Abstract

Current optical communication systems operating at the 1.55 μm wavelength band may not be able to continually satisfy the growing demand on data capacity within the next few years. Opening a new spectral window around the 2 μm wavelength with recently developed hollow-core photonic bandgap fiber and a thulium-doped fiber amplifier is a promising solution to increase transmission capacity due to the low-loss and wide-bandwidth properties of these components at this wavelength band. However, as a key component, the performance of current high-speed photodetectors at the 2 μm wavelength is still not comparable with those at the 1.55 μm wavelength band, which chokes the feasibility of the new spectral window. In this work, we demonstrate, for the first time to our knowledge, a high-speed uni-traveling carrier photodiode for 2 μm applications with InGaAs/GaAsSb type-II multiple quantum wells as the absorption region, which is lattice-matched to InP. The devices have the responsivity of 0.07 A/W at 2 μm wavelength, and the device with a 10 μm diameter shows a 3 dB bandwidth of 25 GHz at 3V bias voltage. To the best of our knowledge, this device is the fastest photodiode among all group III-V and group IV photodetectors working in the 2 μm wavelength range.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
High-speed photo detection at two-micron-wavelength: technology enablement by GeSn/Ge multiple-quantum-well photodiode on 300 mm Si substrate

Shengqiang Xu, Wei Wang, Yi-Chiau Huang, Yuan Dong, Saeid Masudy-Panah, Hong Wang, Xiao Gong, and Yee-Chia Yeo
Opt. Express 27(4) 5798-5813 (2019)

Dynamic model and bandwidth characterization of InGaAs/GaAsSb type-II quantum wells PIN photodiodes

Yaojiang Chen, Xuyi Zhao, Jian Huang, Zhuo Deng, Chunfang Cao, Qian Gong, and Baile Chen
Opt. Express 26(26) 35034-35045 (2018)

Enhancement in speed and responsivity of uni-traveling carrier photodiodes with GaAs0.5Sb0.5/In0.53Ga0.47As type-II hybrid absorbers

Naseem, Zohauddin Ahmad, Rui-Lin Chao, Hsiang-Szu Chang, C.-J. Ni, H.-S. Chen, Jack Jia-Sheng Huang, Emin Chou, Yu-Heng Jan, and Jin-Wei Shi
Opt. Express 27(11) 15495-15504 (2019)

References

  • View by:
  • |
  • |
  • |

  1. A. D. Ellis, J. Zhao, and D. Cotter, “Approaching the non-linear Shannon limit,” J. Lightwave Technol. 28, 423–433 (2010).
    [Crossref]
  2. D. J. Richardson, “Filling the light pipe,” Science 330, 327–328 (2010).
    [Crossref]
  3. P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. St.J. Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13, 236–244 (2005).
    [Crossref]
  4. Z. Li, A. M. Heidt, N. Simakov, Y. Jung, J. M. O. Daniel, S. U. Alam, and D. J. Richardson, “Diode-pumped wideband thulium-doped fiber amplifiers for optical communications in the 1800–2050  nm window,” Opt. Express 21, 26450–26455 (2013).
    [Crossref]
  5. B. Corbett, M. R. Gleeson, N. Ye, C. Robert, H. Yang, H. Zhang, N. M. Suibhne, and F. C. G. Gunning, “InP-based active and passive components for communication systems at 2  μm,” J. Lightwave Technol. 33, 971–975 (2014).
    [Crossref]
  6. H. Zhang, N. Kavanagh, Z. Li, J. Zhao, N. Ye, Y. Chen, N. V. Wheeler, J. P. Wooler, J. R. Hayes, S. R. Sandoghchi, F. Poletti, M. N. Petrovich, S. U. Alam, R. Phelan, J. O’Carroll, B. Kelly, L. Grüner-Nielsen, D. J. Richardson, B. Corbett, and F. C. Garcia Gunning, “100  Gbit/s WDM transmission at 2  μm: transmission studies in both low-loss hollow core photonic bandgap fiber and solid core fiber,” Opt. Express 23, 4946–4951 (2015).
    [Crossref]
  7. F. C. Garcia Gunning, N. Kavanagh, E. Russell, R. Sheehan, J. O’Callaghan, and B. Corbett, “Key enabling technologies for optical communications at 2000  nm,” Appl. Opt. 57, E64–E70 (2018).
    [Crossref]
  8. A. Joshi and D. Becker, “High-speed low-noise p-i-n InGaAs photoreceiver at 2-μm wavelength,” IEEE Photon. Technol. Lett. 20, 551–553 (2008).
    [Crossref]
  9. A. Joshi and S. Datta, “High-speed, large-area, p-i-n InGaAs photodiode linear array at 2-micron wavelength,” Proc. SPIE 8353, 83533D (2012).
    [Crossref]
  10. H. Yang, B. Kelly, W. Han, F. Gunning, B. Corbett, R. Phelan, J. O’Carroll, H. Yang, F. H. Peters, X. Wang, N. Nudds, P. O’Brien, N. Ye, and N. MacSuibhne, “Butterfly packaged high-speed and low leakage InGaAs quantum well photodiode for 2000nm wavelength systems,” Electron. Lett. 49, 281–282 (2013).
    [Crossref]
  11. N. Ye, H. Yang, M. Gleeson, N. Pavarelli, H. Y. Zhang, J. O’Callaghan, W. Han, N. Nudds, S. Collins, A. Gocalinska, E. Pelucchi, P. O’Brien, F. C. G. Gunning, F. H. Peters, B. Corbett, J. O. Callaghan, W. Han, N. Nudds, S. Collins, E. Pelucchi, P. O. Brien, F. C. G. Gunning, F. H. Peters, and B. Corbett, “InGaAs surface normal photodiode for 2  μm optical communication systems,” IEEE Photon. Technol. Lett. 4, 1469–1472 (2015).
    [Crossref]
  12. J. M. Wun, Y. W. Wang, Y. H. Chen, J. E. Bowers, and J. W. Shi, “GaSb-based p-i-n photodiodes with partially depleted absorbers for high-speed and high-power performance at 2.5-μm wavelength,” IEEE Trans. Electron Devices 63, 2796–2801 (2016).
    [Crossref]
  13. Y. Dong, W. Wang, S. Xu, D. Lei, X. Gong, X. Guo, H. Wang, S.-Y. Lee, W.-K. Loke, S.-F. Yoon, and Y.-C. Yeo, “Two-micron-wavelength germanium-tin photodiodes with low dark current and gigahertz bandwidth,” Opt. Express 25, 15818–15827 (2017).
    [Crossref]
  14. S. Xu, W. Wang, Y.-C. Huang, Y. Dong, S. Masudy-Panah, H. Wang, X. Gong, and Y.-C. Yeo, “High-speed photo detection at two-micron-wavelength: technology enablement by GeSn/Ge multiple-quantum-well photodiode on 300  mm Si substrate,” Opt. Express 27, 5798–5813 (2019).
    [Crossref]
  15. J. J. Ackert, D. J. Thomson, L. Shen, A. C. Peacock, P. E. Jessop, G. T. Reed, G. Z. Mashanovich, and A. P. Knights, “High-speed detection at two micrometres with monolithic silicon photodiodes,” Nat. Photonics 9, 393–396 (2015).
    [Crossref]
  16. B. Chen, “SWIR/MWIR InP-based p-i-n photodiodes with InGaAs/GaAsSb type-II quantum wells,” IEEE J. Quantum Electron. 30, 399–402 (2011).
  17. B. Chen, W. Y. Jiang, J. Yuan, A. L. Holmes, and B. M. Onat, “Demonstration of a room-temperature InP-based photodetector operating beyond 3 μm,” IEEE Photon. Technol. Lett. 23, 218–220 (2011).
    [Crossref]
  18. B. Chen and A. L. Holmes, “InP-based short-wave infrared and midwave infrared photodiodes using a novel type-II strain-compensated quantum well absorption region,” Opt. Lett. 38, 2750–2753 (2013).
    [Crossref]
  19. B. Chen, W. Y. Jiang, and A. L. Holmes, “Design of strain compensated InGaAs/GaAsSb type-II quantum well structures for mid-infrared photodiodes,” Opt. Quantum Electron. 44, 103–109 (2012).
    [Crossref]
  20. B. Tossoun, R. Stephens, Y. Wang, S. Addamane, G. Balakrishnan, A. Holmes, and A. Beling, “High-speed InP-based p-i-n photodiodes with InGaAs/GaAsSb type-II quantum wells,” IEEE Photon. Technol. Lett. 30, 399–402 (2018).
    [Crossref]
  21. Y. Chen, X. Zhao, J. Huang, Z. Deng, C. Cao, Q. Gong, and B. Chen, “Dynamic model and bandwidth characterization of InGaAs/GaAsSb type-II quantum wells PIN photodiodes,” Opt. Express 26, 35034–35045 (2018).
    [Crossref]
  22. B. Tossoun, J. Zang, S. J. Addamane, G. Balakrishnan, A. L. Holmes, and A. Beling, “InP-based waveguide-integrated photodiodes with InGaAs/GaAsSb type-II quantum wells and 10-GHz bandwidth at 2  μm wavelength,” J. Lightwave Technol. 36, 4981–4987 (2018).
    [Crossref]
  23. Y. Chen and B. Chen, “Design of InP-based high-speed photodiode for 2-μm wavelength application,” IEEE J. Quantum Electron. 55, 1–8 (2019).
    [Crossref]
  24. J. M. Wun, Y. W. Wang, and J. W. Shi, “Ultrafast uni-traveling carrier photodiodes with GaAs0.5Sb0.5/In0.53Ga0.47As type-II hybrid absorbers for high-power operation at THz frequencies,” IEEE J. Sel. Top. Quantum Electron. 24, 1–7 (2018).
    [Crossref]
  25. C. C. Renaud, M. Natrella, C. Graham, J. Seddon, F. Van Dijk, and A. J. Seeds, “Antenna integrated THz uni-traveling carrier photodiodes,” IEEE J. Sel. Top. Quantum Electron. 24, 1–11 (2018).
    [Crossref]
  26. A. Beling, X. Xie, and J. C. Campbell, “High-power, high-linearity photodiodes,” Optica 3, 328–338 (2016).
    [Crossref]
  27. T. Ishibashi, Y. Muramoto, T. Yoshimatsu, and H. Ito, “Unitraveling-carrier photodiodes for terahertz applications,” IEEE J. Sel. Top. Quantum Electron. 20, 79–88 (2014).
    [Crossref]
  28. N. Li, X. Li, S. Demiguel, X. Zheng, J. C. Campbell, D. A. Tulchins, K. J. Williams, T. D. Isshiki, G. S. Kinsey, and R. Sudharsansan, “High-saturation-current charge-compensated InGaAs-InP uni-traveling-carrier photodiode,” IEEE Photon. Technol. Lett. 16, 864–866 (2004).
    [Crossref]

