Abstract

Inelastic scattering of light by acoustic phonons has potential for the tailored generation of frequency combs, laser-line narrowing, and all-optical data storage. To be efficient, these applications require strong optical fields and a large overlap between the optical and acoustic modes. Control over the shape of the acoustic spectrum is highly desirable. So far, patterned waveguides and photonic crystal fibers have allowed tailoring the acoustic spectrum up to a few tens of gigahertz. Here, we introduce a monolithic Brillouin generator based on embedding a high-frequency nanoacoustic resonator, which is operating at 300 GHz, inside an optical micropillar cavity. It allows independent design of the Brillouin spectrum and the optical device. We develop a free-space filtering technique by using the different spatial patterns of the diffracted excitation laser and the Brillouin signal. The micropillars could be readily integrated into fibered and on-chip architectures, can be engineered to reach the stimulated regime, and are compatible with quantum dots, making them relevant for quantum communication.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Optomechanical properties of GaAs/AlAs micropillar resonators operating in the 18 GHz range

F. R. Lamberti, Q. Yao, L. Lanco, D. T. Nguyen, M. Esmann, A. Fainstein, P. Sesin, S. Anguiano, V. Villafañe, A. Bruchhausen, P. Senellart, I. Favero, and N. D. Lanzillotti-Kimura
Opt. Express 25(20) 24437-24447 (2017)

Stimulated Brillouin scattering and Brillouin-coupled four-wave-mixing in a silica microbottle resonator

Motoki Asano, Yuki Takeuchi, Sahin Kaya Ozdemir, Rikizo Ikuta, Lan Yang, Nobuyuki Imoto, and Takashi Yamamoto
Opt. Express 24(11) 12082-12092 (2016)

Acousto-optical nanoscopy of buried photonic nanostructures

T. Czerniuk, C. Schneider, M. Kamp, S. Höfling, B. A. Glavin, D. R. Yakovlev, A. V. Akimov, and M. Bayer
Optica 4(6) 588-594 (2017)

