Abstract

With a new generation of quantum dot (QD) optical gain material comprising atom-like features, the fundamental spectral characteristics of laser emission have been improved significantly. We describe the spectral and power characteristics of continuous wave (CW) single-mode InAs/AlGaInAs/InP QD distributed feedback lasers operating at 1.5 μm. Linewidths as narrow as 60 kHz (30kHz±10kHz intrinsic linewidth) at 20°C, which broadens to only 280 kHz (80kHz±10kHz intrinsic linewidth) at 80°C, have been achieved. The laser exhibits high output powers of 58 mW at 20°C and 26 mW at 80°C with side mode suppression ratios exceeding 50 dB. These record values stem from high uniformity of the QDs and a large dot density. The linewidth was measured by two techniques that confirm each other: delayed self-heterodyne interferometry and optical frequency comb interferometry. A model fits the experimental results well and enables extraction of the bias and temperature dependent α parameter. At 20°C, α is less than 0.5 at threshold and increases to only 0.9 at 150 mA above threshold. The corresponding values at 80°C are 2 and 2.5. These results imply a great potential of QD lasers for the most demanding applications in terms of spectral purity, such as coherent optical communication systems and optical metrology.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Temperature stability of static and dynamic properties of 1.55 µm quantum dot lasers

A. Abdollahinia, S. Banyoudeh, A. Rippien, F. Schnabel, O. Eyal, I. Cestier, I. Kalifa, E. Mentovich, G. Eisenstein, and J.P. Reithmaier
Opt. Express 26(5) 6056-6066 (2018)

High performance InAs/InP quantum dot 34.462-GHz C-band coherent comb laser module

Z. G. Lu, J. R. Liu, C. Y. Song, J. Weber, Y. Mao, S. D. Chang, H. P. Ding, P. J. Poole, P. J. Barrios, D. Poitras, S. Janz, and M. O’Sullivan
Opt. Express 26(2) 2160-2167 (2018)

Ultra-narrow linewidth quantum dot coherent comb lasers with self-injection feedback locking

Z. G. Lu, J. R. Liu, P. J. Poole, C. Y. Song, and S. D. Chang
Opt. Express 26(9) 11909-11914 (2018)

References

  • View by:
  • |
  • |
  • |

  1. C. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron. 18, 259–264 (1982).
    [Crossref]
  2. Y. Arakawa and A. Yariv, “Theory of gain, modulation response, and spectral linewidth in AlGaAs quantum well lasers,” IEEE J. Quantum Electron. 21, 1666–1674 (1985).
    [Crossref]
  3. P. F. Liao and P. Kelley, Quantum Well Lasers (Elsevier, 2012).
  4. B. Borchert, K. David, B. Stegmuller, R. Gessner, M. Beschorner, D. Sacher, and G. Franz, “1.55 μm gain-coupled quantum-well distributed feedback lasers with high single-mode yield and narrow linewidth,” IEEE Photon. Technol. Lett. 3, 955–957 (1991).
    [Crossref]
  5. M. Matthews, K. Cameron, R. Wyatt, and W. Devlin, “Packaged frequency-stable tunable 20  kHz linewidth 1.5 μm InGaAsP external cavity laser,” Electron. Lett. 21, 113–115 (1985).
    [Crossref]
  6. M. Alalusi, P. Brasil, S. Lee, P. Mols, L. Stolpner, A. Mehnert, and S. Li, “Low noise planar external cavity laser for interferometric fiber optic sensors,” Proc. SPIE 7316, 73160X (2009).
    [Crossref]
  7. C. T. Santis, S. T. Steger, Y. Vilenchik, A. Vasilyev, and A. Yariv, “High-coherence semiconductor lasers based on integral high-Q resonators in hybrid Si/III-V platforms,” Proc. Natl. Acad. Sci. USA 111, 2879–2884 (2014).
    [Crossref]
  8. M. T. Crowley, N. A. Naderi, H. Su, F. Grillot, and L. F. Lester, “GaAs-based quantum dot lasers,” in Semiconductors and Semimetals, Vol. 86 of Advances in Semiconductor Lasers (Elsevier, 2012), pp. 371–417.
  9. C. Gilfert, V. Ivanov, N. Oehl, M. Yacob, and J. Reithmaier, “High gain 1.55  μm diode lasers based on InAs quantum dot like active regions,” Appl. Phys. Lett. 98, 201102 (2011).
    [Crossref]
  10. A. Abdollahinia, S. Banyoudeh, A. Rippien, F. Schnabel, O. Eyal, I. Cestier, I. Kalifa, E. Mentovich, G. Eisenstein, and J. Reithmaier, “Temperature stability of static and dynamic properties of 1.55 μm quantum dot lasers,” Opt. Express 26, 6056–6066 (2018).
    [Crossref]
  11. J. Duan, H. Huang, Z. Lu, P. Poole, C. Wang, and F. Grillot, “Narrow spectral linewidth in InAs/InP quantum dot distributed feedback lasers,” Appl. Phys. Lett. 112, 121102 (2018).
    [Crossref]
  12. M. Asada, Y. Miyamoto, and Y. Suematsu, “Gain and the threshold of three-dimensional quantum-box lasers,” IEEE J. Quantum Electron. 22, 1915–1921 (1986).
    [Crossref]
  13. H. Su and L. F. Lester, “Dynamic properties of quantum dot distributed feedback lasers: high speed, linewidth and chirp,” J. Phys. D 38, 2112 (2005).
    [Crossref]
  14. F. Grillot, N. Naderi, M. Pochet, C.-Y. Lin, and L. Lester, “Systematic investigation of the alpha parameter influence on the critical feedback level in QD lasers,” Proc. SPIE 7211, 721108 (2009).
    [Crossref]
  15. A. Becker, V. Sichkovskyi, M. Bjelica, A. Rippien, F. Schnabel, M. Kaiser, O. Eyal, B. Witzigmann, G. Eisenstein, and J. Reithmaier, “Widely tunable narrow-linewidth 1.5  μm light source based on a monolithically integrated quantum dot laser array,” Appl. Phys. Lett. 110, 181103 (2017).
    [Crossref]
  16. M. Bjelica and B. Witzigmann, “Optimization of 1.55 μm quantum dot edge-emitting lasers for narrow spectral linewidth,” Opt. Quantum Electron. 48, 110 (2016).
    [Crossref]
  17. T. Okoshi and K. Kikuchi, Coherent Optical Fiber Communications, Vol. 4 (Springer Science & Business Media, 1988).
  18. S. Banyoudeh and J. P. Reithmaier, “High-density 1.54  μm InAs/InGaAlAs/InP (100) based quantum dots with reduced size inhomogeneity,” J. Cryst. Growth 425, 299–302 (2015).
    [Crossref]
  19. O. Eyal, A. Willinger, S. Banyoudeh, F. Schanbel, V. Sichkovskyi, V. Mikhelashvili, J. Reithmaier, and G. Eisenstein, “Static and dynamic characteristics of an InAs/InP quantum-dot optical amplifier operating at high temperatures,” Opt. Express 25, 27262–27269 (2017).
    [Crossref]
  20. D. Huffaker, G. Park, Z. Zou, O. Shchekin, and D. Deppe, “1.3  μm room-temperature GaAs-based quantum-dot laser,” Appl. Phys. Lett. 73, 2564–2566 (1998).
    [Crossref]
  21. L. Lester, A. Stintz, H. Li, T. Newell, E. Pease, B. Fuchs, and K. Malloy, “Optical characteristics of 1.24-μm InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett. 11, 931–933 (1999).
    [Crossref]
  22. Z. Zhang, D. Jung, J. C. Norman, P. Patel, W. W. Chow, and J. E. Bowers, “Effects of modulation p doping in InAs quantum dot lasers on silicon,” Appl. Phys. Lett. 113, 061105 (2018).
    [Crossref]
  23. D. Sreenivasan, J. Haverkort, T. Eijkemans, and R. Nötzel, “Photoluminescence from low temperature grown In As/GaAs quantum dots,” Appl. Phys. Lett. 90, 112109 (2007).
    [Crossref]
  24. Y. Dai, J. Fan, Y. Chen, R. Lin, S. Lee, and H. Lin, “Temperature dependence of photoluminescence spectra in InAs/GaAs quantum dot superlattices with large thicknesses,” J. Appl. Phys. 82, 4489–4492 (1997).
    [Crossref]
  25. R. Drever, J. L. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
    [Crossref]
  26. S. Huang, T. Zhu, M. Liu, and W. Huang, “Precise measurement of ultra-narrow laser linewidths using the strong coherent envelope,” Sci. Rep. 7, 41988 (2017).
    [Crossref]
  27. M. Stubenrauch, G. Stracke, D. Arsenijević, A. Strittmatter, and D. Bimberg, “15  gb/s index-coupled distributed-feedback lasers based on 1.3  μm InGaAs quantum dots,” Appl. Phys. Lett. 105, 011103(2014).
    [Crossref]
  28. J. Kim and S. Chuang, “Theoretical and experimental study of optical gain, refractive index change, and linewidth enhancement factor of p-doped quantum-dot lasers,” IEEE J. Quantum Electron. 42, 942–952 (2006).
    [Crossref]
  29. M. Bayer and A. Forchel, “Temperature dependence of the exciton homogeneous linewidth in 0.60  Ga 0.40  As/GaAs self-assembled quantum dots,” Phys. Rev. B 65, 041308 (2002).
    [Crossref]
  30. M. Lorke, J. Seebeck, T. Nielsen, P. Gartner, and F. Jahnke, “Excitation dependence of the homogeneous linewidths in quantum dots,” Phys. Stat. Solidi C 3, 2393–2396 (2006).
    [Crossref]
  31. S. Melnik, G. Huyet, and A. V. Uskov, “The linewidth enhancement factor α of quantum dot semiconductor lasers,” Opt. Express 14, 2950–2955 (2006).
    [Crossref]
  32. C. Redlich, B. Lingnau, H. Huang, R. Raghunathan, K. Schires, P. Poole, F. Grillot, and K. Lüdge, “Linewidth rebroadening in quantum dot semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 23, 1–10 (2017).
    [Crossref]
  33. O. Karni, K. Kuchar, A. Capua, V. Mikhelashvili, G. Sęk, J. Misiewicz, V. Ivanov, J. Reithmaier, and G. Eisenstein, “Carrier dynamics in inhomogeneously broadened InAs/AlGaInAs/InP quantum-dot semiconductor optical amplifiers,” Appl. Phys. Lett. 104, 121104 (2014).
    [Crossref]
  34. I. Khanonkin, A. Mishra, O. Karni, V. Mikhelashvili, S. Banyoudeh, F. Schnabel, V. Sichkovskyi, J. Reithmaier, and G. Eisenstein, “Ultra-fast charge carrier dynamics across the spectrum of an optical gain media based on InAs/AlGaInAs/InP quantum dots,” AIP Adv. 7, 035122 (2017).
    [Crossref]
  35. B. Tromborg, H. Lassen, and H. Olesen, “Traveling wave analysis of semiconductor lasers: modulation responses, mode stability and quantum mechanical treatment of noise spectra,” IEEE J. Quantum Electron. 30, 939–956 (1994).
    [Crossref]