2019 (2)

2018 (6)

J. M. Wun, Y. W. Wang, and J. W. Shi, “Ultrafast uni-traveling carrier photodiodes with GaAs0.5Sb0.5/In0.53Ga0.47As type-II hybrid absorbers for high-power operation at THz frequencies,” IEEE J. Sel. Top. Quantum Electron. 24, 1–7 (2018).
[Crossref]

C. C. Renaud, M. Natrella, C. Graham, J. Seddon, F. Van Dijk, and A. J. Seeds, “Antenna integrated THz uni-traveling carrier photodiodes,” IEEE J. Sel. Top. Quantum Electron. 24, 1–11 (2018).
[Crossref]

B. Tossoun, R. Stephens, Y. Wang, S. Addamane, G. Balakrishnan, A. Holmes, and A. Beling, “High-speed InP-based p-i-n photodiodes with InGaAs/GaAsSb type-II quantum wells,” IEEE Photon. Technol. Lett. 30, 399–402 (2018).
[Crossref]

Y. Chen, X. Zhao, J. Huang, Z. Deng, C. Cao, Q. Gong, and B. Chen, “Dynamic model and bandwidth characterization of InGaAs/GaAsSb type-II quantum wells PIN photodiodes,” Opt. Express 26, 35034–35045 (2018).
[Crossref]

B. Tossoun, J. Zang, S. J. Addamane, G. Balakrishnan, A. L. Holmes, and A. Beling, “InP-based waveguide-integrated photodiodes with InGaAs/GaAsSb type-II quantum wells and 10-GHz bandwidth at 2  μm wavelength,” J. Lightwave Technol. 36, 4981–4987 (2018).
[Crossref]

F. C. Garcia Gunning, N. Kavanagh, E. Russell, R. Sheehan, J. O’Callaghan, and B. Corbett, “Key enabling technologies for optical communications at 2000  nm,” Appl. Opt. 57, E64–E70 (2018).
[Crossref]

2017 (1)

2016 (2)

J. M. Wun, Y. W. Wang, Y. H. Chen, J. E. Bowers, and J. W. Shi, “GaSb-based p-i-n photodiodes with partially depleted absorbers for high-speed and high-power performance at 2.5-μm wavelength,” IEEE Trans. Electron Devices 63, 2796–2801 (2016).
[Crossref]

A. Beling, X. Xie, and J. C. Campbell, “High-power, high-linearity photodiodes,” Optica 3, 328–338 (2016).
[Crossref]

2015 (3)

N. Ye, H. Yang, M. Gleeson, N. Pavarelli, H. Y. Zhang, J. O’Callaghan, W. Han, N. Nudds, S. Collins, A. Gocalinska, E. Pelucchi, P. O’Brien, F. C. G. Gunning, F. H. Peters, B. Corbett, J. O. Callaghan, W. Han, N. Nudds, S. Collins, E. Pelucchi, P. O. Brien, F. C. G. Gunning, F. H. Peters, and B. Corbett, “InGaAs surface normal photodiode for 2  μm optical communication systems,” IEEE Photon. Technol. Lett. 4, 1469–1472 (2015).
[Crossref]

J. J. Ackert, D. J. Thomson, L. Shen, A. C. Peacock, P. E. Jessop, G. T. Reed, G. Z. Mashanovich, and A. P. Knights, “High-speed detection at two micrometres with monolithic silicon photodiodes,” Nat. Photonics 9, 393–396 (2015).
[Crossref]

H. Zhang, N. Kavanagh, Z. Li, J. Zhao, N. Ye, Y. Chen, N. V. Wheeler, J. P. Wooler, J. R. Hayes, S. R. Sandoghchi, F. Poletti, M. N. Petrovich, S. U. Alam, R. Phelan, J. O’Carroll, B. Kelly, L. Grüner-Nielsen, D. J. Richardson, B. Corbett, and F. C. Garcia Gunning, “100  Gbit/s WDM transmission at 2  μm: transmission studies in both low-loss hollow core photonic bandgap fiber and solid core fiber,” Opt. Express 23, 4946–4951 (2015).
[Crossref]

2014 (2)

B. Corbett, M. R. Gleeson, N. Ye, C. Robert, H. Yang, H. Zhang, N. M. Suibhne, and F. C. G. Gunning, “InP-based active and passive components for communication systems at 2  μm,” J. Lightwave Technol. 33, 971–975 (2014).
[Crossref]

T. Ishibashi, Y. Muramoto, T. Yoshimatsu, and H. Ito, “Unitraveling-carrier photodiodes for terahertz applications,” IEEE J. Sel. Top. Quantum Electron. 20, 79–88 (2014).
[Crossref]

2013 (3)

2012 (2)

A. Joshi and S. Datta, “High-speed, large-area, p-i-n InGaAs photodiode linear array at 2-micron wavelength,” Proc. SPIE 8353, 83533D (2012).
[Crossref]

B. Chen, W. Y. Jiang, and A. L. Holmes, “Design of strain compensated InGaAs/GaAsSb type-II quantum well structures for mid-infrared photodiodes,” Opt. Quantum Electron. 44, 103–109 (2012).
[Crossref]

2011 (2)

B. Chen, “SWIR/MWIR InP-based p-i-n photodiodes with InGaAs/GaAsSb type-II quantum wells,” IEEE J. Quantum Electron. 30, 399–402 (2011).

B. Chen, W. Y. Jiang, J. Yuan, A. L. Holmes, and B. M. Onat, “Demonstration of a room-temperature InP-based photodetector operating beyond 3 μm,” IEEE Photon. Technol. Lett. 23, 218–220 (2011).
[Crossref]

2010 (2)

2008 (1)

A. Joshi and D. Becker, “High-speed low-noise p-i-n InGaAs photoreceiver at 2-μm wavelength,” IEEE Photon. Technol. Lett. 20, 551–553 (2008).
[Crossref]

2005 (1)

2004 (1)

N. Li, X. Li, S. Demiguel, X. Zheng, J. C. Campbell, D. A. Tulchins, K. J. Williams, T. D. Isshiki, G. S. Kinsey, and R. Sudharsansan, “High-saturation-current charge-compensated InGaAs-InP uni-traveling-carrier photodiode,” IEEE Photon. Technol. Lett. 16, 864–866 (2004).
[Crossref]

Ackert, J. J.

J. J. Ackert, D. J. Thomson, L. Shen, A. C. Peacock, P. E. Jessop, G. T. Reed, G. Z. Mashanovich, and A. P. Knights, “High-speed detection at two micrometres with monolithic silicon photodiodes,” Nat. Photonics 9, 393–396 (2015).
[Crossref]

Addamane, S.

B. Tossoun, R. Stephens, Y. Wang, S. Addamane, G. Balakrishnan, A. Holmes, and A. Beling, “High-speed InP-based p-i-n photodiodes with InGaAs/GaAsSb type-II quantum wells,” IEEE Photon. Technol. Lett. 30, 399–402 (2018).
[Crossref]

Addamane, S. J.

Alam, S. U.

Balakrishnan, G.