References

  • View by:
  • |
  • |
  • |

  1. E. Gross, “Change of wave-length of light due to elastic heat waves at scattering in liquids,” Nature 126, 201–202 (1930).
    [Crossref]
  2. L. Brillouin, “Scattering of light rays in a transparent homogeneous body: influence of thermal agitation,” Ann. Phys. 17, 88–122 (1922).
    [Crossref]
  3. Z. Zhu, D. J. Gauthier, and R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science 318, 1748–1750 (2007).
    [Crossref]
  4. M. Merklein, I. V. Kabakova, T. F. S. Büttner, D.-Y. Choi, B. Luther-Davies, S. J. Madden, and B. J. Eggleton, “Enhancing and inhibiting stimulated Brillouin scattering in photonic integrated circuits,” Nat. Commun. 6, 6396 (2015).
    [Crossref]
  5. K. O. Hill, B. S. Kawasaki, and D. C. Johnson, “CW Brillouin laser,” Appl. Phys. Lett. 28, 608–609 (1976).
    [Crossref]
  6. N. T. Otterstrom, R. O. Behunin, E. A. Kittlaus, Z. Wang, and P. T. Rakich, “A silicon Brillouin laser,” Science 360, 1113–1116 (2018).
    [Crossref]
  7. A. Zadok, A. Eyal, and M. Tur, “Gigahertz-wide optically reconfigurable filters using stimulated Brillouin scattering,” J. Lightwave Technol. 25, 2168–2174 (2007).
    [Crossref]
  8. Y. Stern, K. Zhong, T. Schneider, R. Zhang, Y. Ben-Ezra, M. Tur, and A. Zadok, “Tunable sharp and highly selective microwave-photonic band-pass filters based on stimulated Brillouin scattering,” Photon. Res. 2, B18–B25 (2014).
    [Crossref]
  9. J.-C. Beugnot, S. Lebrun, G. Pauliat, H. Maillotte, V. Laude, and T. Sylvestre, “Brillouin light scattering from surface acoustic waves in a subwavelength-diameter optical fibre,” Nat. Commun. 5, 5242 (2014).
    [Crossref]
  10. A. Godet, A. Ndao, T. Sylvestre, V. Pecheur, S. Lebrun, G. Pauliat, J.-C. Beugnot, and K. P. Huy, “Brillouin spectroscopy of optical microfibers and nanofibers,” Optica 4, 1232–1238 (2017).
    [Crossref]
  11. E. F. Fenton, A. Khan, P. Solano, L. A. Orozco, and F. K. Fatemi, “Spin-optomechanical coupling between light and a nanofiber torsional mode,” Opt. Lett. 43, 1534–1537 (2018).
    [Crossref]
  12. H. Shin, W. Qiu, R. Jarecki, J. A. Cox, R. H. Olsson Iii, A. Starbuck, Z. Wang, and P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013).
    [Crossref]
  13. R. Pant, C. G. Poulton, D.-Y. Choi, H. Mcfarlane, S. Hile, E. Li, L. Thevenaz, B. Luther-Davies, S. J. Madden, and B. J. Eggleton, “On-chip stimulated Brillouin scattering,” Opt. Express 19, 8285–8290 (2011).
    [Crossref]
  14. B. Stiller, A. Kudlinski, M. W. Lee, G. Bouwmans, M. Delque, J. Beugnot, H. Maillotte, and T. Sylvestre, “SBS mitigation in a microstructured optical fiber by periodically varying the core diameter,” IEEE Photon. Technol. Lett. 24, 667–669 (2012).
    [Crossref]
  15. B. J. Eggleton, P. S. Westbrook, R. S. Windeler, S. Spälter, and T. A. Strasser, “Grating resonances in air–silica microstructured optical fibers,” Opt. Lett. 24, 1460–1462 (1999).
    [Crossref]
  16. B. J. Eggleton, P. A. Krug, L. Poladian, and F. Ouellette, “Long periodic superstructure Bragg gratings in optical fibres,” Electron. Lett. 30, 1620–1622 (1994).
    [Crossref]
  17. P. St. J. Russell, “Photonic crystal fibers,” Science 299, 358–362 (2003).
    [Crossref]
  18. J.-C. Beugnot, T. Sylvestre, D. Alasia, H. Maillotte, V. Laude, A. Monteville, L. Provino, N. Traynor, S. F. Mafang, and L. Thévenaz, “Complete experimental characterization of stimulated Brillouin scattering in photonic crystal fiber,” Opt. Express 15, 15517–15522 (2007).
    [Crossref]
  19. M. Tomes and T. Carmon, “Photonic micro-electromechanical systems vibrating at X-band (11-GHz) rates,” Phys. Rev. Lett. 102, 113601 (2009).
    [Crossref]
  20. M. Trigo, A. Bruchhausen, A. Fainstein, B. Jusserand, and V. Thierry-Mieg, “Confinement of acoustical vibrations in a semiconductor planar phonon cavity,” Phys. Rev. Lett. 89, 227402 (2002).
    [Crossref]
  21. N. D. Lanzillotti-Kimura, A. Fainstein, and B. Jusserand, “Towards GHz–THz cavity optomechanics in DBR-based semiconductor resonators,” Ultrasonics 56, 80–89 (2015).
    [Crossref]
  22. S. Anguiano, A. E. Bruchhausen, B. Jusserand, I. Favero, F. R. Lamberti, L. Lanco, I. Sagnes, A. Lemaître, N. D. Lanzillotti-Kimura, P. Senellart, and A. Fainstein, “Micropillar resonators for optomechanics in the extremely high 19–95-GHz frequency range,” Phys. Rev. Lett. 118, 263901 (2017).
    [Crossref]
  23. F. R. Lamberti, Q. Yao, L. Lanco, D. T. Nguyen, M. Esmann, A. Fainstein, P. Sesin, S. Anguiano, V. Villafañe, A. Bruchhausen, P. Senellart, I. Favero, and N. D. Lanzillotti-Kimura, “Optomechanical properties of GaAs/AlAs micropillar resonators operating in the 18 GHz range,” Opt. Express 25, 24437–24447 (2017).
    [Crossref]
  24. A. Fainstein, B. Jusserand, and V. Thierry-Mieg, “Raman scattering enhancement by optical confinement in a semiconductor planar microcavity,” Phys. Rev. Lett. 75, 3764–3767 (1995).
    [Crossref]
  25. N. D. Lanzillotti-Kimura, A. Fainstein, B. Jusserand, and A. Lemaître, “Resonant Raman scattering of nanocavity-confined acoustic phonons,” Phys. Rev. B 79, 035404 (2009).
    [Crossref]
  26. M. Esmann, F. R. Lamberti, P. Senellart, I. Favero, O. Krebs, L. Lanco, C. Gomez Carbonell, A. Lemaître, and N. D. Lanzillotti-Kimura, “Topological nanophononic states by band inversion,” Phys. Rev. B 97, 155422 (2018).
    [Crossref]
  27. F. R. Lamberti, M. Esmann, A. Lemaître, C. Gomez Carbonell, O. Krebs, I. Favero, B. Jusserand, P. Senellart, L. Lanco, and N. D. Lanzillotti-Kimura, “Nanomechanical resonators based on adiabatic periodicity-breaking in a superlattice,” Appl. Phys. Lett. 111, 173107 (2017).
    [Crossref]
  28. P. Lacharmoise, A. Fainstein, B. Jusserand, and V. Thierry-Mieg, “Optical cavity enhancement of light–sound interaction in acoustic phonon cavities,” Appl. Phys. Lett. 84, 3274–3276 (2004).
    [Crossref]
  29. B. Gayral, J. M. Gérard, B. Legrand, E. Costard, and V. Thierry-Mieg, “Optical study of GaAs/AlAs pillar microcavities with elliptical cross section,” Appl. Phys. Lett. 72, 1421–1423 (1998).
    [Crossref]
  30. C. Arnold, V. Loo, A. Lemaître, I. Sagnes, O. Krebs, P. Voisin, P. Senellart, and L. Lanco, “Optical bistability in a quantum dots/micropillar device with a quality factor exceeding 200 000,” Appl. Phys. Lett. 100, 111111 (2012).
    [Crossref]
  31. L. Ferrier, E. Wertz, R. Johne, D. D. Solnyshkov, P. Senellart, I. Sagnes, A. Lemaître, G. Malpuech, and J. Bloch, “Interactions in confined polariton condensates,” Phys. Rev. Lett. 106, 126401 (2011).
    [Crossref]
  32. C. Lagoin, B. Perrin, P. Atkinson, and D. Garcia-Sanchez, “High spectral resolution of GaAs/AlAs phononic cavities by subharmonic resonant pump–probe excitation,” Phys. Rev. B 99, 060101 (2019).
    [Crossref]
  33. M. Xiao, G. Ma, Z. Yang, P. Sheng, Z. Q. Zhang, and C. T. Chan, “Geometric phase and band inversion in periodic acoustic systems,” Nat. Phys. 11, 240–244 (2015).
    [Crossref]
  34. M. Xiao, Z. Q. Zhang, and C. T. Chan, “Surface impedance and bulk band geometric phases in one-dimensional systems,” Phys. Rev. X 4, 021017 (2014).
    [Crossref]
  35. J. Zak, “Berry’s phase for energy bands in solids,” Phys. Rev. Lett. 62, 2747–2750 (1989).
    [Crossref]
  36. J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81, 1110–1113 (1998).
    [Crossref]
  37. T. Czerniuk, J. Tepper, A. V. Akimov, S. Unsleber, C. Schneider, M. Kamp, S. Höfling, D. R. Yakovlev, and M. Bayer, “Impact of nanomechanical resonances on lasing from electrically pumped quantum dot micropillars,” Appl. Phys. Lett. 106, 041103 (2015).
    [Crossref]
  38. A. Fainstein, B. Jusserand, and V. Thierry-Mieg, “Raman efficiency in a planar microcavity,” Phys. Rev. B 53, R13287 (1996).
    [Crossref]
  39. N. D. Lanzillotti-Kimura, A. Fainstein, C. A. Balseiro, and B. Jusserand, “Phonon engineering with acoustic nanocavities: theoretical considerations on phonon molecules, band structures, and acoustic Bloch oscillations,” Phys. Rev. B 75, 024301 (2007).
    [Crossref]
  40. J. He, B. Djafari-Rouhani, and J. Sapriel, “Theory of light scattering by longitudinal-acoustic phonons in superlattices,” Phys. Rev. B 37, 4086–4098 (1988).
    [Crossref]
  41. B. Jusserand and M. Cardona, “Raman spectroscopy of vibrations in superlattices,” in Light Scattering in Solids V, Topics in Applied Physics (Springer, 1989), pp. 49–152.
  42. P. Yu and M. Cardona, Fundamentals of Semiconductors: Physics and Materials Properties, 4th ed., Graduate Texts in Physics (Springer-Verlag, 2010).
  43. P. Hilaire, C. Antón, C. Kessler, A. Lemaître, I. Sagnes, N. Somaschi, P. Senellart, and L. Lanco, “Accurate measurement of a 96% input coupling into a cavity using polarization tomography,” Appl. Phys. Lett. 112, 201101 (2018).
    [Crossref]
  44. J. Talghader and J. S. Smith, “Thermal dependence of the refractive index of GaAs and AlAs measured using semiconductor multilayer optical cavities,” Appl. Phys. Lett. 66, 335–337 (1995).
    [Crossref]
  45. N. D. Lanzillotti-Kimura, A. Fainstein, B. Jusserand, A. Lemaître, O. Mauguin, and L. Largeau, “Acoustic phonon nanowave devices based on aperiodic multilayers: experiments and theory,” Phys. Rev. B 76, 174301 (2007).
    [Crossref]
  46. N. D. Lanzillotti-Kimura, A. Fainstein, B. Perrin, B. Jusserand, O. Mauguin, L. Largeau, and A. Lemaître, “Bloch oscillations of THz acoustic phonons in coupled nanocavity structures,” Phys. Rev. Lett. 104, 197402 (2010).
    [Crossref]
  47. M. Esmann, F. R. Lamberti, A. Lemaître, and N. D. Lanzillotti-Kimura, “Topological acoustics in coupled nanocavity arrays,” Phys. Rev. B 98, 161109 (2018).
    [Crossref]
  48. J. V. Jäger, A. V. Scherbakov, B. A. Glavin, A. S. Salasyuk, R. P. Campion, A. W. Rushforth, D. R. Yakovlev, A. V. Akimov, and M. Bayer, “Resonant driving of magnetization precession in a ferromagnetic layer by coherent monochromatic phonons,” Phys. Rev. B 92, 020404 (2015).
    [Crossref]
  49. G. Rozas, M. F. P. Winter, B. Jusserand, A. Fainstein, B. Perrin, E. Semenova, and A. Lemaître, “Lifetime of THz acoustic nanocavity modes,” Phys. Rev. Lett. 102, 015502 (2009).
    [Crossref]
  50. V. Narayanamurti, H. L. Störmer, M. A. Chin, A. C. Gossard, and W. Wiegmann, “Selective transmission of high-frequency phonons by a superlattice: the “dielectric” phonon filter,” Phys. Rev. Lett. 43, 2012–2016 (1979).
    [Crossref]
  51. P. M. Walker, J. S. Sharp, A. V. Akimov, and A. J. Kent, “Coherent elastic waves in a one-dimensional polymer hypersonic crystal,” Appl. Phys. Lett. 97, 073106 (2010).
    [Crossref]
  52. H. Ulrichs, D. Meyer, M. Müller, S. Wittrock, M. Mansurova, J. Walowski, and M. Münzenberg, “THz elastic dynamics in finite-size CoFeB–MgO phononic superlattices,” J. Appl. Phys. 120, 142116 (2016).
    [Crossref]
  53. C.-K. Sun, J.-C. Liang, and X.-Y. Yu, “Coherent acoustic phonon oscillations in semiconductor multiple quantum wells with piezoelectric fields,” Phys. Rev. Lett. 84, 179–182 (2000).
    [Crossref]
  54. N. D. Lanzillotti Kimura, A. Fainstein, and B. Jusserand, “Phonon Bloch oscillations in acoustic-cavity structures,” Phys. Rev. B 71, 041305 (2005).
    [Crossref]
  55. I. S. Grudinin, H. Lee, O. Painter, and K. J. Vahala, “Phonon laser action in a tunable two-level system,” Phys. Rev. Lett. 104, 083901 (2010).
    [Crossref]
  56. F. Haupt, S. S. R. Oemrawsingh, S. M. Thon, H. Kim, D. Kleckner, D. Ding, D. J. Suntrup, P. M. Petroff, and D. Bouwmeester, “Fiber-connectorized micropillar cavities,” Appl. Phys. Lett. 97, 131113 (2010).
    [Crossref]
  57. H. Snijders, J. A. Frey, J. Norman, V. P. Post, A. C. Gossard, J. E. Bowers, M. P. van Exter, W. Löffler, and D. Bouwmeester, “Fiber-coupled cavity-QED source of identical single photons,” Phys. Rev. Appl. 9, 031002 (2018).
    [Crossref]