2018 (3)

J. Duan, H. Huang, Z. Lu, P. Poole, C. Wang, and F. Grillot, “Narrow spectral linewidth in InAs/InP quantum dot distributed feedback lasers,” Appl. Phys. Lett. 112, 121102 (2018).
[Crossref]

Z. Zhang, D. Jung, J. C. Norman, P. Patel, W. W. Chow, and J. E. Bowers, “Effects of modulation p doping in InAs quantum dot lasers on silicon,” Appl. Phys. Lett. 113, 061105 (2018).
[Crossref]

A. Abdollahinia, S. Banyoudeh, A. Rippien, F. Schnabel, O. Eyal, I. Cestier, I. Kalifa, E. Mentovich, G. Eisenstein, and J. Reithmaier, “Temperature stability of static and dynamic properties of 1.55 μm quantum dot lasers,” Opt. Express 26, 6056–6066 (2018).
[Crossref]

2017 (5)

O. Eyal, A. Willinger, S. Banyoudeh, F. Schanbel, V. Sichkovskyi, V. Mikhelashvili, J. Reithmaier, and G. Eisenstein, “Static and dynamic characteristics of an InAs/InP quantum-dot optical amplifier operating at high temperatures,” Opt. Express 25, 27262–27269 (2017).
[Crossref]

C. Redlich, B. Lingnau, H. Huang, R. Raghunathan, K. Schires, P. Poole, F. Grillot, and K. Lüdge, “Linewidth rebroadening in quantum dot semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 23, 1–10 (2017).
[Crossref]

I. Khanonkin, A. Mishra, O. Karni, V. Mikhelashvili, S. Banyoudeh, F. Schnabel, V. Sichkovskyi, J. Reithmaier, and G. Eisenstein, “Ultra-fast charge carrier dynamics across the spectrum of an optical gain media based on InAs/AlGaInAs/InP quantum dots,” AIP Adv. 7, 035122 (2017).
[Crossref]

S. Huang, T. Zhu, M. Liu, and W. Huang, “Precise measurement of ultra-narrow laser linewidths using the strong coherent envelope,” Sci. Rep. 7, 41988 (2017).
[Crossref]

A. Becker, V. Sichkovskyi, M. Bjelica, A. Rippien, F. Schnabel, M. Kaiser, O. Eyal, B. Witzigmann, G. Eisenstein, and J. Reithmaier, “Widely tunable narrow-linewidth 1.5  μm light source based on a monolithically integrated quantum dot laser array,” Appl. Phys. Lett. 110, 181103 (2017).
[Crossref]

2016 (1)

M. Bjelica and B. Witzigmann, “Optimization of 1.55 μm quantum dot edge-emitting lasers for narrow spectral linewidth,” Opt. Quantum Electron. 48, 110 (2016).
[Crossref]

2015 (1)

S. Banyoudeh and J. P. Reithmaier, “High-density 1.54  μm InAs/InGaAlAs/InP (100) based quantum dots with reduced size inhomogeneity,” J. Cryst. Growth 425, 299–302 (2015).
[Crossref]

2014 (3)

C. T. Santis, S. T. Steger, Y. Vilenchik, A. Vasilyev, and A. Yariv, “High-coherence semiconductor lasers based on integral high-Q resonators in hybrid Si/III-V platforms,” Proc. Natl. Acad. Sci. USA 111, 2879–2884 (2014).
[Crossref]

M. Stubenrauch, G. Stracke, D. Arsenijević, A. Strittmatter, and D. Bimberg, “15  gb/s index-coupled distributed-feedback lasers based on 1.3  μm InGaAs quantum dots,” Appl. Phys. Lett. 105, 011103(2014).
[Crossref]

O. Karni, K. Kuchar, A. Capua, V. Mikhelashvili, G. Sęk, J. Misiewicz, V. Ivanov, J. Reithmaier, and G. Eisenstein, “Carrier dynamics in inhomogeneously broadened InAs/AlGaInAs/InP quantum-dot semiconductor optical amplifiers,” Appl. Phys. Lett. 104, 121104 (2014).
[Crossref]

2011 (1)

C. Gilfert, V. Ivanov, N. Oehl, M. Yacob, and J. Reithmaier, “High gain 1.55  μm diode lasers based on InAs quantum dot like active regions,” Appl. Phys. Lett. 98, 201102 (2011).
[Crossref]

2009 (2)

M. Alalusi, P. Brasil, S. Lee, P. Mols, L. Stolpner, A. Mehnert, and S. Li, “Low noise planar external cavity laser for interferometric fiber optic sensors,” Proc. SPIE 7316, 73160X (2009).
[Crossref]

F. Grillot, N. Naderi, M. Pochet, C.-Y. Lin, and L. Lester, “Systematic investigation of the alpha parameter influence on the critical feedback level in QD lasers,” Proc. SPIE 7211, 721108 (2009).
[Crossref]

2007 (1)

D. Sreenivasan, J. Haverkort, T. Eijkemans, and R. Nötzel, “Photoluminescence from low temperature grown In As/GaAs quantum dots,” Appl. Phys. Lett. 90, 112109 (2007).
[Crossref]

2006 (3)

J. Kim and S. Chuang, “Theoretical and experimental study of optical gain, refractive index change, and linewidth enhancement factor of p-doped quantum-dot lasers,” IEEE J. Quantum Electron. 42, 942–952 (2006).
[Crossref]

M. Lorke, J. Seebeck, T. Nielsen, P. Gartner, and F. Jahnke, “Excitation dependence of the homogeneous linewidths in quantum dots,” Phys. Stat. Solidi C 3, 2393–2396 (2006).
[Crossref]

S. Melnik, G. Huyet, and A. V. Uskov, “The linewidth enhancement factor α of quantum dot semiconductor lasers,” Opt. Express 14, 2950–2955 (2006).
[Crossref]

2005 (1)

H. Su and L. F. Lester, “Dynamic properties of quantum dot distributed feedback lasers: high speed, linewidth and chirp,” J. Phys. D 38, 2112 (2005).
[Crossref]

2002 (1)

M. Bayer and A. Forchel, “Temperature dependence of the exciton homogeneous linewidth in 0.60  Ga 0.40  As/GaAs self-assembled quantum dots,” Phys. Rev. B 65, 041308 (2002).
[Crossref]

1999 (1)

L. Lester, A. Stintz, H. Li, T. Newell, E. Pease, B. Fuchs, and K. Malloy, “Optical characteristics of 1.24-μm InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett. 11, 931–933 (1999).
[Crossref]

1998 (1)

D. Huffaker, G. Park, Z. Zou, O. Shchekin, and D. Deppe, “1.3  μm room-temperature GaAs-based quantum-dot laser,” Appl. Phys. Lett. 73, 2564–2566 (1998).
[Crossref]

1997 (1)

Y. Dai, J. Fan, Y. Chen, R. Lin, S. Lee, and H. Lin, “Temperature dependence of photoluminescence spectra in InAs/GaAs quantum dot superlattices with large thicknesses,” J. Appl. Phys. 82, 4489–4492 (1997).
[Crossref]

1994 (1)

B. Tromborg, H. Lassen, and H. Olesen, “Traveling wave analysis of semiconductor lasers: modulation responses, mode stability and quantum mechanical treatment of noise spectra,” IEEE J. Quantum Electron. 30, 939–956 (1994).
[Crossref]

1991 (1)

B. Borchert, K. David, B. Stegmuller, R. Gessner, M. Beschorner, D. Sacher, and G. Franz, “1.55 μm gain-coupled quantum-well distributed feedback lasers with high single-mode yield and narrow linewidth,” IEEE Photon. Technol. Lett. 3, 955–957 (1991).
[Crossref]

1986 (1)

M. Asada, Y. Miyamoto, and Y. Suematsu, “Gain and the threshold of three-dimensional quantum-box lasers,” IEEE J. Quantum Electron. 22, 1915–1921 (1986).
[Crossref]

1985 (2)

M. Matthews, K. Cameron, R. Wyatt, and W. Devlin, “Packaged frequency-stable tunable 20  kHz linewidth 1.5 μm InGaAsP external cavity laser,” Electron. Lett. 21, 113–115 (1985).
[Crossref]

Y. Arakawa and A. Yariv, “Theory of gain, modulation response, and spectral linewidth in AlGaAs quantum well lasers,” IEEE J. Quantum Electron. 21, 1666–1674 (1985).
[Crossref]

1983 (1)

R. Drever, J. L. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

1982 (1)

C. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron. 18, 259–264 (1982).
[Crossref]

Abdollahinia, A.