B. Tossoun, J. Zang, S. J. Addamane, G. Balakrishnan, A. L. Holmes, and A. Beling, “InP-based waveguide-integrated photodiodes with InGaAs/GaAsSb type-II quantum wells and 10-GHz bandwidth at 2  μm wavelength,” J. Lightwave Technol. 36, 4981–4987 (2018).
[Crossref]

B. Tossoun, R. Stephens, Y. Wang, S. Addamane, G. Balakrishnan, A. Holmes, and A. Beling, “High-speed InP-based p-i-n photodiodes with InGaAs/GaAsSb type-II quantum wells,” IEEE Photon. Technol. Lett. 30, 399–402 (2018).
[Crossref]

Becker, D.

A. Joshi and D. Becker, “High-speed low-noise p-i-n InGaAs photoreceiver at 2-μm wavelength,” IEEE Photon. Technol. Lett. 20, 551–553 (2008).
[Crossref]

Beling, A.

Birks, T. A.

Bowers, J. E.

J. M. Wun, Y. W. Wang, Y. H. Chen, J. E. Bowers, and J. W. Shi, “GaSb-based p-i-n photodiodes with partially depleted absorbers for high-speed and high-power performance at 2.5-μm wavelength,” IEEE Trans. Electron Devices 63, 2796–2801 (2016).
[Crossref]

Brien, P. O.

N. Ye, H. Yang, M. Gleeson, N. Pavarelli, H. Y. Zhang, J. O’Callaghan, W. Han, N. Nudds, S. Collins, A. Gocalinska, E. Pelucchi, P. O’Brien, F. C. G. Gunning, F. H. Peters, B. Corbett, J. O. Callaghan, W. Han, N. Nudds, S. Collins, E. Pelucchi, P. O. Brien, F. C. G. Gunning, F. H. Peters, and B. Corbett, “InGaAs surface normal photodiode for 2  μm optical communication systems,” IEEE Photon. Technol. Lett. 4, 1469–1472 (2015).
[Crossref]

Callaghan, J. O.

N. Ye, H. Yang, M. Gleeson, N. Pavarelli, H. Y. Zhang, J. O’Callaghan, W. Han, N. Nudds, S. Collins, A. Gocalinska, E. Pelucchi, P. O’Brien, F. C. G. Gunning, F. H. Peters, B. Corbett, J. O. Callaghan, W. Han, N. Nudds, S. Collins, E. Pelucchi, P. O. Brien, F. C. G. Gunning, F. H. Peters, and B. Corbett, “InGaAs surface normal photodiode for 2  μm optical communication systems,” IEEE Photon. Technol. Lett. 4, 1469–1472 (2015).
[Crossref]

Campbell, J. C.

A. Beling, X. Xie, and J. C. Campbell, “High-power, high-linearity photodiodes,” Optica 3, 328–338 (2016).
[Crossref]

N. Li, X. Li, S. Demiguel, X. Zheng, J. C. Campbell, D. A. Tulchins, K. J. Williams, T. D. Isshiki, G. S. Kinsey, and R. Sudharsansan, “High-saturation-current charge-compensated InGaAs-InP uni-traveling-carrier photodiode,” IEEE Photon. Technol. Lett. 16, 864–866 (2004).
[Crossref]

Cao, C.

Chen, B.

Y. Chen and B. Chen, “Design of InP-based high-speed photodiode for 2-μm wavelength application,” IEEE J. Quantum Electron. 55, 1–8 (2019).
[Crossref]

Y. Chen, X. Zhao, J. Huang, Z. Deng, C. Cao, Q. Gong, and B. Chen, “Dynamic model and bandwidth characterization of InGaAs/GaAsSb type-II quantum wells PIN photodiodes,” Opt. Express 26, 35034–35045 (2018).
[Crossref]

B. Chen and A. L. Holmes, “InP-based short-wave infrared and midwave infrared photodiodes using a novel type-II strain-compensated quantum well absorption region,” Opt. Lett. 38, 2750–2753 (2013).
[Crossref]

B. Chen, W. Y. Jiang, and A. L. Holmes, “Design of strain compensated InGaAs/GaAsSb type-II quantum well structures for mid-infrared photodiodes,” Opt. Quantum Electron. 44, 103–109 (2012).
[Crossref]

B. Chen, “SWIR/MWIR InP-based p-i-n photodiodes with InGaAs/GaAsSb type-II quantum wells,” IEEE J. Quantum Electron. 30, 399–402 (2011).

B. Chen, W. Y. Jiang, J. Yuan, A. L. Holmes, and B. M. Onat, “Demonstration of a room-temperature InP-based photodetector operating beyond 3 μm,” IEEE Photon. Technol. Lett. 23, 218–220 (2011).
[Crossref]

Chen, Y.

Chen, Y. H.

J. M. Wun, Y. W. Wang, Y. H. Chen, J. E. Bowers, and J. W. Shi, “GaSb-based p-i-n photodiodes with partially depleted absorbers for high-speed and high-power performance at 2.5-μm wavelength,” IEEE Trans. Electron Devices 63, 2796–2801 (2016).
[Crossref]

Collins, S.

N. Ye, H. Yang, M. Gleeson, N. Pavarelli, H. Y. Zhang, J. O’Callaghan, W. Han, N. Nudds, S. Collins, A. Gocalinska, E. Pelucchi, P. O’Brien, F. C. G. Gunning, F. H. Peters, B. Corbett, J. O. Callaghan, W. Han, N. Nudds, S. Collins, E. Pelucchi, P. O. Brien, F. C. G. Gunning, F. H. Peters, and B. Corbett, “InGaAs surface normal photodiode for 2  μm optical communication systems,” IEEE Photon. Technol. Lett. 4, 1469–1472 (2015).
[Crossref]

N. Ye, H. Yang, M. Gleeson, N. Pavarelli, H. Y. Zhang, J. O’Callaghan, W. Han, N. Nudds, S. Collins, A. Gocalinska, E. Pelucchi, P. O’Brien, F. C. G. Gunning, F. H. Peters, B. Corbett, J. O. Callaghan, W. Han, N. Nudds, S. Collins, E. Pelucchi, P. O. Brien, F. C. G. Gunning, F. H. Peters, and B. Corbett, “InGaAs surface normal photodiode for 2  μm optical communication systems,” IEEE Photon. Technol. Lett. 4, 1469–1472 (2015).
[Crossref]

Corbett, B.

F. C. Garcia Gunning, N. Kavanagh, E. Russell, R. Sheehan, J. O’Callaghan, and B. Corbett, “Key enabling technologies for optical communications at 2000  nm,” Appl. Opt. 57, E64–E70 (2018).
[Crossref]

N. Ye, H. Yang, M. Gleeson, N. Pavarelli, H. Y. Zhang, J. O’Callaghan, W. Han, N. Nudds, S. Collins, A. Gocalinska, E. Pelucchi, P. O’Brien, F. C. G. Gunning, F. H. Peters, B. Corbett, J. O. Callaghan, W. Han, N. Nudds, S. Collins, E. Pelucchi, P. O. Brien, F. C. G. Gunning, F. H. Peters, and B. Corbett, “InGaAs surface normal photodiode for 2  μm optical communication systems,” IEEE Photon. Technol. Lett. 4, 1469–1472 (2015).
[Crossref]

N. Ye, H. Yang, M. Gleeson, N. Pavarelli, H. Y. Zhang, J. O’Callaghan, W. Han, N. Nudds, S. Collins, A. Gocalinska, E. Pelucchi, P. O’Brien, F. C. G. Gunning, F. H. Peters, B. Corbett, J. O. Callaghan, W. Han, N. Nudds, S. Collins, E. Pelucchi, P. O. Brien, F. C. G. Gunning, F. H. Peters, and B. Corbett, “InGaAs surface normal photodiode for 2  μm optical communication systems,” IEEE Photon. Technol. Lett. 4, 1469–1472 (2015).
[Crossref]

H. Zhang, N. Kavanagh, Z. Li, J. Zhao, N. Ye, Y. Chen, N. V. Wheeler, J. P. Wooler, J. R. Hayes, S. R. Sandoghchi, F. Poletti, M. N. Petrovich, S. U. Alam, R. Phelan, J. O’Carroll, B. Kelly, L. Grüner-Nielsen, D. J. Richardson, B. Corbett, and F. C. Garcia Gunning, “100  Gbit/s WDM transmission at 2  μm: transmission studies in both low-loss hollow core photonic bandgap fiber and solid core fiber,” Opt. Express 23, 4946–4951 (2015).
[Crossref]

B. Corbett, M. R. Gleeson, N. Ye, C. Robert, H. Yang, H. Zhang, N. M. Suibhne, and F. C. G. Gunning, “InP-based active and passive components for communication systems at 2  μm,” J. Lightwave Technol. 33, 971–975 (2014).
[Crossref]

H. Yang, B. Kelly, W. Han, F. Gunning, B. Corbett, R. Phelan, J. O’Carroll, H. Yang, F. H. Peters, X. Wang, N. Nudds, P. O’Brien, N. Ye, and N. MacSuibhne, “Butterfly packaged high-speed and low leakage InGaAs quantum well photodiode for 2000nm wavelength systems,” Electron. Lett. 49, 281–282 (2013).
[Crossref]

Cotter, D.