2019 (1)

C. Lagoin, B. Perrin, P. Atkinson, and D. Garcia-Sanchez, “High spectral resolution of GaAs/AlAs phononic cavities by subharmonic resonant pump–probe excitation,” Phys. Rev. B 99, 060101 (2019).
[Crossref]

2018 (6)

M. Esmann, F. R. Lamberti, P. Senellart, I. Favero, O. Krebs, L. Lanco, C. Gomez Carbonell, A. Lemaître, and N. D. Lanzillotti-Kimura, “Topological nanophononic states by band inversion,” Phys. Rev. B 97, 155422 (2018).
[Crossref]

P. Hilaire, C. Antón, C. Kessler, A. Lemaître, I. Sagnes, N. Somaschi, P. Senellart, and L. Lanco, “Accurate measurement of a 96% input coupling into a cavity using polarization tomography,” Appl. Phys. Lett. 112, 201101 (2018).
[Crossref]

M. Esmann, F. R. Lamberti, A. Lemaître, and N. D. Lanzillotti-Kimura, “Topological acoustics in coupled nanocavity arrays,” Phys. Rev. B 98, 161109 (2018).
[Crossref]

H. Snijders, J. A. Frey, J. Norman, V. P. Post, A. C. Gossard, J. E. Bowers, M. P. van Exter, W. Löffler, and D. Bouwmeester, “Fiber-coupled cavity-QED source of identical single photons,” Phys. Rev. Appl. 9, 031002 (2018).
[Crossref]

N. T. Otterstrom, R. O. Behunin, E. A. Kittlaus, Z. Wang, and P. T. Rakich, “A silicon Brillouin laser,” Science 360, 1113–1116 (2018).
[Crossref]

E. F. Fenton, A. Khan, P. Solano, L. A. Orozco, and F. K. Fatemi, “Spin-optomechanical coupling between light and a nanofiber torsional mode,” Opt. Lett. 43, 1534–1537 (2018).
[Crossref]

2017 (4)

F. R. Lamberti, Q. Yao, L. Lanco, D. T. Nguyen, M. Esmann, A. Fainstein, P. Sesin, S. Anguiano, V. Villafañe, A. Bruchhausen, P. Senellart, I. Favero, and N. D. Lanzillotti-Kimura, “Optomechanical properties of GaAs/AlAs micropillar resonators operating in the 18 GHz range,” Opt. Express 25, 24437–24447 (2017).
[Crossref]

A. Godet, A. Ndao, T. Sylvestre, V. Pecheur, S. Lebrun, G. Pauliat, J.-C. Beugnot, and K. P. Huy, “Brillouin spectroscopy of optical microfibers and nanofibers,” Optica 4, 1232–1238 (2017).
[Crossref]

S. Anguiano, A. E. Bruchhausen, B. Jusserand, I. Favero, F. R. Lamberti, L. Lanco, I. Sagnes, A. Lemaître, N. D. Lanzillotti-Kimura, P. Senellart, and A. Fainstein, “Micropillar resonators for optomechanics in the extremely high 19–95-GHz frequency range,” Phys. Rev. Lett. 118, 263901 (2017).
[Crossref]

F. R. Lamberti, M. Esmann, A. Lemaître, C. Gomez Carbonell, O. Krebs, I. Favero, B. Jusserand, P. Senellart, L. Lanco, and N. D. Lanzillotti-Kimura, “Nanomechanical resonators based on adiabatic periodicity-breaking in a superlattice,” Appl. Phys. Lett. 111, 173107 (2017).
[Crossref]

2016 (1)

H. Ulrichs, D. Meyer, M. Müller, S. Wittrock, M. Mansurova, J. Walowski, and M. Münzenberg, “THz elastic dynamics in finite-size CoFeB–MgO phononic superlattices,” J. Appl. Phys. 120, 142116 (2016).
[Crossref]

2015 (5)

J. V. Jäger, A. V. Scherbakov, B. A. Glavin, A. S. Salasyuk, R. P. Campion, A. W. Rushforth, D. R. Yakovlev, A. V. Akimov, and M. Bayer, “Resonant driving of magnetization precession in a ferromagnetic layer by coherent monochromatic phonons,” Phys. Rev. B 92, 020404 (2015).
[Crossref]