Alalusi, M.

M. Alalusi, P. Brasil, S. Lee, P. Mols, L. Stolpner, A. Mehnert, and S. Li, “Low noise planar external cavity laser for interferometric fiber optic sensors,” Proc. SPIE 7316, 73160X (2009).
[Crossref]

Arakawa, Y.

Y. Arakawa and A. Yariv, “Theory of gain, modulation response, and spectral linewidth in AlGaAs quantum well lasers,” IEEE J. Quantum Electron. 21, 1666–1674 (1985).
[Crossref]

Arsenijevic, D.

M. Stubenrauch, G. Stracke, D. Arsenijević, A. Strittmatter, and D. Bimberg, “15  gb/s index-coupled distributed-feedback lasers based on 1.3  μm InGaAs quantum dots,” Appl. Phys. Lett. 105, 011103(2014).
[Crossref]

Asada, M.

M. Asada, Y. Miyamoto, and Y. Suematsu, “Gain and the threshold of three-dimensional quantum-box lasers,” IEEE J. Quantum Electron. 22, 1915–1921 (1986).
[Crossref]

Banyoudeh, S.

A. Abdollahinia, S. Banyoudeh, A. Rippien, F. Schnabel, O. Eyal, I. Cestier, I. Kalifa, E. Mentovich, G. Eisenstein, and J. Reithmaier, “Temperature stability of static and dynamic properties of 1.55 μm quantum dot lasers,” Opt. Express 26, 6056–6066 (2018).
[Crossref]

O. Eyal, A. Willinger, S. Banyoudeh, F. Schanbel, V. Sichkovskyi, V. Mikhelashvili, J. Reithmaier, and G. Eisenstein, “Static and dynamic characteristics of an InAs/InP quantum-dot optical amplifier operating at high temperatures,” Opt. Express 25, 27262–27269 (2017).
[Crossref]

I. Khanonkin, A. Mishra, O. Karni, V. Mikhelashvili, S. Banyoudeh, F. Schnabel, V. Sichkovskyi, J. Reithmaier, and G. Eisenstein, “Ultra-fast charge carrier dynamics across the spectrum of an optical gain media based on InAs/AlGaInAs/InP quantum dots,” AIP Adv. 7, 035122 (2017).
[Crossref]

S. Banyoudeh and J. P. Reithmaier, “High-density 1.54  μm InAs/InGaAlAs/InP (100) based quantum dots with reduced size inhomogeneity,” J. Cryst. Growth 425, 299–302 (2015).
[Crossref]

Bayer, M.

M. Bayer and A. Forchel, “Temperature dependence of the exciton homogeneous linewidth in 0.60  Ga 0.40  As/GaAs self-assembled quantum dots,” Phys. Rev. B 65, 041308 (2002).
[Crossref]

Becker, A.

A. Becker, V. Sichkovskyi, M. Bjelica, A. Rippien, F. Schnabel, M. Kaiser, O. Eyal, B. Witzigmann, G. Eisenstein, and J. Reithmaier, “Widely tunable narrow-linewidth 1.5  μm light source based on a monolithically integrated quantum dot laser array,” Appl. Phys. Lett. 110, 181103 (2017).
[Crossref]

Beschorner, M.

B. Borchert, K. David, B. Stegmuller, R. Gessner, M. Beschorner, D. Sacher, and G. Franz, “1.55 μm gain-coupled quantum-well distributed feedback lasers with high single-mode yield and narrow linewidth,” IEEE Photon. Technol. Lett. 3, 955–957 (1991).
[Crossref]

Bimberg, D.

M. Stubenrauch, G. Stracke, D. Arsenijević, A. Strittmatter, and D. Bimberg, “15  gb/s index-coupled distributed-feedback lasers based on 1.3  μm InGaAs quantum dots,” Appl. Phys. Lett. 105, 011103(2014).
[Crossref]

Bjelica, M.

A. Becker, V. Sichkovskyi, M. Bjelica, A. Rippien, F. Schnabel, M. Kaiser, O. Eyal, B. Witzigmann, G. Eisenstein, and J. Reithmaier, “Widely tunable narrow-linewidth 1.5  μm light source based on a monolithically integrated quantum dot laser array,” Appl. Phys. Lett. 110, 181103 (2017).
[Crossref]

M. Bjelica and B. Witzigmann, “Optimization of 1.55 μm quantum dot edge-emitting lasers for narrow spectral linewidth,” Opt. Quantum Electron. 48, 110 (2016).
[Crossref]

Borchert, B.

B. Borchert, K. David, B. Stegmuller, R. Gessner, M. Beschorner, D. Sacher, and G. Franz, “1.55 μm gain-coupled quantum-well distributed feedback lasers with high single-mode yield and narrow linewidth,” IEEE Photon. Technol. Lett. 3, 955–957 (1991).
[Crossref]

Bowers, J. E.

Z. Zhang, D. Jung, J. C. Norman, P. Patel, W. W. Chow, and J. E. Bowers, “Effects of modulation p doping in InAs quantum dot lasers on silicon,” Appl. Phys. Lett. 113, 061105 (2018).
[Crossref]

Brasil, P.

M. Alalusi, P. Brasil, S. Lee, P. Mols, L. Stolpner, A. Mehnert, and S. Li, “Low noise planar external cavity laser for interferometric fiber optic sensors,” Proc. SPIE 7316, 73160X (2009).
[Crossref]

Cameron, K.

M. Matthews, K. Cameron, R. Wyatt, and W. Devlin, “Packaged frequency-stable tunable 20  kHz linewidth 1.5 μm InGaAsP external cavity laser,” Electron. Lett. 21, 113–115 (1985).
[Crossref]

Capua, A.

O. Karni, K. Kuchar, A. Capua, V. Mikhelashvili, G. Sęk, J. Misiewicz, V. Ivanov, J. Reithmaier, and G. Eisenstein, “Carrier dynamics in inhomogeneously broadened InAs/AlGaInAs/InP quantum-dot semiconductor optical amplifiers,” Appl. Phys. Lett. 104, 121104 (2014).
[Crossref]

Cestier, I.

Chen, Y.

Y. Dai, J. Fan, Y. Chen, R. Lin, S. Lee, and H. Lin, “Temperature dependence of photoluminescence spectra in InAs/GaAs quantum dot superlattices with large thicknesses,” J. Appl. Phys. 82, 4489–4492 (1997).
[Crossref]

Chow, W. W.

Z. Zhang, D. Jung, J. C. Norman, P. Patel, W. W. Chow, and J. E. Bowers, “Effects of modulation p doping in InAs quantum dot lasers on silicon,” Appl. Phys. Lett. 113, 061105 (2018).
[Crossref]

Chuang, S.

J. Kim and S. Chuang, “Theoretical and experimental study of optical gain, refractive index change, and linewidth enhancement factor of p-doped quantum-dot lasers,” IEEE J. Quantum Electron. 42, 942–952 (2006).
[Crossref]

Crowley, M. T.

M. T. Crowley, N. A. Naderi, H. Su, F. Grillot, and L. F. Lester, “GaAs-based quantum dot lasers,” in Semiconductors and Semimetals, Vol. 86 of Advances in Semiconductor Lasers (Elsevier, 2012), pp. 371–417.

Dai, Y.

Y. Dai, J. Fan, Y. Chen, R. Lin, S. Lee, and H. Lin, “Temperature dependence of photoluminescence spectra in InAs/GaAs quantum dot superlattices with large thicknesses,” J. Appl. Phys. 82, 4489–4492 (1997).
[Crossref]

David, K.

B. Borchert, K. David, B. Stegmuller, R. Gessner, M. Beschorner, D. Sacher, and G. Franz, “1.55 μm gain-coupled quantum-well distributed feedback lasers with high single-mode yield and narrow linewidth,” IEEE Photon. Technol. Lett. 3, 955–957 (1991).
[Crossref]

Deppe, D.

D. Huffaker, G. Park, Z. Zou, O. Shchekin, and D. Deppe, “1.3  μm room-temperature GaAs-based quantum-dot laser,” Appl. Phys. Lett. 73, 2564–2566 (1998).
[Crossref]

Devlin, W.

M. Matthews, K. Cameron, R. Wyatt, and W. Devlin, “Packaged frequency-stable tunable 20  kHz linewidth 1.5 μm InGaAsP external cavity laser,” Electron. Lett. 21, 113–115 (1985).
[Crossref]

Drever, R.

R. Drever, J. L. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Duan, J.

J. Duan, H. Huang, Z. Lu, P. Poole, C. Wang, and F. Grillot, “Narrow spectral linewidth in InAs/InP quantum dot distributed feedback lasers,” Appl. Phys. Lett. 112, 121102 (2018).
[Crossref]

Eijkemans, T.

D. Sreenivasan, J. Haverkort, T. Eijkemans, and R. Nötzel, “Photoluminescence from low temperature grown In As/GaAs quantum dots,” Appl. Phys. Lett. 90, 112109 (2007).
[Crossref]

Eisenstein, G.

