensorflow: large-scale machine learning on heterogeneous distributed systems,” in 12th USENIX Conference on Operating Systems Design and Implementation (OSDI) (2016), pp. 265–283.

I. Daubechies, M. Defrise, and C. D. Mol, “An iterative thresholding algorithm for linear inverse problems with a sparsity constraint,” Commun. Pure Appl. Math. 57, 1413–1457 (2004).

[Crossref]

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrot, and E. H. Steltzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305, 1007–1009 (2004).

[Crossref]

B. Delyon and A. Juditsky, “Accelerated stochastic approximation,” SIAM J. Optim. 3, 868–881 (1993).

[Crossref]

O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, and M. Bernstein, “ImageNet large scale visual recognition challenge,” Int. J. Comput. Vis. 115, 211–252(2015).

[Crossref]

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet: a large-scale hierarchical image database,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2009), pp. 248–255.

S. Li, M. Deng, J. Lee, A. Sinha, and G. Barbastathis, “Imaging through glass diffusers using densely connected convolutional networks,” Optica 5, 803–813 (2018).

[Crossref]

M. Deng, S. Li, and G. Barbastathis, “Learning to synthesize: splitting and recombining low and high spatial frequencies for image recovery,” arXiv:1811.07945 (2018).

Y. LeCun, L. D. Jackel, B. Boser, J. S. Denker, H. P. Graf, I. Guyon, D. Henderson, R. E. Howard, and W. Hubbard, “Handwritten digit recognition: applications of neural network chips and automatic learning,” IEEE Commun. Mag. 27(11), 41–46 (1989).

[Crossref]

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mane, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viegas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “Tensorflow: large-scale machine learning on heterogeneous distributed systems,” in 12th USENIX Conference on Operating Systems Design and Implementation (OSDI) (2016), pp. 265–283.

N. Dey, L. Blanc-Feraud, C. Zimmer, P. Roux, Z. Kam, J.-C. Olivo-Marin, and J. Zerubia, “Richardson-Lucy algorithm with total variation regularization for 3D confocal microscope deconvolution,” Microsc. Res. Tech. 69, 260–266 (2006).

[Crossref]

R. M. Dickson, A. B. Cubitt, R. Y. Tsien, and W. E. Moerner, “On/off blinking and switching behaviour of single molecules of green fluorescent protein,” Nature 388, 355–358 (1997).

[Crossref]

T.-Y. Lin, P. Goyal, R. Girschik, K. He, and P. Dollár, “Focal loss for dense object detection,” in IEEE International Conference on Computer Vision (2017), pp. 2999–3007.

Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarma, and T. Darrell, “Caffe: convolutional architecture for fast feature embedding,” in 22nd ACM International Conference on Multimedia (ACM, 2014), pp. 675–678.

J. Cai, B. Dong, S. Osher, and Z. Shen, “Image restoration: total variation, wavelet frames, and beyond,” J. Am. Math. Soc. 25, 1033–1089 (2012).

[Crossref]

C. Dong, C. Loy, K. He, and X. Tang, “Image super-resolution using deep convolutional networks,” IEEE Trans. Pattern Anal. Mach. Intel. 38, 295–307 (2015).

[Crossref]

C. Dong, C. Loy, K. He, and X. Tang, “Learning a deep convolutional neural network for image super-resolution,” in European Conference on Computer Vision (ECCV)/Lecture Notes on Computer Science Part IV (2014), Vol. 8692, pp. 184–199.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet: a large-scale hierarchical image database,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2009), pp. 248–255.

M. Mardani, H. Monajemi, V. Papyan, S. Vasanawala, D. Donoho, and J. Pauly, “Recurrent generative residual networks for proximal learning and automated compressive image recovery,” arXiv:1711.10046 (2017).

D. L. Donoho, A. Maleki, and A. Montanari, “Message-passing algorithm for compressed sensing,” Proc. Nat. Acad. Sci. USA 106, 18914–18919 (2009).

[Crossref]

D. L. Donoho, “Compressed sensing,” IEEE Trans. Inform. Theory 52, 1289–1306 (2006).

[Crossref]

D. L. Donoho and I. M. Johnstone, “Ideal denoising in an orthonormal basis chosen from a library of bases,” C. R. Acad. Sci. A319, 1317–1322 (1994).

R. Coifman and D. L. Donoho, “Translation invariant denoising,” in Wavelets and Statistics, Lecture Notes in Statistics (Springer-Verlag, 1995), Vol. 103, pp. 120–150.

A. Drémeau, A. Liutkus, D. Martina, O. Katz, C. Schülke, F. Krzakala, S. Gigan, and L. Daudet, “Reference-less measurement of the transmission matrix of a highly scattering material using a DMD and phase retrieval techniques,” Opt. Express 23, 11898–11911 (2015).

[Crossref]

R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification, 2nd ed. (Wiley, 2001).

A. Levin, Y. Weiss, F. Durand, and W. T. Freeman, “Understanding and evaluating blind deconvolution algorithms,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2009).

L. A. Gatys, A. S. Ecker, and M. Bethge, “A neural algorithm of artistic style,” arXiv:1508.06576 (2018).

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization and statistical learning via the alternating direction method of multipliers,” Found. Trends Mach. Learn. 3, 1–122 (2011).

[Crossref]

J. Eckstein and D. P. Bertsekas, “On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators,” Math. Program. 55, 293–318 (1992).

[Crossref]

P. Li, T. B. Edo, and J. M. Rodenburg, “Ptychographic inversion via wigner distribution deconvolution: noise suppression and probe design,” Ultramicroscopy 147, 106–113 (2014).

[Crossref]

J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image translation using cycle-consistent adversarial networks,” in IEEE International Conference on Computer Vision (ICCV) (2017), pp. 2223–2232.

R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang, “The unreasonable effectiveness of deep features as a perceptual metric,” arXiv:1801.03924 (2018).

K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image denoising by sparse 3-d transform-domain collaborative filtering,” IEEE Trans. Image Proc. 16, 2080–2095 (2007).

[Crossref]

R. Rubinstein, A. M. Bruckstein, and M. Elad, “Dictionaries for sparse representation modeling,” Proc. IEEE 98, 1045–1057 (2010).

[Crossref]

M. Aharon, M. Elad, and A. Bruckstein, “K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation,” IEEE Trans. Signal Process. 54, 4311–4322 (2006).

[Crossref]

M. Elad and M. Aharon, “Image denoising via learned dictionaries and sparse representation,” in IEEE Computer Society Conference on Computer Vision and Pattern Recognition (IEEE, 2006), Vol. 1, pp. 895–900.

Y. C. Eldar and G. Kutyniok, Compressed Sensing: Theory and Applications (Cambridge University, 2012).

A. M. Eskicioglu and P. S. Fisher, “Image quality measures and their performance,” IEEE Trans. Commun. 43, 2959–2965 (1995).

[Crossref]

P. Caramazza, A. Boccolini, D. Buschek, M. Hullin, C. F. Higham, R. Henderson, R. Murray-Smith, and D. Faccio, “Neural network identifcation of people hidden from view with a single-pixel, single-photon detector,” Sci. Rep. 8, 11945 (2018).

[Crossref]

S. Chan, R. E. Warburton, G. Gariepy, J. Leach, and D. Faccio, “Non-line-of-sight tracking of people at long range,” Opt. Express 25, 10109–10117 (2017).

[Crossref]

G. Gariepy, F. Tonolini, R. Henderson, J. Leach, and D. Faccio, “Detection and tracking of moving objects hidden from view,” Nat. Photonics 10, 23–26 (2016).

[Crossref]

A. M. Neto, A. C. Victorino, I. Fantoni, D. E. Zampieri, J. V. Ferreira, and D. A. Lima, “Image processing using Pearson’s correlation coefficient: applications on autonomous robotics,” in 13th International Conference on Autonomous Robot Systems (Robotica) (2013), pp. 14–19.

L. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise removal algorithms,” Physica D 60, 259–268 (1992).

[Crossref]

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet: a large-scale hierarchical image database,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2009), pp. 248–255.

J. Johnson, A. Alahi, and L. Fei-Fei, “Perceptual losses for real-time style transfer and super-resolution,” in European Conference on Computer Vision (ECCV)/Lecture Notes on Computer Science, B. Leide, J. Matas, N. Sebe, and M. Welling, eds. (2016), vol. 9906, pp. 694–711.

S. Wang, Z. Su, L. Ying, X. Peng, S. Zhu, F. Liang, D. Feng, and D. Liang, “Accelerating magnetic resonance imaging via deep learning,” in IEEE 13th International Symposium on Biomedical Imaging (ISBI) (2016), pp. 514–517.

S. Feng, C. Kane, P. A. Lee, and A. D. Stone, “Correlations and fluctuations of coherent wave transmission through disordered media,” Phys. Rev. Lett. 61, 834–837 (1988).

[Crossref]

I. Freund, M. Rosenbluh, and S. Feng, “Memory effects in propagation of optical waves through disordered media,” Phys. Rev. Lett. 61, 2328–2331 (1988).

[Crossref]

L. Wan, M. Zeiler, S. Zhang, Y. LeCun, and R. Fergus, “Regularization of neural networks using DropConnect,” in 30th International Conference on Machine Learning (2013), Vol. 28.

A. M. Neto, A. C. Victorino, I. Fantoni, D. E. Zampieri, J. V. Ferreira, and D. A. Lima, “Image processing using Pearson’s correlation coefficient: applications on autonomous robotics,” in 13th International Conference on Autonomous Robot Systems (Robotica) (2013), pp. 14–19.

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94, 183602 (2005).

[Crossref]

T. Kenig, Z. Kam, and A. Feuer, “Blind image deconvolution using machine learning for three-dimensional microscopy,” IEEE Trans. Pattern Anal. Mach. Intel. 32, 2191–2204 (2010).

[Crossref]

B. A. Olshausen and D. J. Field, “Sparse coding with an overcomplete basis set: a strategy employed by V1?” Vision Res. 37, 3311–3325 (1997).

[Crossref]

B. A. Olshausen and D. J. Field, “Emergence of simple-cell receptive field properties by learning a sparse code for natural images,” Nature 381, 607–609 (1996).

[Crossref]

B. A. Olshausen and D. J. Field, “Natural image statistics and efficient coding,” Netw. Comput. Neural Syst. 7, 333–339 (1996).

[Crossref]

J. M. Bioucas-Dias and M. A. Figueiredo, “A new twist: two-step iterative shrinkage/thresholding algorithms for image restoration,” IEEE Trans. Image Process. 16, 2992–3004 (2007).

[Crossref]

M. A. T. Figueiredo and R. Nowak, “An EM algorithm for wavelet-based image restoration,” IEEE Trans. Image Proc. 12, 906–916 (2003).

[Crossref]

O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8, 784–790 (2014).

[Crossref]

S. Popoff, G. Lerosey, R. Carminati, M. Fink, A. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104, 100601 (2010).

[Crossref]

S. Popoff, G. Lerosey, M. Fink, A. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1, 81 (2010).

[Crossref]

O. Ronneberger, P. Fischer, and T. Brox, “U-net: convolutional networks for biomedical image segmentation,” in International Conference on Medical Image Computing and Computer-Assisted Intervention (Springer, 2015), pp. 234–241.

A. M. Eskicioglu and P. S. Fisher, “Image quality measures and their performance,” IEEE Trans. Commun. 43, 2959–2965 (1995).

[Crossref]

K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image denoising by sparse 3-d transform-domain collaborative filtering,” IEEE Trans. Image Proc. 16, 2080–2095 (2007).

[Crossref]

S. Santos, K. K. Chu, D. Lim, N. Bozinovic, T. N. Ford, C. Hourtoule, A. Bartoo, S. K. Singh, and J. Mertz, “Optically sectioned fluorescence endomicroscopy with hybrid-illumination imaging through a flexible fiber bundle,” J. Biomed. Opt. 14, 030502 (2009).

[Crossref]

E. P. Simoncelli, W. T. Freeman, E. H. Adelson, and D. J. Heeger, “Shiftable multi-scale transforms,” IEEE Trans. Inf. Theory 38, 587–607 (1992).

[Crossref]

A. Levin, Y. Weiss, F. Durand, and W. T. Freeman, “Understanding and evaluating blind deconvolution algorithms,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2009).

A. Torralba and W. T. Freeman, “Accidental pinhole and pinspeck cameras: revealing the scene outside the picture,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2012), pp. 374–381.

I. Freund, M. Rosenbluh, and S. Feng, “Memory effects in propagation of optical waves through disordered media,” Phys. Rev. Lett. 61, 2328–2331 (1988).

[Crossref]

S. L. Friedman and J. M. Rodenburg, “Optical demonstration of a new principle of far-field microscopy,” J. Phys. D 25, 147–154 (1992).

[Crossref]

K. H. Jin, M. T. McCann, E. Froustey, and M. Unser, “Deep convolutional neural network for inverse problems in imaging,” IEEE Trans. Image Process. 26, 4509–4522 (2017).

[Crossref]

M. J. Cieslak, K. A. A. Gamage, and R. Glover, “Coded-aperture imaging systems: past, present and future development–a review,” Radiat. Meas. 92, 59–71 (2016).

[Crossref]

S. Chan, R. E. Warburton, G. Gariepy, J. Leach, and D. Faccio, “Non-line-of-sight tracking of people at long range,” Opt. Express 25, 10109–10117 (2017).

[Crossref]

G. Gariepy, F. Tonolini, R. Henderson, J. Leach, and D. Faccio, “Detection and tracking of moving objects hidden from view,” Nat. Photonics 10, 23–26 (2016).

[Crossref]

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94, 183602 (2005).

[Crossref]

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Ghost imaging with thermal light: comparing entanglement and classical correlation,” Phys. Rev. Lett. 93, 093602 (2004).

[Crossref]

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Correlated imaging, quantum and classical,” Phys. Rev. A 70, 013802 (2004).

[Crossref]

L. A. Gatys, A. S. Ecker, and M. Bethge, “A neural algorithm of artistic style,” arXiv:1508.06576 (2018).

S. W. Hasinoff, D. Sharlet, R. Geiss, A. Adams, J. T. Barron, F. Kainz, J. Chen, and M. Levoy, “Burst photography for high dynamic range and low-light imaging on mobile cameras,” ACM Trans. Graph. 35, 192 (2016).

[Crossref]

R. W. Gerchberg and W. O. Saxton, “Practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik 35, 237–246 (1972).

R. W. Gerchberg and W. O. Saxton, “Phase determination from image and diffraction plane pictures in electron-microscope,” Optik 34, 275–284 (1971).

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mane, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viegas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “Tensorflow: large-scale machine learning on heterogeneous distributed systems,” in 12th USENIX Conference on Operating Systems Design and Implementation (OSDI) (2016), pp. 265–283.

A. Porat, E. R. Andresen, H. Rigneault, D. Oron, S. Gigan, and O. Katz, “Widefield lensless imaging through a fiber bundle via speckle correlations,” Opt. Express 24, 16835–16855 (2016).

[Crossref]

A. Drémeau, A. Liutkus, D. Martina, O. Katz, C. Schülke, F. Krzakala, S. Gigan, and L. Daudet, “Reference-less measurement of the transmission matrix of a highly scattering material using a DMD and phase retrieval techniques,” Opt. Express 23, 11898–11911 (2015).

[Crossref]

O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8, 784–790 (2014).

[Crossref]

S. Popoff, G. Lerosey, M. Fink, A. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1, 81 (2010).

[Crossref]

S. Popoff, G. Lerosey, R. Carminati, M. Fink, A. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104, 100601 (2010).

[Crossref]

S. T. Hess, T. P. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91, 4258–4272 (2006).

[Crossref]

T.-Y. Lin, P. Goyal, R. Girschik, K. He, and P. Dollár, “Focal loss for dense object detection,” in IEEE International Conference on Computer Vision (2017), pp. 2999–3007.

Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarma, and T. Darrell, “Caffe: convolutional architecture for fast feature embedding,” in 22nd ACM International Conference on Multimedia (ACM, 2014), pp. 675–678.

T. Remez, O. Litany, R. Giryes, and A. M. Bronstein, “Deep convolutional denoising of low-light images,” arXiv:1701.01687v1 (2017).

P. A. Santi, S. B. Johnson, M. Hillenbrand, P. Z. GrandPre, T. J. Glass, and J. R. Leger, “Thin-sheet laser imaging microscopy for optical sectioning of thick tissues,” Biotechniques 46, 287–294 (2009).

[Crossref]

X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural networks,” in 14th International Conference on Artificial Intelligence and Statistics (2011), pp. 315–323.

M. J. Cieslak, K. A. A. Gamage, and R. Glover, “Coded-aperture imaging systems: past, present and future development–a review,” Radiat. Meas. 92, 59–71 (2016).

[Crossref]

M. Mardani, E. Gong, J. Y. Cheng, S. Vasanawala, G. Zaharchuk, M. Alley, N. Thakur, S. Han, W. Daly, J. M. Pauly, and L. Xing, “Deep generative adversarial networks for compressed sensing automates MRI,” arXiv:1706.00051 (2017).

C. Zhao, W. Gong, M. Chen, E. Li, H. Wang, W. Xu, and S. Han, “Ghost imaging lidar via sparsity constraints,” Appl. Phys. Lett. 101, 141123 (2012).

[Crossref]

I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning (MIT, 2016).

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mane, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viegas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “Tensorflow: large-scale machine learning on heterogeneous distributed systems,” in 12th USENIX Conference on Operating Systems Design and Implementation (OSDI) (2016), pp. 265–283.

I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in Neural Information Processing Systems (NIPS) (2014), Vol. 27.

J. W. Goodman and R. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77–79 (1967).

[Crossref]

J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996).

M. W. Marcellin, M. J. Gormish, A. Bilgin, and M. P. Boliek, “An overview of JPEG-2000,” in Data Compression Conference (2000), pp. 523–541.

A. Goy, K. Arthur, S. Li, and G. Barbastathis, “Low photon count phase retrieval using deep learning,” Phys. Rev. Lett. 121, 243902 (2018).

[Crossref]

U. S. Kamilov, I. N. Papadopoulos, M. H. Shoreh, A. Goy, C. Vonesch, M. Unser, and D. Psaltis, “Learning approach to optical tomography,” Optica 2, 517–522 (2015).

[Crossref]

T.-Y. Lin, P. Goyal, R. Girschik, K. He, and P. Dollár, “Focal loss for dense object detection,” in IEEE International Conference on Computer Vision (2017), pp. 2999–3007.

Y. LeCun, L. D. Jackel, B. Boser, J. S. Denker, H. P. Graf, I. Guyon, D. Henderson, R. E. Howard, and W. Hubbard, “Handwritten digit recognition: applications of neural network chips and automatic learning,” IEEE Commun. Mag. 27(11), 41–46 (1989).

[Crossref]

P. A. Santi, S. B. Johnson, M. Hillenbrand, P. Z. GrandPre, T. J. Glass, and J. R. Leger, “Thin-sheet laser imaging microscopy for optical sectioning of thick tissues,” Biotechniques 46, 287–294 (2009).

[Crossref]

K. Gregor and Y. LeCun, “Learning fast approximations of sparse coding,” in 27th International Conference on International Conference on Machine Learning (ICML) (2010), pp. 399–406.

U. Grenander, General Pattern Theory: A Mathematical Study of General Structures (Clarendon, 1994).

M. D. Hannel, A. Abdulali, M. O’Brien, and D. G. Grier, “Machine-learning techniques for fast and accurate feature localization of holograms of colloidal particles,” Opt. Express 26, 15221–15231 (2018).

[Crossref]

A. Yevick, M. Hannel, and D. G. Grier, “Machine-learning approach to holographic particle characterization,” Opt. Express 22, 26884–26890 (2014).

[Crossref]

Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarma, and T. Darrell, “Caffe: convolutional architecture for fast feature embedding,” in 22nd ACM International Conference on Multimedia (ACM, 2014), pp. 675–678.

Y. Rivenson, Y. Zhang, H. Gunaydin, D. Teng, and A. Ozcan, “Phase recovery and holographic image reconstruction using deep learning in neural networks,” Light Sci. Appl. 7, 17141 (2018).

[Crossref]

Y. Wu, Y. Rivenson, Y. Zhang, Z. Wei, H. Gunaydin, X. Lin, and A. Ozcan, “Extended depth-of-field in holographic image reconstruction using deep learning based auto-focusing and phase-recovery,” Optica 5, 704–710 (2018).

[Crossref]

Y. Rivenson, Z. Gorocs, H. Gunaydin, Y. Zhang, H. Wang, and A. Ozcan, “Deep learning microscopy,” Optica 4, 1437–1443 (2017).

[Crossref]

H. Wang, Y. Rivenson, Z. Wei, H. Gunaydin, L. Bentolila, and A. Ozcan, “Deep learning achieves super-resolution in fluorescence microscopy,” Nat. Methods (2018).

[Crossref]

G. Satat, M. Tancik, O. Gupta, B. Heshmat, and R. Raskar, “Object classification through scattering media with deep learning on time resolved measurement,” Opt. Express 25, 17466–17479 (2017).

[Crossref]

O. Gupta, T. Willwacher, A. Velten, A. Veeraraghavan, and R. Raskar, “Reconstruction of hidden 3d shapes using diffuse reflections,” Opt. Express 20, 19096–19108 (2012).

[Crossref]

S. C. Mayo, T. J. Davis, T. E. Gureyev, P. R. Miller, D. Paganin, A. Pogany, A. W. Stevenson, and S. W. Wilkins, “X-ray phase-contrast microscopy and microtomography,” Opt. Express 11, 2289–2302 (2003).

[Crossref]

M. G. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198, 82–87 (2000).

[Crossref]

Y. LeCun, L. D. Jackel, B. Boser, J. S. Denker, H. P. Graf, I. Guyon, D. Henderson, R. E. Howard, and W. Hubbard, “Handwritten digit recognition: applications of neural network chips and automatic learning,” IEEE Commun. Mag. 27(11), 41–46 (1989).

[Crossref]

B. E. Boser, I. M. Guyon, and V. N. Vapnik, “A training algorithm for optimal margin classifiers,” in Annual Conference on Computational Learning Theory (ACM, 1992), pp. 144–152.

C. Zhao, W. Gong, M. Chen, E. Li, H. Wang, W. Xu, and S. Han, “Ghost imaging lidar via sparsity constraints,” Appl. Phys. Lett. 101, 141123 (2012).

[Crossref]

M. Mardani, E. Gong, J. Y. Cheng, S. Vasanawala, G. Zaharchuk, M. Alley, N. Thakur, S. Han, W. Daly, J. M. Pauly, and L. Xing, “Deep generative adversarial networks for compressed sensing automates MRI,” arXiv:1706.00051 (2017).

S. J. Hanson and L. Y. Pratt, “Comparing biases for minimal network construction with back-propagation,” in Neural Information Processing Systems (NIPS) (1989), Vol. 1, pp. 177–185.

C. J. Schuler, H. Christopher Burger, S. Harmeling, and B. Scholkopf, “A machine learning approach for non-blind image deconvolution,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2013).

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mane, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viegas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “Tensorflow: large-scale machine learning on heterogeneous distributed systems,” in 12th USENIX Conference on Operating Systems Design and Implementation (OSDI) (2016), pp. 265–283.

R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification, 2nd ed. (Wiley, 2001).

F. S. Samaria and A. C. Harter, “Parameterisation of a stochastic model for human face identification,” in 2nd IEEE Workshop on Applications of Computer Vision (IEEE, 1994), pp. 138–142.

S. W. Hasinoff, D. Sharlet, R. Geiss, A. Adams, J. T. Barron, F. Kainz, J. Chen, and M. Levoy, “Burst photography for high dynamic range and low-light imaging on mobile cameras,” ACM Trans. Graph. 35, 192 (2016).

[Crossref]

H. Malm, M. Oskarsson, E. Warrant, P. Clarberg, J. Hasselgren, and C. Lejdfors, “Adaptive enhancement and noise reduction in very low light-level video,” in International Conference on Computer Vision (ICCV) (2007), pp. 1631–1638.

C. Dong, C. Loy, K. He, and X. Tang, “Image super-resolution using deep convolutional networks,” IEEE Trans. Pattern Anal. Mach. Intel. 38, 295–307 (2015).

[Crossref]

C. Dong, C. Loy, K. He, and X. Tang, “Learning a deep convolutional neural network for image super-resolution,” in European Conference on Computer Vision (ECCV)/Lecture Notes on Computer Science Part IV (2014), Vol. 8692, pp. 184–199.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in IEEE Conference on Computer Vision and Pattern Recognition (2016), pp. 770–778.

T.-Y. Lin, P. Goyal, R. Girschik, K. He, and P. Dollár, “Focal loss for dense object detection,” in IEEE International Conference on Computer Vision (2017), pp. 2999–3007.

E. P. Simoncelli, W. T. Freeman, E. H. Adelson, and D. J. Heeger, “Shiftable multi-scale transforms,” IEEE Trans. Inf. Theory 38, 587–607 (1992).

[Crossref]

O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8, 784–790 (2014).