Couny, F.

Daniel, J. M. O.

Datta, S.

A. Joshi and S. Datta, “High-speed, large-area, p-i-n InGaAs photodiode linear array at 2-micron wavelength,” Proc. SPIE 8353, 83533D (2012).
[Crossref]

Demiguel, S.

N. Li, X. Li, S. Demiguel, X. Zheng, J. C. Campbell, D. A. Tulchins, K. J. Williams, T. D. Isshiki, G. S. Kinsey, and R. Sudharsansan, “High-saturation-current charge-compensated InGaAs-InP uni-traveling-carrier photodiode,” IEEE Photon. Technol. Lett. 16, 864–866 (2004).
[Crossref]

Deng, Z.

Dong, Y.

Ellis, A. D.

Farr, L.

Garcia Gunning, F. C.

Gleeson, M.

N. Ye, H. Yang, M. Gleeson, N. Pavarelli, H. Y. Zhang, J. O’Callaghan, W. Han, N. Nudds, S. Collins, A. Gocalinska, E. Pelucchi, P. O’Brien, F. C. G. Gunning, F. H. Peters, B. Corbett, J. O. Callaghan, W. Han, N. Nudds, S. Collins, E. Pelucchi, P. O. Brien, F. C. G. Gunning, F. H. Peters, and B. Corbett, “InGaAs surface normal photodiode for 2  μm optical communication systems,” IEEE Photon. Technol. Lett. 4, 1469–1472 (2015).
[Crossref]

Gleeson, M. R.

Gocalinska, A.

N. Ye, H. Yang, M. Gleeson, N. Pavarelli, H. Y. Zhang, J. O’Callaghan, W. Han, N. Nudds, S. Collins, A. Gocalinska, E. Pelucchi, P. O’Brien, F. C. G. Gunning, F. H. Peters, B. Corbett, J. O. Callaghan, W. Han, N. Nudds, S. Collins, E. Pelucchi, P. O. Brien, F. C. G. Gunning, F. H. Peters, and B. Corbett, “InGaAs surface normal photodiode for 2  μm optical communication systems,” IEEE Photon. Technol. Lett. 4, 1469–1472 (2015).
[Crossref]

Gong, Q.

Gong, X.

Graham, C.

C. C. Renaud, M. Natrella, C. Graham, J. Seddon, F. Van Dijk, and A. J. Seeds, “Antenna integrated THz uni-traveling carrier photodiodes,” IEEE J. Sel. Top. Quantum Electron. 24, 1–11 (2018).
[Crossref]

Grüner-Nielsen, L.

Gunning, F.

H. Yang, B. Kelly, W. Han, F. Gunning, B. Corbett, R. Phelan, J. O’Carroll, H. Yang, F. H. Peters, X. Wang, N. Nudds, P. O’Brien, N. Ye, and N. MacSuibhne, “Butterfly packaged high-speed and low leakage InGaAs quantum well photodiode for 2000nm wavelength systems,” Electron. Lett. 49, 281–282 (2013).
[Crossref]

Gunning, F. C. G.

N. Ye, H. Yang, M. Gleeson, N. Pavarelli, H. Y. Zhang, J. O’Callaghan, W. Han, N. Nudds, S. Collins, A. Gocalinska, E. Pelucchi, P. O’Brien, F. C. G. Gunning, F. H. Peters, B. Corbett, J. O. Callaghan, W. Han, N. Nudds, S. Collins, E. Pelucchi, P. O. Brien, F. C. G. Gunning, F. H. Peters, and B. Corbett, “InGaAs surface normal photodiode for 2  μm optical communication systems,” IEEE Photon. Technol. Lett. 4, 1469–1472 (2015).
[Crossref]

N. Ye, H. Yang, M. Gleeson, N. Pavarelli, H. Y. Zhang, J. O’Callaghan, W. Han, N. Nudds, S. Collins, A. Gocalinska, E. Pelucchi, P. O’Brien, F. C. G. Gunning, F. H. Peters, B. Corbett, J. O. Callaghan, W. Han, N. Nudds, S. Collins, E. Pelucchi, P. O. Brien, F. C. G. Gunning, F. H. Peters, and B. Corbett, “InGaAs surface normal photodiode for 2  μm optical communication systems,” IEEE Photon. Technol. Lett. 4, 1469–1472 (2015).
[Crossref]

B. Corbett, M. R. Gleeson, N. Ye, C. Robert, H. Yang, H. Zhang, N. M. Suibhne, and F. C. G. Gunning, “InP-based active and passive components for communication systems at 2  μm,” J. Lightwave Technol. 33, 971–975 (2014).
[Crossref]

Guo, X.

Han, W.

N. Ye, H. Yang, M. Gleeson, N. Pavarelli, H. Y. Zhang, J. O’Callaghan, W. Han, N. Nudds, S. Collins, A. Gocalinska, E. Pelucchi, P. O’Brien, F. C. G. Gunning, F. H. Peters, B. Corbett, J. O. Callaghan, W. Han, N. Nudds, S. Collins, E. Pelucchi, P. O. Brien, F. C. G. Gunning, F. H. Peters, and B. Corbett, “InGaAs surface normal photodiode for 2  μm optical communication systems,” IEEE Photon. Technol. Lett. 4, 1469–1472 (2015).
[Crossref]

N. Ye, H. Yang, M. Gleeson, N. Pavarelli, H. Y. Zhang, J. O’Callaghan, W. Han, N. Nudds, S. Collins, A. Gocalinska, E. Pelucchi, P. O’Brien, F. C. G. Gunning, F. H. Peters, B. Corbett, J. O. Callaghan, W. Han, N. Nudds, S. Collins, E. Pelucchi, P. O. Brien, F. C. G. Gunning, F. H. Peters, and B. Corbett, “InGaAs surface normal photodiode for 2  μm optical communication systems,” IEEE Photon. Technol. Lett. 4, 1469–1472 (2015).
[Crossref]

H. Yang, B. Kelly, W. Han, F. Gunning, B. Corbett, R. Phelan, J. O’Carroll, H. Yang, F. H. Peters, X. Wang, N. Nudds, P. O’Brien, N. Ye, and N. MacSuibhne, “Butterfly packaged high-speed and low leakage InGaAs quantum well photodiode for 2000nm wavelength systems,” Electron. Lett. 49, 281–282 (2013).
[Crossref]

Hayes, J. R.

Heidt, A. M.

Holmes, A.

B. Tossoun, R. Stephens, Y. Wang, S. Addamane, G. Balakrishnan, A. Holmes, and A. Beling, “High-speed InP-based p-i-n photodiodes with InGaAs/GaAsSb type-II quantum wells,” IEEE Photon. Technol. Lett. 30, 399–402 (2018).
[Crossref]

Holmes, A. L.

B. Tossoun, J. Zang, S. J. Addamane, G. Balakrishnan, A. L. Holmes, and A. Beling, “InP-based waveguide-integrated photodiodes with InGaAs/GaAsSb type-II quantum wells and 10-GHz bandwidth at 2  μm wavelength,” J. Lightwave Technol. 36, 4981–4987 (2018).
[Crossref]

B. Chen and A. L. Holmes, “InP-based short-wave infrared and midwave infrared photodiodes using a novel type-II strain-compensated quantum well absorption region,” Opt. Lett. 38, 2750–2753 (2013).
[Crossref]

B. Chen, W. Y. Jiang, and A. L. Holmes, “Design of strain compensated InGaAs/GaAsSb type-II quantum well structures for mid-infrared photodiodes,” Opt. Quantum Electron. 44, 103–109 (2012).
[Crossref]

B. Chen, W. Y. Jiang, J. Yuan, A. L. Holmes, and B. M. Onat, “Demonstration of a room-temperature InP-based photodetector operating beyond 3 μm,” IEEE Photon. Technol. Lett. 23, 218–220 (2011).
[Crossref]

Huang, J.

Huang, Y.-C.

Ishibashi, T.

T. Ishibashi, Y. Muramoto, T. Yoshimatsu, and H. Ito, “Unitraveling-carrier photodiodes for terahertz applications,” IEEE J. Sel. Top. Quantum Electron. 20, 79–88 (2014).
[Crossref]

Isshiki, T. D.

N. Li, X. Li, S. Demiguel, X. Zheng, J. C. Campbell, D. A. Tulchins, K. J. Williams, T. D. Isshiki, G. S. Kinsey, and R. Sudharsansan, “High-saturation-current charge-compensated InGaAs-InP uni-traveling-carrier photodiode,” IEEE Photon. Technol. Lett. 16, 864–866 (2004).
[Crossref]

Ito, H.

T. Ishibashi, Y. Muramoto, T. Yoshimatsu, and H. Ito, “Unitraveling-carrier photodiodes for terahertz applications,” IEEE J. Sel. Top. Quantum Electron. 20, 79–88 (2014).
[Crossref]

Jessop, P. E.