A. Abdollahinia, S. Banyoudeh, A. Rippien, F. Schnabel, O. Eyal, I. Cestier, I. Kalifa, E. Mentovich, G. Eisenstein, and J. Reithmaier, “Temperature stability of static and dynamic properties of 1.55 μm quantum dot lasers,” Opt. Express 26, 6056–6066 (2018).
[Crossref]

O. Eyal, A. Willinger, S. Banyoudeh, F. Schanbel, V. Sichkovskyi, V. Mikhelashvili, J. Reithmaier, and G. Eisenstein, “Static and dynamic characteristics of an InAs/InP quantum-dot optical amplifier operating at high temperatures,” Opt. Express 25, 27262–27269 (2017).
[Crossref]

I. Khanonkin, A. Mishra, O. Karni, V. Mikhelashvili, S. Banyoudeh, F. Schnabel, V. Sichkovskyi, J. Reithmaier, and G. Eisenstein, “Ultra-fast charge carrier dynamics across the spectrum of an optical gain media based on InAs/AlGaInAs/InP quantum dots,” AIP Adv. 7, 035122 (2017).
[Crossref]

A. Becker, V. Sichkovskyi, M. Bjelica, A. Rippien, F. Schnabel, M. Kaiser, O. Eyal, B. Witzigmann, G. Eisenstein, and J. Reithmaier, “Widely tunable narrow-linewidth 1.5  μm light source based on a monolithically integrated quantum dot laser array,” Appl. Phys. Lett. 110, 181103 (2017).
[Crossref]

O. Karni, K. Kuchar, A. Capua, V. Mikhelashvili, G. Sęk, J. Misiewicz, V. Ivanov, J. Reithmaier, and G. Eisenstein, “Carrier dynamics in inhomogeneously broadened InAs/AlGaInAs/InP quantum-dot semiconductor optical amplifiers,” Appl. Phys. Lett. 104, 121104 (2014).
[Crossref]

Eyal, O.

Fan, J.

Y. Dai, J. Fan, Y. Chen, R. Lin, S. Lee, and H. Lin, “Temperature dependence of photoluminescence spectra in InAs/GaAs quantum dot superlattices with large thicknesses,” J. Appl. Phys. 82, 4489–4492 (1997).
[Crossref]

Forchel, A.

M. Bayer and A. Forchel, “Temperature dependence of the exciton homogeneous linewidth in 0.60  Ga 0.40  As/GaAs self-assembled quantum dots,” Phys. Rev. B 65, 041308 (2002).
[Crossref]

Ford, G.

R. Drever, J. L. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Franz, G.

B. Borchert, K. David, B. Stegmuller, R. Gessner, M. Beschorner, D. Sacher, and G. Franz, “1.55 μm gain-coupled quantum-well distributed feedback lasers with high single-mode yield and narrow linewidth,” IEEE Photon. Technol. Lett. 3, 955–957 (1991).
[Crossref]

Fuchs, B.

L. Lester, A. Stintz, H. Li, T. Newell, E. Pease, B. Fuchs, and K. Malloy, “Optical characteristics of 1.24-μm InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett. 11, 931–933 (1999).
[Crossref]

Gartner, P.

M. Lorke, J. Seebeck, T. Nielsen, P. Gartner, and F. Jahnke, “Excitation dependence of the homogeneous linewidths in quantum dots,” Phys. Stat. Solidi C 3, 2393–2396 (2006).
[Crossref]

Gessner, R.

B. Borchert, K. David, B. Stegmuller, R. Gessner, M. Beschorner, D. Sacher, and G. Franz, “1.55 μm gain-coupled quantum-well distributed feedback lasers with high single-mode yield and narrow linewidth,” IEEE Photon. Technol. Lett. 3, 955–957 (1991).
[Crossref]

Gilfert, C.

C. Gilfert, V. Ivanov, N. Oehl, M. Yacob, and J. Reithmaier, “High gain 1.55  μm diode lasers based on InAs quantum dot like active regions,” Appl. Phys. Lett. 98, 201102 (2011).
[Crossref]

Grillot, F.

J. Duan, H. Huang, Z. Lu, P. Poole, C. Wang, and F. Grillot, “Narrow spectral linewidth in InAs/InP quantum dot distributed feedback lasers,” Appl. Phys. Lett. 112, 121102 (2018).
[Crossref]

C. Redlich, B. Lingnau, H. Huang, R. Raghunathan, K. Schires, P. Poole, F. Grillot, and K. Lüdge, “Linewidth rebroadening in quantum dot semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 23, 1–10 (2017).
[Crossref]

F. Grillot, N. Naderi, M. Pochet, C.-Y. Lin, and L. Lester, “Systematic investigation of the alpha parameter influence on the critical feedback level in QD lasers,” Proc. SPIE 7211, 721108 (2009).
[Crossref]

M. T. Crowley, N. A. Naderi, H. Su, F. Grillot, and L. F. Lester, “GaAs-based quantum dot lasers,” in Semiconductors and Semimetals, Vol. 86 of Advances in Semiconductor Lasers (Elsevier, 2012), pp. 371–417.

Hall, J. L.

R. Drever, J. L. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Haverkort, J.

D. Sreenivasan, J. Haverkort, T. Eijkemans, and R. Nötzel, “Photoluminescence from low temperature grown In As/GaAs quantum dots,” Appl. Phys. Lett. 90, 112109 (2007).
[Crossref]

Henry, C.

C. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron. 18, 259–264 (1982).
[Crossref]

Hough, J.

R. Drever, J. L. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Huang, H.

J. Duan, H. Huang, Z. Lu, P. Poole, C. Wang, and F. Grillot, “Narrow spectral linewidth in InAs/InP quantum dot distributed feedback lasers,” Appl. Phys. Lett. 112, 121102 (2018).
[Crossref]

C. Redlich, B. Lingnau, H. Huang, R. Raghunathan, K. Schires, P. Poole, F. Grillot, and K. Lüdge, “Linewidth rebroadening in quantum dot semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 23, 1–10 (2017).
[Crossref]

Huang, S.

S. Huang, T. Zhu, M. Liu, and W. Huang, “Precise measurement of ultra-narrow laser linewidths using the strong coherent envelope,” Sci. Rep. 7, 41988 (2017).
[Crossref]

Huang, W.

S. Huang, T. Zhu, M. Liu, and W. Huang, “Precise measurement of ultra-narrow laser linewidths using the strong coherent envelope,” Sci. Rep. 7, 41988 (2017).
[Crossref]

Huffaker, D.

D. Huffaker, G. Park, Z. Zou, O. Shchekin, and D. Deppe, “1.3  μm room-temperature GaAs-based quantum-dot laser,” Appl. Phys. Lett. 73, 2564–2566 (1998).
[Crossref]

Huyet, G.

Ivanov, V.

O. Karni, K. Kuchar, A. Capua, V. Mikhelashvili, G. Sęk, J. Misiewicz, V. Ivanov, J. Reithmaier, and G. Eisenstein, “Carrier dynamics in inhomogeneously broadened InAs/AlGaInAs/InP quantum-dot semiconductor optical amplifiers,” Appl. Phys. Lett. 104, 121104 (2014).
[Crossref]

C. Gilfert, V. Ivanov, N. Oehl, M. Yacob, and J. Reithmaier, “High gain 1.55  μm diode lasers based on InAs quantum dot like active regions,” Appl. Phys. Lett. 98, 201102 (2011).
[Crossref]

Jahnke, F.

M. Lorke, J. Seebeck, T. Nielsen, P. Gartner, and F. Jahnke, “Excitation dependence of the homogeneous linewidths in quantum dots,” Phys. Stat. Solidi C 3, 2393–2396 (2006).
[Crossref]

Jung, D.

Z. Zhang, D. Jung, J. C. Norman, P. Patel, W. W. Chow, and J. E. Bowers, “Effects of modulation p doping in InAs quantum dot lasers on silicon,” Appl. Phys. Lett. 113, 061105 (2018).
[Crossref]

Kaiser, M.

A. Becker, V. Sichkovskyi, M. Bjelica, A. Rippien, F. Schnabel, M. Kaiser, O. Eyal, B. Witzigmann, G. Eisenstein, and J. Reithmaier, “Widely tunable narrow-linewidth 1.5  μm light source based on a monolithically integrated quantum dot laser array,” Appl. Phys. Lett. 110, 181103 (2017).
[Crossref]

Kalifa, I.

Karni, O.

I. Khanonkin, A. Mishra, O. Karni, V. Mikhelashvili, S. Banyoudeh, F. Schnabel, V. Sichkovskyi, J. Reithmaier, and G. Eisenstein, “Ultra-fast charge carrier dynamics across the spectrum of an optical gain media based on InAs/AlGaInAs/InP quantum dots,” AIP Adv. 7, 035122 (2017).
[Crossref]

O. Karni, K. Kuchar, A. Capua, V. Mikhelashvili, G. Sęk, J. Misiewicz, V. Ivanov, J. Reithmaier, and G. Eisenstein, “Carrier dynamics in inhomogeneously broadened InAs/AlGaInAs/InP quantum-dot semiconductor optical amplifiers,” Appl. Phys. Lett. 104, 121104 (2014).
[Crossref]

Kelley, P.

P. F. Liao and P. Kelley, Quantum Well Lasers (Elsevier, 2012).

Khanonkin, I.