[Crossref]

Y. LeCun, L. D. Jackel, B. Boser, J. S. Denker, H. P. Graf, I. Guyon, D. Henderson, R. E. Howard, and W. Hubbard, “Handwritten digit recognition: applications of neural network chips and automatic learning,” IEEE Commun. Mag. 27(11), 41–46 (1989).

[Crossref]

P. Caramazza, A. Boccolini, D. Buschek, M. Hullin, C. F. Higham, R. Henderson, R. Murray-Smith, and D. Faccio, “Neural network identifcation of people hidden from view with a single-pixel, single-photon detector,” Sci. Rep. 8, 11945 (2018).

[Crossref]

G. Gariepy, F. Tonolini, R. Henderson, J. Leach, and D. Faccio, “Detection and tracking of moving objects hidden from view,” Nat. Photonics 10, 23–26 (2016).

[Crossref]

J. Hertz, A. Krogh, and R. G. Palmer, “Introduction to the theory of neural computation,” in Santa Fe Institute Studies in the Sciences of Complexity (Addison-Wesley, 1991).

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwarz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).

[Crossref]

S. T. Hess, T. P. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91, 4258–4272 (2006).

[Crossref]

M. R. Hestenes and E. Stiefel, “Method of conjugate gradients for solving linear systems,” J. Res. Natl. Bur. Stand. 49, 409–436 (1952).

[Crossref]

P. Caramazza, A. Boccolini, D. Buschek, M. Hullin, C. F. Higham, R. Henderson, R. Murray-Smith, and D. Faccio, “Neural network identifcation of people hidden from view with a single-pixel, single-photon detector,” Sci. Rep. 8, 11945 (2018).

[Crossref]

A. Loza, D. R. Bull, P. R. Hill, and A. M. Achim, “Automatic contrast enhancement of low-light images based on local statistics of wavelet coefficients,” Digital Signal Process. 23, 1856–1866 (2013).

[Crossref]

P. A. Santi, S. B. Johnson, M. Hillenbrand, P. Z. GrandPre, T. J. Glass, and J. R. Leger, “Thin-sheet laser imaging microscopy for optical sectioning of thick tissues,” Biotechniques 46, 287–294 (2009).

[Crossref]

Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature 521, 436–444 (2015).

[Crossref]

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout: a simple way to prevent neural networks from overfitting,” J. Mach. Learn. Res. 15, 1929–1958 (2014).

D. Rumelhart, G. Hinton, and R. Williams, “Learning representations by back-propagating errors,” Nature 323, 533–536 (1986).

[Crossref]

A. Krizhevsky and G. Hinton, “Learning multiple layers of features from tiny images,” (University of Toronto, 2009).

G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm for deep belief nets,” Neural Comput. 18, 1527–1554 (2006).

[Crossref]

V. Nair and G. E. Hinton, “Rectified linear units improve restricted Boltzmann machines,” in International Conference on Machine Learning (ICML) (2010), p. 432.

G. E. Hinton, “Learning translation invariant recognition in massively parallel networks,” in PARLE Conference on Parallel Architectures and Languages Europe (Springer-Verlag, 1987), pp. 1–13.

G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Improving neural networks by preventing co-adaptation of feature detectors,” arXiv:1207.0580 (2012).

T. Hofmann, B. Scholkoff, and A. J. Smola, “Kernel methods in machine learning,” Ann. Statist. 36, 1171–1220 (2008).

[Crossref]

N. Wiener and E. Hopf, “Uber eine Klasse singulaerer Integralgeichungen,” Sitzungsber. Preuss. Akad. Math.-Phys. Kl. 31, 696–706 (1931).

[Crossref]

R. Horisaki, R. Takagi, and J. Tanida, “Learning-based imaging through scattering media,” Opt. Express 24, 13738–13743 (2016).

[Crossref]

D. J. Brady, K. Choi, D. L. Marks, R. Horisaki, and S. Lim, “Compressive holography,” Opt. Express 17, 13040–13049 (2009).

[Crossref]

R. Horstmeyer, “A phase space model for Fourier ptychographic microscopy,” Opt. Express 22, 338–358 (2014).

[Crossref]

X. Ou, R. Horstmeyer, and C. Yang, “Quantitative phase imaging via Fourier ptychographic microscopy,” Opt. Lett. 38, 4845–4848 (2013).

[Crossref]

G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics 7, 739–745 (2013).

[Crossref]

R. Horstmeyer, R. Y. Chen, B. Kappes, and B. Judkewitz, “Convolutional neural networks that teach microscopes how to image,” arXiv:1709.07223 (2017).

S. Santos, K. K. Chu, D. Lim, N. Bozinovic, T. N. Ford, C. Hourtoule, A. Bartoo, S. K. Singh, and J. Mertz, “Optically sectioned fluorescence endomicroscopy with hybrid-illumination imaging through a flexible fiber bundle,” J. Biomed. Opt. 14, 030502 (2009).

[Crossref]

Y. LeCun, L. D. Jackel, B. Boser, J. S. Denker, H. P. Graf, I. Guyon, D. Henderson, R. E. Howard, and W. Hubbard, “Handwritten digit recognition: applications of neural network chips and automatic learning,” IEEE Commun. Mag. 27(11), 41–46 (1989).

[Crossref]

G. B. Huang, M. Ramesh, T. Berg, and E. Learned-Miller, “Labeled faces in the wild: a database for studying face recognition in unconstrained environments,” (University of Massachusetts, 2007).

J. Yang, Z. Wang, Z. Lin, S. Cohen, and T. Huang, “Coupled dictionary training for image super-resolution,” IEEE Trans. Image Proc. 21, 3467–3478 (2012).

[Crossref]

J. Yang, J. Wright, T. S. Huang, and Y. Ma, “Image super-resolution via sparse representation,” IEEE Trans. Image Proc. 19, 2861–2873 (2010).

[Crossref]

O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, and M. Bernstein, “ImageNet large scale visual recognition challenge,” Int. J. Comput. Vis. 115, 211–252(2015).

[Crossref]

Y. LeCun, L. D. Jackel, B. Boser, J. S. Denker, H. P. Graf, I. Guyon, D. Henderson, R. E. Howard, and W. Hubbard, “Handwritten digit recognition: applications of neural network chips and automatic learning,” IEEE Commun. Mag. 27(11), 41–46 (1989).

[Crossref]

C. Ledig, L. Theis, F. Huczar, J. Caballero, A. Cunningham, A. Acosta, A. Aitken, A. Tejani, J. Totz, Z. Wang, and W. Shi, “Photo-realistic single image super-resolution using a generative adversarial network,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017), pp. 4681–4690.

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrot, and E. H. Steltzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305, 1007–1009 (2004).

[Crossref]

P. Caramazza, A. Boccolini, D. Buschek, M. Hullin, C. F. Higham, R. Henderson, R. Murray-Smith, and D. Faccio, “Neural network identifcation of people hidden from view with a single-pixel, single-photon detector,” Sci. Rep. 8, 11945 (2018).

[Crossref]

J. Klein, C. Peters, J. Martin, M. Laurenzis, and M. B. Hullin, “Tracking objects outside the line of sight using 2D intensity images,” Sci. Rep. 6, 32491 (2016).

[Crossref]

R. Heintzmann and T. Huser, “Super-resolution structured illumination microscopy,” Chem. Rev. 117, 13890–13908 (2017).

[Crossref]

A. Kirmani, T. Hutchinson, J. Davis, and R. Raskar, “Looking around the corner using ultrafast transient imaging,” Int. J. Comput. Vision 95, 13–28 (2011).

[Crossref]

A. Lucas, M. Iliadis, R. Molina, and A. K. Katsaggelos, “Using deep neural networks for inverse problems in imaging,” IEEE Signal Process. Mag. 35(1), 20–36 (2018).

[Crossref]

T. G. Stockham, T. M. Cannon, and R. B. Ingebretsen, “Blind deconvolution through digital signal processing,” Proc. IEEE 63, 678–692 (1975).

[Crossref]

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mane, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viegas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “Tensorflow: large-scale machine learning on heterogeneous distributed systems,” in 12th USENIX Conference on Operating Systems Design and Implementation (OSDI) (2016), pp. 265–283.

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mane, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viegas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “Tensorflow: large-scale machine learning on heterogeneous distributed systems,” in 12th USENIX Conference on Operating Systems Design and Implementation (OSDI) (2016), pp. 265–283.

A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic Press1978; reissued by Oxford University Press and IEEE Press, 1997).

J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image translation using cycle-consistent adversarial networks,” in IEEE International Conference on Computer Vision (ICCV) (2017), pp. 2223–2232.

R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang, “The unreasonable effectiveness of deep features as a perceptual metric,” arXiv:1801.03924 (2018).

T. Shimobaba, T. Kakue, and T. Ito, “Convolutional neural network-based regression for depth prediction in digital holography,” arXiv:1802.00664 (2018).

Y. LeCun, L. D. Jackel, B. Boser, J. S. Denker, H. P. Graf, I. Guyon, D. Henderson, R. E. Howard, and W. Hubbard, “Handwritten digit recognition: applications of neural network chips and automatic learning,” IEEE Commun. Mag. 27(11), 41–46 (1989).

[Crossref]

K. Jarrett, K. Kavukcuoglu, M. A. Ranzato, and Y. LeCun, “What is the best multi-stage architecture for object recognition?” in IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2009), pp. 2146–2153.

Y. Rivenson, A. Stern, and B. Javidi, “Compressive Fresnel holography,” J. Disp. Technol. 6, 506–509 (2010).

[Crossref]

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Nat. Acad. Sci. USA 98, 11301–11305 (2001).

[Crossref]

C. Bao, H. Ji, Y. Quan, and Z. Shen, “Dictionary learning and sparse coding: algorithms and convergence analysis,” IEEE Trans. Patt. Anal. Mach. Intel. 38, 1356–1369 (2016).

[Crossref]

Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarma, and T. Darrell, “Caffe: convolutional architecture for fast feature embedding,” in 22nd ACM International Conference on Multimedia (ACM, 2014), pp. 675–678.

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mane, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viegas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “Tensorflow: large-scale machine learning on heterogeneous distributed systems,” in 12th USENIX Conference on Operating Systems Design and Implementation (OSDI) (2016), pp. 265–283.

W. Zhang, L. Cao, D. J. Brady, H. Zhang, J. Cang, H. Zhang, and G. Jin, “Twin-image-free holography: a compressive sensing approach,” Phys. Rev. Lett. 121, 093902 (2018).

[Crossref]

M. T. McCann, K. H. Jin, and M. Unser, “Convolutional neural networks for inverse problems in imaging,” IEEE Signal Process. Mag. 34(6), 85–95 (2017).

[Crossref]

K. H. Jin, M. T. McCann, E. Froustey, and M. Unser, “Deep convolutional neural network for inverse problems in imaging,” IEEE Trans. Image Process. 26, 4509–4522 (2017).

[Crossref]

Y.-J. Jo, H. Cho, S. Y. Lee, G. Choi, G. Kim, H.-S. Min, and Y.-K. Park, “Quantitative phase imaging and artificial intelligence: a review,” IEEE J. Sel. Top. Quantum Electron. 25, 6800914 (2019).

[Crossref]

J. Yoon, Y.-J. Jo, M.-H. Kim, S. Y. Lee, S.-J. Kang, and Y. K. Park, “Identification of non-activated lymphocytes using three-dimensional refractive index tomography and machine learning,” Sci. Rep. 7, 6654 (2017).

[Crossref]

J. Johnson, A. Alahi, and L. Fei-Fei, “Perceptual losses for real-time style transfer and super-resolution,” in European Conference on Computer Vision (ECCV)/Lecture Notes on Computer Science, B. Leide, J. Matas, N. Sebe, and M. Welling, eds. (2016), vol. 9906, pp. 694–711.

P. A. Santi, S. B. Johnson, M. Hillenbrand, P. Z. GrandPre, T. J. Glass, and J. R. Leger, “Thin-sheet laser imaging microscopy for optical sectioning of thick tissues,” Biotechniques 46, 287–294 (2009).

[Crossref]

E. K. Yen and R. G. Johnston, “The ineffectiveness of the correlation coefficient for image comparisons,” (Los Alamos National Laboratory, 1996).

D. L. Donoho and I. M. Johnstone, “Ideal denoising in an orthonormal basis chosen from a library of bases,” C. R. Acad. Sci. A319, 1317–1322 (1994).

N. Boyd, E. Jonas, H. P. Babcock, and B. Recht, “DeepLoco: fast 3D localization microscopy using neural networks,” bioRxiv.

[Crossref]

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mane, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viegas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “Tensorflow: large-scale machine learning on heterogeneous distributed systems,” in 12th USENIX Conference on Operating Systems Design and Implementation (OSDI) (2016), pp. 265–283.

B. Delyon and A. Juditsky, “Accelerated stochastic approximation,” SIAM J. Optim. 3, 868–881 (1993).

[Crossref]

R. Horstmeyer, R. Y. Chen, B. Kappes, and B. Judkewitz, “Convolutional neural networks that teach microscopes how to image,” arXiv:1709.07223 (2017).

A. Kadambi, H. Zhao, B. Shi, and R. Raskar, “Occluded imaging with time-of-flight sensors,” ACM Trans. Graph. 35, 1–12 (2016).

[Crossref]

W. E. Moerner and L. Kador, “Optical detection and spectroscopy of single molecules in a solid,” Phys. Rev. Lett. 62, 2535–2538(1989).

[Crossref]

S. W. Hasinoff, D. Sharlet, R. Geiss, A. Adams, J. T. Barron, F. Kainz, J. Chen, and M. Levoy, “Burst photography for high dynamic range and low-light imaging on mobile cameras,” ACM Trans. Graph. 35, 192 (2016).

[Crossref]

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mane, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viegas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “Tensorflow: large-scale machine learning on heterogeneous distributed systems,” in 12th USENIX Conference on Operating Systems Design and Implementation (OSDI) (2016), pp. 265–283.

T. Shimobaba, T. Kakue, and T. Ito, “Convolutional neural network-based regression for depth prediction in digital holography,” arXiv:1802.00664 (2018).

T. Kenig, Z. Kam, and A. Feuer, “Blind image deconvolution using machine learning for three-dimensional microscopy,” IEEE Trans. Pattern Anal. Mach. Intel. 32, 2191–2204 (2010).

[Crossref]

N. Dey, L. Blanc-Feraud, C. Zimmer, P. Roux, Z. Kam, J.-C. Olivo-Marin, and J. Zerubia, “Richardson-Lucy algorithm with total variation regularization for 3D confocal microscope deconvolution,” Microsc. Res. Tech. 69, 260–266 (2006).

[Crossref]

S. Feng, C. Kane, P. A. Lee, and A. D. Stone, “Correlations and fluctuations of coherent wave transmission through disordered media,” Phys. Rev. Lett. 61, 834–837 (1988).

[Crossref]

J. Yoon, Y.-J. Jo, M.-H. Kim, S. Y. Lee, S.-J. Kang, and Y. K. Park, “Identification of non-activated lymphocytes using three-dimensional refractive index tomography and machine learning,” Sci. Rep. 7, 6654 (2017).

[Crossref]

R. Horstmeyer, R. Y. Chen, B. Kappes, and B. Judkewitz, “Convolutional neural networks that teach microscopes how to image,” arXiv:1709.07223 (2017).

Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarma, and T. Darrell, “Caffe: convolutional architecture for fast feature embedding,” in 22nd ACM International Conference on Multimedia (ACM, 2014), pp. 675–678.

O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, and M. Bernstein, “ImageNet large scale visual recognition challenge,” Int. J. Comput. Vis. 115, 211–252(2015).

[Crossref]

K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image denoising by sparse 3-d transform-domain collaborative filtering,” IEEE Trans. Image Proc. 16, 2080–2095 (2007).

[Crossref]

A. Lucas, M. Iliadis, R. Molina, and A. K. Katsaggelos, “Using deep neural networks for inverse problems in imaging,” IEEE Signal Process. Mag. 35(1), 20–36 (2018).

[Crossref]

A. Porat, E. R. Andresen, H. Rigneault, D. Oron, S. Gigan, and O. Katz, “Widefield lensless imaging through a fiber bundle via speckle correlations,” Opt. Express 24, 16835–16855 (2016).

[Crossref]

A. Drémeau, A. Liutkus, D. Martina, O. Katz, C. Schülke, F. Krzakala, S. Gigan, and L. Daudet, “Reference-less measurement of the transmission matrix of a highly scattering material using a DMD and phase retrieval techniques,” Opt. Express 23, 11898–11911 (2015).

[Crossref]

O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8, 784–790 (2014).

[Crossref]

O. Katz, E. Small, and Y. Silberberg, “Looking around corners and through thin turbid layers in real time with scattered incoherent light,” Nat. Photonics 6, 549–553 (2012).

[Crossref]

O. Katz, Y. Bromberg, and Y. Silberberg, “Compressive ghost imaging,” Appl. Phys. Lett. 95, 131110 (2009).

[Crossref]

M. Liu, T. Breuel, and J. Kautz, “Unsupervised image-to-image translation networks,” in Advances in Neural Information Processing Systems 30, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, eds. (Curran Associates, 2017), pp. 700–708.

K. Jarrett, K. Kavukcuoglu, M. A. Ranzato, and Y. LeCun, “What is the best multi-stage architecture for object recognition?” in IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2009), pp. 2146–2153.

S. S. Keerthi, S. K. Shevade, C. Bhattacharya, and K. R. K. Murty, “Improvements to Platt’s SMO algorithm for SVM classifier design,” Neural Comput. 13, 637–649 (2001).

[Crossref]

P. J. Keller, A. Schmidt, J. Wittbrot, and E. H. Steltzer, “Reconstruction of zebrafish early embryonic development by scanning light sheet microscopy,” Science 322, 1065–1069 (2008).

[Crossref]

T. Kenig, Z. Kam, and A. Feuer, “Blind image deconvolution using machine learning for three-dimensional microscopy,” IEEE Trans. Pattern Anal. Mach. Intel. 32, 2191–2204 (2010).

[Crossref]

O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, and M. Bernstein, “ImageNet large scale visual recognition challenge,” Int. J. Comput. Vis. 115, 211–252(2015).

[Crossref]

Y.-J. Jo, H. Cho, S. Y. Lee, G. Choi, G. Kim, H.-S. Min, and Y.-K. Park, “Quantitative phase imaging and artificial intelligence: a review,” IEEE J. Sel. Top. Quantum Electron. 25, 6800914 (2019).

[Crossref]

T. Kim, M. Cha, H. Kim, J. K. Lee, and J. Kim, “Learning to discover cross-domain correlations with generative adversarial networks,” in 34th International Conference on Machine Learning (2017), Vol. 70, pp. 1857–1865.

J. Mertz and J. Kim, “Scanning light-sheet microscopy in the whole mouse brain with Hilo background rejection,” J. Biomed. Opt. 15, 016027 (2010).

[Crossref]

T. Kim, M. Cha, H. Kim, J. K. Lee, and J. Kim, “Learning to discover cross-domain correlations with generative adversarial networks,” in 34th International Conference on Machine Learning (2017), Vol. 70, pp. 1857–1865.

J. Yoon, Y.-J. Jo, M.-H. Kim, S. Y. Lee, S.-J. Kang, and Y. K. Park, “Identification of non-activated lymphocytes using three-dimensional refractive index tomography and machine learning,” Sci. Rep. 7, 6654 (2017).

[Crossref]

T. Kim, M. Cha, H. Kim, J. K. Lee, and J. Kim, “Learning to discover cross-domain correlations with generative adversarial networks,” in 34th International Conference on Machine Learning (2017), Vol. 70, pp. 1857–1865.

D. P. Kingma and J. Lei Ba, “Adam: a method for stochastic optimization,” in International Conference on Learning Representations (ICLR) (2015).

A. Kirmani, T. Hutchinson, J. Davis, and R. Raskar, “Looking around the corner using ultrafast transient imaging,” Int. J. Comput. Vision 95, 13–28 (2011).

[Crossref]

P. Llull, X. Liao, X. Yuan, J. Yang, D. Kittle, L. Carin, G. Sapiro, and D. J. Brady, “Coded aperture compressive temporal imaging,” Opt. Express 21, 10526–10545 (2013).

[Crossref]

G. R. Arce, D. J. Brady, L. Carin, H. Arguello, and D. S. Kittle, “Compressive coded aperture spectral imaging,” IEEE Signal Process. Mag. 31(1), 105–115 (2014).

J. Klein, C. Peters, J. Martin, M. Laurenzis, and M. B. Hullin, “Tracking objects outside the line of sight using 2D intensity images,” Sci. Rep. 6, 32491 (2016).

[Crossref]

A. N. Kolmogorov, “Three approaches to the quantitative definition of information,” Int. J. Comput. Math. 2, 157–168 (1968).

[Crossref]

C. Chen, Q. Chen, J. Xu, and V. Koltun, “Learning to see in the dark,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018), pp. 3291–3300.

Q. Chen and V. Koltun, “Photographic image synthesis with cascaded refinement networks,” in International Conference on Computer Vision (ICCV) (2017), pp. 1511–1520.

O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, and M. Bernstein, “ImageNet large scale visual recognition challenge,” Int. J. Comput. Vis. 115, 211–252(2015).

[Crossref]

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Nat. Acad. Sci. USA 98, 11301–11305 (2001).

[Crossref]

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout: a simple way to prevent neural networks from overfitting,” J. Mach. Learn. Res. 15, 1929–1958 (2014).

G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Improving neural networks by preventing co-adaptation of feature detectors,” arXiv:1207.0580 (2012).

A. Krizhevsky and G. Hinton, “Learning multiple layers of features from tiny images,” (University of Toronto, 2009).

P.-T. de Boer, D. P. Kroese, S. Mannor, and R. Rubinstein, “A tutorial on the cross-entropy method,” Ann. Oper. Res. 134, 19–67 (2005).

[Crossref]

J. Hertz, A. Krogh, and R. G. Palmer, “Introduction to the theory of neural computation,” in Santa Fe Institute Studies in the Sciences of Complexity (Addison-Wesley, 1991).

A. Drémeau, A. Liutkus, D. Martina, O. Katz, C. Schülke, F. Krzakala, S. Gigan, and L. Daudet, “Reference-less measurement of the transmission matrix of a highly scattering material using a DMD and phase retrieval techniques,” Opt. Express 23, 11898–11911 (2015).

[Crossref]

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mane, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viegas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “Tensorflow: large-scale machine learning on heterogeneous distributed systems,” in 12th USENIX Conference on Operating Systems Design and Implementation (OSDI) (2016), pp. 265–283.

Y. C. Eldar and G. Kutyniok, Compressed Sensing: Theory and Applications (Cambridge University, 2012).

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232–234 (2012).

[Crossref]

Z. Ren, Z. Xu, and E. Y. Lam, “Autofocusing in digital holography using deep learning,” Proc. SPIE 10499, 104991V (2018).

[Crossref]

Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle, “Greedy layer-wise training of deep networks,” in Neural Information Processing Systems (NIPS) (2006), Vol. 19, pp. 153–160.

Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle, “Greedy layer-wise training of deep networks,” in Neural Information Processing Systems (NIPS) (2006), Vol. 19, pp. 153–160.

J. Klein, C. Peters, J. Martin, M. Laurenzis, and M. B. Hullin, “Tracking objects outside the line of sight using 2D intensity images,” Sci. Rep. 6, 32491 (2016).

[Crossref]

J. W. Goodman and R. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77–79 (1967).

[Crossref]

S. Chan, R. E. Warburton, G. Gariepy, J. Leach, and D. Faccio, “Non-line-of-sight tracking of people at long range,” Opt. Express 25, 10109–10117 (2017).

[Crossref]

G. Gariepy, F. Tonolini, R. Henderson, J. Leach, and D. Faccio, “Detection and tracking of moving objects hidden from view,” Nat. Photonics 10, 23–26 (2016).

[Crossref]

G. B. Huang, M. Ramesh, T. Berg, and E. Learned-Miller, “Labeled faces in the wild: a database for studying face recognition in unconstrained environments,” (University of Massachusetts, 2007).

Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature 521, 436–444 (2015).

[Crossref]

Y. LeCun, L. D. Jackel, B. Boser, J. S. Denker, H. P. Graf, I. Guyon, D. Henderson, R. E. Howard, and W. Hubbard, “Handwritten digit recognition: applications of neural network chips and automatic learning,” IEEE Commun. Mag. 27(11), 41–46 (1989).

[Crossref]

L. Wan, M. Zeiler, S. Zhang, Y. LeCun, and R. Fergus, “Regularization of neural networks using DropConnect,” in 30th International Conference on Machine Learning (2013), Vol. 28.

Y. LeCun, “Generalization and network design strategies,” (University of Toronto, 1989).

K. Gregor and Y. LeCun, “Learning fast approximations of sparse coding,” in 27th International Conference on International Conference on Machine Learning (ICML) (2010), pp. 399–406.

K. Jarrett, K. Kavukcuoglu, M. A. Ranzato, and Y. LeCun, “What is the best multi-stage architecture for object recognition?” in IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2009), pp. 2146–2153.