M. Xiao, G. Ma, Z. Yang, P. Sheng, Z. Q. Zhang, and C. T. Chan, “Geometric phase and band inversion in periodic acoustic systems,” Nat. Phys. 11, 240–244 (2015).
[Crossref]

T. Czerniuk, J. Tepper, A. V. Akimov, S. Unsleber, C. Schneider, M. Kamp, S. Höfling, D. R. Yakovlev, and M. Bayer, “Impact of nanomechanical resonances on lasing from electrically pumped quantum dot micropillars,” Appl. Phys. Lett. 106, 041103 (2015).
[Crossref]

N. D. Lanzillotti-Kimura, A. Fainstein, and B. Jusserand, “Towards GHz–THz cavity optomechanics in DBR-based semiconductor resonators,” Ultrasonics 56, 80–89 (2015).
[Crossref]

M. Merklein, I. V. Kabakova, T. F. S. Büttner, D.-Y. Choi, B. Luther-Davies, S. J. Madden, and B. J. Eggleton, “Enhancing and inhibiting stimulated Brillouin scattering in photonic integrated circuits,” Nat. Commun. 6, 6396 (2015).
[Crossref]

2014 (3)

J.-C. Beugnot, S. Lebrun, G. Pauliat, H. Maillotte, V. Laude, and T. Sylvestre, “Brillouin light scattering from surface acoustic waves in a subwavelength-diameter optical fibre,” Nat. Commun. 5, 5242 (2014).
[Crossref]

Y. Stern, K. Zhong, T. Schneider, R. Zhang, Y. Ben-Ezra, M. Tur, and A. Zadok, “Tunable sharp and highly selective microwave-photonic band-pass filters based on stimulated Brillouin scattering,” Photon. Res. 2, B18–B25 (2014).
[Crossref]

M. Xiao, Z. Q. Zhang, and C. T. Chan, “Surface impedance and bulk band geometric phases in one-dimensional systems,” Phys. Rev. X 4, 021017 (2014).
[Crossref]

2013 (1)

H. Shin, W. Qiu, R. Jarecki, J. A. Cox, R. H. Olsson Iii, A. Starbuck, Z. Wang, and P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013).
[Crossref]

2012 (2)

B. Stiller, A. Kudlinski, M. W. Lee, G. Bouwmans, M. Delque, J. Beugnot, H. Maillotte, and T. Sylvestre, “SBS mitigation in a microstructured optical fiber by periodically varying the core diameter,” IEEE Photon. Technol. Lett. 24, 667–669 (2012).
[Crossref]

C. Arnold, V. Loo, A. Lemaître, I. Sagnes, O. Krebs, P. Voisin, P. Senellart, and L. Lanco, “Optical bistability in a quantum dots/micropillar device with a quality factor exceeding 200 000,” Appl. Phys. Lett. 100, 111111 (2012).
[Crossref]

2011 (2)

L. Ferrier, E. Wertz, R. Johne, D. D. Solnyshkov, P. Senellart, I. Sagnes, A. Lemaître, G. Malpuech, and J. Bloch, “Interactions in confined polariton condensates,” Phys. Rev. Lett. 106, 126401 (2011).
[Crossref]

R. Pant, C. G. Poulton, D.-Y. Choi, H. Mcfarlane, S. Hile, E. Li, L. Thevenaz, B. Luther-Davies, S. J. Madden, and B. J. Eggleton, “On-chip stimulated Brillouin scattering,” Opt. Express 19, 8285–8290 (2011).
[Crossref]

2010 (4)

N. D. Lanzillotti-Kimura, A. Fainstein, B. Perrin, B. Jusserand, O. Mauguin, L. Largeau, and A. Lemaître, “Bloch oscillations of THz acoustic phonons in coupled nanocavity structures,” Phys. Rev. Lett. 104, 197402 (2010).
[Crossref]

P. M. Walker, J. S. Sharp, A. V. Akimov, and A. J. Kent, “Coherent elastic waves in a one-dimensional polymer hypersonic crystal,” Appl. Phys. Lett. 97, 073106 (2010).
[Crossref]

I. S. Grudinin, H. Lee, O. Painter, and K. J. Vahala, “Phonon laser action in a tunable two-level system,” Phys. Rev. Lett. 104, 083901 (2010).
[Crossref]

F. Haupt, S. S. R. Oemrawsingh, S. M. Thon, H. Kim, D. Kleckner, D. Ding, D. J. Suntrup, P. M. Petroff, and D. Bouwmeester, “Fiber-connectorized micropillar cavities,” Appl. Phys. Lett. 97, 131113 (2010).
[Crossref]

2009 (3)

G. Rozas, M. F. P. Winter, B. Jusserand, A. Fainstein, B. Perrin, E. Semenova, and A. Lemaître, “Lifetime of THz acoustic nanocavity modes,” Phys. Rev. Lett. 102, 015502 (2009).
[Crossref]

N. D. Lanzillotti-Kimura, A. Fainstein, B. Jusserand, and A. Lemaître, “Resonant Raman scattering of nanocavity-confined acoustic phonons,” Phys. Rev. B 79, 035404 (2009).
[Crossref]

M. Tomes and T. Carmon, “Photonic micro-electromechanical systems vibrating at X-band (11-GHz) rates,” Phys. Rev. Lett. 102, 113601 (2009).
[Crossref]

2007 (5)

A. Zadok, A. Eyal, and M. Tur, “Gigahertz-wide optically reconfigurable filters using stimulated Brillouin scattering,” J. Lightwave Technol. 25, 2168–2174 (2007).
[Crossref]

J.-C. Beugnot, T. Sylvestre, D. Alasia, H. Maillotte, V. Laude, A. Monteville, L. Provino, N. Traynor, S. F. Mafang, and L. Thévenaz, “Complete experimental characterization of stimulated Brillouin scattering in photonic crystal fiber,” Opt. Express 15, 15517–15522 (2007).
[Crossref]

Z. Zhu, D. J. Gauthier, and R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science 318, 1748–1750 (2007).
[Crossref]

N. D. Lanzillotti-Kimura, A. Fainstein, C. A. Balseiro, and B. Jusserand, “Phonon engineering with acoustic nanocavities: theoretical considerations on phonon molecules, band structures, and acoustic Bloch oscillations,” Phys. Rev. B 75, 024301 (2007).
[Crossref]

N. D. Lanzillotti-Kimura, A. Fainstein, B. Jusserand, A. Lemaître, O. Mauguin, and L. Largeau, “Acoustic phonon nanowave devices based on aperiodic multilayers: experiments and theory,” Phys. Rev. B 76, 174301 (2007).
[Crossref]

2005 (1)

N. D. Lanzillotti Kimura, A. Fainstein, and B. Jusserand, “Phonon Bloch oscillations in acoustic-cavity structures,” Phys. Rev. B 71, 041305 (2005).
[Crossref]

2004 (1)