I. Khanonkin, A. Mishra, O. Karni, V. Mikhelashvili, S. Banyoudeh, F. Schnabel, V. Sichkovskyi, J. Reithmaier, and G. Eisenstein, “Ultra-fast charge carrier dynamics across the spectrum of an optical gain media based on InAs/AlGaInAs/InP quantum dots,” AIP Adv. 7, 035122 (2017).
[Crossref]

Kikuchi, K.

T. Okoshi and K. Kikuchi, Coherent Optical Fiber Communications, Vol. 4 (Springer Science & Business Media, 1988).

Kim, J.

J. Kim and S. Chuang, “Theoretical and experimental study of optical gain, refractive index change, and linewidth enhancement factor of p-doped quantum-dot lasers,” IEEE J. Quantum Electron. 42, 942–952 (2006).
[Crossref]

Kowalski, F.

R. Drever, J. L. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Kuchar, K.

O. Karni, K. Kuchar, A. Capua, V. Mikhelashvili, G. Sęk, J. Misiewicz, V. Ivanov, J. Reithmaier, and G. Eisenstein, “Carrier dynamics in inhomogeneously broadened InAs/AlGaInAs/InP quantum-dot semiconductor optical amplifiers,” Appl. Phys. Lett. 104, 121104 (2014).
[Crossref]

Lassen, H.

B. Tromborg, H. Lassen, and H. Olesen, “Traveling wave analysis of semiconductor lasers: modulation responses, mode stability and quantum mechanical treatment of noise spectra,” IEEE J. Quantum Electron. 30, 939–956 (1994).
[Crossref]

Lee, S.

M. Alalusi, P. Brasil, S. Lee, P. Mols, L. Stolpner, A. Mehnert, and S. Li, “Low noise planar external cavity laser for interferometric fiber optic sensors,” Proc. SPIE 7316, 73160X (2009).
[Crossref]

Y. Dai, J. Fan, Y. Chen, R. Lin, S. Lee, and H. Lin, “Temperature dependence of photoluminescence spectra in InAs/GaAs quantum dot superlattices with large thicknesses,” J. Appl. Phys. 82, 4489–4492 (1997).
[Crossref]

Lester, L.

F. Grillot, N. Naderi, M. Pochet, C.-Y. Lin, and L. Lester, “Systematic investigation of the alpha parameter influence on the critical feedback level in QD lasers,” Proc. SPIE 7211, 721108 (2009).
[Crossref]

L. Lester, A. Stintz, H. Li, T. Newell, E. Pease, B. Fuchs, and K. Malloy, “Optical characteristics of 1.24-μm InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett. 11, 931–933 (1999).
[Crossref]

Lester, L. F.

H. Su and L. F. Lester, “Dynamic properties of quantum dot distributed feedback lasers: high speed, linewidth and chirp,” J. Phys. D 38, 2112 (2005).
[Crossref]

M. T. Crowley, N. A. Naderi, H. Su, F. Grillot, and L. F. Lester, “GaAs-based quantum dot lasers,” in Semiconductors and Semimetals, Vol. 86 of Advances in Semiconductor Lasers (Elsevier, 2012), pp. 371–417.

Li, H.

L. Lester, A. Stintz, H. Li, T. Newell, E. Pease, B. Fuchs, and K. Malloy, “Optical characteristics of 1.24-μm InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett. 11, 931–933 (1999).
[Crossref]

Li, S.

M. Alalusi, P. Brasil, S. Lee, P. Mols, L. Stolpner, A. Mehnert, and S. Li, “Low noise planar external cavity laser for interferometric fiber optic sensors,” Proc. SPIE 7316, 73160X (2009).
[Crossref]

Liao, P. F.

P. F. Liao and P. Kelley, Quantum Well Lasers (Elsevier, 2012).

Lin, C.-Y.

F. Grillot, N. Naderi, M. Pochet, C.-Y. Lin, and L. Lester, “Systematic investigation of the alpha parameter influence on the critical feedback level in QD lasers,” Proc. SPIE 7211, 721108 (2009).
[Crossref]

Lin, H.

Y. Dai, J. Fan, Y. Chen, R. Lin, S. Lee, and H. Lin, “Temperature dependence of photoluminescence spectra in InAs/GaAs quantum dot superlattices with large thicknesses,” J. Appl. Phys. 82, 4489–4492 (1997).
[Crossref]

Lin, R.

Y. Dai, J. Fan, Y. Chen, R. Lin, S. Lee, and H. Lin, “Temperature dependence of photoluminescence spectra in InAs/GaAs quantum dot superlattices with large thicknesses,” J. Appl. Phys. 82, 4489–4492 (1997).
[Crossref]

Lingnau, B.

C. Redlich, B. Lingnau, H. Huang, R. Raghunathan, K. Schires, P. Poole, F. Grillot, and K. Lüdge, “Linewidth rebroadening in quantum dot semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 23, 1–10 (2017).
[Crossref]

Liu, M.

S. Huang, T. Zhu, M. Liu, and W. Huang, “Precise measurement of ultra-narrow laser linewidths using the strong coherent envelope,” Sci. Rep. 7, 41988 (2017).
[Crossref]

Lorke, M.

M. Lorke, J. Seebeck, T. Nielsen, P. Gartner, and F. Jahnke, “Excitation dependence of the homogeneous linewidths in quantum dots,” Phys. Stat. Solidi C 3, 2393–2396 (2006).
[Crossref]

Lu, Z.

J. Duan, H. Huang, Z. Lu, P. Poole, C. Wang, and F. Grillot, “Narrow spectral linewidth in InAs/InP quantum dot distributed feedback lasers,” Appl. Phys. Lett. 112, 121102 (2018).
[Crossref]

Lüdge, K.

C. Redlich, B. Lingnau, H. Huang, R. Raghunathan, K. Schires, P. Poole, F. Grillot, and K. Lüdge, “Linewidth rebroadening in quantum dot semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 23, 1–10 (2017).
[Crossref]

Malloy, K.

L. Lester, A. Stintz, H. Li, T. Newell, E. Pease, B. Fuchs, and K. Malloy, “Optical characteristics of 1.24-μm InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett. 11, 931–933 (1999).
[Crossref]

Matthews, M.

M. Matthews, K. Cameron, R. Wyatt, and W. Devlin, “Packaged frequency-stable tunable 20  kHz linewidth 1.5 μm InGaAsP external cavity laser,” Electron. Lett. 21, 113–115 (1985).
[Crossref]

Mehnert, A.

M. Alalusi, P. Brasil, S. Lee, P. Mols, L. Stolpner, A. Mehnert, and S. Li, “Low noise planar external cavity laser for interferometric fiber optic sensors,” Proc. SPIE 7316, 73160X (2009).
[Crossref]

Melnik, S.

Mentovich, E.

Mikhelashvili, V.

O. Eyal, A. Willinger, S. Banyoudeh, F. Schanbel, V. Sichkovskyi, V. Mikhelashvili, J. Reithmaier, and G. Eisenstein, “Static and dynamic characteristics of an InAs/InP quantum-dot optical amplifier operating at high temperatures,” Opt. Express 25, 27262–27269 (2017).
[Crossref]

I. Khanonkin, A. Mishra, O. Karni, V. Mikhelashvili, S. Banyoudeh, F. Schnabel, V. Sichkovskyi, J. Reithmaier, and G. Eisenstein, “Ultra-fast charge carrier dynamics across the spectrum of an optical gain media based on InAs/AlGaInAs/InP quantum dots,” AIP Adv. 7, 035122 (2017).
[Crossref]

O. Karni, K. Kuchar, A. Capua, V. Mikhelashvili, G. Sęk, J. Misiewicz, V. Ivanov, J. Reithmaier, and G. Eisenstein, “Carrier dynamics in inhomogeneously broadened InAs/AlGaInAs/InP quantum-dot semiconductor optical amplifiers,” Appl. Phys. Lett. 104, 121104 (2014).
[Crossref]

Mishra, A.

I. Khanonkin, A. Mishra, O. Karni, V. Mikhelashvili, S. Banyoudeh, F. Schnabel, V. Sichkovskyi, J. Reithmaier, and G. Eisenstein, “Ultra-fast charge carrier dynamics across the spectrum of an optical gain media based on InAs/AlGaInAs/InP quantum dots,” AIP Adv. 7, 035122 (2017).
[Crossref]

Misiewicz, J.

O. Karni, K. Kuchar, A. Capua, V. Mikhelashvili, G. Sęk, J. Misiewicz, V. Ivanov, J. Reithmaier, and G. Eisenstein, “Carrier dynamics in inhomogeneously broadened InAs/AlGaInAs/InP quantum-dot semiconductor optical amplifiers,” Appl. Phys. Lett. 104, 121104 (2014).
[Crossref]

Miyamoto, Y.

M. Asada, Y. Miyamoto, and Y. Suematsu, “Gain and the threshold of three-dimensional quantum-box lasers,” IEEE J. Quantum Electron. 22, 1915–1921 (1986).
[Crossref]

Mols, P.

M. Alalusi, P. Brasil, S. Lee, P. Mols, L. Stolpner, A. Mehnert, and S. Li, “Low noise planar external cavity laser for interferometric fiber optic sensors,” Proc. SPIE 7316, 73160X (2009).
[Crossref]

Munley, A.

R. Drever, J. L. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Naderi, N.

F. Grillot, N. Naderi, M. Pochet, C.-Y. Lin, and L. Lester, “Systematic investigation of the alpha parameter influence on the critical feedback level in QD lasers,” Proc. SPIE 7211, 721108 (2009).
[Crossref]

Naderi, N. A.