J. Caballero, C. Ledig, A. Aitken, A. Acosta, J. Totz, Z. Wang, and W. Shi, “Real-time video super-resolution with spatio-temporal networks and motion compensation,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017), pp. 4778–4787.

C. Ledig, L. Theis, F. Huczar, J. Caballero, A. Cunningham, A. Acosta, A. Aitken, A. Tejani, J. Totz, Z. Wang, and W. Shi, “Photo-realistic single image super-resolution using a generative adversarial network,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017), pp. 4681–4690.

D. Lee, J. Yoo, and J. C. Ye, “Deep residual learning for compressed sensing MRI,” in IEEE 14th International Symposium on Biomedical Imaging (ISBI) (2017), pp. 15–18.

S. Li, M. Deng, J. Lee, A. Sinha, and G. Barbastathis, “Imaging through glass diffusers using densely connected convolutional networks,” Optica 5, 803–813 (2018).

[Crossref]

A. Sinha, J. Lee, S. Li, and G. Barbastathis, “Lensless computational imaging through deep learning,” Optica 4, 1117–1125 (2017).

[Crossref]

J. Lee and G. Barbastathis, “Denoised Wigner distribution deconvolution via low-rank matrix completion,” Opt. Express 24, 20069–20079 (2016).

[Crossref]

A. Sinha, J. Lee, S. Li, and G. Barbastathis, “Lensless computational imaging through deep learning,” arXiv:1702.08516 (2017).

T. Kim, M. Cha, H. Kim, J. K. Lee, and J. Kim, “Learning to discover cross-domain correlations with generative adversarial networks,” in 34th International Conference on Machine Learning (2017), Vol. 70, pp. 1857–1865.

S. Feng, C. Kane, P. A. Lee, and A. D. Stone, “Correlations and fluctuations of coherent wave transmission through disordered media,” Phys. Rev. Lett. 61, 834–837 (1988).

[Crossref]

Y.-J. Jo, H. Cho, S. Y. Lee, G. Choi, G. Kim, H.-S. Min, and Y.-K. Park, “Quantitative phase imaging and artificial intelligence: a review,” IEEE J. Sel. Top. Quantum Electron. 25, 6800914 (2019).

[Crossref]

J. Yoon, Y.-J. Jo, M.-H. Kim, S. Y. Lee, S.-J. Kang, and Y. K. Park, “Identification of non-activated lymphocytes using three-dimensional refractive index tomography and machine learning,” Sci. Rep. 7, 6654 (2017).

[Crossref]

P. A. Santi, S. B. Johnson, M. Hillenbrand, P. Z. GrandPre, T. J. Glass, and J. R. Leger, “Thin-sheet laser imaging microscopy for optical sectioning of thick tissues,” Biotechniques 46, 287–294 (2009).

[Crossref]

D. P. Kingma and J. Lei Ba, “Adam: a method for stochastic optimization,” in International Conference on Learning Representations (ICLR) (2015).

A. M. Neto, L. Rittner, N. Leite, D. E. Zampieri, R. Lotufo, and A. Mendeleck, “Pearson’s correlation coefficient for discarding redundant information in real time autonomous navigation systems,” in IEEE Multi-Conference on Autonomous Systems and Control (MSC) (2007), pp. 426–431.

H. Malm, M. Oskarsson, E. Warrant, P. Clarberg, J. Hasselgren, and C. Lejdfors, “Adaptive enhancement and noise reduction in very low light-level video,” in International Conference on Computer Vision (ICCV) (2007), pp. 1631–1638.

S. Popoff, G. Lerosey, M. Fink, A. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1, 81 (2010).

[Crossref]

S. Popoff, G. Lerosey, R. Carminati, M. Fink, A. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104, 100601 (2010).

[Crossref]

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mane, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viegas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “Tensorflow: large-scale machine learning on heterogeneous distributed systems,” in 12th USENIX Conference on Operating Systems Design and Implementation (OSDI) (2016), pp. 265–283.

A. Levin, Y. Weiss, F. Durand, and W. T. Freeman, “Understanding and evaluating blind deconvolution algorithms,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2009).

S. W. Hasinoff, D. Sharlet, R. Geiss, A. Adams, J. T. Barron, F. Kainz, J. Chen, and M. Levoy, “Burst photography for high dynamic range and low-light imaging on mobile cameras,” ACM Trans. Graph. 35, 192 (2016).

[Crossref]

M. S. Lewicki and T. J. Sejnowski, “Learning overcomplete representations,” Neural Comput. 12, 337–365 (2000).

[Crossref]

M. S. Lewicki and B. A. Olshausen, “A probabilistic framework for the adaptation and comparison of image codes,” J. Opt. Soc. Am. 16, 1587–1601 (1999).

[Crossref]

C. Zhao, W. Gong, M. Chen, E. Li, H. Wang, W. Xu, and S. Han, “Ghost imaging lidar via sparsity constraints,” Appl. Phys. Lett. 101, 141123 (2012).

[Crossref]

M. Lyu, H. Wang, G. Li, S. Zheng, and G. Situ, “Learning-based lensless imaging through optically thick scattering media,” Adv. Photon. 1, 036002 (2019).

[Crossref]

M. Lyu, W. Wang, H. Wang, H. Wang, G. Li, N. Chen, and G. Situ, “Deep-learning-based ghost imaging,” Sci. Rep. 7, 17865 (2017).

[Crossref]

M. Lyu, H. Wang, G. Li, and G. Situ, “Exploit imaging through opaque wall via deep learning,” arXiv:1708.07881 (2017).

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet: a large-scale hierarchical image database,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2009), pp. 248–255.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet: a large-scale hierarchical image database,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2009), pp. 248–255.

P. Li, T. B. Edo, and J. M. Rodenburg, “Ptychographic inversion via wigner distribution deconvolution: noise suppression and probe design,” Ultramicroscopy 147, 106–113 (2014).

[Crossref]

A. Goy, K. Arthur, S. Li, and G. Barbastathis, “Low photon count phase retrieval using deep learning,” Phys. Rev. Lett. 121, 243902 (2018).

[Crossref]

S. Li, M. Deng, J. Lee, A. Sinha, and G. Barbastathis, “Imaging through glass diffusers using densely connected convolutional networks,” Optica 5, 803–813 (2018).

[Crossref]

S. Li and G. Barbastathis, “Spectral pre-modulation of training examples enhances the spatial resolution of the phase extraction neural network (PhENN),” Opt. Express 26, 29340–29352 (2018).

[Crossref]

A. Sinha, J. Lee, S. Li, and G. Barbastathis, “Lensless computational imaging through deep learning,” Optica 4, 1117–1125 (2017).

[Crossref]

A. Sinha, J. Lee, S. Li, and G. Barbastathis, “Lensless computational imaging through deep learning,” arXiv:1702.08516 (2017).

M. Deng, S. Li, and G. Barbastathis, “Learning to synthesize: splitting and recombining low and high spatial frequencies for image recovery,” arXiv:1811.07945 (2018).

T. Nguyen, Y. Xue, Y. Li, L. Tian, and G. Nehmetallah, “Deep learning approach for Fourier ptychography microscopy,” Opt. Express 26, 26470–26484 (2018).

[Crossref]

Y. Li, Y. Xue, and L. Tian, “Deep speckle correlation: a deep learning approach toward scalable imaging through scattering media,” Optica 5, 1181–1190 (2018).

[Crossref]

Y. Li and S. Osher, “Coordinate descent optimization for l11 minimization with application to compressed sensing; a greedy algorithm,” Inverse Probl. Imaging 3, 487–503 (2009).

[Crossref]

J. Pan, S. Liu, D. Sun, J. Zhang, Y. Liu, J. Ren, Z. Li, J. Tang, H. Lu, Y.-W. Tai, and M.-H. Yang, “Learning dual convolutional neural networks for low-level vision,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018).

S. Wang, Z. Su, L. Ying, X. Peng, S. Zhu, F. Liang, D. Feng, and D. Liang, “Accelerating magnetic resonance imaging via deep learning,” in IEEE 13th International Symposium on Biomedical Imaging (ISBI) (2016), pp. 514–517.

S. Wang, Z. Su, L. Ying, X. Peng, S. Zhu, F. Liang, D. Feng, and D. Liang, “Accelerating magnetic resonance imaging via deep learning,” in IEEE 13th International Symposium on Biomedical Imaging (ISBI) (2016), pp. 514–517.

P. Llull, X. Liao, X. Yuan, J. Yang, D. Kittle, L. Carin, G. Sapiro, and D. J. Brady, “Coded aperture compressive temporal imaging,” Opt. Express 21, 10526–10545 (2013).

[Crossref]

S. Santos, K. K. Chu, D. Lim, N. Bozinovic, T. N. Ford, C. Hourtoule, A. Bartoo, S. K. Singh, and J. Mertz, “Optically sectioned fluorescence endomicroscopy with hybrid-illumination imaging through a flexible fiber bundle,” J. Biomed. Opt. 14, 030502 (2009).

[Crossref]

D. Lim, K. K. Chu, and J. Mertz, “Wide-field fluorescence sectioning with hybrid speckle and uniform-illumination microscopy,” Opt. Lett. 33, 1819–1821 (2008).

[Crossref]

A. M. Neto, A. C. Victorino, I. Fantoni, D. E. Zampieri, J. V. Ferreira, and D. A. Lima, “Image processing using Pearson’s correlation coefficient: applications on autonomous robotics,” in 13th International Conference on Autonomous Robot Systems (Robotica) (2013), pp. 14–19.

T.-Y. Lin, P. Goyal, R. Girschik, K. He, and P. Dollár, “Focal loss for dense object detection,” in IEEE International Conference on Computer Vision (2017), pp. 2999–3007.

J. Yang, Z. Wang, Z. Lin, S. Cohen, and T. Huang, “Coupled dictionary training for image super-resolution,” IEEE Trans. Image Proc. 21, 3467–3478 (2012).

[Crossref]

M. O’Toole, D. B. Lindell, and G. Wetzstein, “Confocal non-line-of-sight imaging based on the light-cone transform,” Nature 555, 338–341 (2018).

[Crossref]

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwarz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).

[Crossref]

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwarz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).

[Crossref]

T. Remez, O. Litany, R. Giryes, and A. M. Bronstein, “Deep convolutional denoising of low-light images,” arXiv:1701.01687v1 (2017).

C.-L. Liu, F. Yin, D.-H. Wang, and Q.-F. Wang, “CASIA online and offline Chinese handwriting databases,” in International Conference on Document Analysis and Recognition (IEEE Computer Society, 2011), pp. 37–41.

B. Zhu, J. Z. Liu, S. F. Cauley, B. R. Rosen, and M. S. Rosen, “Image reconstruction by domain-transform manifold learning,” Nature 555, 487–492 (2018).

[Crossref]

M. Liu, T. Breuel, and J. Kautz, “Unsupervised image-to-image translation networks,” in Advances in Neural Information Processing Systems 30, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, eds. (Curran Associates, 2017), pp. 700–708.

J. Pan, S. Liu, D. Sun, J. Zhang, Y. Liu, J. Ren, Z. Li, J. Tang, H. Lu, Y.-W. Tai, and M.-H. Yang, “Learning dual convolutional neural networks for low-level vision,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018).

T. Liu, K. de Haan, Y. Rivenson, Z. Wei, X. Zeng, Y. Zhang, and A. Ozcan, “Deep learning-based super-resolution in coherent imaging systems,” arXiv:1810.06611 (2018).

Y. Liu, L. Tian, C.-H. Hsieh, and G. Barbastathis, “Compressive holographic two-dimensional localization with 1/302 subpixel accuracy,” Opt. Express 22, 9774–9782 (2014).

[Crossref]

Y. Liu, L. Tian, J. W. Lee, H. Y. H. Huang, M. S. Triantafyllou, and G. Barbastathis, “Scanning-free compressive holography for object localization with subpixel accuracy,” Opt. Lett. 37, 3357–3359(2012).

[Crossref]

J. Pan, S. Liu, D. Sun, J. Zhang, Y. Liu, J. Ren, Z. Li, J. Tang, H. Lu, Y.-W. Tai, and M.-H. Yang, “Learning dual convolutional neural networks for low-level vision,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018).

A. Drémeau, A. Liutkus, D. Martina, O. Katz, C. Schülke, F. Krzakala, S. Gigan, and L. Daudet, “Reference-less measurement of the transmission matrix of a highly scattering material using a DMD and phase retrieval techniques,” Opt. Express 23, 11898–11911 (2015).

[Crossref]

L. Ljung and T. Söderström, Theory and Practice of Recursive Identification (MIT, 1983).

D. J. Brady, A. Mrozack, K. MacCabe, and P. Llull, “Compressive tomography,” Adv. Opt. Photon. 7, 756–813 (2015).

[Crossref]

P. Llull, X. Liao, X. Yuan, J. Yang, D. Kittle, L. Carin, G. Sapiro, and D. J. Brady, “Coded aperture compressive temporal imaging,” Opt. Express 21, 10526–10545 (2013).

[Crossref]

Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarma, and T. Darrell, “Caffe: convolutional architecture for fast feature embedding,” in 22nd ACM International Conference on Multimedia (ACM, 2014), pp. 675–678.

A. M. Neto, L. Rittner, N. Leite, D. E. Zampieri, R. Lotufo, and A. Mendeleck, “Pearson’s correlation coefficient for discarding redundant information in real time autonomous navigation systems,” in IEEE Multi-Conference on Autonomous Systems and Control (MSC) (2007), pp. 426–431.

C. Dong, C. Loy, K. He, and X. Tang, “Image super-resolution using deep convolutional networks,” IEEE Trans. Pattern Anal. Mach. Intel. 38, 295–307 (2015).

[Crossref]

C. Dong, C. Loy, K. He, and X. Tang, “Learning a deep convolutional neural network for image super-resolution,” in European Conference on Computer Vision (ECCV)/Lecture Notes on Computer Science Part IV (2014), Vol. 8692, pp. 184–199.

A. Loza, D. R. Bull, P. R. Hill, and A. M. Achim, “Automatic contrast enhancement of low-light images based on local statistics of wavelet coefficients,” Digital Signal Process. 23, 1856–1866 (2013).

[Crossref]

J. Pan, S. Liu, D. Sun, J. Zhang, Y. Liu, J. Ren, Z. Li, J. Tang, H. Lu, Y.-W. Tai, and M.-H. Yang, “Learning dual convolutional neural networks for low-level vision,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018).

A. Lucas, M. Iliadis, R. Molina, and A. K. Katsaggelos, “Using deep neural networks for inverse problems in imaging,” IEEE Signal Process. Mag. 35(1), 20–36 (2018).

[Crossref]

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94, 183602 (2005).

[Crossref]

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Ghost imaging with thermal light: comparing entanglement and classical correlation,” Phys. Rev. Lett. 93, 093602 (2004).

[Crossref]

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Correlated imaging, quantum and classical,” Phys. Rev. A 70, 013802 (2004).

[Crossref]

W. Lukosz and M. Marchand, “Optischen Abbidung unter Uberschreitung der Beugungsbedingten Aufl osungsgrenze,” Opt. Acta 10, 241–255 (1963).

[Crossref]

X. Zhang, P. Shen, L. Luo, L. Zhang, and J. Song, “Enhancement and noise reduction of very low light level images,” in International Conference on Pattern Recognition (2012), pp. 2034–2037.

M. Lyu, H. Wang, G. Li, S. Zheng, and G. Situ, “Learning-based lensless imaging through optically thick scattering media,” Adv. Photon. 1, 036002 (2019).

[Crossref]

H. Wang, M. Lyu, and G. Situ, “Eholonet: a learning-based point-to-point approach for in-line digital holographic reconstruction,” Opt. Express 26, 22603–22614 (2018).

[Crossref]

M. Lyu, W. Wang, H. Wang, H. Wang, G. Li, N. Chen, and G. Situ, “Deep-learning-based ghost imaging,” Sci. Rep. 7, 17865 (2017).

[Crossref]

M. Lyu, H. Wang, G. Li, and G. Situ, “Exploit imaging through opaque wall via deep learning,” arXiv:1708.07881 (2017).

C.-Y. Yang, C. Ma, and M.-H. Yang, “Single-image super-resolution: a benchmark,” in European Conference on Computer Vision (ECCV)/Lecture Notes on Computer Science, D. Fleet, T. Pajdla, B. Schiele, and T. Tuytelaars, eds. (2014), Vol. 8692, pp. 372–386.

O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, and M. Bernstein, “ImageNet large scale visual recognition challenge,” Int. J. Comput. Vis. 115, 211–252(2015).

[Crossref]

J. Yang, J. Wright, T. S. Huang, and Y. Ma, “Image super-resolution via sparse representation,” IEEE Trans. Image Proc. 19, 2861–2873 (2010).

[Crossref]

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94, 183602 (2005).

[Crossref]

A. Mahendran and A. Vebaldi, “Understanding deep image representations by inverting them,” in Conference on Computer Vision and Pattern Recognition (CVPR) (2015), pp. 5188–5196.

A. M. Maiden and J. M. Rodenburg, “An improved ptychographical phase retrieval algorithm for diffractive imaging,” Ultramicroscopy 109, 1256–1262 (2009).

[Crossref]

D. L. Donoho, A. Maleki, and A. Montanari, “Message-passing algorithm for compressed sensing,” Proc. Nat. Acad. Sci. USA 106, 18914–18919 (2009).

[Crossref]

P. Perona and J. Malik, “Scale-space and edge detection using anisotropic diffusion,” IEEE Trans. Pattern Anal. Mach. Intell. 12, 629–639 (1990).

[Crossref]

H. Malm, M. Oskarsson, E. Warrant, P. Clarberg, J. Hasselgren, and C. Lejdfors, “Adaptive enhancement and noise reduction in very low light-level video,” in International Conference on Computer Vision (ICCV) (2007), pp. 1631–1638.

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mane, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viegas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “Tensorflow: large-scale machine learning on heterogeneous distributed systems,” in 12th USENIX Conference on Operating Systems Design and Implementation (OSDI) (2016), pp. 265–283.

T. Pitkäaho, A. Manninen, and T. J. Naughton, “Performance of autofocus capability of deep convolutional neural networks in digital holographic microscopy,” in Digital Holography and Three-Dimensional Imaging (OSA, 2017), paper W2A.5.

P.-T. de Boer, D. P. Kroese, S. Mannor, and R. Rubinstein, “A tutorial on the cross-entropy method,” Ann. Oper. Res. 134, 19–67 (2005).

[Crossref]

M. W. Marcellin, M. J. Gormish, A. Bilgin, and M. P. Boliek, “An overview of JPEG-2000,” in Data Compression Conference (2000), pp. 523–541.

W. Lukosz and M. Marchand, “Optischen Abbidung unter Uberschreitung der Beugungsbedingten Aufl osungsgrenze,” Opt. Acta 10, 241–255 (1963).

[Crossref]

M. Mardani, E. Gong, J. Y. Cheng, S. Vasanawala, G. Zaharchuk, M. Alley, N. Thakur, S. Han, W. Daly, J. M. Pauly, and L. Xing, “Deep generative adversarial networks for compressed sensing automates MRI,” arXiv:1706.00051 (2017).

M. Mardani, H. Monajemi, V. Papyan, S. Vasanawala, D. Donoho, and J. Pauly, “Recurrent generative residual networks for proximal learning and automated compressive image recovery,” arXiv:1711.10046 (2017).

J. Klein, C. Peters, J. Martin, M. Laurenzis, and M. B. Hullin, “Tracking objects outside the line of sight using 2D intensity images,” Sci. Rep. 6, 32491 (2016).

[Crossref]

A. Drémeau, A. Liutkus, D. Martina, O. Katz, C. Schülke, F. Krzakala, S. Gigan, and L. Daudet, “Reference-less measurement of the transmission matrix of a highly scattering material using a DMD and phase retrieval techniques,” Opt. Express 23, 11898–11911 (2015).

[Crossref]

S. T. Hess, T. P. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91, 4258–4272 (2006).

[Crossref]

S. C. Mayo, T. J. Davis, T. E. Gureyev, P. R. Miller, D. Paganin, A. Pogany, A. W. Stevenson, and S. W. Wilkins, “X-ray phase-contrast microscopy and microtomography,” Opt. Express 11, 2289–2302 (2003).

[Crossref]

B. C. McCallum and J. M. Rodenburg, “Two-dimensional demonstration of Wigner phase-retrieval microscopy in the STEM configuration,” Ultramicroscopy 45, 371–380 (1992).

[Crossref]

M. T. McCann, K. H. Jin, and M. Unser, “Convolutional neural networks for inverse problems in imaging,” IEEE Signal Process. Mag. 34(6), 85–95 (2017).

[Crossref]

K. H. Jin, M. T. McCann, E. Froustey, and M. Unser, “Deep convolutional neural network for inverse problems in imaging,” IEEE Trans. Image Process. 26, 4509–4522 (2017).

[Crossref]

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Nat. Acad. Sci. USA 98, 11301–11305 (2001).

[Crossref]

A. M. Neto, L. Rittner, N. Leite, D. E. Zampieri, R. Lotufo, and A. Mendeleck, “Pearson’s correlation coefficient for discarding redundant information in real time autonomous navigation systems,” in IEEE Multi-Conference on Autonomous Systems and Control (MSC) (2007), pp. 426–431.

J. Mertz, “Optical sectioning microscopy with planar or structured illumination,” Nat. Methods 8, 811–819 (2011).

[Crossref]

J. Mertz and J. Kim, “Scanning light-sheet microscopy in the whole mouse brain with Hilo background rejection,” J. Biomed. Opt. 15, 016027 (2010).

[Crossref]

S. Santos, K. K. Chu, D. Lim, N. Bozinovic, T. N. Ford, C. Hourtoule, A. Bartoo, S. K. Singh, and J. Mertz, “Optically sectioned fluorescence endomicroscopy with hybrid-illumination imaging through a flexible fiber bundle,” J. Biomed. Opt. 14, 030502 (2009).

[Crossref]

D. Lim, K. K. Chu, and J. Mertz, “Wide-field fluorescence sectioning with hybrid speckle and uniform-illumination microscopy,” Opt. Lett. 33, 1819–1821 (2008).

[Crossref]

A. Benveniste, M. Metivier, and P. Priouret, Adaptive Algorithms and Stochastic Approximations (Springer-Verlag, 1990).

R. Meyers, K. S. Deacon, and Y. Shih, “Ghost-imaging experiment by measuring reflected photons,” Phys. Rev. A 77, 041801 (2008).

[Crossref]

S. C. Mayo, T. J. Davis, T. E. Gureyev, P. R. Miller, D. Paganin, A. Pogany, A. W. Stevenson, and S. W. Wilkins, “X-ray phase-contrast microscopy and microtomography,” Opt. Express 11, 2289–2302 (2003).

[Crossref]

Y.-J. Jo, H. Cho, S. Y. Lee, G. Choi, G. Kim, H.-S. Min, and Y.-K. Park, “Quantitative phase imaging and artificial intelligence: a review,” IEEE J. Sel. Top. Quantum Electron. 25, 6800914 (2019).

[Crossref]

M. Minsky, “Microscopy apparatus,” U.S. patent3,013,467 (Dec19, 1961).

M. L. Minsky and S. Papert, Perceptrons (MIT, 1969).

M. L. Minsky, “Neural nets and the brain-model problem,” Ph.D. thesis (Princeton University, 1954).

I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in Neural Information Processing Systems (NIPS) (2014), Vol. 27.

R. M. Dickson, A. B. Cubitt, R. Y. Tsien, and W. E. Moerner, “On/off blinking and switching behaviour of single molecules of green fluorescent protein,” Nature 388, 355–358 (1997).

[Crossref]

W. E. Moerner and L. Kador, “Optical detection and spectroscopy of single molecules in a solid,” Phys. Rev. Lett. 62, 2535–2538(1989).

[Crossref]

I. Daubechies, M. Defrise, and C. D. Mol, “An iterative thresholding algorithm for linear inverse problems with a sparsity constraint,” Commun. Pure Appl. Math. 57, 1413–1457 (2004).

[Crossref]

A. Lucas, M. Iliadis, R. Molina, and A. K. Katsaggelos, “Using deep neural networks for inverse problems in imaging,” IEEE Signal Process. Mag. 35(1), 20–36 (2018).

[Crossref]

M. Mardani, H. Monajemi, V. Papyan, S. Vasanawala, D. Donoho, and J. Pauly, “Recurrent generative residual networks for proximal learning and automated compressive image recovery,” arXiv:1711.10046 (2017).

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mane, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viegas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “Tensorflow: large-scale machine learning on heterogeneous distributed systems,” in 12th USENIX Conference on Operating Systems Design and Implementation (OSDI) (2016), pp. 265–283.

D. L. Donoho, A. Maleki, and A. Montanari, “Message-passing algorithm for compressed sensing,” Proc. Nat. Acad. Sci. USA 106, 18914–18919 (2009).

[Crossref]

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mane, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viegas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “Tensorflow: large-scale machine learning on heterogeneous distributed systems,” in 12th USENIX Conference on Operating Systems Design and Implementation (OSDI) (2016), pp. 265–283.