P. Lacharmoise, A. Fainstein, B. Jusserand, and V. Thierry-Mieg, “Optical cavity enhancement of light–sound interaction in acoustic phonon cavities,” Appl. Phys. Lett. 84, 3274–3276 (2004).
[Crossref]

2003 (1)

P. St. J. Russell, “Photonic crystal fibers,” Science 299, 358–362 (2003).
[Crossref]

2002 (1)

M. Trigo, A. Bruchhausen, A. Fainstein, B. Jusserand, and V. Thierry-Mieg, “Confinement of acoustical vibrations in a semiconductor planar phonon cavity,” Phys. Rev. Lett. 89, 227402 (2002).
[Crossref]

2000 (1)

C.-K. Sun, J.-C. Liang, and X.-Y. Yu, “Coherent acoustic phonon oscillations in semiconductor multiple quantum wells with piezoelectric fields,” Phys. Rev. Lett. 84, 179–182 (2000).
[Crossref]

1999 (1)

1998 (2)

J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81, 1110–1113 (1998).
[Crossref]

B. Gayral, J. M. Gérard, B. Legrand, E. Costard, and V. Thierry-Mieg, “Optical study of GaAs/AlAs pillar microcavities with elliptical cross section,” Appl. Phys. Lett. 72, 1421–1423 (1998).
[Crossref]

1996 (1)

A. Fainstein, B. Jusserand, and V. Thierry-Mieg, “Raman efficiency in a planar microcavity,” Phys. Rev. B 53, R13287 (1996).
[Crossref]

1995 (2)

A. Fainstein, B. Jusserand, and V. Thierry-Mieg, “Raman scattering enhancement by optical confinement in a semiconductor planar microcavity,” Phys. Rev. Lett. 75, 3764–3767 (1995).
[Crossref]

J. Talghader and J. S. Smith, “Thermal dependence of the refractive index of GaAs and AlAs measured using semiconductor multilayer optical cavities,” Appl. Phys. Lett. 66, 335–337 (1995).
[Crossref]

1994 (1)

B. J. Eggleton, P. A. Krug, L. Poladian, and F. Ouellette, “Long periodic superstructure Bragg gratings in optical fibres,” Electron. Lett. 30, 1620–1622 (1994).
[Crossref]

1989 (1)

J. Zak, “Berry’s phase for energy bands in solids,” Phys. Rev. Lett. 62, 2747–2750 (1989).
[Crossref]

1988 (1)

J. He, B. Djafari-Rouhani, and J. Sapriel, “Theory of light scattering by longitudinal-acoustic phonons in superlattices,” Phys. Rev. B 37, 4086–4098 (1988).
[Crossref]

1979 (1)

V. Narayanamurti, H. L. Störmer, M. A. Chin, A. C. Gossard, and W. Wiegmann, “Selective transmission of high-frequency phonons by a superlattice: the “dielectric” phonon filter,” Phys. Rev. Lett. 43, 2012–2016 (1979).
[Crossref]

1976 (1)

K. O. Hill, B. S. Kawasaki, and D. C. Johnson, “CW Brillouin laser,” Appl. Phys. Lett. 28, 608–609 (1976).
[Crossref]

1930 (1)

E. Gross, “Change of wave-length of light due to elastic heat waves at scattering in liquids,” Nature 126, 201–202 (1930).
[Crossref]

1922 (1)

L. Brillouin, “Scattering of light rays in a transparent homogeneous body: influence of thermal agitation,” Ann. Phys. 17, 88–122 (1922).
[Crossref]

Akimov, A. V.

T. Czerniuk, J. Tepper, A. V. Akimov, S. Unsleber, C. Schneider, M. Kamp, S. Höfling, D. R. Yakovlev, and M. Bayer, “Impact of nanomechanical resonances on lasing from electrically pumped quantum dot micropillars,” Appl. Phys. Lett. 106, 041103 (2015).
[Crossref]

J. V. Jäger, A. V. Scherbakov, B. A. Glavin, A. S. Salasyuk, R. P. Campion, A. W. Rushforth, D. R. Yakovlev, A. V. Akimov, and M. Bayer, “Resonant driving of magnetization precession in a ferromagnetic layer by coherent monochromatic phonons,” Phys. Rev. B 92, 020404 (2015).
[Crossref]

P. M. Walker, J. S. Sharp, A. V. Akimov, and A. J. Kent, “Coherent elastic waves in a one-dimensional polymer hypersonic crystal,” Appl. Phys. Lett. 97, 073106 (2010).
[Crossref]

Alasia, D.

Anguiano, S.

F. R. Lamberti, Q. Yao, L. Lanco, D. T. Nguyen, M. Esmann, A. Fainstein, P. Sesin, S. Anguiano, V. Villafañe, A. Bruchhausen, P. Senellart, I. Favero, and N. D. Lanzillotti-Kimura, “Optomechanical properties of GaAs/AlAs micropillar resonators operating in the 18 GHz range,” Opt. Express 25, 24437–24447 (2017).
[Crossref]

S. Anguiano, A. E. Bruchhausen, B. Jusserand, I. Favero, F. R. Lamberti, L. Lanco, I. Sagnes, A. Lemaître, N. D. Lanzillotti-Kimura, P. Senellart, and A. Fainstein, “Micropillar resonators for optomechanics in the extremely high 19–95-GHz frequency range,” Phys. Rev. Lett. 118, 263901 (2017).
[Crossref]

Antón, C.

P. Hilaire, C. Antón, C. Kessler, A. Lemaître, I. Sagnes, N. Somaschi, P. Senellart, and L. Lanco, “Accurate measurement of a 96% input coupling into a cavity using polarization tomography,” Appl. Phys. Lett. 112, 201101 (2018).
[Crossref]

Arnold, C.

C. Arnold, V. Loo, A. Lemaître, I. Sagnes, O. Krebs, P. Voisin, P. Senellart, and L. Lanco, “Optical bistability in a quantum dots/micropillar device with a quality factor exceeding 200 000,” Appl. Phys. Lett. 100, 111111 (2012).
[Crossref]

Atkinson, P.

C. Lagoin, B. Perrin, P. Atkinson, and D. Garcia-Sanchez, “High spectral resolution of GaAs/AlAs phononic cavities by subharmonic resonant pump–probe excitation,” Phys. Rev. B 99, 060101 (2019).
[Crossref]

Balseiro, C. A.

N. D. Lanzillotti-Kimura, A. Fainstein, C. A. Balseiro, and B. Jusserand, “Phonon engineering with acoustic nanocavities: theoretical considerations on phonon molecules, band structures, and acoustic Bloch oscillations,” Phys. Rev. B 75, 024301 (2007).
[Crossref]

Bayer, M.

T. Czerniuk, J. Tepper, A. V. Akimov, S. Unsleber, C. Schneider, M. Kamp, S. Höfling, D. R. Yakovlev, and M. Bayer, “Impact of nanomechanical resonances on lasing from electrically pumped quantum dot micropillars,” Appl. Phys. Lett. 106, 041103 (2015).
[Crossref]

J. V. Jäger, A. V. Scherbakov, B. A. Glavin, A. S. Salasyuk, R. P. Campion, A. W. Rushforth, D. R. Yakovlev, A. V. Akimov, and M. Bayer, “Resonant driving of magnetization precession in a ferromagnetic layer by coherent monochromatic phonons,” Phys. Rev. B 92, 020404 (2015).
[Crossref]

Behunin, R. O.