M. T. Crowley, N. A. Naderi, H. Su, F. Grillot, and L. F. Lester, “GaAs-based quantum dot lasers,” in Semiconductors and Semimetals, Vol. 86 of Advances in Semiconductor Lasers (Elsevier, 2012), pp. 371–417.

Newell, T.

L. Lester, A. Stintz, H. Li, T. Newell, E. Pease, B. Fuchs, and K. Malloy, “Optical characteristics of 1.24-μm InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett. 11, 931–933 (1999).
[Crossref]

Nielsen, T.

M. Lorke, J. Seebeck, T. Nielsen, P. Gartner, and F. Jahnke, “Excitation dependence of the homogeneous linewidths in quantum dots,” Phys. Stat. Solidi C 3, 2393–2396 (2006).
[Crossref]

Norman, J. C.

Z. Zhang, D. Jung, J. C. Norman, P. Patel, W. W. Chow, and J. E. Bowers, “Effects of modulation p doping in InAs quantum dot lasers on silicon,” Appl. Phys. Lett. 113, 061105 (2018).
[Crossref]

Nötzel, R.

D. Sreenivasan, J. Haverkort, T. Eijkemans, and R. Nötzel, “Photoluminescence from low temperature grown In As/GaAs quantum dots,” Appl. Phys. Lett. 90, 112109 (2007).
[Crossref]

Oehl, N.

C. Gilfert, V. Ivanov, N. Oehl, M. Yacob, and J. Reithmaier, “High gain 1.55  μm diode lasers based on InAs quantum dot like active regions,” Appl. Phys. Lett. 98, 201102 (2011).
[Crossref]

Okoshi, T.

T. Okoshi and K. Kikuchi, Coherent Optical Fiber Communications, Vol. 4 (Springer Science & Business Media, 1988).

Olesen, H.

B. Tromborg, H. Lassen, and H. Olesen, “Traveling wave analysis of semiconductor lasers: modulation responses, mode stability and quantum mechanical treatment of noise spectra,” IEEE J. Quantum Electron. 30, 939–956 (1994).
[Crossref]

Park, G.

D. Huffaker, G. Park, Z. Zou, O. Shchekin, and D. Deppe, “1.3  μm room-temperature GaAs-based quantum-dot laser,” Appl. Phys. Lett. 73, 2564–2566 (1998).
[Crossref]

Patel, P.

Z. Zhang, D. Jung, J. C. Norman, P. Patel, W. W. Chow, and J. E. Bowers, “Effects of modulation p doping in InAs quantum dot lasers on silicon,” Appl. Phys. Lett. 113, 061105 (2018).
[Crossref]

Pease, E.

L. Lester, A. Stintz, H. Li, T. Newell, E. Pease, B. Fuchs, and K. Malloy, “Optical characteristics of 1.24-μm InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett. 11, 931–933 (1999).
[Crossref]

Pochet, M.

F. Grillot, N. Naderi, M. Pochet, C.-Y. Lin, and L. Lester, “Systematic investigation of the alpha parameter influence on the critical feedback level in QD lasers,” Proc. SPIE 7211, 721108 (2009).
[Crossref]

Poole, P.

J. Duan, H. Huang, Z. Lu, P. Poole, C. Wang, and F. Grillot, “Narrow spectral linewidth in InAs/InP quantum dot distributed feedback lasers,” Appl. Phys. Lett. 112, 121102 (2018).
[Crossref]

C. Redlich, B. Lingnau, H. Huang, R. Raghunathan, K. Schires, P. Poole, F. Grillot, and K. Lüdge, “Linewidth rebroadening in quantum dot semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 23, 1–10 (2017).
[Crossref]

Raghunathan, R.

C. Redlich, B. Lingnau, H. Huang, R. Raghunathan, K. Schires, P. Poole, F. Grillot, and K. Lüdge, “Linewidth rebroadening in quantum dot semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 23, 1–10 (2017).
[Crossref]

Redlich, C.

C. Redlich, B. Lingnau, H. Huang, R. Raghunathan, K. Schires, P. Poole, F. Grillot, and K. Lüdge, “Linewidth rebroadening in quantum dot semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 23, 1–10 (2017).
[Crossref]

Reithmaier, J.

A. Abdollahinia, S. Banyoudeh, A. Rippien, F. Schnabel, O. Eyal, I. Cestier, I. Kalifa, E. Mentovich, G. Eisenstein, and J. Reithmaier, “Temperature stability of static and dynamic properties of 1.55 μm quantum dot lasers,” Opt. Express 26, 6056–6066 (2018).
[Crossref]

O. Eyal, A. Willinger, S. Banyoudeh, F. Schanbel, V. Sichkovskyi, V. Mikhelashvili, J. Reithmaier, and G. Eisenstein, “Static and dynamic characteristics of an InAs/InP quantum-dot optical amplifier operating at high temperatures,” Opt. Express 25, 27262–27269 (2017).
[Crossref]

I. Khanonkin, A. Mishra, O. Karni, V. Mikhelashvili, S. Banyoudeh, F. Schnabel, V. Sichkovskyi, J. Reithmaier, and G. Eisenstein, “Ultra-fast charge carrier dynamics across the spectrum of an optical gain media based on InAs/AlGaInAs/InP quantum dots,” AIP Adv. 7, 035122 (2017).
[Crossref]

A. Becker, V. Sichkovskyi, M. Bjelica, A. Rippien, F. Schnabel, M. Kaiser, O. Eyal, B. Witzigmann, G. Eisenstein, and J. Reithmaier, “Widely tunable narrow-linewidth 1.5  μm light source based on a monolithically integrated quantum dot laser array,” Appl. Phys. Lett. 110, 181103 (2017).
[Crossref]

O. Karni, K. Kuchar, A. Capua, V. Mikhelashvili, G. Sęk, J. Misiewicz, V. Ivanov, J. Reithmaier, and G. Eisenstein, “Carrier dynamics in inhomogeneously broadened InAs/AlGaInAs/InP quantum-dot semiconductor optical amplifiers,” Appl. Phys. Lett. 104, 121104 (2014).
[Crossref]

C. Gilfert, V. Ivanov, N. Oehl, M. Yacob, and J. Reithmaier, “High gain 1.55  μm diode lasers based on InAs quantum dot like active regions,” Appl. Phys. Lett. 98, 201102 (2011).
[Crossref]

Reithmaier, J. P.

S. Banyoudeh and J. P. Reithmaier, “High-density 1.54  μm InAs/InGaAlAs/InP (100) based quantum dots with reduced size inhomogeneity,” J. Cryst. Growth 425, 299–302 (2015).
[Crossref]

Rippien, A.

A. Abdollahinia, S. Banyoudeh, A. Rippien, F. Schnabel, O. Eyal, I. Cestier, I. Kalifa, E. Mentovich, G. Eisenstein, and J. Reithmaier, “Temperature stability of static and dynamic properties of 1.55 μm quantum dot lasers,” Opt. Express 26, 6056–6066 (2018).
[Crossref]

A. Becker, V. Sichkovskyi, M. Bjelica, A. Rippien, F. Schnabel, M. Kaiser, O. Eyal, B. Witzigmann, G. Eisenstein, and J. Reithmaier, “Widely tunable narrow-linewidth 1.5  μm light source based on a monolithically integrated quantum dot laser array,” Appl. Phys. Lett. 110, 181103 (2017).
[Crossref]

Sacher, D.

B. Borchert, K. David, B. Stegmuller, R. Gessner, M. Beschorner, D. Sacher, and G. Franz, “1.55 μm gain-coupled quantum-well distributed feedback lasers with high single-mode yield and narrow linewidth,” IEEE Photon. Technol. Lett. 3, 955–957 (1991).
[Crossref]

Santis, C. T.

C. T. Santis, S. T. Steger, Y. Vilenchik, A. Vasilyev, and A. Yariv, “High-coherence semiconductor lasers based on integral high-Q resonators in hybrid Si/III-V platforms,” Proc. Natl. Acad. Sci. USA 111, 2879–2884 (2014).
[Crossref]

Schanbel, F.

Schires, K.

C. Redlich, B. Lingnau, H. Huang, R. Raghunathan, K. Schires, P. Poole, F. Grillot, and K. Lüdge, “Linewidth rebroadening in quantum dot semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 23, 1–10 (2017).
[Crossref]

Schnabel, F.

A. Abdollahinia, S. Banyoudeh, A. Rippien, F. Schnabel, O. Eyal, I. Cestier, I. Kalifa, E. Mentovich, G. Eisenstein, and J. Reithmaier, “Temperature stability of static and dynamic properties of 1.55 μm quantum dot lasers,” Opt. Express 26, 6056–6066 (2018).
[Crossref]

I. Khanonkin, A. Mishra, O. Karni, V. Mikhelashvili, S. Banyoudeh, F. Schnabel, V. Sichkovskyi, J. Reithmaier, and G. Eisenstein, “Ultra-fast charge carrier dynamics across the spectrum of an optical gain media based on InAs/AlGaInAs/InP quantum dots,” AIP Adv. 7, 035122 (2017).
[Crossref]

A. Becker, V. Sichkovskyi, M. Bjelica, A. Rippien, F. Schnabel, M. Kaiser, O. Eyal, B. Witzigmann, G. Eisenstein, and J. Reithmaier, “Widely tunable narrow-linewidth 1.5  μm light source based on a monolithically integrated quantum dot laser array,” Appl. Phys. Lett. 110, 181103 (2017).
[Crossref]

Seebeck, J.