J. J. Ackert, D. J. Thomson, L. Shen, A. C. Peacock, P. E. Jessop, G. T. Reed, G. Z. Mashanovich, and A. P. Knights, “High-speed detection at two micrometres with monolithic silicon photodiodes,” Nat. Photonics 9, 393–396 (2015).
[Crossref]

Jiang, W. Y.

B. Chen, W. Y. Jiang, and A. L. Holmes, “Design of strain compensated InGaAs/GaAsSb type-II quantum well structures for mid-infrared photodiodes,” Opt. Quantum Electron. 44, 103–109 (2012).
[Crossref]

B. Chen, W. Y. Jiang, J. Yuan, A. L. Holmes, and B. M. Onat, “Demonstration of a room-temperature InP-based photodetector operating beyond 3 μm,” IEEE Photon. Technol. Lett. 23, 218–220 (2011).
[Crossref]

Joshi, A.

A. Joshi and S. Datta, “High-speed, large-area, p-i-n InGaAs photodiode linear array at 2-micron wavelength,” Proc. SPIE 8353, 83533D (2012).
[Crossref]

A. Joshi and D. Becker, “High-speed low-noise p-i-n InGaAs photoreceiver at 2-μm wavelength,” IEEE Photon. Technol. Lett. 20, 551–553 (2008).
[Crossref]

Jung, Y.

Kavanagh, N.

Kelly, B.

Kinsey, G. S.

N. Li, X. Li, S. Demiguel, X. Zheng, J. C. Campbell, D. A. Tulchins, K. J. Williams, T. D. Isshiki, G. S. Kinsey, and R. Sudharsansan, “High-saturation-current charge-compensated InGaAs-InP uni-traveling-carrier photodiode,” IEEE Photon. Technol. Lett. 16, 864–866 (2004).
[Crossref]

Knight, J. C.

Knights, A. P.

J. J. Ackert, D. J. Thomson, L. Shen, A. C. Peacock, P. E. Jessop, G. T. Reed, G. Z. Mashanovich, and A. P. Knights, “High-speed detection at two micrometres with monolithic silicon photodiodes,” Nat. Photonics 9, 393–396 (2015).
[Crossref]

Lee, S.-Y.

Lei, D.

Li, N.

N. Li, X. Li, S. Demiguel, X. Zheng, J. C. Campbell, D. A. Tulchins, K. J. Williams, T. D. Isshiki, G. S. Kinsey, and R. Sudharsansan, “High-saturation-current charge-compensated InGaAs-InP uni-traveling-carrier photodiode,” IEEE Photon. Technol. Lett. 16, 864–866 (2004).
[Crossref]

Li, X.

N. Li, X. Li, S. Demiguel, X. Zheng, J. C. Campbell, D. A. Tulchins, K. J. Williams, T. D. Isshiki, G. S. Kinsey, and R. Sudharsansan, “High-saturation-current charge-compensated InGaAs-InP uni-traveling-carrier photodiode,” IEEE Photon. Technol. Lett. 16, 864–866 (2004).
[Crossref]

Li, Z.

Loke, W.-K.

MacSuibhne, N.

H. Yang, B. Kelly, W. Han, F. Gunning, B. Corbett, R. Phelan, J. O’Carroll, H. Yang, F. H. Peters, X. Wang, N. Nudds, P. O’Brien, N. Ye, and N. MacSuibhne, “Butterfly packaged high-speed and low leakage InGaAs quantum well photodiode for 2000nm wavelength systems,” Electron. Lett. 49, 281–282 (2013).
[Crossref]

Mangan, B. J.

Mashanovich, G. Z.

J. J. Ackert, D. J. Thomson, L. Shen, A. C. Peacock, P. E. Jessop, G. T. Reed, G. Z. Mashanovich, and A. P. Knights, “High-speed detection at two micrometres with monolithic silicon photodiodes,” Nat. Photonics 9, 393–396 (2015).
[Crossref]

Mason, M. W.

Masudy-Panah, S.

Muramoto, Y.

T. Ishibashi, Y. Muramoto, T. Yoshimatsu, and H. Ito, “Unitraveling-carrier photodiodes for terahertz applications,” IEEE J. Sel. Top. Quantum Electron. 20, 79–88 (2014).
[Crossref]

Natrella, M.

C. C. Renaud, M. Natrella, C. Graham, J. Seddon, F. Van Dijk, and A. J. Seeds, “Antenna integrated THz uni-traveling carrier photodiodes,” IEEE J. Sel. Top. Quantum Electron. 24, 1–11 (2018).
[Crossref]

Nudds, N.

N. Ye, H. Yang, M. Gleeson, N. Pavarelli, H. Y. Zhang, J. O’Callaghan, W. Han, N. Nudds, S. Collins, A. Gocalinska, E. Pelucchi, P. O’Brien, F. C. G. Gunning, F. H. Peters, B. Corbett, J. O. Callaghan, W. Han, N. Nudds, S. Collins, E. Pelucchi, P. O. Brien, F. C. G. Gunning, F. H. Peters, and B. Corbett, “InGaAs surface normal photodiode for 2  μm optical communication systems,” IEEE Photon. Technol. Lett. 4, 1469–1472 (2015).
[Crossref]

N. Ye, H. Yang, M. Gleeson, N. Pavarelli, H. Y. Zhang, J. O’Callaghan, W. Han, N. Nudds, S. Collins, A. Gocalinska, E. Pelucchi, P. O’Brien, F. C. G. Gunning, F. H. Peters, B. Corbett, J. O. Callaghan, W. Han, N. Nudds, S. Collins, E. Pelucchi, P. O. Brien, F. C. G. Gunning, F. H. Peters, and B. Corbett, “InGaAs surface normal photodiode for 2  μm optical communication systems,” IEEE Photon. Technol. Lett. 4, 1469–1472 (2015).
[Crossref]

H. Yang, B. Kelly, W. Han, F. Gunning, B. Corbett, R. Phelan, J. O’Carroll, H. Yang, F. H. Peters, X. Wang, N. Nudds, P. O’Brien, N. Ye, and N. MacSuibhne, “Butterfly packaged high-speed and low leakage InGaAs quantum well photodiode for 2000nm wavelength systems,” Electron. Lett. 49, 281–282 (2013).
[Crossref]

O’Brien, P.

N. Ye, H. Yang, M. Gleeson, N. Pavarelli, H. Y. Zhang, J. O’Callaghan, W. Han, N. Nudds, S. Collins, A. Gocalinska, E. Pelucchi, P. O’Brien, F. C. G. Gunning, F. H. Peters, B. Corbett, J. O. Callaghan, W. Han, N. Nudds, S. Collins, E. Pelucchi, P. O. Brien, F. C. G. Gunning, F. H. Peters, and B. Corbett, “InGaAs surface normal photodiode for 2  μm optical communication systems,” IEEE Photon. Technol. Lett. 4, 1469–1472 (2015).
[Crossref]

H. Yang, B. Kelly, W. Han, F. Gunning, B. Corbett, R. Phelan, J. O’Carroll, H. Yang, F. H. Peters, X. Wang, N. Nudds, P. O’Brien, N. Ye, and N. MacSuibhne, “Butterfly packaged high-speed and low leakage InGaAs quantum well photodiode for 2000nm wavelength systems,” Electron. Lett. 49, 281–282 (2013).
[Crossref]

O’Callaghan, J.

F. C. Garcia Gunning, N. Kavanagh, E. Russell, R. Sheehan, J. O’Callaghan, and B. Corbett, “Key enabling technologies for optical communications at 2000  nm,” Appl. Opt. 57, E64–E70 (2018).
[Crossref]

N. Ye, H. Yang, M. Gleeson, N. Pavarelli, H. Y. Zhang, J. O’Callaghan, W. Han, N. Nudds, S. Collins, A. Gocalinska, E. Pelucchi, P. O’Brien, F. C. G. Gunning, F. H. Peters, B. Corbett, J. O. Callaghan, W. Han, N. Nudds, S. Collins, E. Pelucchi, P. O. Brien, F. C. G. Gunning, F. H. Peters, and B. Corbett, “InGaAs surface normal photodiode for 2  μm optical communication systems,” IEEE Photon. Technol. Lett. 4, 1469–1472 (2015).
[Crossref]

O’Carroll, J.

Onat, B. M.

B. Chen, W. Y. Jiang, J. Yuan, A. L. Holmes, and B. M. Onat, “Demonstration of a room-temperature InP-based photodetector operating beyond 3 μm,” IEEE Photon. Technol. Lett. 23, 218–220 (2011).
[Crossref]

Pavarelli, N.

N. Ye, H. Yang, M. Gleeson, N. Pavarelli, H. Y. Zhang, J. O’Callaghan, W. Han, N. Nudds, S. Collins, A. Gocalinska, E. Pelucchi, P. O’Brien, F. C. G. Gunning, F. H. Peters, B. Corbett, J. O. Callaghan, W. Han, N. Nudds, S. Collins, E. Pelucchi, P. O. Brien, F. C. G. Gunning, F. H. Peters, and B. Corbett, “InGaAs surface normal photodiode for 2  μm optical communication systems,” IEEE Photon. Technol. Lett. 4, 1469–1472 (2015).
[Crossref]

Peacock, A. C.