N. T. Otterstrom, R. O. Behunin, E. A. Kittlaus, Z. Wang, and P. T. Rakich, “A silicon Brillouin laser,” Science 360, 1113–1116 (2018).
[Crossref]

Ben-Ezra, Y.

Beugnot, J.

B. Stiller, A. Kudlinski, M. W. Lee, G. Bouwmans, M. Delque, J. Beugnot, H. Maillotte, and T. Sylvestre, “SBS mitigation in a microstructured optical fiber by periodically varying the core diameter,” IEEE Photon. Technol. Lett. 24, 667–669 (2012).
[Crossref]

Beugnot, J.-C.

Bloch, J.

L. Ferrier, E. Wertz, R. Johne, D. D. Solnyshkov, P. Senellart, I. Sagnes, A. Lemaître, G. Malpuech, and J. Bloch, “Interactions in confined polariton condensates,” Phys. Rev. Lett. 106, 126401 (2011).
[Crossref]

Bouwmans, G.

B. Stiller, A. Kudlinski, M. W. Lee, G. Bouwmans, M. Delque, J. Beugnot, H. Maillotte, and T. Sylvestre, “SBS mitigation in a microstructured optical fiber by periodically varying the core diameter,” IEEE Photon. Technol. Lett. 24, 667–669 (2012).
[Crossref]

Bouwmeester, D.

H. Snijders, J. A. Frey, J. Norman, V. P. Post, A. C. Gossard, J. E. Bowers, M. P. van Exter, W. Löffler, and D. Bouwmeester, “Fiber-coupled cavity-QED source of identical single photons,” Phys. Rev. Appl. 9, 031002 (2018).
[Crossref]

F. Haupt, S. S. R. Oemrawsingh, S. M. Thon, H. Kim, D. Kleckner, D. Ding, D. J. Suntrup, P. M. Petroff, and D. Bouwmeester, “Fiber-connectorized micropillar cavities,” Appl. Phys. Lett. 97, 131113 (2010).
[Crossref]

Bowers, J. E.

H. Snijders, J. A. Frey, J. Norman, V. P. Post, A. C. Gossard, J. E. Bowers, M. P. van Exter, W. Löffler, and D. Bouwmeester, “Fiber-coupled cavity-QED source of identical single photons,” Phys. Rev. Appl. 9, 031002 (2018).
[Crossref]

Boyd, R. W.

Z. Zhu, D. J. Gauthier, and R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science 318, 1748–1750 (2007).
[Crossref]

Brillouin, L.

L. Brillouin, “Scattering of light rays in a transparent homogeneous body: influence of thermal agitation,” Ann. Phys. 17, 88–122 (1922).
[Crossref]

Bruchhausen, A.

Bruchhausen, A. E.

S. Anguiano, A. E. Bruchhausen, B. Jusserand, I. Favero, F. R. Lamberti, L. Lanco, I. Sagnes, A. Lemaître, N. D. Lanzillotti-Kimura, P. Senellart, and A. Fainstein, “Micropillar resonators for optomechanics in the extremely high 19–95-GHz frequency range,” Phys. Rev. Lett. 118, 263901 (2017).
[Crossref]

Büttner, T. F. S.

M. Merklein, I. V. Kabakova, T. F. S. Büttner, D.-Y. Choi, B. Luther-Davies, S. J. Madden, and B. J. Eggleton, “Enhancing and inhibiting stimulated Brillouin scattering in photonic integrated circuits,” Nat. Commun. 6, 6396 (2015).
[Crossref]

Campion, R. P.

J. V. Jäger, A. V. Scherbakov, B. A. Glavin, A. S. Salasyuk, R. P. Campion, A. W. Rushforth, D. R. Yakovlev, A. V. Akimov, and M. Bayer, “Resonant driving of magnetization precession in a ferromagnetic layer by coherent monochromatic phonons,” Phys. Rev. B 92, 020404 (2015).
[Crossref]

Cardona, M.

B. Jusserand and M. Cardona, “Raman spectroscopy of vibrations in superlattices,” in Light Scattering in Solids V, Topics in Applied Physics (Springer, 1989), pp. 49–152.

P. Yu and M. Cardona, Fundamentals of Semiconductors: Physics and Materials Properties, 4th ed., Graduate Texts in Physics (Springer-Verlag, 2010).

Carmon, T.

M. Tomes and T. Carmon, “Photonic micro-electromechanical systems vibrating at X-band (11-GHz) rates,” Phys. Rev. Lett. 102, 113601 (2009).
[Crossref]

Chan, C. T.

M. Xiao, G. Ma, Z. Yang, P. Sheng, Z. Q. Zhang, and C. T. Chan, “Geometric phase and band inversion in periodic acoustic systems,” Nat. Phys. 11, 240–244 (2015).
[Crossref]

M. Xiao, Z. Q. Zhang, and C. T. Chan, “Surface impedance and bulk band geometric phases in one-dimensional systems,” Phys. Rev. X 4, 021017 (2014).
[Crossref]

Chin, M. A.

V. Narayanamurti, H. L. Störmer, M. A. Chin, A. C. Gossard, and W. Wiegmann, “Selective transmission of high-frequency phonons by a superlattice: the “dielectric” phonon filter,” Phys. Rev. Lett. 43, 2012–2016 (1979).
[Crossref]

Choi, D.-Y.

M. Merklein, I. V. Kabakova, T. F. S. Büttner, D.-Y. Choi, B. Luther-Davies, S. J. Madden, and B. J. Eggleton, “Enhancing and inhibiting stimulated Brillouin scattering in photonic integrated circuits,” Nat. Commun. 6, 6396 (2015).
[Crossref]

R. Pant, C. G. Poulton, D.-Y. Choi, H. Mcfarlane, S. Hile, E. Li, L. Thevenaz, B. Luther-Davies, S. J. Madden, and B. J. Eggleton, “On-chip stimulated Brillouin scattering,” Opt. Express 19, 8285–8290 (2011).
[Crossref]

Costard, E.

B. Gayral, J. M. Gérard, B. Legrand, E. Costard, and V. Thierry-Mieg, “Optical study of GaAs/AlAs pillar microcavities with elliptical cross section,” Appl. Phys. Lett. 72, 1421–1423 (1998).
[Crossref]

J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81, 1110–1113 (1998).
[Crossref]

Cox, J. A.

H. Shin, W. Qiu, R. Jarecki, J. A. Cox, R. H. Olsson Iii, A. Starbuck, Z. Wang, and P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013).
[Crossref]

Czerniuk, T.

T. Czerniuk, J. Tepper, A. V. Akimov, S. Unsleber, C. Schneider, M. Kamp, S. Höfling, D. R. Yakovlev, and M. Bayer, “Impact of nanomechanical resonances on lasing from electrically pumped quantum dot micropillars,” Appl. Phys. Lett. 106, 041103 (2015).
[Crossref]

Delque, M.