M. Lorke, J. Seebeck, T. Nielsen, P. Gartner, and F. Jahnke, “Excitation dependence of the homogeneous linewidths in quantum dots,” Phys. Stat. Solidi C 3, 2393–2396 (2006).
[Crossref]

Sek, G.

O. Karni, K. Kuchar, A. Capua, V. Mikhelashvili, G. Sęk, J. Misiewicz, V. Ivanov, J. Reithmaier, and G. Eisenstein, “Carrier dynamics in inhomogeneously broadened InAs/AlGaInAs/InP quantum-dot semiconductor optical amplifiers,” Appl. Phys. Lett. 104, 121104 (2014).
[Crossref]

Shchekin, O.

D. Huffaker, G. Park, Z. Zou, O. Shchekin, and D. Deppe, “1.3  μm room-temperature GaAs-based quantum-dot laser,” Appl. Phys. Lett. 73, 2564–2566 (1998).
[Crossref]

Sichkovskyi, V.

I. Khanonkin, A. Mishra, O. Karni, V. Mikhelashvili, S. Banyoudeh, F. Schnabel, V. Sichkovskyi, J. Reithmaier, and G. Eisenstein, “Ultra-fast charge carrier dynamics across the spectrum of an optical gain media based on InAs/AlGaInAs/InP quantum dots,” AIP Adv. 7, 035122 (2017).
[Crossref]

A. Becker, V. Sichkovskyi, M. Bjelica, A. Rippien, F. Schnabel, M. Kaiser, O. Eyal, B. Witzigmann, G. Eisenstein, and J. Reithmaier, “Widely tunable narrow-linewidth 1.5  μm light source based on a monolithically integrated quantum dot laser array,” Appl. Phys. Lett. 110, 181103 (2017).
[Crossref]

O. Eyal, A. Willinger, S. Banyoudeh, F. Schanbel, V. Sichkovskyi, V. Mikhelashvili, J. Reithmaier, and G. Eisenstein, “Static and dynamic characteristics of an InAs/InP quantum-dot optical amplifier operating at high temperatures,” Opt. Express 25, 27262–27269 (2017).
[Crossref]

Sreenivasan, D.

D. Sreenivasan, J. Haverkort, T. Eijkemans, and R. Nötzel, “Photoluminescence from low temperature grown In As/GaAs quantum dots,” Appl. Phys. Lett. 90, 112109 (2007).
[Crossref]

Steger, S. T.

C. T. Santis, S. T. Steger, Y. Vilenchik, A. Vasilyev, and A. Yariv, “High-coherence semiconductor lasers based on integral high-Q resonators in hybrid Si/III-V platforms,” Proc. Natl. Acad. Sci. USA 111, 2879–2884 (2014).
[Crossref]

Stegmuller, B.

B. Borchert, K. David, B. Stegmuller, R. Gessner, M. Beschorner, D. Sacher, and G. Franz, “1.55 μm gain-coupled quantum-well distributed feedback lasers with high single-mode yield and narrow linewidth,” IEEE Photon. Technol. Lett. 3, 955–957 (1991).
[Crossref]

Stintz, A.

L. Lester, A. Stintz, H. Li, T. Newell, E. Pease, B. Fuchs, and K. Malloy, “Optical characteristics of 1.24-μm InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett. 11, 931–933 (1999).
[Crossref]

Stolpner, L.

M. Alalusi, P. Brasil, S. Lee, P. Mols, L. Stolpner, A. Mehnert, and S. Li, “Low noise planar external cavity laser for interferometric fiber optic sensors,” Proc. SPIE 7316, 73160X (2009).
[Crossref]

Stracke, G.

M. Stubenrauch, G. Stracke, D. Arsenijević, A. Strittmatter, and D. Bimberg, “15  gb/s index-coupled distributed-feedback lasers based on 1.3  μm InGaAs quantum dots,” Appl. Phys. Lett. 105, 011103(2014).
[Crossref]

Strittmatter, A.

M. Stubenrauch, G. Stracke, D. Arsenijević, A. Strittmatter, and D. Bimberg, “15  gb/s index-coupled distributed-feedback lasers based on 1.3  μm InGaAs quantum dots,” Appl. Phys. Lett. 105, 011103(2014).
[Crossref]

Stubenrauch, M.

M. Stubenrauch, G. Stracke, D. Arsenijević, A. Strittmatter, and D. Bimberg, “15  gb/s index-coupled distributed-feedback lasers based on 1.3  μm InGaAs quantum dots,” Appl. Phys. Lett. 105, 011103(2014).
[Crossref]

Su, H.

H. Su and L. F. Lester, “Dynamic properties of quantum dot distributed feedback lasers: high speed, linewidth and chirp,” J. Phys. D 38, 2112 (2005).
[Crossref]

M. T. Crowley, N. A. Naderi, H. Su, F. Grillot, and L. F. Lester, “GaAs-based quantum dot lasers,” in Semiconductors and Semimetals, Vol. 86 of Advances in Semiconductor Lasers (Elsevier, 2012), pp. 371–417.

Suematsu, Y.

M. Asada, Y. Miyamoto, and Y. Suematsu, “Gain and the threshold of three-dimensional quantum-box lasers,” IEEE J. Quantum Electron. 22, 1915–1921 (1986).
[Crossref]

Tromborg, B.

B. Tromborg, H. Lassen, and H. Olesen, “Traveling wave analysis of semiconductor lasers: modulation responses, mode stability and quantum mechanical treatment of noise spectra,” IEEE J. Quantum Electron. 30, 939–956 (1994).
[Crossref]

Uskov, A. V.

Vasilyev, A.

C. T. Santis, S. T. Steger, Y. Vilenchik, A. Vasilyev, and A. Yariv, “High-coherence semiconductor lasers based on integral high-Q resonators in hybrid Si/III-V platforms,” Proc. Natl. Acad. Sci. USA 111, 2879–2884 (2014).
[Crossref]

Vilenchik, Y.

C. T. Santis, S. T. Steger, Y. Vilenchik, A. Vasilyev, and A. Yariv, “High-coherence semiconductor lasers based on integral high-Q resonators in hybrid Si/III-V platforms,” Proc. Natl. Acad. Sci. USA 111, 2879–2884 (2014).
[Crossref]

Wang, C.

J. Duan, H. Huang, Z. Lu, P. Poole, C. Wang, and F. Grillot, “Narrow spectral linewidth in InAs/InP quantum dot distributed feedback lasers,” Appl. Phys. Lett. 112, 121102 (2018).
[Crossref]

Ward, H.

R. Drever, J. L. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Willinger, A.

Witzigmann, B.

A. Becker, V. Sichkovskyi, M. Bjelica, A. Rippien, F. Schnabel, M. Kaiser, O. Eyal, B. Witzigmann, G. Eisenstein, and J. Reithmaier, “Widely tunable narrow-linewidth 1.5  μm light source based on a monolithically integrated quantum dot laser array,” Appl. Phys. Lett. 110, 181103 (2017).
[Crossref]

M. Bjelica and B. Witzigmann, “Optimization of 1.55 μm quantum dot edge-emitting lasers for narrow spectral linewidth,” Opt. Quantum Electron. 48, 110 (2016).
[Crossref]

Wyatt, R.

M. Matthews, K. Cameron, R. Wyatt, and W. Devlin, “Packaged frequency-stable tunable 20  kHz linewidth 1.5 μm InGaAsP external cavity laser,” Electron. Lett. 21, 113–115 (1985).
[Crossref]

Yacob, M.

C. Gilfert, V. Ivanov, N. Oehl, M. Yacob, and J. Reithmaier, “High gain 1.55  μm diode lasers based on InAs quantum dot like active regions,” Appl. Phys. Lett. 98, 201102 (2011).
[Crossref]

Yariv, A.

C. T. Santis, S. T. Steger, Y. Vilenchik, A. Vasilyev, and A. Yariv, “High-coherence semiconductor lasers based on integral high-Q resonators in hybrid Si/III-V platforms,” Proc. Natl. Acad. Sci. USA 111, 2879–2884 (2014).
[Crossref]

Y. Arakawa and A. Yariv, “Theory of gain, modulation response, and spectral linewidth in AlGaAs quantum well lasers,” IEEE J. Quantum Electron. 21, 1666–1674 (1985).
[Crossref]

Zhang, Z.

Z. Zhang, D. Jung, J. C. Norman, P. Patel, W. W. Chow, and J. E. Bowers, “Effects of modulation p doping in InAs quantum dot lasers on silicon,” Appl. Phys. Lett. 113, 061105 (2018).
[Crossref]

Zhu, T.

S. Huang, T. Zhu, M. Liu, and W. Huang, “Precise measurement of ultra-narrow laser linewidths using the strong coherent envelope,” Sci. Rep. 7, 41988 (2017).
[Crossref]

Zou, Z.