J. J. Ackert, D. J. Thomson, L. Shen, A. C. Peacock, P. E. Jessop, G. T. Reed, G. Z. Mashanovich, and A. P. Knights, “High-speed detection at two micrometres with monolithic silicon photodiodes,” Nat. Photonics 9, 393–396 (2015).
[Crossref]

Pelucchi, E.

N. Ye, H. Yang, M. Gleeson, N. Pavarelli, H. Y. Zhang, J. O’Callaghan, W. Han, N. Nudds, S. Collins, A. Gocalinska, E. Pelucchi, P. O’Brien, F. C. G. Gunning, F. H. Peters, B. Corbett, J. O. Callaghan, W. Han, N. Nudds, S. Collins, E. Pelucchi, P. O. Brien, F. C. G. Gunning, F. H. Peters, and B. Corbett, “InGaAs surface normal photodiode for 2  μm optical communication systems,” IEEE Photon. Technol. Lett. 4, 1469–1472 (2015).
[Crossref]

N. Ye, H. Yang, M. Gleeson, N. Pavarelli, H. Y. Zhang, J. O’Callaghan, W. Han, N. Nudds, S. Collins, A. Gocalinska, E. Pelucchi, P. O’Brien, F. C. G. Gunning, F. H. Peters, B. Corbett, J. O. Callaghan, W. Han, N. Nudds, S. Collins, E. Pelucchi, P. O. Brien, F. C. G. Gunning, F. H. Peters, and B. Corbett, “InGaAs surface normal photodiode for 2  μm optical communication systems,” IEEE Photon. Technol. Lett. 4, 1469–1472 (2015).
[Crossref]

Peters, F. H.

N. Ye, H. Yang, M. Gleeson, N. Pavarelli, H. Y. Zhang, J. O’Callaghan, W. Han, N. Nudds, S. Collins, A. Gocalinska, E. Pelucchi, P. O’Brien, F. C. G. Gunning, F. H. Peters, B. Corbett, J. O. Callaghan, W. Han, N. Nudds, S. Collins, E. Pelucchi, P. O. Brien, F. C. G. Gunning, F. H. Peters, and B. Corbett, “InGaAs surface normal photodiode for 2  μm optical communication systems,” IEEE Photon. Technol. Lett. 4, 1469–1472 (2015).
[Crossref]

N. Ye, H. Yang, M. Gleeson, N. Pavarelli, H. Y. Zhang, J. O’Callaghan, W. Han, N. Nudds, S. Collins, A. Gocalinska, E. Pelucchi, P. O’Brien, F. C. G. Gunning, F. H. Peters, B. Corbett, J. O. Callaghan, W. Han, N. Nudds, S. Collins, E. Pelucchi, P. O. Brien, F. C. G. Gunning, F. H. Peters, and B. Corbett, “InGaAs surface normal photodiode for 2  μm optical communication systems,” IEEE Photon. Technol. Lett. 4, 1469–1472 (2015).
[Crossref]

H. Yang, B. Kelly, W. Han, F. Gunning, B. Corbett, R. Phelan, J. O’Carroll, H. Yang, F. H. Peters, X. Wang, N. Nudds, P. O’Brien, N. Ye, and N. MacSuibhne, “Butterfly packaged high-speed and low leakage InGaAs quantum well photodiode for 2000nm wavelength systems,” Electron. Lett. 49, 281–282 (2013).
[Crossref]

Petrovich, M. N.

Phelan, R.

Poletti, F.

Reed, G. T.

J. J. Ackert, D. J. Thomson, L. Shen, A. C. Peacock, P. E. Jessop, G. T. Reed, G. Z. Mashanovich, and A. P. Knights, “High-speed detection at two micrometres with monolithic silicon photodiodes,” Nat. Photonics 9, 393–396 (2015).
[Crossref]

Renaud, C. C.

C. C. Renaud, M. Natrella, C. Graham, J. Seddon, F. Van Dijk, and A. J. Seeds, “Antenna integrated THz uni-traveling carrier photodiodes,” IEEE J. Sel. Top. Quantum Electron. 24, 1–11 (2018).
[Crossref]

Richardson, D. J.

Robert, C.

Roberts, P. J.

Russell, E.

Russell, P. St.J.

Sabert, H.

Sandoghchi, S. R.

Seddon, J.

C. C. Renaud, M. Natrella, C. Graham, J. Seddon, F. Van Dijk, and A. J. Seeds, “Antenna integrated THz uni-traveling carrier photodiodes,” IEEE J. Sel. Top. Quantum Electron. 24, 1–11 (2018).
[Crossref]

Seeds, A. J.

C. C. Renaud, M. Natrella, C. Graham, J. Seddon, F. Van Dijk, and A. J. Seeds, “Antenna integrated THz uni-traveling carrier photodiodes,” IEEE J. Sel. Top. Quantum Electron. 24, 1–11 (2018).
[Crossref]

Sheehan, R.

Shen, L.

J. J. Ackert, D. J. Thomson, L. Shen, A. C. Peacock, P. E. Jessop, G. T. Reed, G. Z. Mashanovich, and A. P. Knights, “High-speed detection at two micrometres with monolithic silicon photodiodes,” Nat. Photonics 9, 393–396 (2015).
[Crossref]

Shi, J. W.

J. M. Wun, Y. W. Wang, and J. W. Shi, “Ultrafast uni-traveling carrier photodiodes with GaAs0.5Sb0.5/In0.53Ga0.47As type-II hybrid absorbers for high-power operation at THz frequencies,” IEEE J. Sel. Top. Quantum Electron. 24, 1–7 (2018).
[Crossref]

J. M. Wun, Y. W. Wang, Y. H. Chen, J. E. Bowers, and J. W. Shi, “GaSb-based p-i-n photodiodes with partially depleted absorbers for high-speed and high-power performance at 2.5-μm wavelength,” IEEE Trans. Electron Devices 63, 2796–2801 (2016).
[Crossref]

Simakov, N.

Stephens, R.

B. Tossoun, R. Stephens, Y. Wang, S. Addamane, G. Balakrishnan, A. Holmes, and A. Beling, “High-speed InP-based p-i-n photodiodes with InGaAs/GaAsSb type-II quantum wells,” IEEE Photon. Technol. Lett. 30, 399–402 (2018).
[Crossref]

Sudharsansan, R.

N. Li, X. Li, S. Demiguel, X. Zheng, J. C. Campbell, D. A. Tulchins, K. J. Williams, T. D. Isshiki, G. S. Kinsey, and R. Sudharsansan, “High-saturation-current charge-compensated InGaAs-InP uni-traveling-carrier photodiode,” IEEE Photon. Technol. Lett. 16, 864–866 (2004).
[Crossref]

Suibhne, N. M.

Thomson, D. J.

J. J. Ackert, D. J. Thomson, L. Shen, A. C. Peacock, P. E. Jessop, G. T. Reed, G. Z. Mashanovich, and A. P. Knights, “High-speed detection at two micrometres with monolithic silicon photodiodes,” Nat. Photonics 9, 393–396 (2015).
[Crossref]

Tomlinson, A.

Tossoun, B.

B. Tossoun, R. Stephens, Y. Wang, S. Addamane, G. Balakrishnan, A. Holmes, and A. Beling, “High-speed InP-based p-i-n photodiodes with InGaAs/GaAsSb type-II quantum wells,” IEEE Photon. Technol. Lett. 30, 399–402 (2018).
[Crossref]

B. Tossoun, J. Zang, S. J. Addamane, G. Balakrishnan, A. L. Holmes, and A. Beling, “InP-based waveguide-integrated photodiodes with InGaAs/GaAsSb type-II quantum wells and 10-GHz bandwidth at 2  μm wavelength,” J. Lightwave Technol. 36, 4981–4987 (2018).
[Crossref]

Tulchins, D. A.

N. Li, X. Li, S. Demiguel, X. Zheng, J. C. Campbell, D. A. Tulchins, K. J. Williams, T. D. Isshiki, G. S. Kinsey, and R. Sudharsansan, “High-saturation-current charge-compensated InGaAs-InP uni-traveling-carrier photodiode,” IEEE Photon. Technol. Lett. 16, 864–866 (2004).
[Crossref]

Van Dijk, F.

C. C. Renaud, M. Natrella, C. Graham, J. Seddon, F. Van Dijk, and A. J. Seeds, “Antenna integrated THz uni-traveling carrier photodiodes,” IEEE J. Sel. Top. Quantum Electron. 24, 1–11 (2018).
[Crossref]

Wang, H.

Wang, W.

Wang, X.

H. Yang, B. Kelly, W. Han, F. Gunning, B. Corbett, R. Phelan, J. O’Carroll, H. Yang, F. H. Peters, X. Wang, N. Nudds, P. O’Brien, N. Ye, and N. MacSuibhne, “Butterfly packaged high-speed and low leakage InGaAs quantum well photodiode for 2000nm wavelength systems,” Electron. Lett. 49, 281–282 (2013).
[Crossref]

Wang, Y.