P. A. Morris, R. S. Aspden, J. E. Bell, R. W. Boyd, and M. J. Padgett, “Imaging with a small number of photons,” Nat. Commun. 6, 5913 (2015).

[Crossref]

N. Borhani, E. Kakkava, C. Moser, and D. Psaltis, “Learning to see through multimode fibers,” Optica 5, 960–966 (2018).

[Crossref]

N. Stasio, C. Moser, and D. Psaltis, “Calibration-free imaging through a multicore fiber using speckle scanning microscopy,” Opt. Lett. 41, 3078–3081 (2016).

[Crossref]

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232–234 (2012).

[Crossref]

A. Mousavi, A. B. Patel, and R. G. Baraniuk, “A deep learning approach to structured signal recovery,” in 53rd Annual Allerton Conference on Communication, Control, and Computing (2015), pp. 1336–1343.

A. Mousavi and R. G. Baraniuk, “Learning to invert: signal recovery via deep convolutional networks,” in International Conference on Acoustics, Speech, and Signal Processing (ICASSP) (2017), pp. 2272–2276.

M. C. Mozer and P. Smolensky, “Skeletonization: a technique for trimming the fat from a network via relevance assessment,” in Neural Information Processing Systems (NIPS) (1989), Vol. 1, pp. 107–115.

K. P. Murphy, Machine Learning: A Probabilistic Perspective (MIT, 2012).

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mane, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viegas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “Tensorflow: large-scale machine learning on heterogeneous distributed systems,” in 12th USENIX Conference on Operating Systems Design and Implementation (OSDI) (2016), pp. 265–283.

P. Caramazza, A. Boccolini, D. Buschek, M. Hullin, C. F. Higham, R. Henderson, R. Murray-Smith, and D. Faccio, “Neural network identifcation of people hidden from view with a single-pixel, single-photon detector,” Sci. Rep. 8, 11945 (2018).

[Crossref]

S. S. Keerthi, S. K. Shevade, C. Bhattacharya, and K. R. K. Murty, “Improvements to Platt’s SMO algorithm for SVM classifier design,” Neural Comput. 13, 637–649 (2001).

[Crossref]

V. Nair and G. E. Hinton, “Rectified linear units improve restricted Boltzmann machines,” in International Conference on Machine Learning (ICML) (2010), p. 432.

T. Pitkäaho, A. Manninen, and T. J. Naughton, “Performance of autofocus capability of deep convolutional neural networks in digital holographic microscopy,” in Digital Holography and Three-Dimensional Imaging (OSA, 2017), paper W2A.5.

R. M. Neal, Bayesian Learning for Neural Networks, Lecture Notes in Statistics (Springer-Verlag, 1996), Vol. 118.

T. Nguyen, Y. Xue, Y. Li, L. Tian, and G. Nehmetallah, “Deep learning approach for Fourier ptychography microscopy,” Opt. Express 26, 26470–26484 (2018).

[Crossref]

T. Nguyen, V. Bui, and G. Nehmetallah, “Computational optical tomography using 3-D deep convolutional neural networks,” Opt. Eng. 57, 043111 (2018).

[Crossref]

T. Nguyen, V. Bui, V. Lam, C. B. Raub, L.-C. Chang, and G. Nehmetallah, “Automatic phase aberration compensation for digital holographic microscopy based on deep learning background detection,” Opt. Express 25, 15043–15057 (2017).

[Crossref]

A. M. Neto, L. Rittner, N. Leite, D. E. Zampieri, R. Lotufo, and A. Mendeleck, “Pearson’s correlation coefficient for discarding redundant information in real time autonomous navigation systems,” in IEEE Multi-Conference on Autonomous Systems and Control (MSC) (2007), pp. 426–431.

A. M. Neto, A. C. Victorino, I. Fantoni, D. E. Zampieri, J. V. Ferreira, and D. A. Lima, “Image processing using Pearson’s correlation coefficient: applications on autonomous robotics,” in 13th International Conference on Autonomous Robot Systems (Robotica) (2013), pp. 14–19.

T. Nguyen, V. Bui, and G. Nehmetallah, “Computational optical tomography using 3-D deep convolutional neural networks,” Opt. Eng. 57, 043111 (2018).

[Crossref]

T. Nguyen, Y. Xue, Y. Li, L. Tian, and G. Nehmetallah, “Deep learning approach for Fourier ptychography microscopy,” Opt. Express 26, 26470–26484 (2018).

[Crossref]

T. Nguyen, V. Bui, V. Lam, C. B. Raub, L.-C. Chang, and G. Nehmetallah, “Automatic phase aberration compensation for digital holographic microscopy based on deep learning background detection,” Opt. Express 25, 15043–15057 (2017).

[Crossref]

J. L. Rodgers and W. A. Nicewander, “Thirteen ways to look at the correlation coefficient,” Am. Statist. 42, 59–66 (1988).

[Crossref]

M. A. T. Figueiredo and R. Nowak, “An EM algorithm for wavelet-based image restoration,” IEEE Trans. Image Proc. 12, 906–916 (2003).

[Crossref]

M. O’Toole, D. B. Lindell, and G. Wetzstein, “Confocal non-line-of-sight imaging based on the light-cone transform,” Nature 555, 338–341 (2018).

[Crossref]

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mane, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viegas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “Tensorflow: large-scale machine learning on heterogeneous distributed systems,” in 12th USENIX Conference on Operating Systems Design and Implementation (OSDI) (2016), pp. 265–283.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwarz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).

[Crossref]

N. Dey, L. Blanc-Feraud, C. Zimmer, P. Roux, Z. Kam, J.-C. Olivo-Marin, and J. Zerubia, “Richardson-Lucy algorithm with total variation regularization for 3D confocal microscope deconvolution,” Microsc. Res. Tech. 69, 260–266 (2006).

[Crossref]

M. S. Lewicki and B. A. Olshausen, “A probabilistic framework for the adaptation and comparison of image codes,” J. Opt. Soc. Am. 16, 1587–1601 (1999).

[Crossref]

B. A. Olshausen and D. J. Field, “Sparse coding with an overcomplete basis set: a strategy employed by V1?” Vision Res. 37, 3311–3325 (1997).

[Crossref]

B. A. Olshausen and D. J. Field, “Natural image statistics and efficient coding,” Netw. Comput. Neural Syst. 7, 333–339 (1996).

[Crossref]

B. A. Olshausen and D. J. Field, “Emergence of simple-cell receptive field properties by learning a sparse code for natural images,” Nature 381, 607–609 (1996).

[Crossref]

J. Cai, B. Dong, S. Osher, and Z. Shen, “Image restoration: total variation, wavelet frames, and beyond,” J. Am. Math. Soc. 25, 1033–1089 (2012).

[Crossref]

Y. Li and S. Osher, “Coordinate descent optimization for l11 minimization with application to compressed sensing; a greedy algorithm,” Inverse Probl. Imaging 3, 487–503 (2009).

[Crossref]

L. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise removal algorithms,” Physica D 60, 259–268 (1992).

[Crossref]

G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm for deep belief nets,” Neural Comput. 18, 1527–1554 (2006).

[Crossref]

H. Malm, M. Oskarsson, E. Warrant, P. Clarberg, J. Hasselgren, and C. Lejdfors, “Adaptive enhancement and noise reduction in very low light-level video,” in International Conference on Computer Vision (ICCV) (2007), pp. 1631–1638.

I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in Neural Information Processing Systems (NIPS) (2014), Vol. 27.

Y. Wu, Y. Rivenson, Y. Zhang, Z. Wei, H. Gunaydin, X. Lin, and A. Ozcan, “Extended depth-of-field in holographic image reconstruction using deep learning based auto-focusing and phase-recovery,” Optica 5, 704–710 (2018).

[Crossref]

Y. Rivenson, Y. Zhang, H. Gunaydin, D. Teng, and A. Ozcan, “Phase recovery and holographic image reconstruction using deep learning in neural networks,” Light Sci. Appl. 7, 17141 (2018).

[Crossref]

Y. Rivenson, Z. Gorocs, H. Gunaydin, Y. Zhang, H. Wang, and A. Ozcan, “Deep learning microscopy,” Optica 4, 1437–1443 (2017).

[Crossref]

T. Liu, K. de Haan, Y. Rivenson, Z. Wei, X. Zeng, Y. Zhang, and A. Ozcan, “Deep learning-based super-resolution in coherent imaging systems,” arXiv:1810.06611 (2018).

H. Wang, Y. Rivenson, Z. Wei, H. Gunaydin, L. Bentolila, and A. Ozcan, “Deep learning achieves super-resolution in fluorescence microscopy,” Nat. Methods (2018).

[Crossref]

P. A. Morris, R. S. Aspden, J. E. Bell, R. W. Boyd, and M. J. Padgett, “Imaging with a small number of photons,” Nat. Commun. 6, 5913 (2015).

[Crossref]

S. C. Mayo, T. J. Davis, T. E. Gureyev, P. R. Miller, D. Paganin, A. Pogany, A. W. Stevenson, and S. W. Wilkins, “X-ray phase-contrast microscopy and microtomography,” Opt. Express 11, 2289–2302 (2003).

[Crossref]

J. Hertz, A. Krogh, and R. G. Palmer, “Introduction to the theory of neural computation,” in Santa Fe Institute Studies in the Sciences of Complexity (Addison-Wesley, 1991).

J. Pan, S. Liu, D. Sun, J. Zhang, Y. Liu, J. Ren, Z. Li, J. Tang, H. Lu, Y.-W. Tai, and M.-H. Yang, “Learning dual convolutional neural networks for low-level vision,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018).

M. L. Minsky and S. Papert, Perceptrons (MIT, 1969).

A. Papoulis and M. S. Bertran, “Digital filtering and prolate functions,” IEEE Trans. Circuit Theory 19, 674–681 (1972).

[Crossref]

M. Mardani, H. Monajemi, V. Papyan, S. Vasanawala, D. Donoho, and J. Pauly, “Recurrent generative residual networks for proximal learning and automated compressive image recovery,” arXiv:1711.10046 (2017).

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization and statistical learning via the alternating direction method of multipliers,” Found. Trends Mach. Learn. 3, 1–122 (2011).

[Crossref]

J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image translation using cycle-consistent adversarial networks,” in IEEE International Conference on Computer Vision (ICCV) (2017), pp. 2223–2232.

J. Yoon, Y.-J. Jo, M.-H. Kim, S. Y. Lee, S.-J. Kang, and Y. K. Park, “Identification of non-activated lymphocytes using three-dimensional refractive index tomography and machine learning,” Sci. Rep. 7, 6654 (2017).

[Crossref]

Y.-J. Jo, H. Cho, S. Y. Lee, G. Choi, G. Kim, H.-S. Min, and Y.-K. Park, “Quantitative phase imaging and artificial intelligence: a review,” IEEE J. Sel. Top. Quantum Electron. 25, 6800914 (2019).

[Crossref]

A. Mousavi, A. B. Patel, and R. G. Baraniuk, “A deep learning approach to structured signal recovery,” in 53rd Annual Allerton Conference on Communication, Control, and Computing (2015), pp. 1336–1343.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwarz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).

[Crossref]

M. Mardani, H. Monajemi, V. Papyan, S. Vasanawala, D. Donoho, and J. Pauly, “Recurrent generative residual networks for proximal learning and automated compressive image recovery,” arXiv:1711.10046 (2017).

M. Mardani, E. Gong, J. Y. Cheng, S. Vasanawala, G. Zaharchuk, M. Alley, N. Thakur, S. Han, W. Daly, J. M. Pauly, and L. Xing, “Deep generative adversarial networks for compressed sensing automates MRI,” arXiv:1706.00051 (2017).

K. Pearson, “Contributions to the mathematical theory of evolution. Note on reproductive selection,” Proc. R. Soc. London 59, 300–305 (1896).

[Crossref]

Y. Chen, W. Yu, and T. Peck, “On learning optimized reaction diffusion processes for effective image restoration,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2015), pp. 5261–5269.

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization and statistical learning via the alternating direction method of multipliers,” Found. Trends Mach. Learn. 3, 1–122 (2011).

[Crossref]

S. Wang, Z. Su, L. Ying, X. Peng, S. Zhu, F. Liang, D. Feng, and D. Liang, “Accelerating magnetic resonance imaging via deep learning,” in IEEE 13th International Symposium on Biomedical Imaging (ISBI) (2016), pp. 514–517.

R. Penrose, “On best approximate solutions of linear matrix equations,” Math. Proc. Cambridge Philos. Soc. 52, 17–19 (1956).

[Crossref]

R. Penrose, “A generalized inverse for matrices,” Math. Proc. Cambridge Philos. Soc. 51, 406–413 (1955).

[Crossref]

P. Perona and J. Malik, “Scale-space and edge detection using anisotropic diffusion,” IEEE Trans. Pattern Anal. Mach. Intell. 12, 629–639 (1990).

[Crossref]

J. Klein, C. Peters, J. Martin, M. Laurenzis, and M. B. Hullin, “Tracking objects outside the line of sight using 2D intensity images,” Sci. Rep. 6, 32491 (2016).

[Crossref]

A. Pan, L. Xu, J. C. Petruccelli, R. Gupta, B. Singh, and G. Barbastathis, “Contrast enhancement in x-ray phase contrast tomography,” Opt. Express 22, 18020–18026 (2014).

[Crossref]

L. Tian, J. C. Petruccelli, Q. Miao, H. Kudrolli, V. Nagarkar, and G. Barbastathis, “Compressive x-ray phase tomography based on the transport of intensity equation,” Opt. Lett. 38, 3418–3421 (2013).

[Crossref]

L. Tian, J. C. Petruccelli, and G. Barbastathis, “Nonlinear diffusion regularization for transport of intensity phase imaging,” Opt. Lett. 37, 4131–4133 (2012).

[Crossref]

F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David, “Phase retrieval and differential phase-contrast imaging with low-brilliance x-ray sources,” Nat. Phys. 2, 258–261 (2006).

[Crossref]

T. Pitkäaho, A. Manninen, and T. J. Naughton, “Performance of autofocus capability of deep convolutional neural networks in digital holographic microscopy,” in Digital Holography and Three-Dimensional Imaging (OSA, 2017), paper W2A.5.

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429–R3432 (1995).

[Crossref]

T. Plotz and S. Roth, “Benchmarking denoising algorithms with real photographs,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017), pp. 1586–1595.

S. C. Mayo, T. J. Davis, T. E. Gureyev, P. R. Miller, D. Paganin, A. Pogany, A. W. Stevenson, and S. W. Wilkins, “X-ray phase-contrast microscopy and microtomography,” Opt. Express 11, 2289–2302 (2003).

[Crossref]

T. Poggio, “On optimal nonlinear associative recall,” Biol. Cybern. 19, 201–209 (1975).

[Crossref]

J. Sun, W. Cao, Z. Xu, and J. Ponce, “Learning a convolutional neural network for non-uniform motion blur removal,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2015).

S. Popoff, G. Lerosey, R. Carminati, M. Fink, A. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104, 100601 (2010).

[Crossref]

S. Popoff, G. Lerosey, M. Fink, A. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1, 81 (2010).

[Crossref]

Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle, “Greedy layer-wise training of deep networks,” in Neural Information Processing Systems (NIPS) (2006), Vol. 19, pp. 153–160.

I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in Neural Information Processing Systems (NIPS) (2014), Vol. 27.

S. J. Hanson and L. Y. Pratt, “Comparing biases for minimal network construction with back-propagation,” in Neural Information Processing Systems (NIPS) (1989), Vol. 1, pp. 177–185.

A. Benveniste, M. Metivier, and P. Priouret, Adaptive Algorithms and Stochastic Approximations (Springer-Verlag, 1990).

N. Borhani, E. Kakkava, C. Moser, and D. Psaltis, “Learning to see through multimode fibers,” Optica 5, 960–966 (2018).

[Crossref]

N. Stasio, C. Moser, and D. Psaltis, “Calibration-free imaging through a multicore fiber using speckle scanning microscopy,” Opt. Lett. 41, 3078–3081 (2016).

[Crossref]

U. S. Kamilov, I. N. Papadopoulos, M. H. Shoreh, A. Goy, C. Vonesch, M. Unser, and D. Psaltis, “Learning approach to optical tomography,” Optica 2, 517–522 (2015).

[Crossref]

C. Bao, H. Ji, Y. Quan, and Z. Shen, “Dictionary learning and sparse coding: algorithms and convergence analysis,” IEEE Trans. Patt. Anal. Mach. Intel. 38, 1356–1369 (2016).

[Crossref]

G. B. Huang, M. Ramesh, T. Berg, and E. Learned-Miller, “Labeled faces in the wild: a database for studying face recognition in unconstrained environments,” (University of Massachusetts, 2007).

K. Jarrett, K. Kavukcuoglu, M. A. Ranzato, and Y. LeCun, “What is the best multi-stage architecture for object recognition?” in IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2009), pp. 2146–2153.

G. Satat, M. Tancik, O. Gupta, B. Heshmat, and R. Raskar, “Object classification through scattering media with deep learning on time resolved measurement,” Opt. Express 25, 17466–17479 (2017).

[Crossref]

A. Kadambi, H. Zhao, B. Shi, and R. Raskar, “Occluded imaging with time-of-flight sensors,” ACM Trans. Graph. 35, 1–12 (2016).

[Crossref]

O. Gupta, T. Willwacher, A. Velten, A. Veeraraghavan, and R. Raskar, “Reconstruction of hidden 3d shapes using diffuse reflections,” Opt. Express 20, 19096–19108 (2012).

[Crossref]

A. Kirmani, T. Hutchinson, J. Davis, and R. Raskar, “Looking around the corner using ultrafast transient imaging,” Int. J. Comput. Vision 95, 13–28 (2011).

[Crossref]

L. Rayleigh, “Investigations in optics, with special reference to the spectroscope,” Philos. Mag. 8(49), 261–274 (1879).

[Crossref]

N. Boyd, E. Jonas, H. P. Babcock, and B. Recht, “DeepLoco: fast 3D localization microscopy using neural networks,” bioRxiv.

[Crossref]

T. Remez, O. Litany, R. Giryes, and A. M. Bronstein, “Deep convolutional denoising of low-light images,” arXiv:1701.01687v1 (2017).

J. Pan, S. Liu, D. Sun, J. Zhang, Y. Liu, J. Ren, Z. Li, J. Tang, H. Lu, Y.-W. Tai, and M.-H. Yang, “Learning dual convolutional neural networks for low-level vision,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018).

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in IEEE Conference on Computer Vision and Pattern Recognition (2016), pp. 770–778.

Z. Ren, Z. Xu, and E. Y. Lam, “Autofocusing in digital holography using deep learning,” Proc. SPIE 10499, 104991V (2018).

[Crossref]

A. M. Neto, L. Rittner, N. Leite, D. E. Zampieri, R. Lotufo, and A. Mendeleck, “Pearson’s correlation coefficient for discarding redundant information in real time autonomous navigation systems,” in IEEE Multi-Conference on Autonomous Systems and Control (MSC) (2007), pp. 426–431.

Y. Wu, Y. Rivenson, Y. Zhang, Z. Wei, H. Gunaydin, X. Lin, and A. Ozcan, “Extended depth-of-field in holographic image reconstruction using deep learning based auto-focusing and phase-recovery,” Optica 5, 704–710 (2018).

[Crossref]

Y. Rivenson, Y. Zhang, H. Gunaydin, D. Teng, and A. Ozcan, “Phase recovery and holographic image reconstruction using deep learning in neural networks,” Light Sci. Appl. 7, 17141 (2018).

[Crossref]

Y. Rivenson, Z. Gorocs, H. Gunaydin, Y. Zhang, H. Wang, and A. Ozcan, “Deep learning microscopy,” Optica 4, 1437–1443 (2017).

[Crossref]

Y. Rivenson, A. Stern, and B. Javidi, “Compressive Fresnel holography,” J. Disp. Technol. 6, 506–509 (2010).

[Crossref]

T. Liu, K. de Haan, Y. Rivenson, Z. Wei, X. Zeng, Y. Zhang, and A. Ozcan, “Deep learning-based super-resolution in coherent imaging systems,” arXiv:1810.06611 (2018).

H. Wang, Y. Rivenson, Z. Wei, H. Gunaydin, L. Bentolila, and A. Ozcan, “Deep learning achieves super-resolution in fluorescence microscopy,” Nat. Methods (2018).

[Crossref]

P. Li, T. B. Edo, and J. M. Rodenburg, “Ptychographic inversion via wigner distribution deconvolution: noise suppression and probe design,” Ultramicroscopy 147, 106–113 (2014).

[Crossref]

A. M. Maiden and J. M. Rodenburg, “An improved ptychographical phase retrieval algorithm for diffractive imaging,” Ultramicroscopy 109, 1256–1262 (2009).

[Crossref]

B. C. McCallum and J. M. Rodenburg, “Two-dimensional demonstration of Wigner phase-retrieval microscopy in the STEM configuration,” Ultramicroscopy 45, 371–380 (1992).

[Crossref]

J. M. Rodenburg and R. H. T. Bates, “The theory of super-resolution electron microscopy via Wigner-distribution deconvolution,” Philos. Trans. R. Soc. London A 339, 521–553 (1992).

[Crossref]

S. L. Friedman and J. M. Rodenburg, “Optical demonstration of a new principle of far-field microscopy,” J. Phys. D 25, 147–154 (1992).

[Crossref]

J. L. Rodgers and W. A. Nicewander, “Thirteen ways to look at the correlation coefficient,” Am. Statist. 42, 59–66 (1988).

[Crossref]

E. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: exact signal reconstruction from highly incomplete Fourier information,” IEEE Trans. Inform. Theory 52, 489–509 (2006).

[Crossref]

E. Candès, J. Romberg, and T. Tao, “Stable signal recovery from incomplete and inaccurate measurements,” Commun. Pure Appl. Math. 59, 1207–1223 (2006).

[Crossref]

O. Ronneberger, P. Fischer, and T. Brox, “U-net: convolutional networks for biomedical image segmentation,” in International Conference on Medical Image Computing and Computer-Assisted Intervention (Springer, 2015), pp. 234–241.

B. Zhu, J. Z. Liu, S. F. Cauley, B. R. Rosen, and M. S. Rosen, “Image reconstruction by domain-transform manifold learning,” Nature 555, 487–492 (2018).

[Crossref]

B. Zhu, J. Z. Liu, S. F. Cauley, B. R. Rosen, and M. S. Rosen, “Image reconstruction by domain-transform manifold learning,” Nature 555, 487–492 (2018).

[Crossref]

F. Rosenblatt, “The perceptron: a probabilistic model for information storage and organization in the brain,” Psychol. Rev. 65, 386–408 (1958).

[Crossref]

I. Freund, M. Rosenbluh, and S. Feng, “Memory effects in propagation of optical waves through disordered media,” Phys. Rev. Lett. 61, 2328–2331 (1988).

[Crossref]

T. Plotz and S. Roth, “Benchmarking denoising algorithms with real photographs,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017), pp. 1586–1595.

N. Dey, L. Blanc-Feraud, C. Zimmer, P. Roux, Z. Kam, J.-C. Olivo-Marin, and J. Zerubia, “Richardson-Lucy algorithm with total variation regularization for 3D confocal microscope deconvolution,” Microsc. Res. Tech. 69, 260–266 (2006).

[Crossref]

M. A. Aizerman, E. M. Braverman, and L. I. Rozonoer, “Theoretical foundations of the potential function method in pattern recognition learning,” Autom. Remote Control 25, 917–936 (1964).

R. Rubinstein, A. M. Bruckstein, and M. Elad, “Dictionaries for sparse representation modeling,” Proc. IEEE 98, 1045–1057 (2010).

[Crossref]

P.-T. de Boer, D. P. Kroese, S. Mannor, and R. Rubinstein, “A tutorial on the cross-entropy method,” Ann. Oper. Res. 134, 19–67 (2005).

[Crossref]

R. Y. Rubinstein, “The cross-entropy method for combinatorial and continuous optimization,” Methodol. Comput. Appl. Probab. 1, 127–190 (1999).

[Crossref]

R. Y. Rubinstein, “Optimization of computer simulation models with rare events,” Eur. J. Oper. Res. 99, 89–112 (1997).

[Crossref]

R. Y. Rubinstein, “Combinatorial optimization, cross-entropy, ants, and rare events,” in Stochastic Optimization: Algorithms and Applications, S. Uryasev and P. M. Pardalos, eds. (Kluwer, 2001), pp. 304–358.

S. Ruder, “An overview of gradient descent optimization algorithms,” arXiv:1609.04747 (2017).

L. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise removal algorithms,” Physica D 60, 259–268 (1992).

[Crossref]

D. Rumelhart, G. Hinton, and R. Williams, “Learning representations by back-propagating errors,” Nature 323, 533–536 (1986).

[Crossref]

O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, and M. Bernstein, “ImageNet large scale visual recognition challenge,” Int. J. Comput. Vis. 115, 211–252(2015).

[Crossref]

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3, 793–796 (2006).

[Crossref]

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout: a simple way to prevent neural networks from overfitting,” J. Mach. Learn. Res. 15, 1929–1958 (2014).