D. Huffaker, G. Park, Z. Zou, O. Shchekin, and D. Deppe, “1.3  μm room-temperature GaAs-based quantum-dot laser,” Appl. Phys. Lett. 73, 2564–2566 (1998).
[Crossref]

AIP Adv. (1)

I. Khanonkin, A. Mishra, O. Karni, V. Mikhelashvili, S. Banyoudeh, F. Schnabel, V. Sichkovskyi, J. Reithmaier, and G. Eisenstein, “Ultra-fast charge carrier dynamics across the spectrum of an optical gain media based on InAs/AlGaInAs/InP quantum dots,” AIP Adv. 7, 035122 (2017).
[Crossref]

Appl. Phys. B (1)

R. Drever, J. L. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Appl. Phys. Lett. (8)

Z. Zhang, D. Jung, J. C. Norman, P. Patel, W. W. Chow, and J. E. Bowers, “Effects of modulation p doping in InAs quantum dot lasers on silicon,” Appl. Phys. Lett. 113, 061105 (2018).
[Crossref]

D. Sreenivasan, J. Haverkort, T. Eijkemans, and R. Nötzel, “Photoluminescence from low temperature grown In As/GaAs quantum dots,” Appl. Phys. Lett. 90, 112109 (2007).
[Crossref]

M. Stubenrauch, G. Stracke, D. Arsenijević, A. Strittmatter, and D. Bimberg, “15  gb/s index-coupled distributed-feedback lasers based on 1.3  μm InGaAs quantum dots,” Appl. Phys. Lett. 105, 011103(2014).
[Crossref]

O. Karni, K. Kuchar, A. Capua, V. Mikhelashvili, G. Sęk, J. Misiewicz, V. Ivanov, J. Reithmaier, and G. Eisenstein, “Carrier dynamics in inhomogeneously broadened InAs/AlGaInAs/InP quantum-dot semiconductor optical amplifiers,” Appl. Phys. Lett. 104, 121104 (2014).
[Crossref]

C. Gilfert, V. Ivanov, N. Oehl, M. Yacob, and J. Reithmaier, “High gain 1.55  μm diode lasers based on InAs quantum dot like active regions,” Appl. Phys. Lett. 98, 201102 (2011).
[Crossref]

J. Duan, H. Huang, Z. Lu, P. Poole, C. Wang, and F. Grillot, “Narrow spectral linewidth in InAs/InP quantum dot distributed feedback lasers,” Appl. Phys. Lett. 112, 121102 (2018).
[Crossref]

A. Becker, V. Sichkovskyi, M. Bjelica, A. Rippien, F. Schnabel, M. Kaiser, O. Eyal, B. Witzigmann, G. Eisenstein, and J. Reithmaier, “Widely tunable narrow-linewidth 1.5  μm light source based on a monolithically integrated quantum dot laser array,” Appl. Phys. Lett. 110, 181103 (2017).
[Crossref]

D. Huffaker, G. Park, Z. Zou, O. Shchekin, and D. Deppe, “1.3  μm room-temperature GaAs-based quantum-dot laser,” Appl. Phys. Lett. 73, 2564–2566 (1998).
[Crossref]

Electron. Lett. (1)

M. Matthews, K. Cameron, R. Wyatt, and W. Devlin, “Packaged frequency-stable tunable 20  kHz linewidth 1.5 μm InGaAsP external cavity laser,” Electron. Lett. 21, 113–115 (1985).
[Crossref]

IEEE J. Quantum Electron. (5)

C. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron. 18, 259–264 (1982).
[Crossref]

Y. Arakawa and A. Yariv, “Theory of gain, modulation response, and spectral linewidth in AlGaAs quantum well lasers,” IEEE J. Quantum Electron. 21, 1666–1674 (1985).
[Crossref]

M. Asada, Y. Miyamoto, and Y. Suematsu, “Gain and the threshold of three-dimensional quantum-box lasers,” IEEE J. Quantum Electron. 22, 1915–1921 (1986).
[Crossref]

B. Tromborg, H. Lassen, and H. Olesen, “Traveling wave analysis of semiconductor lasers: modulation responses, mode stability and quantum mechanical treatment of noise spectra,” IEEE J. Quantum Electron. 30, 939–956 (1994).
[Crossref]

J. Kim and S. Chuang, “Theoretical and experimental study of optical gain, refractive index change, and linewidth enhancement factor of p-doped quantum-dot lasers,” IEEE J. Quantum Electron. 42, 942–952 (2006).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

C. Redlich, B. Lingnau, H. Huang, R. Raghunathan, K. Schires, P. Poole, F. Grillot, and K. Lüdge, “Linewidth rebroadening in quantum dot semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 23, 1–10 (2017).
[Crossref]

IEEE Photon. Technol. Lett. (2)

L. Lester, A. Stintz, H. Li, T. Newell, E. Pease, B. Fuchs, and K. Malloy, “Optical characteristics of 1.24-μm InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett. 11, 931–933 (1999).
[Crossref]

B. Borchert, K. David, B. Stegmuller, R. Gessner, M. Beschorner, D. Sacher, and G. Franz, “1.55 μm gain-coupled quantum-well distributed feedback lasers with high single-mode yield and narrow linewidth,” IEEE Photon. Technol. Lett. 3, 955–957 (1991).
[Crossref]

J. Appl. Phys. (1)

Y. Dai, J. Fan, Y. Chen, R. Lin, S. Lee, and H. Lin, “Temperature dependence of photoluminescence spectra in InAs/GaAs quantum dot superlattices with large thicknesses,” J. Appl. Phys. 82, 4489–4492 (1997).
[Crossref]

J. Cryst. Growth (1)

S. Banyoudeh and J. P. Reithmaier, “High-density 1.54  μm InAs/InGaAlAs/InP (100) based quantum dots with reduced size inhomogeneity,” J. Cryst. Growth 425, 299–302 (2015).
[Crossref]

J. Phys. D (1)

H. Su and L. F. Lester, “Dynamic properties of quantum dot distributed feedback lasers: high speed, linewidth and chirp,” J. Phys. D 38, 2112 (2005).
[Crossref]

Opt. Express (3)

Opt. Quantum Electron. (1)

M. Bjelica and B. Witzigmann, “Optimization of 1.55 μm quantum dot edge-emitting lasers for narrow spectral linewidth,” Opt. Quantum Electron. 48, 110 (2016).
[Crossref]

Phys. Rev. B (1)

M. Bayer and A. Forchel, “Temperature dependence of the exciton homogeneous linewidth in 0.60  Ga 0.40  As/GaAs self-assembled quantum dots,” Phys. Rev. B 65, 041308 (2002).
[Crossref]

Phys. Stat. Solidi C (1)

M. Lorke, J. Seebeck, T. Nielsen, P. Gartner, and F. Jahnke, “Excitation dependence of the homogeneous linewidths in quantum dots,” Phys. Stat. Solidi C 3, 2393–2396 (2006).
[Crossref]

Proc. Natl. Acad. Sci. USA (1)

C. T. Santis, S. T. Steger, Y. Vilenchik, A. Vasilyev, and A. Yariv, “High-coherence semiconductor lasers based on integral high-Q resonators in hybrid Si/III-V platforms,” Proc. Natl. Acad. Sci. USA 111, 2879–2884 (2014).
[Crossref]

Proc. SPIE (2)

F. Grillot, N. Naderi, M. Pochet, C.-Y. Lin, and L. Lester, “Systematic investigation of the alpha parameter influence on the critical feedback level in QD lasers,” Proc. SPIE 7211, 721108 (2009).
[Crossref]

M. Alalusi, P. Brasil, S. Lee, P. Mols, L. Stolpner, A. Mehnert, and S. Li, “Low noise planar external cavity laser for interferometric fiber optic sensors,” Proc. SPIE 7316, 73160X (2009).
[Crossref]

Sci. Rep. (1)

S. Huang, T. Zhu, M. Liu, and W. Huang, “Precise measurement of ultra-narrow laser linewidths using the strong coherent envelope,” Sci. Rep. 7, 41988 (2017).
[Crossref]

Other (3)

P. F. Liao and P. Kelley, Quantum Well Lasers (Elsevier, 2012).

M. T. Crowley, N. A. Naderi, H. Su, F. Grillot, and L. F. Lester, “GaAs-based quantum dot lasers,” in Semiconductors and Semimetals, Vol. 86 of Advances in Semiconductor Lasers (Elsevier, 2012), pp. 371–417.

T. Okoshi and K. Kikuchi, Coherent Optical Fiber Communications, Vol. 4 (Springer Science & Business Media, 1988).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. (a) Schematic of the epitaxial layer structure. The scale is given in nanometers. (b) SEM image of the surface grating DFB laser.
Fig. 2.
Fig. 2. L–I curves with measured data in marks and simulation values in solid lines for 20°C (blue), 40°C (purple), 60°C (orange), and 80°C (red).
Fig. 3.
Fig. 3. (a) Optical spectra and (b) bias and temperature-dependent SMSR at 20°C (blue), 40°C (purple), 60°C (orange), and 80°C (red).
Fig. 4.
Fig. 4. Diagram of the DSH system with the inset showing a typical measured self-heterodyne beat (black) with a Voigt profile fit (red) and the matching Gaussian (dashed green), and Lorentzian (blue) profiles. ISO, isolator; AOM, acousto-optic modulator; FC, fiber coupler.
Fig. 5.
Fig. 5. Extracted Lorentzian linewidths measured by DSH shown in marks. The simulated values are shown in solid lines: 20°C (blue), 40°C (purple), 60°C (orange), 80°C (red).
Fig. 6.
Fig. 6. OFC interferometry setup with the optical reference system used to discipline the comb. EOM, electro-optic modulator; CIRC, circulator; PDH, Pound–Drever–Hall detector; f-2f, offset beat detector.
Fig. 7.
Fig. 7. Spectrum of the locked beat between the OFC and the optical reference. The optical reference has an estimated linewidth of 100 Hz or less. Since the comb follows it tightly, the comb line has the same spectral stability as the reference.
Fig. 8.
Fig. 8. (a) DSH and (b) OFC interferometry spectra measured at 290 mA and 30°C, recorded with a resolution bandwidth of 5.1 kHz and 10 kHz, respectively. The extracted Lorentzian linewidth is 30 kHz.
Fig. 9.
Fig. 9. Extracted α parameter over temperature at threshold (black) and 150 mA above threshold (red).

Metrics