B. Tossoun, R. Stephens, Y. Wang, S. Addamane, G. Balakrishnan, A. Holmes, and A. Beling, “High-speed InP-based p-i-n photodiodes with InGaAs/GaAsSb type-II quantum wells,” IEEE Photon. Technol. Lett. 30, 399–402 (2018).
[Crossref]

Wang, Y. W.

J. M. Wun, Y. W. Wang, and J. W. Shi, “Ultrafast uni-traveling carrier photodiodes with GaAs0.5Sb0.5/In0.53Ga0.47As type-II hybrid absorbers for high-power operation at THz frequencies,” IEEE J. Sel. Top. Quantum Electron. 24, 1–7 (2018).
[Crossref]

J. M. Wun, Y. W. Wang, Y. H. Chen, J. E. Bowers, and J. W. Shi, “GaSb-based p-i-n photodiodes with partially depleted absorbers for high-speed and high-power performance at 2.5-μm wavelength,” IEEE Trans. Electron Devices 63, 2796–2801 (2016).
[Crossref]

Wheeler, N. V.

Williams, D. P.

Williams, K. J.

N. Li, X. Li, S. Demiguel, X. Zheng, J. C. Campbell, D. A. Tulchins, K. J. Williams, T. D. Isshiki, G. S. Kinsey, and R. Sudharsansan, “High-saturation-current charge-compensated InGaAs-InP uni-traveling-carrier photodiode,” IEEE Photon. Technol. Lett. 16, 864–866 (2004).
[Crossref]

Wooler, J. P.

Wun, J. M.

J. M. Wun, Y. W. Wang, and J. W. Shi, “Ultrafast uni-traveling carrier photodiodes with GaAs0.5Sb0.5/In0.53Ga0.47As type-II hybrid absorbers for high-power operation at THz frequencies,” IEEE J. Sel. Top. Quantum Electron. 24, 1–7 (2018).
[Crossref]

J. M. Wun, Y. W. Wang, Y. H. Chen, J. E. Bowers, and J. W. Shi, “GaSb-based p-i-n photodiodes with partially depleted absorbers for high-speed and high-power performance at 2.5-μm wavelength,” IEEE Trans. Electron Devices 63, 2796–2801 (2016).
[Crossref]

Xie, X.

Xu, S.

Yang, H.

N. Ye, H. Yang, M. Gleeson, N. Pavarelli, H. Y. Zhang, J. O’Callaghan, W. Han, N. Nudds, S. Collins, A. Gocalinska, E. Pelucchi, P. O’Brien, F. C. G. Gunning, F. H. Peters, B. Corbett, J. O. Callaghan, W. Han, N. Nudds, S. Collins, E. Pelucchi, P. O. Brien, F. C. G. Gunning, F. H. Peters, and B. Corbett, “InGaAs surface normal photodiode for 2  μm optical communication systems,” IEEE Photon. Technol. Lett. 4, 1469–1472 (2015).
[Crossref]

B. Corbett, M. R. Gleeson, N. Ye, C. Robert, H. Yang, H. Zhang, N. M. Suibhne, and F. C. G. Gunning, “InP-based active and passive components for communication systems at 2  μm,” J. Lightwave Technol. 33, 971–975 (2014).
[Crossref]

H. Yang, B. Kelly, W. Han, F. Gunning, B. Corbett, R. Phelan, J. O’Carroll, H. Yang, F. H. Peters, X. Wang, N. Nudds, P. O’Brien, N. Ye, and N. MacSuibhne, “Butterfly packaged high-speed and low leakage InGaAs quantum well photodiode for 2000nm wavelength systems,” Electron. Lett. 49, 281–282 (2013).
[Crossref]

H. Yang, B. Kelly, W. Han, F. Gunning, B. Corbett, R. Phelan, J. O’Carroll, H. Yang, F. H. Peters, X. Wang, N. Nudds, P. O’Brien, N. Ye, and N. MacSuibhne, “Butterfly packaged high-speed and low leakage InGaAs quantum well photodiode for 2000nm wavelength systems,” Electron. Lett. 49, 281–282 (2013).
[Crossref]

Ye, N.

H. Zhang, N. Kavanagh, Z. Li, J. Zhao, N. Ye, Y. Chen, N. V. Wheeler, J. P. Wooler, J. R. Hayes, S. R. Sandoghchi, F. Poletti, M. N. Petrovich, S. U. Alam, R. Phelan, J. O’Carroll, B. Kelly, L. Grüner-Nielsen, D. J. Richardson, B. Corbett, and F. C. Garcia Gunning, “100  Gbit/s WDM transmission at 2  μm: transmission studies in both low-loss hollow core photonic bandgap fiber and solid core fiber,” Opt. Express 23, 4946–4951 (2015).
[Crossref]

N. Ye, H. Yang, M. Gleeson, N. Pavarelli, H. Y. Zhang, J. O’Callaghan, W. Han, N. Nudds, S. Collins, A. Gocalinska, E. Pelucchi, P. O’Brien, F. C. G. Gunning, F. H. Peters, B. Corbett, J. O. Callaghan, W. Han, N. Nudds, S. Collins, E. Pelucchi, P. O. Brien, F. C. G. Gunning, F. H. Peters, and B. Corbett, “InGaAs surface normal photodiode for 2  μm optical communication systems,” IEEE Photon. Technol. Lett. 4, 1469–1472 (2015).
[Crossref]

B. Corbett, M. R. Gleeson, N. Ye, C. Robert, H. Yang, H. Zhang, N. M. Suibhne, and F. C. G. Gunning, “InP-based active and passive components for communication systems at 2  μm,” J. Lightwave Technol. 33, 971–975 (2014).
[Crossref]

H. Yang, B. Kelly, W. Han, F. Gunning, B. Corbett, R. Phelan, J. O’Carroll, H. Yang, F. H. Peters, X. Wang, N. Nudds, P. O’Brien, N. Ye, and N. MacSuibhne, “Butterfly packaged high-speed and low leakage InGaAs quantum well photodiode for 2000nm wavelength systems,” Electron. Lett. 49, 281–282 (2013).
[Crossref]

Yeo, Y.-C.

Yoon, S.-F.

Yoshimatsu, T.

T. Ishibashi, Y. Muramoto, T. Yoshimatsu, and H. Ito, “Unitraveling-carrier photodiodes for terahertz applications,” IEEE J. Sel. Top. Quantum Electron. 20, 79–88 (2014).
[Crossref]

Yuan, J.

B. Chen, W. Y. Jiang, J. Yuan, A. L. Holmes, and B. M. Onat, “Demonstration of a room-temperature InP-based photodetector operating beyond 3 μm,” IEEE Photon. Technol. Lett. 23, 218–220 (2011).
[Crossref]

Zang, J.

Zhang, H.

Zhang, H. Y.

N. Ye, H. Yang, M. Gleeson, N. Pavarelli, H. Y. Zhang, J. O’Callaghan, W. Han, N. Nudds, S. Collins, A. Gocalinska, E. Pelucchi, P. O’Brien, F. C. G. Gunning, F. H. Peters, B. Corbett, J. O. Callaghan, W. Han, N. Nudds, S. Collins, E. Pelucchi, P. O. Brien, F. C. G. Gunning, F. H. Peters, and B. Corbett, “InGaAs surface normal photodiode for 2  μm optical communication systems,” IEEE Photon. Technol. Lett. 4, 1469–1472 (2015).
[Crossref]

Zhao, J.

Zhao, X.

Zheng, X.

N. Li, X. Li, S. Demiguel, X. Zheng, J. C. Campbell, D. A. Tulchins, K. J. Williams, T. D. Isshiki, G. S. Kinsey, and R. Sudharsansan, “High-saturation-current charge-compensated InGaAs-InP uni-traveling-carrier photodiode,” IEEE Photon. Technol. Lett. 16, 864–866 (2004).
[Crossref]

Appl. Opt. (1)

Electron. Lett. (1)

H. Yang, B. Kelly, W. Han, F. Gunning, B. Corbett, R. Phelan, J. O’Carroll, H. Yang, F. H. Peters, X. Wang, N. Nudds, P. O’Brien, N. Ye, and N. MacSuibhne, “Butterfly packaged high-speed and low leakage InGaAs quantum well photodiode for 2000nm wavelength systems,” Electron. Lett. 49, 281–282 (2013).
[Crossref]

IEEE J. Quantum Electron. (2)

B. Chen, “SWIR/MWIR InP-based p-i-n photodiodes with InGaAs/GaAsSb type-II quantum wells,” IEEE J. Quantum Electron. 30, 399–402 (2011).