B. Stiller, A. Kudlinski, M. W. Lee, G. Bouwmans, M. Delque, J. Beugnot, H. Maillotte, and T. Sylvestre, “SBS mitigation in a microstructured optical fiber by periodically varying the core diameter,” IEEE Photon. Technol. Lett. 24, 667–669 (2012).
[Crossref]

Ding, D.

F. Haupt, S. S. R. Oemrawsingh, S. M. Thon, H. Kim, D. Kleckner, D. Ding, D. J. Suntrup, P. M. Petroff, and D. Bouwmeester, “Fiber-connectorized micropillar cavities,” Appl. Phys. Lett. 97, 131113 (2010).
[Crossref]

Djafari-Rouhani, B.

J. He, B. Djafari-Rouhani, and J. Sapriel, “Theory of light scattering by longitudinal-acoustic phonons in superlattices,” Phys. Rev. B 37, 4086–4098 (1988).
[Crossref]

Eggleton, B. J.

M. Merklein, I. V. Kabakova, T. F. S. Büttner, D.-Y. Choi, B. Luther-Davies, S. J. Madden, and B. J. Eggleton, “Enhancing and inhibiting stimulated Brillouin scattering in photonic integrated circuits,” Nat. Commun. 6, 6396 (2015).
[Crossref]

R. Pant, C. G. Poulton, D.-Y. Choi, H. Mcfarlane, S. Hile, E. Li, L. Thevenaz, B. Luther-Davies, S. J. Madden, and B. J. Eggleton, “On-chip stimulated Brillouin scattering,” Opt. Express 19, 8285–8290 (2011).
[Crossref]

B. J. Eggleton, P. S. Westbrook, R. S. Windeler, S. Spälter, and T. A. Strasser, “Grating resonances in air–silica microstructured optical fibers,” Opt. Lett. 24, 1460–1462 (1999).
[Crossref]

B. J. Eggleton, P. A. Krug, L. Poladian, and F. Ouellette, “Long periodic superstructure Bragg gratings in optical fibres,” Electron. Lett. 30, 1620–1622 (1994).
[Crossref]

Esmann, M.

M. Esmann, F. R. Lamberti, A. Lemaître, and N. D. Lanzillotti-Kimura, “Topological acoustics in coupled nanocavity arrays,” Phys. Rev. B 98, 161109 (2018).
[Crossref]

M. Esmann, F. R. Lamberti, P. Senellart, I. Favero, O. Krebs, L. Lanco, C. Gomez Carbonell, A. Lemaître, and N. D. Lanzillotti-Kimura, “Topological nanophononic states by band inversion,” Phys. Rev. B 97, 155422 (2018).
[Crossref]

F. R. Lamberti, Q. Yao, L. Lanco, D. T. Nguyen, M. Esmann, A. Fainstein, P. Sesin, S. Anguiano, V. Villafañe, A. Bruchhausen, P. Senellart, I. Favero, and N. D. Lanzillotti-Kimura, “Optomechanical properties of GaAs/AlAs micropillar resonators operating in the 18 GHz range,” Opt. Express 25, 24437–24447 (2017).
[Crossref]

F. R. Lamberti, M. Esmann, A. Lemaître, C. Gomez Carbonell, O. Krebs, I. Favero, B. Jusserand, P. Senellart, L. Lanco, and N. D. Lanzillotti-Kimura, “Nanomechanical resonators based on adiabatic periodicity-breaking in a superlattice,” Appl. Phys. Lett. 111, 173107 (2017).
[Crossref]

Eyal, A.

Fainstein, A.

S. Anguiano, A. E. Bruchhausen, B. Jusserand, I. Favero, F. R. Lamberti, L. Lanco, I. Sagnes, A. Lemaître, N. D. Lanzillotti-Kimura, P. Senellart, and A. Fainstein, “Micropillar resonators for optomechanics in the extremely high 19–95-GHz frequency range,” Phys. Rev. Lett. 118, 263901 (2017).
[Crossref]

F. R. Lamberti, Q. Yao, L. Lanco, D. T. Nguyen, M. Esmann, A. Fainstein, P. Sesin, S. Anguiano, V. Villafañe, A. Bruchhausen, P. Senellart, I. Favero, and N. D. Lanzillotti-Kimura, “Optomechanical properties of GaAs/AlAs micropillar resonators operating in the 18 GHz range,” Opt. Express 25, 24437–24447 (2017).
[Crossref]

N. D. Lanzillotti-Kimura, A. Fainstein, and B. Jusserand, “Towards GHz–THz cavity optomechanics in DBR-based semiconductor resonators,” Ultrasonics 56, 80–89 (2015).
[Crossref]

N. D. Lanzillotti-Kimura, A. Fainstein, B. Perrin, B. Jusserand, O. Mauguin, L. Largeau, and A. Lemaître, “Bloch oscillations of THz acoustic phonons in coupled nanocavity structures,” Phys. Rev. Lett. 104, 197402 (2010).
[Crossref]

N. D. Lanzillotti-Kimura, A. Fainstein, B. Jusserand, and A. Lemaître, “Resonant Raman scattering of nanocavity-confined acoustic phonons,” Phys. Rev. B 79, 035404 (2009).
[Crossref]

G. Rozas, M. F. P. Winter, B. Jusserand, A. Fainstein, B. Perrin, E. Semenova, and A. Lemaître, “Lifetime of THz acoustic nanocavity modes,” Phys. Rev. Lett. 102, 015502 (2009).
[Crossref]

N. D. Lanzillotti-Kimura, A. Fainstein, B. Jusserand, A. Lemaître, O. Mauguin, and L. Largeau, “Acoustic phonon nanowave devices based on aperiodic multilayers: experiments and theory,” Phys. Rev. B 76, 174301 (2007).
[Crossref]

N. D. Lanzillotti-Kimura, A. Fainstein, C. A. Balseiro, and B. Jusserand, “Phonon engineering with acoustic nanocavities: theoretical considerations on phonon molecules, band structures, and acoustic Bloch oscillations,” Phys. Rev. B 75, 024301 (2007).
[Crossref]

N. D. Lanzillotti Kimura, A. Fainstein, and B. Jusserand, “Phonon Bloch oscillations in acoustic-cavity structures,” Phys. Rev. B 71, 041305 (2005).
[Crossref]

P. Lacharmoise, A. Fainstein, B. Jusserand, and V. Thierry-Mieg, “Optical cavity enhancement of light–sound interaction in acoustic phonon cavities,” Appl. Phys. Lett. 84, 3274–3276 (2004).
[Crossref]

M. Trigo, A. Bruchhausen, A. Fainstein, B. Jusserand, and V. Thierry-Mieg, “Confinement of acoustical vibrations in a semiconductor planar phonon cavity,” Phys. Rev. Lett. 89, 227402 (2002).
[Crossref]

A. Fainstein, B. Jusserand, and V. Thierry-Mieg, “Raman efficiency in a planar microcavity,” Phys. Rev. B 53, R13287 (1996).
[Crossref]

A. Fainstein, B. Jusserand, and V. Thierry-Mieg, “Raman scattering enhancement by optical confinement in a semiconductor planar microcavity,” Phys. Rev. Lett. 75, 3764–3767 (1995).
[Crossref]

Fatemi, F. K.