G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Improving neural networks by preventing co-adaptation of feature detectors,” arXiv:1207.0580 (2012).

F. S. Samaria and A. C. Harter, “Parameterisation of a stochastic model for human face identification,” in 2nd IEEE Workshop on Applications of Computer Vision (IEEE, 1994), pp. 138–142.

P. A. Santi, S. B. Johnson, M. Hillenbrand, P. Z. GrandPre, T. J. Glass, and J. R. Leger, “Thin-sheet laser imaging microscopy for optical sectioning of thick tissues,” Biotechniques 46, 287–294 (2009).

[Crossref]

S. Santos, K. K. Chu, D. Lim, N. Bozinovic, T. N. Ford, C. Hourtoule, A. Bartoo, S. K. Singh, and J. Mertz, “Optically sectioned fluorescence endomicroscopy with hybrid-illumination imaging through a flexible fiber bundle,” J. Biomed. Opt. 14, 030502 (2009).

[Crossref]

P. Llull, X. Liao, X. Yuan, J. Yang, D. Kittle, L. Carin, G. Sapiro, and D. J. Brady, “Coded aperture compressive temporal imaging,” Opt. Express 21, 10526–10545 (2013).

[Crossref]

M. Sarikaya, “Evolution of resolution in microscopy,” Ultramicroscopy 47, 1–14 (1992).

[Crossref]

O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, and M. Bernstein, “ImageNet large scale visual recognition challenge,” Int. J. Comput. Vis. 115, 211–252(2015).

[Crossref]

R. W. Gerchberg and W. O. Saxton, “Practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik 35, 237–246 (1972).

R. W. Gerchberg and W. O. Saxton, “Phase determination from image and diffraction plane pictures in electron-microscope,” Optik 34, 275–284 (1971).

A. Valencia, G. Scarcelli, M. D’Angelo, and Y. H. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94, 063601 (2005).

[Crossref]

J. Schmidhuber, “Deep learning in neural networks: an overview,” Neural Netw. 61, 85–117 (2015).

[Crossref]

P. J. Keller, A. Schmidt, J. Wittbrot, and E. H. Steltzer, “Reconstruction of zebrafish early embryonic development by scanning light sheet microscopy,” Science 322, 1065–1069 (2008).

[Crossref]

T. Hofmann, B. Scholkoff, and A. J. Smola, “Kernel methods in machine learning,” Ann. Statist. 36, 1171–1220 (2008).

[Crossref]

C. J. Schuler, H. Christopher Burger, S. Harmeling, and B. Scholkopf, “A machine learning approach for non-blind image deconvolution,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2013).

A. J. Smola and B. Schölkopf, “A tutorial on support vector regression,” Stat. Comput. 14, 199–222 (2004).

[Crossref]

C. J. Schuler, H. Christopher Burger, S. Harmeling, and B. Scholkopf, “A machine learning approach for non-blind image deconvolution,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2013).

A. Drémeau, A. Liutkus, D. Martina, O. Katz, C. Schülke, F. Krzakala, S. Gigan, and L. Daudet, “Reference-less measurement of the transmission matrix of a highly scattering material using a DMD and phase retrieval techniques,” Opt. Express 23, 11898–11911 (2015).

[Crossref]

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mane, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viegas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “Tensorflow: large-scale machine learning on heterogeneous distributed systems,” in 12th USENIX Conference on Operating Systems Design and Implementation (OSDI) (2016), pp. 265–283.

M. S. Lewicki and T. J. Sejnowski, “Learning overcomplete representations,” Neural Comput. 12, 337–365 (2000).

[Crossref]

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429–R3432 (1995).

[Crossref]

S. W. Hasinoff, D. Sharlet, R. Geiss, A. Adams, J. T. Barron, F. Kainz, J. Chen, and M. Levoy, “Burst photography for high dynamic range and low-light imaging on mobile cameras,” ACM Trans. Graph. 35, 192 (2016).

[Crossref]

R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang, “The unreasonable effectiveness of deep features as a perceptual metric,” arXiv:1801.03924 (2018).

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. Image Proc. 13, 600–612 (2004).

[Crossref]

Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarma, and T. Darrell, “Caffe: convolutional architecture for fast feature embedding,” in 22nd ACM International Conference on Multimedia (ACM, 2014), pp. 675–678.

R. Chan, T. Chan, L. Shen, and Z. Shen, “Wavelet algorithms for high-resolution image reconstruction,” SIAM J. Sci. Comput. 24, 1408–1432 (2003).

[Crossref]

X. Zhang, P. Shen, L. Luo, L. Zhang, and J. Song, “Enhancement and noise reduction of very low light level images,” in International Conference on Pattern Recognition (2012), pp. 2034–2037.

C. Bao, H. Ji, Y. Quan, and Z. Shen, “Dictionary learning and sparse coding: algorithms and convergence analysis,” IEEE Trans. Patt. Anal. Mach. Intel. 38, 1356–1369 (2016).

[Crossref]

J. Cai, B. Dong, S. Osher, and Z. Shen, “Image restoration: total variation, wavelet frames, and beyond,” J. Am. Math. Soc. 25, 1033–1089 (2012).

[Crossref]

R. Chan, T. Chan, L. Shen, and Z. Shen, “Wavelet algorithms for high-resolution image reconstruction,” SIAM J. Sci. Comput. 24, 1408–1432 (2003).

[Crossref]

C. J. R. Sheppard and C. J. Cogswell, “Three-dimensional image formation in confocal microscopy,” J. Microsc. 159, 179–194(1990).

[Crossref]

C. J. R. Sheppard and T. Wilson, “Fourier imaging of phase information in scanning and conventional microscopes,” Philos. Trans. R. Soc. London A295, 513–536 (1980).

[Crossref]

C. J. R. Sheppard and A. Choudhury, “Image formation in the scanning microscope,” Opt. Acta 24, 1051–1073 (1977).

[Crossref]

S. S. Keerthi, S. K. Shevade, C. Bhattacharya, and K. R. K. Murty, “Improvements to Platt’s SMO algorithm for SVM classifier design,” Neural Comput. 13, 637–649 (2001).

[Crossref]

A. Kadambi, H. Zhao, B. Shi, and R. Raskar, “Occluded imaging with time-of-flight sensors,” ACM Trans. Graph. 35, 1–12 (2016).

[Crossref]

J. Caballero, C. Ledig, A. Aitken, A. Acosta, J. Totz, Z. Wang, and W. Shi, “Real-time video super-resolution with spatio-temporal networks and motion compensation,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017), pp. 4778–4787.

C. Ledig, L. Theis, F. Huczar, J. Caballero, A. Cunningham, A. Acosta, A. Aitken, A. Tejani, J. Totz, Z. Wang, and W. Shi, “Photo-realistic single image super-resolution using a generative adversarial network,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017), pp. 4681–4690.

R. Meyers, K. S. Deacon, and Y. Shih, “Ghost-imaging experiment by measuring reflected photons,” Phys. Rev. A 77, 041801 (2008).

[Crossref]

A. Valencia, G. Scarcelli, M. D’Angelo, and Y. H. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94, 063601 (2005).

[Crossref]

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429–R3432 (1995).

[Crossref]

T. Shimobaba, T. Kakue, and T. Ito, “Convolutional neural network-based regression for depth prediction in digital holography,” arXiv:1802.00664 (2018).

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mane, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viegas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “Tensorflow: large-scale machine learning on heterogeneous distributed systems,” in 12th USENIX Conference on Operating Systems Design and Implementation (OSDI) (2016), pp. 265–283.

O. Katz, E. Small, and Y. Silberberg, “Looking around corners and through thin turbid layers in real time with scattered incoherent light,” Nat. Photonics 6, 549–553 (2012).

[Crossref]

O. Katz, Y. Bromberg, and Y. Silberberg, “Compressive ghost imaging,” Appl. Phys. Lett. 95, 131110 (2009).

[Crossref]

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. Image Proc. 13, 600–612 (2004).

[Crossref]

E. P. Simoncelli, W. T. Freeman, E. H. Adelson, and D. J. Heeger, “Shiftable multi-scale transforms,” IEEE Trans. Inf. Theory 38, 587–607 (1992).

[Crossref]

K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” in ICLR (2015), p. 66.

S. Santos, K. K. Chu, D. Lim, N. Bozinovic, T. N. Ford, C. Hourtoule, A. Bartoo, S. K. Singh, and J. Mertz, “Optically sectioned fluorescence endomicroscopy with hybrid-illumination imaging through a flexible fiber bundle,” J. Biomed. Opt. 14, 030502 (2009).

[Crossref]

S. Li, M. Deng, J. Lee, A. Sinha, and G. Barbastathis, “Imaging through glass diffusers using densely connected convolutional networks,” Optica 5, 803–813 (2018).

[Crossref]

A. Sinha, J. Lee, S. Li, and G. Barbastathis, “Lensless computational imaging through deep learning,” Optica 4, 1117–1125 (2017).

[Crossref]

A. Sinha, J. Lee, S. Li, and G. Barbastathis, “Lensless computational imaging through deep learning,” arXiv:1702.08516 (2017).

M. Lyu, H. Wang, G. Li, S. Zheng, and G. Situ, “Learning-based lensless imaging through optically thick scattering media,” Adv. Photon. 1, 036002 (2019).

[Crossref]

H. Wang, M. Lyu, and G. Situ, “Eholonet: a learning-based point-to-point approach for in-line digital holographic reconstruction,” Opt. Express 26, 22603–22614 (2018).

[Crossref]

M. Lyu, W. Wang, H. Wang, H. Wang, G. Li, N. Chen, and G. Situ, “Deep-learning-based ghost imaging,” Sci. Rep. 7, 17865 (2017).

[Crossref]

M. Lyu, H. Wang, G. Li, and G. Situ, “Exploit imaging through opaque wall via deep learning,” arXiv:1708.07881 (2017).

D. Slepian, “Prolate spheroidal wave functions, Fourier analysis, and uncertainty—V: the discrete case,” Bell Syst. Tech. J. 57, 1371–1430(1978).

[Crossref]

O. Katz, E. Small, and Y. Silberberg, “Looking around corners and through thin turbid layers in real time with scattered incoherent light,” Nat. Photonics 6, 549–553 (2012).

[Crossref]

T. Hofmann, B. Scholkoff, and A. J. Smola, “Kernel methods in machine learning,” Ann. Statist. 36, 1171–1220 (2008).

[Crossref]

A. J. Smola and B. Schölkopf, “A tutorial on support vector regression,” Stat. Comput. 14, 199–222 (2004).

[Crossref]

M. C. Mozer and P. Smolensky, “Skeletonization: a technique for trimming the fat from a network via relevance assessment,” in Neural Information Processing Systems (NIPS) (1989), Vol. 1, pp. 107–115.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet: a large-scale hierarchical image database,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2009), pp. 248–255.

L. Ljung and T. Söderström, Theory and Practice of Recursive Identification (MIT, 1983).

X. Zhang, P. Shen, L. Luo, L. Zhang, and J. Song, “Enhancement and noise reduction of very low light level images,” in International Conference on Pattern Recognition (2012), pp. 2034–2037.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwarz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).

[Crossref]

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout: a simple way to prevent neural networks from overfitting,” J. Mach. Learn. Res. 15, 1929–1958 (2014).

G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Improving neural networks by preventing co-adaptation of feature detectors,” arXiv:1207.0580 (2012).

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mane, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viegas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “Tensorflow: large-scale machine learning on heterogeneous distributed systems,” in 12th USENIX Conference on Operating Systems Design and Implementation (OSDI) (2016), pp. 265–283.

P. J. Keller, A. Schmidt, J. Wittbrot, and E. H. Steltzer, “Reconstruction of zebrafish early embryonic development by scanning light sheet microscopy,” Science 322, 1065–1069 (2008).

[Crossref]

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrot, and E. H. Steltzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305, 1007–1009 (2004).

[Crossref]

Y. Rivenson, A. Stern, and B. Javidi, “Compressive Fresnel holography,” J. Disp. Technol. 6, 506–509 (2010).

[Crossref]

S. C. Mayo, T. J. Davis, T. E. Gureyev, P. R. Miller, D. Paganin, A. Pogany, A. W. Stevenson, and S. W. Wilkins, “X-ray phase-contrast microscopy and microtomography,” Opt. Express 11, 2289–2302 (2003).

[Crossref]

M. R. Hestenes and E. Stiefel, “Method of conjugate gradients for solving linear systems,” J. Res. Natl. Bur. Stand. 49, 409–436 (1952).

[Crossref]

T. G. Stockham, T. M. Cannon, and R. B. Ingebretsen, “Blind deconvolution through digital signal processing,” Proc. IEEE 63, 678–692 (1975).

[Crossref]

S. Feng, C. Kane, P. A. Lee, and A. D. Stone, “Correlations and fluctuations of coherent wave transmission through disordered media,” Phys. Rev. Lett. 61, 834–837 (1988).

[Crossref]

R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification, 2nd ed. (Wiley, 2001).

N. Streibl, “Phase imaging by the transport-equation of intensity,” Opt. Commun. 49, 6–10 (1984).

[Crossref]

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429–R3432 (1995).

[Crossref]

O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, and M. Bernstein, “ImageNet large scale visual recognition challenge,” Int. J. Comput. Vis. 115, 211–252(2015).

[Crossref]

S. Wang, Z. Su, L. Ying, X. Peng, S. Zhu, F. Liang, D. Feng, and D. Liang, “Accelerating magnetic resonance imaging via deep learning,” in IEEE 13th International Symposium on Biomedical Imaging (ISBI) (2016), pp. 514–517.

J. Pan, S. Liu, D. Sun, J. Zhang, Y. Liu, J. Ren, Z. Li, J. Tang, H. Lu, Y.-W. Tai, and M.-H. Yang, “Learning dual convolutional neural networks for low-level vision,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018).

J. Sun, W. Cao, Z. Xu, and J. Ponce, “Learning a convolutional neural network for non-uniform motion blur removal,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2015).

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in IEEE Conference on Computer Vision and Pattern Recognition (2016), pp. 770–778.

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout: a simple way to prevent neural networks from overfitting,” J. Mach. Learn. Res. 15, 1929–1958 (2014).

G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Improving neural networks by preventing co-adaptation of feature detectors,” arXiv:1207.0580 (2012).

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mane, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viegas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “Tensorflow: large-scale machine learning on heterogeneous distributed systems,” in 12th USENIX Conference on Operating Systems Design and Implementation (OSDI) (2016), pp. 265–283.

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrot, and E. H. Steltzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305, 1007–1009 (2004).

[Crossref]

J. Pan, S. Liu, D. Sun, J. Zhang, Y. Liu, J. Ren, Z. Li, J. Tang, H. Lu, Y.-W. Tai, and M.-H. Yang, “Learning dual convolutional neural networks for low-level vision,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018).

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mane, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viegas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “Tensorflow: large-scale machine learning on heterogeneous distributed systems,” in 12th USENIX Conference on Operating Systems Design and Implementation (OSDI) (2016), pp. 265–283.

J. Pan, S. Liu, D. Sun, J. Zhang, Y. Liu, J. Ren, Z. Li, J. Tang, H. Lu, Y.-W. Tai, and M.-H. Yang, “Learning dual convolutional neural networks for low-level vision,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018).

C. Dong, C. Loy, K. He, and X. Tang, “Image super-resolution using deep convolutional networks,” IEEE Trans. Pattern Anal. Mach. Intel. 38, 295–307 (2015).

[Crossref]

C. Dong, C. Loy, K. He, and X. Tang, “Learning a deep convolutional neural network for image super-resolution,” in European Conference on Computer Vision (ECCV)/Lecture Notes on Computer Science Part IV (2014), Vol. 8692, pp. 184–199.

E. Candès, J. Romberg, and T. Tao, “Stable signal recovery from incomplete and inaccurate measurements,” Commun. Pure Appl. Math. 59, 1207–1223 (2006).

[Crossref]

E. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: exact signal reconstruction from highly incomplete Fourier information,” IEEE Trans. Inform. Theory 52, 489–509 (2006).

[Crossref]

E. Candès and T. Tao, “Near optimal signal recovery from random projections: universal encoding strategies?” IEEE Trans. Inform. Theory 52, 5406–5425 (2006).

[Crossref]

E. Candès and T. Tao, “Decoding by linear programming,” IEEE Trans. Inform. Theory 51, 4203–4215 (2005).

[Crossref]

V. I. Tatarski, Wave Propagation in a Turbulent Medium (McGraw-Hill, 1961).

A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding algorithm for linear inverse problems,” SIAM J. Imag. Sci. 2, 183–202 (2009).

[Crossref]

G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm for deep belief nets,” Neural Comput. 18, 1527–1554 (2006).

[Crossref]

C. Ledig, L. Theis, F. Huczar, J. Caballero, A. Cunningham, A. Acosta, A. Aitken, A. Tejani, J. Totz, Z. Wang, and W. Shi, “Photo-realistic single image super-resolution using a generative adversarial network,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017), pp. 4681–4690.

Y. Rivenson, Y. Zhang, H. Gunaydin, D. Teng, and A. Ozcan, “Phase recovery and holographic image reconstruction using deep learning in neural networks,” Light Sci. Appl. 7, 17141 (2018).

[Crossref]

M. Mardani, E. Gong, J. Y. Cheng, S. Vasanawala, G. Zaharchuk, M. Alley, N. Thakur, S. Han, W. Daly, J. M. Pauly, and L. Xing, “Deep generative adversarial networks for compressed sensing automates MRI,” arXiv:1706.00051 (2017).

C. Ledig, L. Theis, F. Huczar, J. Caballero, A. Cunningham, A. Acosta, A. Aitken, A. Tejani, J. Totz, Z. Wang, and W. Shi, “Photo-realistic single image super-resolution using a generative adversarial network,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017), pp. 4681–4690.

T. M. Cover and J. A. Thomas, Elements of Information Theory (Wiley, 1991).

T. M. Cover and J. A. Thomas, Information Theory (Wiley, 1991), chap. 7, pp. 144–182.

Y. Li, Y. Xue, and L. Tian, “Deep speckle correlation: a deep learning approach toward scalable imaging through scattering media,” Optica 5, 1181–1190 (2018).

[Crossref]

T. Nguyen, Y. Xue, Y. Li, L. Tian, and G. Nehmetallah, “Deep learning approach for Fourier ptychography microscopy,” Opt. Express 26, 26470–26484 (2018).

[Crossref]

L. Tian and L. Waller, “3D intensity and phase imaging from light field measurements in an LED array microscope,” Optica 2, 104–111 (2015).

[Crossref]

Y. Zhang, W. Jiang, L. Tian, L. Waller, and Q. Dai, “Self-learning based Fourier ptychographic microscopy,” Opt. Express 23, 18471–18486 (2015).

[Crossref]

Y. Yunhui, A. Shanker, L. Tian, L. Waller, and G. Barbastathis, “Low-noise phase imaging by hybrid uniform and structured illumination transport of intensity equation,” Opt. Express 22, 26696–26711(2014).

[Crossref]

L. Tian, X. Li, K. Ramchandran, and L. Waller, “Multiplexed coded illumination for Fourier ptychography with an LED array microscope,” Biomed. Opt. Express 5, 2376–2389 (2014).

[Crossref]

Y. Liu, L. Tian, C.-H. Hsieh, and G. Barbastathis, “Compressive holographic two-dimensional localization with 1/302 subpixel accuracy,” Opt. Express 22, 9774–9782 (2014).

[Crossref]

L. Tian, J. C. Petruccelli, Q. Miao, H. Kudrolli, V. Nagarkar, and G. Barbastathis, “Compressive x-ray phase tomography based on the transport of intensity equation,” Opt. Lett. 38, 3418–3421 (2013).

[Crossref]

L. Tian, J. C. Petruccelli, and G. Barbastathis, “Nonlinear diffusion regularization for transport of intensity phase imaging,” Opt. Lett. 37, 4131–4133 (2012).

[Crossref]

Y. Liu, L. Tian, J. W. Lee, H. Y. H. Huang, M. S. Triantafyllou, and G. Barbastathis, “Scanning-free compressive holography for object localization with subpixel accuracy,” Opt. Lett. 37, 3357–3359(2012).

[Crossref]

R. Tibshirani, “Regression shrinkage and selection via the lasso,” J. R. Stat. Soc. Ser. B 58, 267–288 (1996).

A. N. Tikhonov, “On the solution of ill-posed problems and the method of regularization,” Dokl. Akad. Nauk SSSR 151, 501–504 (1963).

A. N. Tikhonov, “On the regularization of ill-posed problems,” Dokl. Akad. Nauk SSSR 153, 49–52 (1963).

G. Gariepy, F. Tonolini, R. Henderson, J. Leach, and D. Faccio, “Detection and tracking of moving objects hidden from view,” Nat. Photonics 10, 23–26 (2016).

[Crossref]

A. Torralba and W. T. Freeman, “Accidental pinhole and pinspeck cameras: revealing the scene outside the picture,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2012), pp. 374–381.

C. Ledig, L. Theis, F. Huczar, J. Caballero, A. Cunningham, A. Acosta, A. Aitken, A. Tejani, J. Totz, Z. Wang, and W. Shi, “Photo-realistic single image super-resolution using a generative adversarial network,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017), pp. 4681–4690.

J. Caballero, C. Ledig, A. Aitken, A. Acosta, J. Totz, Z. Wang, and W. Shi, “Real-time video super-resolution with spatio-temporal networks and motion compensation,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017), pp. 4778–4787.

R. M. Dickson, A. B. Cubitt, R. Y. Tsien, and W. E. Moerner, “On/off blinking and switching behaviour of single molecules of green fluorescent protein,” Nature 388, 355–358 (1997).

[Crossref]

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mane, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viegas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “Tensorflow: large-scale machine learning on heterogeneous distributed systems,” in 12th USENIX Conference on Operating Systems Design and Implementation (OSDI) (2016), pp. 265–283.

K. H. Jin, M. T. McCann, E. Froustey, and M. Unser, “Deep convolutional neural network for inverse problems in imaging,” IEEE Trans. Image Process. 26, 4509–4522 (2017).

[Crossref]

M. T. McCann, K. H. Jin, and M. Unser, “Convolutional neural networks for inverse problems in imaging,” IEEE Signal Process. Mag. 34(6), 85–95 (2017).

[Crossref]

U. S. Kamilov, I. N. Papadopoulos, M. H. Shoreh, A. Goy, C. Vonesch, M. Unser, and D. Psaltis, “Learning approach to optical tomography,” Optica 2, 517–522 (2015).

[Crossref]

A. Valencia, G. Scarcelli, M. D’Angelo, and Y. H. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94, 063601 (2005).

[Crossref]

A. Van der Schaaf and J. H. van Hateren, “Modelling the power spectra of natural images: statistics and information,” Vision Res. 36, 2759–2770 (1996).

[Crossref]

A. Van der Schaaf and J. H. van Hateren, “Modelling the power spectra of natural images: statistics and information,” Vision Res. 36, 2759–2770 (1996).

[Crossref]

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232–234 (2012).

[Crossref]

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mane, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viegas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “Tensorflow: large-scale machine learning on heterogeneous distributed systems,” in 12th USENIX Conference on Operating Systems Design and Implementation (OSDI) (2016), pp. 265–283.

V. N. Vapnik, “Three fundamental concepts of the capacity of learning machines,” Physica A 200, 538–544 (1993).

[Crossref]

V. N. Vapnik and A. Chervonenkis, “On the uniform convergence of relative frequencies of events to their probabilities,” Theory Prob. Appl. 16, 264–280 (1971).

[Crossref]

V. N. Vapnik, Estimation of Dependences based on Empirial Data (Springer-Verlag, 1982).

V. N. Vapnik, The Nature of Statistical Learning Theory (Springer, 1995).

B. E. Boser, I. M. Guyon, and V. N. Vapnik, “A training algorithm for optimal margin classifiers,” in Annual Conference on Computational Learning Theory (ACM, 1992), pp. 144–152.

M. Mardani, E. Gong, J. Y. Cheng, S. Vasanawala, G. Zaharchuk, M. Alley, N. Thakur, S. Han, W. Daly, J. M. Pauly, and L. Xing, “Deep generative adversarial networks for compressed sensing automates MRI,” arXiv:1706.00051 (2017).

M. Mardani, H. Monajemi, V. Papyan, S. Vasanawala, D. Donoho, and J. Pauly, “Recurrent generative residual networks for proximal learning and automated compressive image recovery,” arXiv:1711.10046 (2017).

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mane, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viegas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “Tensorflow: large-scale machine learning on heterogeneous distributed systems,” in 12th USENIX Conference on Operating Systems Design and Implementation (OSDI) (2016), pp. 265–283.

A. Mahendran and A. Vebaldi, “Understanding deep image representations by inverting them,” in Conference on Computer Vision and Pattern Recognition (CVPR) (2015), pp. 5188–5196.

M. Buttafava, J. Zeman, A. Tosi, K. Eliceiri, and A. Velten, “Non-line-of-sight imaging using a time-gated single photon avalanche diode,” Opt. Express 23, 20997–21011 (2015).