Y. Chen and B. Chen, “Design of InP-based high-speed photodiode for 2-μm wavelength application,” IEEE J. Quantum Electron. 55, 1–8 (2019).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (3)

J. M. Wun, Y. W. Wang, and J. W. Shi, “Ultrafast uni-traveling carrier photodiodes with GaAs0.5Sb0.5/In0.53Ga0.47As type-II hybrid absorbers for high-power operation at THz frequencies,” IEEE J. Sel. Top. Quantum Electron. 24, 1–7 (2018).
[Crossref]

C. C. Renaud, M. Natrella, C. Graham, J. Seddon, F. Van Dijk, and A. J. Seeds, “Antenna integrated THz uni-traveling carrier photodiodes,” IEEE J. Sel. Top. Quantum Electron. 24, 1–11 (2018).
[Crossref]

T. Ishibashi, Y. Muramoto, T. Yoshimatsu, and H. Ito, “Unitraveling-carrier photodiodes for terahertz applications,” IEEE J. Sel. Top. Quantum Electron. 20, 79–88 (2014).
[Crossref]

IEEE Photon. Technol. Lett. (5)

N. Li, X. Li, S. Demiguel, X. Zheng, J. C. Campbell, D. A. Tulchins, K. J. Williams, T. D. Isshiki, G. S. Kinsey, and R. Sudharsansan, “High-saturation-current charge-compensated InGaAs-InP uni-traveling-carrier photodiode,” IEEE Photon. Technol. Lett. 16, 864–866 (2004).
[Crossref]

B. Tossoun, R. Stephens, Y. Wang, S. Addamane, G. Balakrishnan, A. Holmes, and A. Beling, “High-speed InP-based p-i-n photodiodes with InGaAs/GaAsSb type-II quantum wells,” IEEE Photon. Technol. Lett. 30, 399–402 (2018).
[Crossref]

B. Chen, W. Y. Jiang, J. Yuan, A. L. Holmes, and B. M. Onat, “Demonstration of a room-temperature InP-based photodetector operating beyond 3 μm,” IEEE Photon. Technol. Lett. 23, 218–220 (2011).
[Crossref]

N. Ye, H. Yang, M. Gleeson, N. Pavarelli, H. Y. Zhang, J. O’Callaghan, W. Han, N. Nudds, S. Collins, A. Gocalinska, E. Pelucchi, P. O’Brien, F. C. G. Gunning, F. H. Peters, B. Corbett, J. O. Callaghan, W. Han, N. Nudds, S. Collins, E. Pelucchi, P. O. Brien, F. C. G. Gunning, F. H. Peters, and B. Corbett, “InGaAs surface normal photodiode for 2  μm optical communication systems,” IEEE Photon. Technol. Lett. 4, 1469–1472 (2015).
[Crossref]

A. Joshi and D. Becker, “High-speed low-noise p-i-n InGaAs photoreceiver at 2-μm wavelength,” IEEE Photon. Technol. Lett. 20, 551–553 (2008).
[Crossref]

IEEE Trans. Electron Devices (1)

J. M. Wun, Y. W. Wang, Y. H. Chen, J. E. Bowers, and J. W. Shi, “GaSb-based p-i-n photodiodes with partially depleted absorbers for high-speed and high-power performance at 2.5-μm wavelength,” IEEE Trans. Electron Devices 63, 2796–2801 (2016).
[Crossref]

J. Lightwave Technol. (3)

Nat. Photonics (1)

J. J. Ackert, D. J. Thomson, L. Shen, A. C. Peacock, P. E. Jessop, G. T. Reed, G. Z. Mashanovich, and A. P. Knights, “High-speed detection at two micrometres with monolithic silicon photodiodes,” Nat. Photonics 9, 393–396 (2015).
[Crossref]

Opt. Express (6)

Y. Chen, X. Zhao, J. Huang, Z. Deng, C. Cao, Q. Gong, and B. Chen, “Dynamic model and bandwidth characterization of InGaAs/GaAsSb type-II quantum wells PIN photodiodes,” Opt. Express 26, 35034–35045 (2018).
[Crossref]

P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. St.J. Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13, 236–244 (2005).
[Crossref]

Z. Li, A. M. Heidt, N. Simakov, Y. Jung, J. M. O. Daniel, S. U. Alam, and D. J. Richardson, “Diode-pumped wideband thulium-doped fiber amplifiers for optical communications in the 1800–2050  nm window,” Opt. Express 21, 26450–26455 (2013).
[Crossref]

H. Zhang, N. Kavanagh, Z. Li, J. Zhao, N. Ye, Y. Chen, N. V. Wheeler, J. P. Wooler, J. R. Hayes, S. R. Sandoghchi, F. Poletti, M. N. Petrovich, S. U. Alam, R. Phelan, J. O’Carroll, B. Kelly, L. Grüner-Nielsen, D. J. Richardson, B. Corbett, and F. C. Garcia Gunning, “100  Gbit/s WDM transmission at 2  μm: transmission studies in both low-loss hollow core photonic bandgap fiber and solid core fiber,” Opt. Express 23, 4946–4951 (2015).
[Crossref]

Y. Dong, W. Wang, S. Xu, D. Lei, X. Gong, X. Guo, H. Wang, S.-Y. Lee, W.-K. Loke, S.-F. Yoon, and Y.-C. Yeo, “Two-micron-wavelength germanium-tin photodiodes with low dark current and gigahertz bandwidth,” Opt. Express 25, 15818–15827 (2017).
[Crossref]

S. Xu, W. Wang, Y.-C. Huang, Y. Dong, S. Masudy-Panah, H. Wang, X. Gong, and Y.-C. Yeo, “High-speed photo detection at two-micron-wavelength: technology enablement by GeSn/Ge multiple-quantum-well photodiode on 300  mm Si substrate,” Opt. Express 27, 5798–5813 (2019).
[Crossref]

Opt. Lett. (1)

Opt. Quantum Electron. (1)

B. Chen, W. Y. Jiang, and A. L. Holmes, “Design of strain compensated InGaAs/GaAsSb type-II quantum well structures for mid-infrared photodiodes,” Opt. Quantum Electron. 44, 103–109 (2012).
[Crossref]

Optica (1)

Proc. SPIE (1)

A. Joshi and S. Datta, “High-speed, large-area, p-i-n InGaAs photodiode linear array at 2-micron wavelength,” Proc. SPIE 8353, 83533D (2012).
[Crossref]

Science (1)

D. J. Richardson, “Filling the light pipe,” Science 330, 327–328 (2010).
[Crossref]

Supplementary Material (1)

NameDescription
» Supplement 1       Parasitic capacitance analysis and measurement setup

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1. (a) Epitaxial structure of the type-II MQW UTC photodiode. (b) Photoluminescence measurement result of the epitaxial structure. (c) Schematic diagram of the fabricated device. (d) Band diagram of the MQW absorber. The wave functions and potential transitions are shown. The wave functions are calculated by a kp method, and the two transitions correspond to the peaks at 2.1 μm and 1.75 μm in the photoluminescence spectrum.
Fig. 2.
Fig. 2. Dark current characteristics for three devices with different diameters at room temperature.
Fig. 3.
Fig. 3. Measured capacitance versus reverse bias for three devices with different diameters at room temperature.
Fig. 4.
Fig. 4. Capacitance of devices at 3V bias. The fitting result indicates a parasitic capacitance of 49.6 fF.
Fig. 5.
Fig. 5. Responsivity spectrum at various bias voltages. The inset shows the responsivity at 2 μm wavelength.
Fig. 6.
Fig. 6. Frequency response of a 10 μm photodiode at various bias voltages. The photocurrent is set to 1 mA. The inset shows the 3 dB bandwidth at different bias voltages.
Fig. 7.
Fig. 7. Frequency response of a 10 μm photodiode at different photocurrents. The bias voltage is 3V.
Fig. 8.
Fig. 8. Frequency response of photodiodes with different diameters. The bias voltage is 3V, and the photocurrent is 1 mA.
Fig. 9.
Fig. 9. (a) Equivalent circuit model used in parameter fitting. Cj is the junction capacitance, Rs is the series resistance (resistance of the ohm contacts and the CPW pads), Ls is the inductance of the CPW pads, and Rj is the junction resistance, which is hundreds of megaohms and can be regarded as open circuit. The measured and fitting curves of S11 of (b) 10 μm, (c) 20 μm, and (d) 40 μm photodiodes at 3V bias (the blue curve is the measured data while the red curve is the fitting curve). (e) Calculated RC limit frequency response using the fitting results.
Fig. 10.
Fig. 10. Review of the 3 dB bandwidth of high-speed photodiodes operating at 2 μm wavelength reported in recent years.
Fig. 11.
Fig. 11. Eye pattern of a 10 μm photodiode at 20 Gbit/s, 25 Gbit/s, and 30 Gbit/s.
Fig. 12.
Fig. 12. Output RF power and compression versus photocurrent for a 10 μm photodiode at 25 GHz and at different bias voltages. The gray dashed line shows the ideal output power.
Fig. 13.
Fig. 13. Output RF power and compression versus photocurrent for a 20 μm photodiode at 15 GHz and at different bias voltages. The gray dashed line shows the ideal output power.

Tables (2)

Tables Icon

Table 1. Fitting Parameters

Tables Icon

Table 2. 1 dB Compression Points

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

f3dB=(1fT2+1fRC2)1,
Pideal=m12Ip2RL,