[Crossref]

O. Gupta, T. Willwacher, A. Velten, A. Veeraraghavan, and R. Raskar, “Reconstruction of hidden 3d shapes using diffuse reflections,” Opt. Express 20, 19096–19108 (2012).

[Crossref]

A. Velten, “Recovering three-dimensional shape around a corner using ultrafast time-of-flight imaging,” Nat. Commun. 3, 745 (2012).

[Crossref]

A. M. Neto, A. C. Victorino, I. Fantoni, D. E. Zampieri, J. V. Ferreira, and D. A. Lima, “Image processing using Pearson’s correlation coefficient: applications on autonomous robotics,” in 13th International Conference on Autonomous Robot Systems (Robotica) (2013), pp. 14–19.

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mane, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viegas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “Tensorflow: large-scale machine learning on heterogeneous distributed systems,” in 12th USENIX Conference on Operating Systems Design and Implementation (OSDI) (2016), pp. 265–283.

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mane, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viegas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “Tensorflow: large-scale machine learning on heterogeneous distributed systems,” in 12th USENIX Conference on Operating Systems Design and Implementation (OSDI) (2016), pp. 265–283.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232–234 (2012).

[Crossref]

Y. Zhang, W. Jiang, L. Tian, L. Waller, and Q. Dai, “Self-learning based Fourier ptychographic microscopy,” Opt. Express 23, 18471–18486 (2015).

[Crossref]

L. Tian and L. Waller, “3D intensity and phase imaging from light field measurements in an LED array microscope,” Optica 2, 104–111 (2015).

[Crossref]

Y. Yunhui, A. Shanker, L. Tian, L. Waller, and G. Barbastathis, “Low-noise phase imaging by hybrid uniform and structured illumination transport of intensity equation,” Opt. Express 22, 26696–26711(2014).

[Crossref]

L. Tian, X. Li, K. Ramchandran, and L. Waller, “Multiplexed coded illumination for Fourier ptychography with an LED array microscope,” Biomed. Opt. Express 5, 2376–2389 (2014).

[Crossref]

L. Wan, M. Zeiler, S. Zhang, Y. LeCun, and R. Fergus, “Regularization of neural networks using DropConnect,” in 30th International Conference on Machine Learning (2013), Vol. 28.

C.-L. Liu, F. Yin, D.-H. Wang, and Q.-F. Wang, “CASIA online and offline Chinese handwriting databases,” in International Conference on Document Analysis and Recognition (IEEE Computer Society, 2011), pp. 37–41.

M. Lyu, H. Wang, G. Li, S. Zheng, and G. Situ, “Learning-based lensless imaging through optically thick scattering media,” Adv. Photon. 1, 036002 (2019).

[Crossref]

H. Wang, M. Lyu, and G. Situ, “Eholonet: a learning-based point-to-point approach for in-line digital holographic reconstruction,” Opt. Express 26, 22603–22614 (2018).

[Crossref]

Y. Rivenson, Z. Gorocs, H. Gunaydin, Y. Zhang, H. Wang, and A. Ozcan, “Deep learning microscopy,” Optica 4, 1437–1443 (2017).

[Crossref]

M. Lyu, W. Wang, H. Wang, H. Wang, G. Li, N. Chen, and G. Situ, “Deep-learning-based ghost imaging,” Sci. Rep. 7, 17865 (2017).

[Crossref]

M. Lyu, W. Wang, H. Wang, H. Wang, G. Li, N. Chen, and G. Situ, “Deep-learning-based ghost imaging,” Sci. Rep. 7, 17865 (2017).

[Crossref]

C. Zhao, W. Gong, M. Chen, E. Li, H. Wang, W. Xu, and S. Han, “Ghost imaging lidar via sparsity constraints,” Appl. Phys. Lett. 101, 141123 (2012).

[Crossref]

M. Lyu, H. Wang, G. Li, and G. Situ, “Exploit imaging through opaque wall via deep learning,” arXiv:1708.07881 (2017).

H. Wang, Y. Rivenson, Z. Wei, H. Gunaydin, L. Bentolila, and A. Ozcan, “Deep learning achieves super-resolution in fluorescence microscopy,” Nat. Methods (2018).

[Crossref]

R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang, “The unreasonable effectiveness of deep features as a perceptual metric,” arXiv:1801.03924 (2018).

C.-L. Liu, F. Yin, D.-H. Wang, and Q.-F. Wang, “CASIA online and offline Chinese handwriting databases,” in International Conference on Document Analysis and Recognition (IEEE Computer Society, 2011), pp. 37–41.

S. Wang, Z. Su, L. Ying, X. Peng, S. Zhu, F. Liang, D. Feng, and D. Liang, “Accelerating magnetic resonance imaging via deep learning,” in IEEE 13th International Symposium on Biomedical Imaging (ISBI) (2016), pp. 514–517.

M. Lyu, W. Wang, H. Wang, H. Wang, G. Li, N. Chen, and G. Situ, “Deep-learning-based ghost imaging,” Sci. Rep. 7, 17865 (2017).

[Crossref]

J. Yang, Z. Wang, Z. Lin, S. Cohen, and T. Huang, “Coupled dictionary training for image super-resolution,” IEEE Trans. Image Proc. 21, 3467–3478 (2012).

[Crossref]

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. Image Proc. 13, 600–612 (2004).

[Crossref]

J. Caballero, C. Ledig, A. Aitken, A. Acosta, J. Totz, Z. Wang, and W. Shi, “Real-time video super-resolution with spatio-temporal networks and motion compensation,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017), pp. 4778–4787.

C. Ledig, L. Theis, F. Huczar, J. Caballero, A. Cunningham, A. Acosta, A. Aitken, A. Tejani, J. Totz, Z. Wang, and W. Shi, “Photo-realistic single image super-resolution using a generative adversarial network,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017), pp. 4681–4690.

I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in Neural Information Processing Systems (NIPS) (2014), Vol. 27.

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mane, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viegas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “Tensorflow: large-scale machine learning on heterogeneous distributed systems,” in 12th USENIX Conference on Operating Systems Design and Implementation (OSDI) (2016), pp. 265–283.

H. Malm, M. Oskarsson, E. Warrant, P. Clarberg, J. Hasselgren, and C. Lejdfors, “Adaptive enhancement and noise reduction in very low light-level video,” in International Conference on Computer Vision (ICCV) (2007), pp. 1631–1638.

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mane, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viegas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “Tensorflow: large-scale machine learning on heterogeneous distributed systems,” in 12th USENIX Conference on Operating Systems Design and Implementation (OSDI) (2016), pp. 265–283.

Y. Wu, Y. Rivenson, Y. Zhang, Z. Wei, H. Gunaydin, X. Lin, and A. Ozcan, “Extended depth-of-field in holographic image reconstruction using deep learning based auto-focusing and phase-recovery,” Optica 5, 704–710 (2018).

[Crossref]

T. Liu, K. de Haan, Y. Rivenson, Z. Wei, X. Zeng, Y. Zhang, and A. Ozcan, “Deep learning-based super-resolution in coherent imaging systems,” arXiv:1810.06611 (2018).

H. Wang, Y. Rivenson, Z. Wei, H. Gunaydin, L. Bentolila, and A. Ozcan, “Deep learning achieves super-resolution in fluorescence microscopy,” Nat. Methods (2018).

[Crossref]

J. Weikert, “A review of nonlinear diffusion filtering,” in Scale-Space Theory in Computer Vision, B. ter Haar Romey, L. Florack, J. Koendrink, and M. Viergever, eds., Lecture Notes in Computer Science (Springer, 1997), pp. 3–38.

A. Levin, Y. Weiss, F. Durand, and W. T. Freeman, “Understanding and evaluating blind deconvolution algorithms,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2009).

F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David, “Phase retrieval and differential phase-contrast imaging with low-brilliance x-ray sources,” Nat. Phys. 2, 258–261 (2006).

[Crossref]

M. O’Toole, D. B. Lindell, and G. Wetzstein, “Confocal non-line-of-sight imaging based on the light-cone transform,” Nature 555, 338–341 (2018).

[Crossref]

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mane, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viegas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “Tensorflow: large-scale machine learning on heterogeneous distributed systems,” in 12th USENIX Conference on Operating Systems Design and Implementation (OSDI) (2016), pp. 265–283.

N. Wiener and E. Hopf, “Uber eine Klasse singulaerer Integralgeichungen,” Sitzungsber. Preuss. Akad. Math.-Phys. Kl. 31, 696–706 (1931).

[Crossref]

N. Wiener, Extrapolation, Interpolation, and Smoothing of Stationary Time Series (Wiley, 1949).

S. C. Mayo, T. J. Davis, T. E. Gureyev, P. R. Miller, D. Paganin, A. Pogany, A. W. Stevenson, and S. W. Wilkins, “X-ray phase-contrast microscopy and microtomography,” Opt. Express 11, 2289–2302 (2003).

[Crossref]

D. Rumelhart, G. Hinton, and R. Williams, “Learning representations by back-propagating errors,” Nature 323, 533–536 (1986).

[Crossref]

P. J. Keller, A. Schmidt, J. Wittbrot, and E. H. Steltzer, “Reconstruction of zebrafish early embryonic development by scanning light sheet microscopy,” Science 322, 1065–1069 (2008).

[Crossref]

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrot, and E. H. Steltzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305, 1007–1009 (2004).

[Crossref]

J. Yang, J. Wright, T. S. Huang, and Y. Ma, “Image super-resolution via sparse representation,” IEEE Trans. Image Proc. 19, 2861–2873 (2010).

[Crossref]

M. Mardani, E. Gong, J. Y. Cheng, S. Vasanawala, G. Zaharchuk, M. Alley, N. Thakur, S. Han, W. Daly, J. M. Pauly, and L. Xing, “Deep generative adversarial networks for compressed sensing automates MRI,” arXiv:1706.00051 (2017).

I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in Neural Information Processing Systems (NIPS) (2014), Vol. 27.

C. Chen, Q. Chen, J. Xu, and V. Koltun, “Learning to see in the dark,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018), pp. 3291–3300.

C. Zhao, W. Gong, M. Chen, E. Li, H. Wang, W. Xu, and S. Han, “Ghost imaging lidar via sparsity constraints,” Appl. Phys. Lett. 101, 141123 (2012).

[Crossref]

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Nat. Acad. Sci. USA 98, 11301–11305 (2001).

[Crossref]

Z. Ren, Z. Xu, and E. Y. Lam, “Autofocusing in digital holography using deep learning,” Proc. SPIE 10499, 104991V (2018).

[Crossref]

J. Sun, W. Cao, Z. Xu, and J. Ponce, “Learning a convolutional neural network for non-uniform motion blur removal,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2015).

Y. Li, Y. Xue, and L. Tian, “Deep speckle correlation: a deep learning approach toward scalable imaging through scattering media,” Optica 5, 1181–1190 (2018).

[Crossref]

T. Nguyen, Y. Xue, Y. Li, L. Tian, and G. Nehmetallah, “Deep learning approach for Fourier ptychography microscopy,” Opt. Express 26, 26470–26484 (2018).

[Crossref]

X. Ou, R. Horstmeyer, and C. Yang, “Quantitative phase imaging via Fourier ptychographic microscopy,” Opt. Lett. 38, 4845–4848 (2013).

[Crossref]

G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics 7, 739–745 (2013).

[Crossref]

C.-Y. Yang, C. Ma, and M.-H. Yang, “Single-image super-resolution: a benchmark,” in European Conference on Computer Vision (ECCV)/Lecture Notes on Computer Science, D. Fleet, T. Pajdla, B. Schiele, and T. Tuytelaars, eds. (2014), Vol. 8692, pp. 372–386.

P. Llull, X. Liao, X. Yuan, J. Yang, D. Kittle, L. Carin, G. Sapiro, and D. J. Brady, “Coded aperture compressive temporal imaging,” Opt. Express 21, 10526–10545 (2013).

[Crossref]

J. Yang, Z. Wang, Z. Lin, S. Cohen, and T. Huang, “Coupled dictionary training for image super-resolution,” IEEE Trans. Image Proc. 21, 3467–3478 (2012).

[Crossref]

J. Yang, J. Wright, T. S. Huang, and Y. Ma, “Image super-resolution via sparse representation,” IEEE Trans. Image Proc. 19, 2861–2873 (2010).

[Crossref]

C.-Y. Yang, C. Ma, and M.-H. Yang, “Single-image super-resolution: a benchmark,” in European Conference on Computer Vision (ECCV)/Lecture Notes on Computer Science, D. Fleet, T. Pajdla, B. Schiele, and T. Tuytelaars, eds. (2014), Vol. 8692, pp. 372–386.

J. Pan, S. Liu, D. Sun, J. Zhang, Y. Liu, J. Ren, Z. Li, J. Tang, H. Lu, Y.-W. Tai, and M.-H. Yang, “Learning dual convolutional neural networks for low-level vision,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018).

D. Lee, J. Yoo, and J. C. Ye, “Deep residual learning for compressed sensing MRI,” in IEEE 14th International Symposium on Biomedical Imaging (ISBI) (2017), pp. 15–18.

E. K. Yen and R. G. Johnston, “The ineffectiveness of the correlation coefficient for image comparisons,” (Los Alamos National Laboratory, 1996).

C.-L. Liu, F. Yin, D.-H. Wang, and Q.-F. Wang, “CASIA online and offline Chinese handwriting databases,” in International Conference on Document Analysis and Recognition (IEEE Computer Society, 2011), pp. 37–41.

S. Wang, Z. Su, L. Ying, X. Peng, S. Zhu, F. Liang, D. Feng, and D. Liang, “Accelerating magnetic resonance imaging via deep learning,” in IEEE 13th International Symposium on Biomedical Imaging (ISBI) (2016), pp. 514–517.

D. Lee, J. Yoo, and J. C. Ye, “Deep residual learning for compressed sensing MRI,” in IEEE 14th International Symposium on Biomedical Imaging (ISBI) (2017), pp. 15–18.

J. Yoon, Y.-J. Jo, M.-H. Kim, S. Y. Lee, S.-J. Kang, and Y. K. Park, “Identification of non-activated lymphocytes using three-dimensional refractive index tomography and machine learning,” Sci. Rep. 7, 6654 (2017).

[Crossref]

Y. Chen, W. Yu, and T. Peck, “On learning optimized reaction diffusion processes for effective image restoration,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2015), pp. 5261–5269.

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mane, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viegas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “Tensorflow: large-scale machine learning on heterogeneous distributed systems,” in 12th USENIX Conference on Operating Systems Design and Implementation (OSDI) (2016), pp. 265–283.

P. Llull, X. Liao, X. Yuan, J. Yang, D. Kittle, L. Carin, G. Sapiro, and D. J. Brady, “Coded aperture compressive temporal imaging,” Opt. Express 21, 10526–10545 (2013).

[Crossref]

M. Mardani, E. Gong, J. Y. Cheng, S. Vasanawala, G. Zaharchuk, M. Alley, N. Thakur, S. Han, W. Daly, J. M. Pauly, and L. Xing, “Deep generative adversarial networks for compressed sensing automates MRI,” arXiv:1706.00051 (2017).

A. M. Neto, L. Rittner, N. Leite, D. E. Zampieri, R. Lotufo, and A. Mendeleck, “Pearson’s correlation coefficient for discarding redundant information in real time autonomous navigation systems,” in IEEE Multi-Conference on Autonomous Systems and Control (MSC) (2007), pp. 426–431.

A. M. Neto, A. C. Victorino, I. Fantoni, D. E. Zampieri, J. V. Ferreira, and D. A. Lima, “Image processing using Pearson’s correlation coefficient: applications on autonomous robotics,” in 13th International Conference on Autonomous Robot Systems (Robotica) (2013), pp. 14–19.

L. Wan, M. Zeiler, S. Zhang, Y. LeCun, and R. Fergus, “Regularization of neural networks using DropConnect,” in 30th International Conference on Machine Learning (2013), Vol. 28.

T. Liu, K. de Haan, Y. Rivenson, Z. Wei, X. Zeng, Y. Zhang, and A. Ozcan, “Deep learning-based super-resolution in coherent imaging systems,” arXiv:1810.06611 (2018).

N. Dey, L. Blanc-Feraud, C. Zimmer, P. Roux, Z. Kam, J.-C. Olivo-Marin, and J. Zerubia, “Richardson-Lucy algorithm with total variation regularization for 3D confocal microscope deconvolution,” Microsc. Res. Tech. 69, 260–266 (2006).

[Crossref]

W. Zhang, L. Cao, D. J. Brady, H. Zhang, J. Cang, H. Zhang, and G. Jin, “Twin-image-free holography: a compressive sensing approach,” Phys. Rev. Lett. 121, 093902 (2018).

[Crossref]

W. Zhang, L. Cao, D. J. Brady, H. Zhang, J. Cang, H. Zhang, and G. Jin, “Twin-image-free holography: a compressive sensing approach,” Phys. Rev. Lett. 121, 093902 (2018).

[Crossref]

J. Pan, S. Liu, D. Sun, J. Zhang, Y. Liu, J. Ren, Z. Li, J. Tang, H. Lu, Y.-W. Tai, and M.-H. Yang, “Learning dual convolutional neural networks for low-level vision,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018).

X. Zhang, P. Shen, L. Luo, L. Zhang, and J. Song, “Enhancement and noise reduction of very low light level images,” in International Conference on Pattern Recognition (2012), pp. 2034–2037.

R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang, “The unreasonable effectiveness of deep features as a perceptual metric,” arXiv:1801.03924 (2018).

L. Wan, M. Zeiler, S. Zhang, Y. LeCun, and R. Fergus, “Regularization of neural networks using DropConnect,” in 30th International Conference on Machine Learning (2013), Vol. 28.

W. Zhang, L. Cao, D. J. Brady, H. Zhang, J. Cang, H. Zhang, and G. Jin, “Twin-image-free holography: a compressive sensing approach,” Phys. Rev. Lett. 121, 093902 (2018).

[Crossref]

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in IEEE Conference on Computer Vision and Pattern Recognition (2016), pp. 770–778.

X. Zhang, P. Shen, L. Luo, L. Zhang, and J. Song, “Enhancement and noise reduction of very low light level images,” in International Conference on Pattern Recognition (2012), pp. 2034–2037.

Y. Rivenson, Y. Zhang, H. Gunaydin, D. Teng, and A. Ozcan, “Phase recovery and holographic image reconstruction using deep learning in neural networks,” Light Sci. Appl. 7, 17141 (2018).

[Crossref]

Y. Wu, Y. Rivenson, Y. Zhang, Z. Wei, H. Gunaydin, X. Lin, and A. Ozcan, “Extended depth-of-field in holographic image reconstruction using deep learning based auto-focusing and phase-recovery,” Optica 5, 704–710 (2018).

[Crossref]

Y. Rivenson, Z. Gorocs, H. Gunaydin, Y. Zhang, H. Wang, and A. Ozcan, “Deep learning microscopy,” Optica 4, 1437–1443 (2017).

[Crossref]

Y. Zhang, W. Jiang, L. Tian, L. Waller, and Q. Dai, “Self-learning based Fourier ptychographic microscopy,” Opt. Express 23, 18471–18486 (2015).

[Crossref]

T. Liu, K. de Haan, Y. Rivenson, Z. Wei, X. Zeng, Y. Zhang, and A. Ozcan, “Deep learning-based super-resolution in coherent imaging systems,” arXiv:1810.06611 (2018).

C. Zhao, W. Gong, M. Chen, E. Li, H. Wang, W. Xu, and S. Han, “Ghost imaging lidar via sparsity constraints,” Appl. Phys. Lett. 101, 141123 (2012).

[Crossref]

A. Kadambi, H. Zhao, B. Shi, and R. Raskar, “Occluded imaging with time-of-flight sensors,” ACM Trans. Graph. 35, 1–12 (2016).

[Crossref]

S. Jiang, K. Guo, J. Liao, and G. Zheng, “Solving Fourier ptychographic imaging problems via neural network modeling and TensorFlow,” Biomed. Opt. Express 9, 3306–3319 (2018).

[Crossref]

G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics 7, 739–745 (2013).

[Crossref]

M. Lyu, H. Wang, G. Li, S. Zheng, and G. Situ, “Learning-based lensless imaging through optically thick scattering media,” Adv. Photon. 1, 036002 (2019).

[Crossref]

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mane, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viegas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “Tensorflow: large-scale machine learning on heterogeneous distributed systems,” in 12th USENIX Conference on Operating Systems Design and Implementation (OSDI) (2016), pp. 265–283.

B. Zhu, J. Z. Liu, S. F. Cauley, B. R. Rosen, and M. S. Rosen, “Image reconstruction by domain-transform manifold learning,” Nature 555, 487–492 (2018).

[Crossref]

J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image translation using cycle-consistent adversarial networks,” in IEEE International Conference on Computer Vision (ICCV) (2017), pp. 2223–2232.

S. Wang, Z. Su, L. Ying, X. Peng, S. Zhu, F. Liang, D. Feng, and D. Liang, “Accelerating magnetic resonance imaging via deep learning,” in IEEE 13th International Symposium on Biomedical Imaging (ISBI) (2016), pp. 514–517.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3, 793–796 (2006).

[Crossref]

N. Dey, L. Blanc-Feraud, C. Zimmer, P. Roux, Z. Kam, J.-C. Olivo-Marin, and J. Zerubia, “Richardson-Lucy algorithm with total variation regularization for 3D confocal microscope deconvolution,” Microsc. Res. Tech. 69, 260–266 (2006).

[Crossref]

K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” in ICLR (2015), p. 66.

S. W. Hasinoff, D. Sharlet, R. Geiss, A. Adams, J. T. Barron, F. Kainz, J. Chen, and M. Levoy, “Burst photography for high dynamic range and low-light imaging on mobile cameras,” ACM Trans. Graph. 35, 192 (2016).

[Crossref]

A. Kadambi, H. Zhao, B. Shi, and R. Raskar, “Occluded imaging with time-of-flight sensors,” ACM Trans. Graph. 35, 1–12 (2016).

[Crossref]

B. I. Erkmen and J. H. Shapiro, “Ghost imaging: from quantum to classical to computational,” Adv. Opt. Photon. 2, 405–450 (2010).

[Crossref]

J. Mait, G. W. Euliss, and R. A. Athale, “Computational imaging,” Adv. Opt. Photon. 10, 409–483 (2018).

[Crossref]

D. J. Brady, A. Mrozack, K. MacCabe, and P. Llull, “Compressive tomography,” Adv. Opt. Photon. 7, 756–813 (2015).

[Crossref]

M. Lyu, H. Wang, G. Li, S. Zheng, and G. Situ, “Learning-based lensless imaging through optically thick scattering media,” Adv. Photon. 1, 036002 (2019).

[Crossref]

J. L. Rodgers and W. A. Nicewander, “Thirteen ways to look at the correlation coefficient,” Am. Statist. 42, 59–66 (1988).

[Crossref]

P.-T. de Boer, D. P. Kroese, S. Mannor, and R. Rubinstein, “A tutorial on the cross-entropy method,” Ann. Oper. Res. 134, 19–67 (2005).

[Crossref]

T. Hofmann, B. Scholkoff, and A. J. Smola, “Kernel methods in machine learning,” Ann. Statist. 36, 1171–1220 (2008).

[Crossref]

J. W. Goodman and R. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77–79 (1967).

[Crossref]

O. Katz, Y. Bromberg, and Y. Silberberg, “Compressive ghost imaging,” Appl. Phys. Lett. 95, 131110 (2009).

[Crossref]

C. Zhao, W. Gong, M. Chen, E. Li, H. Wang, W. Xu, and S. Han, “Ghost imaging lidar via sparsity constraints,” Appl. Phys. Lett. 101, 141123 (2012).

[Crossref]

M. A. Aizerman, E. M. Braverman, and L. I. Rozonoer, “Theoretical foundations of the potential function method in pattern recognition learning,” Autom. Remote Control 25, 917–936 (1964).

D. Slepian, “Prolate spheroidal wave functions, Fourier analysis, and uncertainty—V: the discrete case,” Bell Syst. Tech. J. 57, 1371–1430(1978).

[Crossref]

T. Poggio, “On optimal nonlinear associative recall,” Biol. Cybern. 19, 201–209 (1975).

[Crossref]

S. Jiang, K. Guo, J. Liao, and G. Zheng, “Solving Fourier ptychographic imaging problems via neural network modeling and TensorFlow,” Biomed. Opt. Express 9, 3306–3319 (2018).

[Crossref]

L. Tian, X. Li, K. Ramchandran, and L. Waller, “Multiplexed coded illumination for Fourier ptychography with an LED array microscope,” Biomed. Opt. Express 5, 2376–2389 (2014).

[Crossref]

S. T. Hess, T. P. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91, 4258–4272 (2006).

[Crossref]

P. A. Santi, S. B. Johnson, M. Hillenbrand, P. Z. GrandPre, T. J. Glass, and J. R. Leger, “Thin-sheet laser imaging microscopy for optical sectioning of thick tissues,” Biotechniques 46, 287–294 (2009).

[Crossref]

D. L. Donoho and I. M. Johnstone, “Ideal denoising in an orthonormal basis chosen from a library of bases,” C. R. Acad. Sci. A319, 1317–1322 (1994).

S. Agmon, “The relaxation method for linear inequalities,” Can. J. Math. 6, 382–392 (1954).

[Crossref]

R. Heintzmann and T. Huser, “Super-resolution structured illumination microscopy,” Chem. Rev. 117, 13890–13908 (2017).

[Crossref]

E. Candès, J. Romberg, and T. Tao, “Stable signal recovery from incomplete and inaccurate measurements,” Commun. Pure Appl. Math. 59, 1207–1223 (2006).

[Crossref]

I. Daubechies, M. Defrise, and C. D. Mol, “An iterative thresholding algorithm for linear inverse problems with a sparsity constraint,” Commun. Pure Appl. Math. 57, 1413–1457 (2004).

[Crossref]

A. Loza, D. R. Bull, P. R. Hill, and A. M. Achim, “Automatic contrast enhancement of low-light images based on local statistics of wavelet coefficients,” Digital Signal Process. 23, 1856–1866 (2013).

[Crossref]

A. N. Tikhonov, “On the solution of ill-posed problems and the method of regularization,” Dokl. Akad. Nauk SSSR 151, 501–504 (1963).

A. N. Tikhonov, “On the regularization of ill-posed problems,” Dokl. Akad. Nauk SSSR 153, 49–52 (1963).

R. Y. Rubinstein, “Optimization of computer simulation models with rare events,” Eur. J. Oper. Res. 99, 89–112 (1997).

[Crossref]

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization and statistical learning via the alternating direction method of multipliers,” Found. Trends Mach. Learn. 3, 1–122 (2011).

[Crossref]

Y. LeCun, L. D. Jackel, B. Boser, J. S. Denker, H. P. Graf, I. Guyon, D. Henderson, R. E. Howard, and W. Hubbard, “Handwritten digit recognition: applications of neural network chips and automatic learning,” IEEE Commun. Mag. 27(11), 41–46 (1989).

[Crossref]

Y.-J. Jo, H. Cho, S. Y. Lee, G. Choi, G. Kim, H.-S. Min, and Y.-K. Park, “Quantitative phase imaging and artificial intelligence: a review,” IEEE J. Sel. Top. Quantum Electron. 25, 6800914 (2019).

[Crossref]

M. T. McCann, K. H. Jin, and M. Unser, “Convolutional neural networks for inverse problems in imaging,” IEEE Signal Process. Mag. 34(6), 85–95 (2017).

[Crossref]

A. Lucas, M. Iliadis, R. Molina, and A. K. Katsaggelos, “Using deep neural networks for inverse problems in imaging,” IEEE Signal Process. Mag. 35(1), 20–36 (2018).

[Crossref]

G. R. Arce, D. J. Brady, L. Carin, H. Arguello, and D. S. Kittle, “Compressive coded aperture spectral imaging,” IEEE Signal Process. Mag. 31(1), 105–115 (2014).

A. Papoulis and M. S. Bertran, “Digital filtering and prolate functions,” IEEE Trans. Circuit Theory 19, 674–681 (1972).

[Crossref]

A. M. Eskicioglu and P. S. Fisher, “Image quality measures and their performance,” IEEE Trans. Commun. 43, 2959–2965 (1995).

[Crossref]

K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image denoising by sparse 3-d transform-domain collaborative filtering,” IEEE Trans. Image Proc. 16, 2080–2095 (2007).

[Crossref]

M. A. T. Figueiredo and R. Nowak, “An EM algorithm for wavelet-based image restoration,” IEEE Trans. Image Proc. 12, 906–916 (2003).

[Crossref]

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. Image Proc. 13, 600–612 (2004).

[Crossref]

J. Yang, J. Wright, T. S. Huang, and Y. Ma, “Image super-resolution via sparse representation,” IEEE Trans. Image Proc. 19, 2861–2873 (2010).

[Crossref]

J. Yang, Z. Wang, Z. Lin, S. Cohen, and T. Huang, “Coupled dictionary training for image super-resolution,” IEEE Trans. Image Proc. 21, 3467–3478 (2012).

[Crossref]

J. M. Bioucas-Dias and M. A. Figueiredo, “A new twist: two-step iterative shrinkage/thresholding algorithms for image restoration,” IEEE Trans. Image Process. 16, 2992–3004 (2007).

[Crossref]

K. H. Jin, M. T. McCann, E. Froustey, and M. Unser, “Deep convolutional neural network for inverse problems in imaging,” IEEE Trans. Image Process. 26, 4509–4522 (2017).

[Crossref]

E. P. Simoncelli, W. T. Freeman, E. H. Adelson, and D. J. Heeger, “Shiftable multi-scale transforms,” IEEE Trans. Inf. Theory 38, 587–607 (1992).

[Crossref]

Y. Abu-Mostafa, “The complexity of information extraction,” IEEE Trans. Inf. Theory 32, 513–525 (1986).

[Crossref]

E. Candès and T. Tao, “Near optimal signal recovery from random projections: universal encoding strategies?” IEEE Trans. Inform. Theory 52, 5406–5425 (2006).

[Crossref]

E. Candès and T. Tao, “Decoding by linear programming,” IEEE Trans. Inform. Theory 51, 4203–4215 (2005).

[Crossref]

E. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: exact signal reconstruction from highly incomplete Fourier information,” IEEE Trans. Inform. Theory 52, 489–509 (2006).

[Crossref]

D. L. Donoho, “Compressed sensing,” IEEE Trans. Inform. Theory 52, 1289–1306 (2006).

[Crossref]

C. Bao, H. Ji, Y. Quan, and Z. Shen, “Dictionary learning and sparse coding: algorithms and convergence analysis,” IEEE Trans. Patt. Anal. Mach. Intel. 38, 1356–1369 (2016).

[Crossref]

C. Dong, C. Loy, K. He, and X. Tang, “Image super-resolution using deep convolutional networks,” IEEE Trans. Pattern Anal. Mach. Intel. 38, 295–307 (2015).

[Crossref]

T. Kenig, Z. Kam, and A. Feuer, “Blind image deconvolution using machine learning for three-dimensional microscopy,” IEEE Trans. Pattern Anal. Mach. Intel. 32, 2191–2204 (2010).

[Crossref]

P. Perona and J. Malik, “Scale-space and edge detection using anisotropic diffusion,” IEEE Trans. Pattern Anal. Mach. Intell. 12, 629–639 (1990).

[Crossref]

M. Aharon, M. Elad, and A. Bruckstein, “K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation,” IEEE Trans. Signal Process. 54, 4311–4322 (2006).

[Crossref]

A. N. Kolmogorov, “Three approaches to the quantitative definition of information,” Int. J. Comput. Math. 2, 157–168 (1968).

[Crossref]

O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, and M. Bernstein, “ImageNet large scale visual recognition challenge,” Int. J. Comput. Vis. 115, 211–252(2015).

[Crossref]

A. Kirmani, T. Hutchinson, J. Davis, and R. Raskar, “Looking around the corner using ultrafast transient imaging,” Int. J. Comput. Vision 95, 13–28 (2011).

[Crossref]

Y. Li and S. Osher, “Coordinate descent optimization for l11 minimization with application to compressed sensing; a greedy algorithm,” Inverse Probl. Imaging 3, 487–503 (2009).

[Crossref]

J. Cai, B. Dong, S. Osher, and Z. Shen, “Image restoration: total variation, wavelet frames, and beyond,” J. Am. Math. Soc. 25, 1033–1089 (2012).

[Crossref]

S. Santos, K. K. Chu, D. Lim, N. Bozinovic, T. N. Ford, C. Hourtoule, A. Bartoo, S. K. Singh, and J. Mertz, “Optically sectioned fluorescence endomicroscopy with hybrid-illumination imaging through a flexible fiber bundle,” J. Biomed. Opt. 14, 030502 (2009).

[Crossref]

J. Mertz and J. Kim, “Scanning light-sheet microscopy in the whole mouse brain with Hilo background rejection,” J. Biomed. Opt. 15, 016027 (2010).

[Crossref]

Y. Rivenson, A. Stern, and B. Javidi, “Compressive Fresnel holography,” J. Disp. Technol. 6, 506–509 (2010).

[Crossref]

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout: a simple way to prevent neural networks from overfitting,” J. Mach. Learn. Res. 15, 1929–1958 (2014).

M. G. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198, 82–87 (2000).

[Crossref]

C. J. R. Sheppard and C. J. Cogswell, “Three-dimensional image formation in confocal microscopy,” J. Microsc. 159, 179–194(1990).

[Crossref]

F. Gori and G. Guattari, “Degrees of freedom of images from point-like element pupils,” J. Opt. Soc. Am. 64, 453–458 (1974).

[Crossref]

M. S. Lewicki and B. A. Olshausen, “A probabilistic framework for the adaptation and comparison of image codes,” J. Opt. Soc. Am. 16, 1587–1601 (1999).

[Crossref]

M. R. Teague, “Deterministic phase retrieval: a Green’s function solution,” J. Opt. Soc. Am. 73, 1434–1441 (1983).

[Crossref]

J. Van Roey, J. Van der Donk, and P. E. Lagasse, “Beam propagation method: analysis and assessment,” J. Opt. Soc. Am. 71, 803–810 (1981).

[Crossref]

J. Fienup and C. Wackerman, “Phase-retrieval stagnation problems and solutions,” J. Opt. Soc. Am. A 3, 1897–1907 (1986).

[Crossref]

H. H. Bauschke, P. L. Combettes, and D. R. Luke, “Phase retrieval, error reduction algorithm, and fienup variants: a view from convex optimization,” J. Opt. Soc. Am. A 19, 1334–1345 (2002).

[Crossref]

V. Elser, “Phase retrieval by iterated projections,” J. Opt. Soc. Am. A 20, 40–55 (2003).

[Crossref]

S. L. Friedman and J. M. Rodenburg, “Optical demonstration of a new principle of far-field microscopy,” J. Phys. D 25, 147–154 (1992).

[Crossref]

R. Tibshirani, “Regression shrinkage and selection via the lasso,” J. R. Stat. Soc. Ser. B 58, 267–288 (1996).

M. R. Hestenes and E. Stiefel, “Method of conjugate gradients for solving linear systems,” J. Res. Natl. Bur. Stand. 49, 409–436 (1952).

[Crossref]

Y. Rivenson, Y. Zhang, H. Gunaydin, D. Teng, and A. Ozcan, “Phase recovery and holographic image reconstruction using deep learning in neural networks,” Light Sci. Appl. 7, 17141 (2018).

[Crossref]

R. Penrose, “A generalized inverse for matrices,” Math. Proc. Cambridge Philos. Soc. 51, 406–413 (1955).

[Crossref]

R. Penrose, “On best approximate solutions of linear matrix equations,” Math. Proc. Cambridge Philos. Soc. 52, 17–19 (1956).

[Crossref]

J. Eckstein and D. P. Bertsekas, “On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators,” Math. Program. 55, 293–318 (1992).

[Crossref]

R. Y. Rubinstein, “The cross-entropy method for combinatorial and continuous optimization,” Methodol. Comput. Appl. Probab. 1, 127–190 (1999).

[Crossref]

N. Dey, L. Blanc-Feraud, C. Zimmer, P. Roux, Z. Kam, J.-C. Olivo-Marin, and J. Zerubia, “Richardson-Lucy algorithm with total variation regularization for 3D confocal microscope deconvolution,” Microsc. Res. Tech. 69, 260–266 (2006).

[Crossref]

P. A. Morris, R. S. Aspden, J. E. Bell, R. W. Boyd, and M. J. Padgett, “Imaging with a small number of photons,” Nat. Commun. 6, 5913 (2015).

[Crossref]

A. Velten, “Recovering three-dimensional shape around a corner using ultrafast time-of-flight imaging,” Nat. Commun. 3, 745 (2012).

[Crossref]

S. Popoff, G. Lerosey, M. Fink, A. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1, 81 (2010).

[Crossref]

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3, 793–796 (2006).

[Crossref]

J. Mertz, “Optical sectioning microscopy with planar or structured illumination,” Nat. Methods 8, 811–819 (2011).

[Crossref]

G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics 7, 739–745 (2013).

[Crossref]

O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8, 784–790 (2014).

[Crossref]

G. Gariepy, F. Tonolini, R. Henderson, J. Leach, and D. Faccio, “Detection and tracking of moving objects hidden from view,” Nat. Photonics 10, 23–26 (2016).

[Crossref]

O. Katz, E. Small, and Y. Silberberg, “Looking around corners and through thin turbid layers in real time with scattered incoherent light,” Nat. Photonics 6, 549–553 (2012).

[Crossref]

F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David, “Phase retrieval and differential phase-contrast imaging with low-brilliance x-ray sources,” Nat. Phys. 2, 258–261 (2006).

[Crossref]

R. M. Dickson, A. B. Cubitt, R. Y. Tsien, and W. E. Moerner, “On/off blinking and switching behaviour of single molecules of green fluorescent protein,” Nature 388, 355–358 (1997).

[Crossref]

M. O’Toole, D. B. Lindell, and G. Wetzstein, “Confocal non-line-of-sight imaging based on the light-cone transform,” Nature 555, 338–341 (2018).

[Crossref]

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232–234 (2012).

[Crossref]

B. Zhu, J. Z. Liu, S. F. Cauley, B. R. Rosen, and M. S. Rosen, “Image reconstruction by domain-transform manifold learning,” Nature 555, 487–492 (2018).

[Crossref]

Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature 521, 436–444 (2015).

[Crossref]

D. Rumelhart, G. Hinton, and R. Williams, “Learning representations by back-propagating errors,” Nature 323, 533–536 (1986).

[Crossref]

B. A. Olshausen and D. J. Field, “Emergence of simple-cell receptive field properties by learning a sparse code for natural images,” Nature 381, 607–609 (1996).

[Crossref]

B. A. Olshausen and D. J. Field, “Natural image statistics and efficient coding,” Netw. Comput. Neural Syst. 7, 333–339 (1996).

[Crossref]

M. S. Lewicki and T. J. Sejnowski, “Learning overcomplete representations,” Neural Comput. 12, 337–365 (2000).

[Crossref]

G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm for deep belief nets,” Neural Comput. 18, 1527–1554 (2006).

[Crossref]

S. S. Keerthi, S. K. Shevade, C. Bhattacharya, and K. R. K. Murty, “Improvements to Platt’s SMO algorithm for SVM classifier design,” Neural Comput. 13, 637–649 (2001).

[Crossref]

J. Schmidhuber, “Deep learning in neural networks: an overview,” Neural Netw. 61, 85–117 (2015).

[Crossref]

W. Lukosz and M. Marchand, “Optischen Abbidung unter Uberschreitung der Beugungsbedingten Aufl osungsgrenze,” Opt. Acta 10, 241–255 (1963).

[Crossref]

C. J. R. Sheppard and A. Choudhury, “Image formation in the scanning microscope,” Opt. Acta 24, 1051–1073 (1977).

[Crossref]

A. L. Cohen, “Anti-pinhole imaging,” Opt. Acta 29, 63–67 (1982).

[Crossref]

N. Streibl, “Phase imaging by the transport-equation of intensity,” Opt. Commun. 49, 6–10 (1984).

[Crossref]

T. Nguyen, V. Bui, and G. Nehmetallah, “Computational optical tomography using 3-D deep convolutional neural networks,” Opt. Eng. 57, 043111 (2018).

[Crossref]

T. Nguyen, V. Bui, V. Lam, C. B. Raub, L.-C. Chang, and G. Nehmetallah, “Automatic phase aberration compensation for digital holographic microscopy based on deep learning background detection,” Opt. Express 25, 15043–15057 (2017).

[Crossref]

T. Nguyen, Y. Xue, Y. Li, L. Tian, and G. Nehmetallah, “Deep learning approach for Fourier ptychography microscopy,” Opt. Express 26, 26470–26484 (2018).

[Crossref]

H. Wang, M. Lyu, and G. Situ, “Eholonet: a learning-based point-to-point approach for in-line digital holographic reconstruction,” Opt. Express 26, 22603–22614 (2018).

[Crossref]

J. Cheng, “Ghost imaging through turbulent atmosphere,” Opt. Express 17, 7916–7921 (2009).

[Crossref]

G. Satat, M. Tancik, O. Gupta, B. Heshmat, and R. Raskar, “Object classification through scattering media with deep learning on time resolved measurement,” Opt. Express 25, 17466–17479 (2017).

[Crossref]

S. Chan, R. E. Warburton, G. Gariepy, J. Leach, and D. Faccio, “Non-line-of-sight tracking of people at long range,” Opt. Express 25, 10109–10117 (2017).

[Crossref]

M. Buttafava, J. Zeman, A. Tosi, K. Eliceiri, and A. Velten, “Non-line-of-sight imaging using a time-gated single photon avalanche diode,” Opt. Express 23, 20997–21011 (2015).

[Crossref]

O. Gupta, T. Willwacher, A. Velten, A. Veeraraghavan, and R. Raskar, “Reconstruction of hidden 3d shapes using diffuse reflections,” Opt. Express 20, 19096–19108 (2012).

[Crossref]

A. Porat, E. R. Andresen, H. Rigneault, D. Oron, S. Gigan, and O. Katz, “Widefield lensless imaging through a fiber bundle via speckle correlations,” Opt. Express 24, 16835–16855 (2016).

[Crossref]

A. Drémeau, A. Liutkus, D. Martina, O. Katz, C. Schülke, F. Krzakala, S. Gigan, and L. Daudet, “Reference-less measurement of the transmission matrix of a highly scattering material using a DMD and phase retrieval techniques,” Opt. Express 23, 11898–11911 (2015).

[Crossref]

S. C. Mayo, T. J. Davis, T. E. Gureyev, P. R. Miller, D. Paganin, A. Pogany, A. W. Stevenson, and S. W. Wilkins, “X-ray phase-contrast microscopy and microtomography,” Opt. Express 11, 2289–2302 (2003).

[Crossref]

R. Horstmeyer, “A phase space model for Fourier ptychographic microscopy,” Opt. Express 22, 338–358 (2014).

[Crossref]

D. J. Brady, K. Choi, D. L. Marks, R. Horisaki, and S. Lim, “Compressive holography,” Opt. Express 17, 13040–13049 (2009).

[Crossref]

A. Pan, L. Xu, J. C. Petruccelli, R. Gupta, B. Singh, and G. Barbastathis, “Contrast enhancement in x-ray phase contrast tomography,” Opt. Express 22, 18020–18026 (2014).

[Crossref]

Y. Zhang, W. Jiang, L. Tian, L. Waller, and Q. Dai, “Self-learning based Fourier ptychographic microscopy,” Opt. Express 23, 18471–18486 (2015).

[Crossref]

J. Lee and G. Barbastathis, “Denoised Wigner distribution deconvolution via low-rank matrix completion,” Opt. Express 24, 20069–20079 (2016).

[Crossref]

R. Horisaki, R. Takagi, and J. Tanida, “Learning-based imaging through scattering media,” Opt. Express 24, 13738–13743 (2016).

[Crossref]

A. Yevick, M. Hannel, and D. G. Grier, “Machine-learning approach to holographic particle characterization,” Opt. Express 22, 26884–26890 (2014).

[Crossref]

M. D. Hannel, A. Abdulali, M. O’Brien, and D. G. Grier, “Machine-learning techniques for fast and accurate feature localization of holograms of colloidal particles,” Opt. Express 26, 15221–15231 (2018).

[Crossref]

E. Fuchs, J. S. Jaffe, R. A. Long, and F. Azam, “Thin laser light sheet microscope for microbial oceanography,” Opt. Express 10, 145–154 (2002).

[Crossref]

Y. Yunhui, A. Shanker, L. Tian, L. Waller, and G. Barbastathis, “Low-noise phase imaging by hybrid uniform and structured illumination transport of intensity equation,” Opt. Express 22, 26696–26711(2014).

[Crossref]

M. Hassan, J. A. Greenberg, I. Odinaka, and D. J. Brady, “Snapshot fan beam coded aperture coherent scatter tomography,” Opt. Express 24, 18277–18289 (2016).

[Crossref]

P. Llull, X. Liao, X. Yuan, J. Yang, D. Kittle, L. Carin, G. Sapiro, and D. J. Brady, “Coded aperture compressive temporal imaging,” Opt. Express 21, 10526–10545 (2013).

[Crossref]

Y. Liu, L. Tian, C.-H. Hsieh, and G. Barbastathis, “Compressive holographic two-dimensional localization with 1/302 subpixel accuracy,” Opt. Express 22, 9774–9782 (2014).

[Crossref]

S. Li and G. Barbastathis, “Spectral pre-modulation of training examples enhances the spatial resolution of the phase extraction neural network (PhENN),” Opt. Express 26, 29340–29352 (2018).

[Crossref]

L. Tian, J. C. Petruccelli, Q. Miao, H. Kudrolli, V. Nagarkar, and G. Barbastathis, “Compressive x-ray phase tomography based on the transport of intensity equation,” Opt. Lett. 38, 3418–3421 (2013).

[Crossref]

Y. Liu, L. Tian, J. W. Lee, H. Y. H. Huang, M. S. Triantafyllou, and G. Barbastathis, “Scanning-free compressive holography for object localization with subpixel accuracy,” Opt. Lett. 37, 3357–3359(2012).

[Crossref]

D. Lim, K. K. Chu, and J. Mertz, “Wide-field fluorescence sectioning with hybrid speckle and uniform-illumination microscopy,” Opt. Lett. 33, 1819–1821 (2008).

[Crossref]

L. Tian, J. C. Petruccelli, and G. Barbastathis, “Nonlinear diffusion regularization for transport of intensity phase imaging,” Opt. Lett. 37, 4131–4133 (2012).

[Crossref]

M. A. A. Neil, R. Juskaitis, and T. Wilson, “Method of obtaining optical sectioning by using structured light in a conventional microscope,” Opt. Lett. 22, 1905–1907 (1997).

[Crossref]

X. Ou, R. Horstmeyer, and C. Yang, “Quantitative phase imaging via Fourier ptychographic microscopy,” Opt. Lett. 38, 4845–4848 (2013).

[Crossref]

P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30, 468–470 (2005).

[Crossref]

G. Popescu, T. Ikeda, R. R. Dasari, and M. S. Feld, “Diffraction phase microscopy for quantifying cell structure and dynamics,” Opt. Lett. 31, 775–777 (2006).

[Crossref]

G. R. Ayers and J. C. Dainty, “Iterative blind deconvolution method and its applications,” Opt. Lett. 13, 547–549 (1988).

[Crossref]

J. R. Fienup, “Reconstruction of an object from the modulus of its Fourier transform,” Opt. Lett. 3, 27–29 (1978).

[Crossref]

S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19, 780–782 (1994).

[Crossref]

E. Betzig, “Proposed method for molecular optical imaging,” Opt. Lett. 20, 237–239 (1995).

[Crossref]

N. Stasio, C. Moser, and D. Psaltis, “Calibration-free imaging through a multicore fiber using speckle scanning microscopy,” Opt. Lett. 41, 3078–3081 (2016).

[Crossref]

Y. Wu, Y. Rivenson, Y. Zhang, Z. Wei, H. Gunaydin, X. Lin, and A. Ozcan, “Extended depth-of-field in holographic image reconstruction using deep learning based auto-focusing and phase-recovery,” Optica 5, 704–710 (2018).

[Crossref]

L. Tian and L. Waller, “3D intensity and phase imaging from light field measurements in an LED array microscope,” Optica 2, 104–111 (2015).

[Crossref]

U. S. Kamilov, I. N. Papadopoulos, M. H. Shoreh, A. Goy, C. Vonesch, M. Unser, and D. Psaltis, “Learning approach to optical tomography,” Optica 2, 517–522 (2015).

[Crossref]

Y. Rivenson, Z. Gorocs, H. Gunaydin, Y. Zhang, H. Wang, and A. Ozcan, “Deep learning microscopy,” Optica 4, 1437–1443 (2017).

[Crossref]

E. Nehme, L. E. Weiss, T. Michaeli, and Y. Shechtman, “Deep-STORM: super-resolution single-molecule microscopy by deep learning,” Optica 5, 458–464 (2018).

[Crossref]

Y. Li, Y. Xue, and L. Tian, “Deep speckle correlation: a deep learning approach toward scalable imaging through scattering media,” Optica 5, 1181–1190 (2018).

[Crossref]

A. Sinha, J. Lee, S. Li, and G. Barbastathis, “Lensless computational imaging through deep learning,” Optica 4, 1117–1125 (2017).

[Crossref]

N. Borhani, E. Kakkava, C. Moser, and D. Psaltis, “Learning to see through multimode fibers,” Optica 5, 960–966 (2018).

[Crossref]

S. Li, M. Deng, J. Lee, A. Sinha, and G. Barbastathis, “Imaging through glass diffusers using densely connected convolutional networks,” Optica 5, 803–813 (2018).

[Crossref]

R. W. Gerchberg and W. O. Saxton, “Phase determination from image and diffraction plane pictures in electron-microscope,” Optik 34, 275–284 (1971).

R. W. Gerchberg and W. O. Saxton, “Practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik 35, 237–246 (1972).

L. Rayleigh, “Investigations in optics, with special reference to the spectroscope,” Philos. Mag. 8(49), 261–274 (1879).

[Crossref]

C. J. R. Sheppard and T. Wilson, “Fourier imaging of phase information in scanning and conventional microscopes,” Philos. Trans. R. Soc. London A295, 513–536 (1980).

[Crossref]

J. M. Rodenburg and R. H. T. Bates, “The theory of super-resolution electron microscopy via Wigner-distribution deconvolution,” Philos. Trans. R. Soc. London A 339, 521–553 (1992).

[Crossref]

B. I. Erkmen and J. H. Shapiro, “Unified theory of ghost imaging with Gaussian-state light,” Phys. Rev. A 77, 043809 (2008).

[Crossref]

R. Meyers, K. S. Deacon, and Y. Shih, “Ghost-imaging experiment by measuring reflected photons,” Phys. Rev. A 77, 041801 (2008).

[Crossref]

J. H. Shapiro, “Computational ghost imaging,” Phys. Rev. A 78, 061802 (2008).

[Crossref]

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429–R3432 (1995).

[Crossref]

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Correlated imaging, quantum and classical,” Phys. Rev. A 70, 013802 (2004).

[Crossref]

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Ghost imaging with thermal light: comparing entanglement and classical correlation,” Phys. Rev. Lett. 93, 093602 (2004).

[Crossref]

A. Valencia, G. Scarcelli, M. D’Angelo, and Y. H. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94, 063601 (2005).

[Crossref]

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94, 183602 (2005).

[Crossref]

A. Goy, K. Arthur, S. Li, and G. Barbastathis, “Low photon count phase retrieval using deep learning,” Phys. Rev. Lett. 121, 243902 (2018).

[Crossref]

S. Popoff, G. Lerosey, R. Carminati, M. Fink, A. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104, 100601 (2010).

[Crossref]

S. Feng, C. Kane, P. A. Lee, and A. D. Stone, “Correlations and fluctuations of coherent wave transmission through disordered media,” Phys. Rev. Lett. 61, 834–837 (1988).

[Crossref]

I. Freund, M. Rosenbluh, and S. Feng, “Memory effects in propagation of optical waves through disordered media,” Phys. Rev. Lett. 61, 2328–2331 (1988).

[Crossref]

W. E. Moerner and L. Kador, “Optical detection and spectroscopy of single molecules in a solid,” Phys. Rev. Lett. 62, 2535–2538(1989).

[Crossref]

W. Zhang, L. Cao, D. J. Brady, H. Zhang, J. Cang, H. Zhang, and G. Jin, “Twin-image-free holography: a compressive sensing approach,” Phys. Rev. Lett. 121, 093902 (2018).

[Crossref]

V. N. Vapnik, “Three fundamental concepts of the capacity of learning machines,” Physica A 200, 538–544 (1993).

[Crossref]

L. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise removal algorithms,” Physica D 60, 259–268 (1992).

[Crossref]

R. Rubinstein, A. M. Bruckstein, and M. Elad, “Dictionaries for sparse representation modeling,” Proc. IEEE 98, 1045–1057 (2010).

[Crossref]

T. G. Stockham, T. M. Cannon, and R. B. Ingebretsen, “Blind deconvolution through digital signal processing,” Proc. IEEE 63, 678–692 (1975).

[Crossref]

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Nat. Acad. Sci. USA 98, 11301–11305 (2001).

[Crossref]

D. L. Donoho, A. Maleki, and A. Montanari, “Message-passing algorithm for compressed sensing,” Proc. Nat. Acad. Sci. USA 106, 18914–18919 (2009).

[Crossref]

K. Pearson, “Contributions to the mathematical theory of evolution. Note on reproductive selection,” Proc. R. Soc. London 59, 300–305 (1896).

[Crossref]

R. Heintzmann and C. G. Cremer, “Laterally modulated excitation microscopy: improvement of resolution by using a diffraction grating,” Proc. SPIE 3568, 185–196 (1999).

[Crossref]

Z. Ren, Z. Xu, and E. Y. Lam, “Autofocusing in digital holography using deep learning,” Proc. SPIE 10499, 104991V (2018).

[Crossref]

F. Rosenblatt, “The perceptron: a probabilistic model for information storage and organization in the brain,” Psychol. Rev. 65, 386–408 (1958).

[Crossref]

M. J. Cieslak, K. A. A. Gamage, and R. Glover, “Coded-aperture imaging systems: past, present and future development–a review,” Radiat. Meas. 92, 59–71 (2016).

[Crossref]

H. D. Block, “The perceptron: a model for brain functioning,” Rev. Mod. Phys. 34, 123–135 (1962).

[Crossref]

J. Yoon, Y.-J. Jo, M.-H. Kim, S. Y. Lee, S.-J. Kang, and Y. K. Park, “Identification of non-activated lymphocytes using three-dimensional refractive index tomography and machine learning,” Sci. Rep. 7, 6654 (2017).

[Crossref]

M. Lyu, W. Wang, H. Wang, H. Wang, G. Li, N. Chen, and G. Situ, “Deep-learning-based ghost imaging,” Sci. Rep. 7, 17865 (2017).

[Crossref]

J. Klein, C. Peters, J. Martin, M. Laurenzis, and M. B. Hullin, “Tracking objects outside the line of sight using 2D intensity images,” Sci. Rep. 6, 32491 (2016).

[Crossref]

P. Caramazza, A. Boccolini, D. Buschek, M. Hullin, C. F. Higham, R. Henderson, R. Murray-Smith, and D. Faccio, “Neural network identifcation of people hidden from view with a single-pixel, single-photon detector,” Sci. Rep. 8, 11945 (2018).

[Crossref]

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwarz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).

[Crossref]

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrot, and E. H. Steltzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305, 1007–1009 (2004).

[Crossref]

P. J. Keller, A. Schmidt, J. Wittbrot, and E. H. Steltzer, “Reconstruction of zebrafish early embryonic development by scanning light sheet microscopy,” Science 322, 1065–1069 (2008).

[Crossref]

A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding algorithm for linear inverse problems,” SIAM J. Imag. Sci. 2, 183–202 (2009).

[Crossref]

B. Delyon and A. Juditsky, “Accelerated stochastic approximation,” SIAM J. Optim. 3, 868–881 (1993).

[Crossref]

R. Chan, T. Chan, L. Shen, and Z. Shen, “Wavelet algorithms for high-resolution image reconstruction,” SIAM J. Sci. Comput. 24, 1408–1432 (2003).

[Crossref]

N. Wiener and E. Hopf, “Uber eine Klasse singulaerer Integralgeichungen,” Sitzungsber. Preuss. Akad. Math.-Phys. Kl. 31, 696–706 (1931).

[Crossref]

A. J. Smola and B. Schölkopf, “A tutorial on support vector regression,” Stat. Comput. 14, 199–222 (2004).

[Crossref]

V. N. Vapnik and A. Chervonenkis, “On the uniform convergence of relative frequencies of events to their probabilities,” Theory Prob. Appl. 16, 264–280 (1971).

[Crossref]

G. B. Airy, “On the diffraction of an object-glass with circular aperture,” Trans. Cambridge Philos. Soc. 5, 283–291 (1834).

M. Sarikaya, “Evolution of resolution in microscopy,” Ultramicroscopy 47, 1–14 (1992).

[Crossref]

A. M. Maiden and J. M. Rodenburg, “An improved ptychographical phase retrieval algorithm for diffractive imaging,” Ultramicroscopy 109, 1256–1262 (2009).

[Crossref]

P. Li, T. B. Edo, and J. M. Rodenburg, “Ptychographic inversion via wigner distribution deconvolution: noise suppression and probe design,” Ultramicroscopy 147, 106–113 (2014).

[Crossref]

B. C. McCallum and J. M. Rodenburg, “Two-dimensional demonstration of Wigner phase-retrieval microscopy in the STEM configuration,” Ultramicroscopy 45, 371–380 (1992).

[Crossref]

A. Van der Schaaf and J. H. van Hateren, “Modelling the power spectra of natural images: statistics and information,” Vision Res. 36, 2759–2770 (1996).

[Crossref]

B. A. Olshausen and D. J. Field, “Sparse coding with an overcomplete basis set: a strategy employed by V1?” Vision Res. 37, 3311–3325 (1997).

[Crossref]

M. Elad and M. Aharon, “Image denoising via learned dictionaries and sparse representation,” in IEEE Computer Society Conference on Computer Vision and Pattern Recognition (IEEE, 2006), Vol. 1, pp. 895–900.

J. Bect, L. Blanc-Feraud, G. Aubert, and A. Chambolle, “A l1-unified variational framework for image restoration,” in European Conference on Computer Vision (ECCV) (2004), Vol. 3024, pp. 1–13.

L. Bottou, “Online algorithms and stochastic approximations,” in Online Learning and Neural Networks, D. Saad, ed. (Cambridge University, 1998).

S. Ruder, “An overview of gradient descent optimization algorithms,” arXiv:1609.04747 (2017).

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mane, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viegas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “Tensorflow: large-scale machine learning on heterogeneous distributed systems,” in 12th USENIX Conference on Operating Systems Design and Implementation (OSDI) (2016), pp. 265–283.

LISA Lab, 2017, https://github.com/Theano/Theano .

Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarma, and T. Darrell, “Caffe: convolutional architecture for fast feature embedding,” in 22nd ACM International Conference on Multimedia (ACM, 2014), pp. 675–678.

“Microsoft cognitive toolkit,” https://github.com/Microsoft/cntk .

F. Chollet, “Keras: the Python deep learning library,” 2015, https://keras.io .

J. Hertz, A. Krogh, and R. G. Palmer, “Introduction to the theory of neural computation,” in Santa Fe Institute Studies in the Sciences of Complexity (Addison-Wesley, 1991).

C. M. Bishop, Neural Networks for Pattern Recognition (Clarendon, 1995).

R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification, 2nd ed. (Wiley, 2001).

C. M. Bishop, Pattern Recognition and Machine Learning (Springer, 2006).

K. P. Murphy, Machine Learning: A Probabilistic Perspective (MIT, 2012).

C. C. Aggarwal, Neural Networks and Deep Learning (Springer, 2018).

E. Charniak, Introduction to Deep Learning (MIT, 2018).

D. P. Kingma and J. Lei Ba, “Adam: a method for stochastic optimization,” in International Conference on Learning Representations (ICLR) (2015).

K. Gregor and Y. LeCun, “Learning fast approximations of sparse coding,” in 27th International Conference on International Conference on Machine Learning (ICML) (2010), pp. 399–406.

A. Mousavi, A. B. Patel, and R. G. Baraniuk, “A deep learning approach to structured signal recovery,” in 53rd Annual Allerton Conference on Communication, Control, and Computing (2015), pp. 1336–1343.

A. Mousavi and R. G. Baraniuk, “Learning to invert: signal recovery via deep convolutional networks,” in International Conference on Acoustics, Speech, and Signal Processing (ICASSP) (2017), pp. 2272–2276.

O. Ronneberger, P. Fischer, and T. Brox, “U-net: convolutional networks for biomedical image segmentation,” in International Conference on Medical Image Computing and Computer-Assisted Intervention (Springer, 2015), pp. 234–241.

K. Jarrett, K. Kavukcuoglu, M. A. Ranzato, and Y. LeCun, “What is the best multi-stage architecture for object recognition?” in IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2009), pp. 2146–2153.

V. Nair and G. E. Hinton, “Rectified linear units improve restricted Boltzmann machines,” in International Conference on Machine Learning (ICML) (2010), p. 432.

X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural networks,” in 14th International Conference on Artificial Intelligence and Statistics (2011), pp. 315–323.

M. Liu, T. Breuel, and J. Kautz, “Unsupervised image-to-image translation networks,” in Advances in Neural Information Processing Systems 30, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, eds. (Curran Associates, 2017), pp. 700–708.

T. Kim, M. Cha, H. Kim, J. K. Lee, and J. Kim, “Learning to discover cross-domain correlations with generative adversarial networks,” in 34th International Conference on Machine Learning (2017), Vol. 70, pp. 1857–1865.

J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image translation using cycle-consistent adversarial networks,” in IEEE International Conference on Computer Vision (ICCV) (2017), pp. 2223–2232.

I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning (MIT, 2016).

V. N. Vapnik, Estimation of Dependences based on Empirial Data (Springer-Verlag, 1982).

J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996).

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in IEEE Conference on Computer Vision and Pattern Recognition (2016), pp. 770–778.

E. K. Yen and R. G. Johnston, “The ineffectiveness of the correlation coefficient for image comparisons,” (Los Alamos National Laboratory, 1996).

A. M. Neto, L. Rittner, N. Leite, D. E. Zampieri, R. Lotufo, and A. Mendeleck, “Pearson’s correlation coefficient for discarding redundant information in real time autonomous navigation systems,” in IEEE Multi-Conference on Autonomous Systems and Control (MSC) (2007), pp. 426–431.

A. M. Neto, A. C. Victorino, I. Fantoni, D. E. Zampieri, J. V. Ferreira, and D. A. Lima, “Image processing using Pearson’s correlation coefficient: applications on autonomous robotics,” in 13th International Conference on Autonomous Robot Systems (Robotica) (2013), pp. 14–19.

R. Y. Rubinstein, “Combinatorial optimization, cross-entropy, ants, and rare events,” in Stochastic Optimization: Algorithms and Applications, S. Uryasev and P. M. Pardalos, eds. (Kluwer, 2001), pp. 304–358.

T. M. Cover and J. A. Thomas, Elements of Information Theory (Wiley, 1991).

L. Ljung and T. Söderström, Theory and Practice of Recursive Identification (MIT, 1983).

A. Benveniste, M. Metivier, and P. Priouret, Adaptive Algorithms and Stochastic Approximations (Springer-Verlag, 1990).

T. M. Cover and J. A. Thomas, Information Theory (Wiley, 1991), chap. 7, pp. 144–182.

L. Wan, M. Zeiler, S. Zhang, Y. LeCun, and R. Fergus, “Regularization of neural networks using DropConnect,” in 30th International Conference on Machine Learning (2013), Vol. 28.

R. M. Neal, Bayesian Learning for Neural Networks, Lecture Notes in Statistics (Springer-Verlag, 1996), Vol. 118.

Y. LeCun, “Generalization and network design strategies,” (University of Toronto, 1989).

G. E. Hinton, “Learning translation invariant recognition in massively parallel networks,” in PARLE Conference on Parallel Architectures and Languages Europe (Springer-Verlag, 1987), pp. 1–13.

M. C. Mozer and P. Smolensky, “Skeletonization: a technique for trimming the fat from a network via relevance assessment,” in Neural Information Processing Systems (NIPS) (1989), Vol. 1, pp. 107–115.

S. J. Hanson and L. Y. Pratt, “Comparing biases for minimal network construction with back-propagation,” in Neural Information Processing Systems (NIPS) (1989), Vol. 1, pp. 177–185.

G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Improving neural networks by preventing co-adaptation of feature detectors,” arXiv:1207.0580 (2012).

N. Wiener, Extrapolation, Interpolation, and Smoothing of Stationary Time Series (Wiley, 1949).

U. Grenander, General Pattern Theory: A Mathematical Study of General Structures (Clarendon, 1994).

M. L. Minsky, “Neural nets and the brain-model problem,” Ph.D. thesis (Princeton University, 1954).

M. Bertero and P. Boccacci, Introduction to Inverse Problems in Imaging (Institute of Physics, 1998).

D. J. Brady, Optical Imaging and Spectroscopy (Wiley, 2009).

R. Horstmeyer, R. Y. Chen, B. Kappes, and B. Judkewitz, “Convolutional neural networks that teach microscopes how to image,” arXiv:1709.07223 (2017).

M. L. Minsky and S. Papert, Perceptrons (MIT, 1969).

M. Minsky, “Microscopy apparatus,” U.S. patent3,013,467 (Dec19, 1961).

S. Wang, Z. Su, L. Ying, X. Peng, S. Zhu, F. Liang, D. Feng, and D. Liang, “Accelerating magnetic resonance imaging via deep learning,” in IEEE 13th International Symposium on Biomedical Imaging (ISBI) (2016), pp. 514–517.

Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle, “Greedy layer-wise training of deep networks,” in Neural Information Processing Systems (NIPS) (2006), Vol. 19, pp. 153–160.

D. Lee, J. Yoo, and J. C. Ye, “Deep residual learning for compressed sensing MRI,” in IEEE 14th International Symposium on Biomedical Imaging (ISBI) (2017), pp. 15–18.

M. W. Marcellin, M. J. Gormish, A. Bilgin, and M. P. Boliek, “An overview of JPEG-2000,” in Data Compression Conference (2000), pp. 523–541.

J. Weikert, “A review of nonlinear diffusion filtering,” in Scale-Space Theory in Computer Vision, B. ter Haar Romey, L. Florack, J. Koendrink, and M. Viergever, eds., Lecture Notes in Computer Science (Springer, 1997), pp. 3–38.

Y. C. Eldar and G. Kutyniok, Compressed Sensing: Theory and Applications (Cambridge University, 2012).

R. Coifman and D. L. Donoho, “Translation invariant denoising,” in Wavelets and Statistics, Lecture Notes in Statistics (Springer-Verlag, 1995), Vol. 103, pp. 120–150.

J. Pan, S. Liu, D. Sun, J. Zhang, Y. Liu, J. Ren, Z. Li, J. Tang, H. Lu, Y.-W. Tai, and M.-H. Yang, “Learning dual convolutional neural networks for low-level vision,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018).

M. Deng, S. Li, and G. Barbastathis, “Learning to synthesize: splitting and recombining low and high spatial frequencies for image recovery,” arXiv:1811.07945 (2018).

H. Malm, M. Oskarsson, E. Warrant, P. Clarberg, J. Hasselgren, and C. Lejdfors, “Adaptive enhancement and noise reduction in very low light-level video,” in International Conference on Computer Vision (ICCV) (2007), pp. 1631–1638.

X. Zhang, P. Shen, L. Luo, L. Zhang, and J. Song, “Enhancement and noise reduction of very low light level images,” in International Conference on Pattern Recognition (2012), pp. 2034–2037.

Y. Chen, W. Yu, and T. Peck, “On learning optimized reaction diffusion processes for effective image restoration,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2015), pp. 5261–5269.

T. Liu, K. de Haan, Y. Rivenson, Z. Wei, X. Zeng, Y. Zhang, and A. Ozcan, “Deep learning-based super-resolution in coherent imaging systems,” arXiv:1810.06611 (2018).

T. Pitkäaho, A. Manninen, and T. J. Naughton, “Performance of autofocus capability of deep convolutional neural networks in digital holographic microscopy,” in Digital Holography and Three-Dimensional Imaging (OSA, 2017), paper W2A.5.

T. Shimobaba, T. Kakue, and T. Ito, “Convolutional neural network-based regression for depth prediction in digital holography,” arXiv:1802.00664 (2018).

V. I. Tatarski, Wave Propagation in a Turbulent Medium (McGraw-Hill, 1961).

A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic Press1978; reissued by Oxford University Press and IEEE Press, 1997).

T. Plotz and S. Roth, “Benchmarking denoising algorithms with real photographs,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017), pp. 1586–1595.

T. Remez, O. Litany, R. Giryes, and A. M. Bronstein, “Deep convolutional denoising of low-light images,” arXiv:1701.01687v1 (2017).

“Caltech computer vision database,” http://www.vision.caltech.edu/archive.html .

V. N. Vapnik, The Nature of Statistical Learning Theory (Springer, 1995).

B. E. Boser, I. M. Guyon, and V. N. Vapnik, “A training algorithm for optimal margin classifiers,” in Annual Conference on Computational Learning Theory (ACM, 1992), pp. 144–152.

M. Lyu, H. Wang, G. Li, and G. Situ, “Exploit imaging through opaque wall via deep learning,” arXiv:1708.07881 (2017).

A. Torralba and W. T. Freeman, “Accidental pinhole and pinspeck cameras: revealing the scene outside the picture,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2012), pp. 374–381.

K. L. Bouman, “Turning corners into cameras: principles and methods,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017), pp. 2270–2278.

G. B. Huang, M. Ramesh, T. Berg, and E. Learned-Miller, “Labeled faces in the wild: a database for studying face recognition in unconstrained environments,” (University of Massachusetts, 2007).

C.-L. Liu, F. Yin, D.-H. Wang, and Q.-F. Wang, “CASIA online and offline Chinese handwriting databases,” in International Conference on Document Analysis and Recognition (IEEE Computer Society, 2011), pp. 37–41.

Y. LeCun, C. Cortes, and C. J. Burges, “MNIST database of handwritten digits,” AT&T Labs (2010), http://yann.lecun.com/exdb/mnist .

F. S. Samaria and A. C. Harter, “Parameterisation of a stochastic model for human face identification,” in 2nd IEEE Workshop on Applications of Computer Vision (IEEE, 1994), pp. 138–142.

A. Krizhevsky and G. Hinton, “Learning multiple layers of features from tiny images,” (University of Toronto, 2009).

A. Sinha, J. Lee, S. Li, and G. Barbastathis, “Lensless computational imaging through deep learning,” arXiv:1702.08516 (2017).

C.-Y. Yang, C. Ma, and M.-H. Yang, “Single-image super-resolution: a benchmark,” in European Conference on Computer Vision (ECCV)/Lecture Notes on Computer Science, D. Fleet, T. Pajdla, B. Schiele, and T. Tuytelaars, eds. (2014), Vol. 8692, pp. 372–386.

C. Dong, C. Loy, K. He, and X. Tang, “Learning a deep convolutional neural network for image super-resolution,” in European Conference on Computer Vision (ECCV)/Lecture Notes on Computer Science Part IV (2014), Vol. 8692, pp. 184–199.

N. Boyd, E. Jonas, H. P. Babcock, and B. Recht, “DeepLoco: fast 3D localization microscopy using neural networks,” bioRxiv.

[Crossref]

H. Wang, Y. Rivenson, Z. Wei, H. Gunaydin, L. Bentolila, and A. Ozcan, “Deep learning achieves super-resolution in fluorescence microscopy,” Nat. Methods (2018).

[Crossref]

T.-Y. Lin, P. Goyal, R. Girschik, K. He, and P. Dollár, “Focal loss for dense object detection,” in IEEE International Conference on Computer Vision (2017), pp. 2999–3007.

I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in Neural Information Processing Systems (NIPS) (2014), Vol. 27.

R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang, “The unreasonable effectiveness of deep features as a perceptual metric,” arXiv:1801.03924 (2018).

Q. Chen and V. Koltun, “Photographic image synthesis with cascaded refinement networks,” in International Conference on Computer Vision (ICCV) (2017), pp. 1511–1520.

C. Chen, Q. Chen, J. Xu, and V. Koltun, “Learning to see in the dark,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018), pp. 3291–3300.

J. Johnson, A. Alahi, and L. Fei-Fei, “Perceptual losses for real-time style transfer and super-resolution,” in European Conference on Computer Vision (ECCV)/Lecture Notes on Computer Science, B. Leide, J. Matas, N. Sebe, and M. Welling, eds. (2016), vol. 9906, pp. 694–711.

C. Ledig, L. Theis, F. Huczar, J. Caballero, A. Cunningham, A. Acosta, A. Aitken, A. Tejani, J. Totz, Z. Wang, and W. Shi, “Photo-realistic single image super-resolution using a generative adversarial network,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017), pp. 4681–4690.

K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” in ICLR (2015), p. 66.

A. Mahendran and A. Vebaldi, “Understanding deep image representations by inverting them,” in Conference on Computer Vision and Pattern Recognition (CVPR) (2015), pp. 5188–5196.

L. A. Gatys, A. S. Ecker, and M. Bethge, “A neural algorithm of artistic style,” arXiv:1508.06576 (2018).

M. Mardani, E. Gong, J. Y. Cheng, S. Vasanawala, G. Zaharchuk, M. Alley, N. Thakur, S. Han, W. Daly, J. M. Pauly, and L. Xing, “Deep generative adversarial networks for compressed sensing automates MRI,” arXiv:1706.00051 (2017).

M. Mardani, H. Monajemi, V. Papyan, S. Vasanawala, D. Donoho, and J. Pauly, “Recurrent generative residual networks for proximal learning and automated compressive image recovery,” arXiv:1711.10046 (2017).

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet: a large-scale hierarchical image database,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2009), pp. 248–255.

J. Caballero, C. Ledig, A. Aitken, A. Acosta, J. Totz, Z. Wang, and W. Shi, “Real-time video super-resolution with spatio-temporal networks and motion compensation,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017), pp. 4778–4787.

C. J. Schuler, H. Christopher Burger, S. Harmeling, and B. Scholkopf, “A machine learning approach for non-blind image deconvolution,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2013).

A. Levin, Y. Weiss, F. Durand, and W. T. Freeman, “Understanding and evaluating blind deconvolution algorithms,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2009).

J. Sun, W. Cao, Z. Xu, and J. Ponce, “Learning a convolutional neural network for non-uniform motion blur removal,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2015).