Favero, I.

M. Esmann, F. R. Lamberti, P. Senellart, I. Favero, O. Krebs, L. Lanco, C. Gomez Carbonell, A. Lemaître, and N. D. Lanzillotti-Kimura, “Topological nanophononic states by band inversion,” Phys. Rev. B 97, 155422 (2018).
[Crossref]

S. Anguiano, A. E. Bruchhausen, B. Jusserand, I. Favero, F. R. Lamberti, L. Lanco, I. Sagnes, A. Lemaître, N. D. Lanzillotti-Kimura, P. Senellart, and A. Fainstein, “Micropillar resonators for optomechanics in the extremely high 19–95-GHz frequency range,” Phys. Rev. Lett. 118, 263901 (2017).
[Crossref]

F. R. Lamberti, Q. Yao, L. Lanco, D. T. Nguyen, M. Esmann, A. Fainstein, P. Sesin, S. Anguiano, V. Villafañe, A. Bruchhausen, P. Senellart, I. Favero, and N. D. Lanzillotti-Kimura, “Optomechanical properties of GaAs/AlAs micropillar resonators operating in the 18 GHz range,” Opt. Express 25, 24437–24447 (2017).
[Crossref]

F. R. Lamberti, M. Esmann, A. Lemaître, C. Gomez Carbonell, O. Krebs, I. Favero, B. Jusserand, P. Senellart, L. Lanco, and N. D. Lanzillotti-Kimura, “Nanomechanical resonators based on adiabatic periodicity-breaking in a superlattice,” Appl. Phys. Lett. 111, 173107 (2017).
[Crossref]

Fenton, E. F.

Ferrier, L.

L. Ferrier, E. Wertz, R. Johne, D. D. Solnyshkov, P. Senellart, I. Sagnes, A. Lemaître, G. Malpuech, and J. Bloch, “Interactions in confined polariton condensates,” Phys. Rev. Lett. 106, 126401 (2011).
[Crossref]

Frey, J. A.

H. Snijders, J. A. Frey, J. Norman, V. P. Post, A. C. Gossard, J. E. Bowers, M. P. van Exter, W. Löffler, and D. Bouwmeester, “Fiber-coupled cavity-QED source of identical single photons,” Phys. Rev. Appl. 9, 031002 (2018).
[Crossref]

Garcia-Sanchez, D.

C. Lagoin, B. Perrin, P. Atkinson, and D. Garcia-Sanchez, “High spectral resolution of GaAs/AlAs phononic cavities by subharmonic resonant pump–probe excitation,” Phys. Rev. B 99, 060101 (2019).
[Crossref]

Gauthier, D. J.

Z. Zhu, D. J. Gauthier, and R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science 318, 1748–1750 (2007).
[Crossref]

Gayral, B.

B. Gayral, J. M. Gérard, B. Legrand, E. Costard, and V. Thierry-Mieg, “Optical study of GaAs/AlAs pillar microcavities with elliptical cross section,” Appl. Phys. Lett. 72, 1421–1423 (1998).
[Crossref]

J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81, 1110–1113 (1998).
[Crossref]

Gérard, J. M.

B. Gayral, J. M. Gérard, B. Legrand, E. Costard, and V. Thierry-Mieg, “Optical study of GaAs/AlAs pillar microcavities with elliptical cross section,” Appl. Phys. Lett. 72, 1421–1423 (1998).
[Crossref]

J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81, 1110–1113 (1998).
[Crossref]

Glavin, B. A.

J. V. Jäger, A. V. Scherbakov, B. A. Glavin, A. S. Salasyuk, R. P. Campion, A. W. Rushforth, D. R. Yakovlev, A. V. Akimov, and M. Bayer, “Resonant driving of magnetization precession in a ferromagnetic layer by coherent monochromatic phonons,” Phys. Rev. B 92, 020404 (2015).
[Crossref]

Godet, A.

Gomez Carbonell, C.

M. Esmann, F. R. Lamberti, P. Senellart, I. Favero, O. Krebs, L. Lanco, C. Gomez Carbonell, A. Lemaître, and N. D. Lanzillotti-Kimura, “Topological nanophononic states by band inversion,” Phys. Rev. B 97, 155422 (2018).
[Crossref]

F. R. Lamberti, M. Esmann, A. Lemaître, C. Gomez Carbonell, O. Krebs, I. Favero, B. Jusserand, P. Senellart, L. Lanco, and N. D. Lanzillotti-Kimura, “Nanomechanical resonators based on adiabatic periodicity-breaking in a superlattice,” Appl. Phys. Lett. 111, 173107 (2017).
[Crossref]

Gossard, A. C.

H. Snijders, J. A. Frey, J. Norman, V. P. Post, A. C. Gossard, J. E. Bowers, M. P. van Exter, W. Löffler, and D. Bouwmeester, “Fiber-coupled cavity-QED source of identical single photons,” Phys. Rev. Appl. 9, 031002 (2018).
[Crossref]

V. Narayanamurti, H. L. Störmer, M. A. Chin, A. C. Gossard, and W. Wiegmann, “Selective transmission of high-frequency phonons by a superlattice: the “dielectric” phonon filter,” Phys. Rev. Lett. 43, 2012–2016 (1979).
[Crossref]

Gross, E.

E. Gross, “Change of wave-length of light due to elastic heat waves at scattering in liquids,” Nature 126, 201–202 (1930).
[Crossref]

Grudinin, I. S.

I. S. Grudinin, H. Lee, O. Painter, and K. J. Vahala, “Phonon laser action in a tunable two-level system,” Phys. Rev. Lett. 104, 083901 (2010).
[Crossref]

Haupt, F.

F. Haupt, S. S. R. Oemrawsingh, S. M. Thon, H. Kim, D. Kleckner, D. Ding, D. J. Suntrup, P. M. Petroff, and D. Bouwmeester, “Fiber-connectorized micropillar cavities,” Appl. Phys. Lett. 97, 131113 (2010).
[Crossref]

He, J.

J. He, B. Djafari-Rouhani, and J. Sapriel, “Theory of light scattering by longitudinal-acoustic phonons in superlattices,” Phys. Rev. B 37, 4086–4098 (1988).
[Crossref]

Hilaire, P.

P. Hilaire, C. Antón, C. Kessler, A. Lemaître, I. Sagnes, N. Somaschi, P. Senellart, and L. Lanco, “Accurate measurement of a 96% input coupling into a cavity using polarization tomography,” Appl. Phys. Lett. 112, 201101 (2018).
[Crossref]

Hile, S.

Hill, K. O.

K. O. Hill, B. S. Kawasaki, and D. C. Johnson, “CW Brillouin laser,” Appl. Phys. Lett. 28, 608–609 (1976).
[Crossref]

Höfling, S.

T. Czerniuk, J. Tepper, A. V. Akimov, S. Unsleber, C. Schneider, M. Kamp, S. Höfling, D. R. Yakovlev, and M. Bayer, “Impact of nanomechanical resonances on lasing from electrically pumped quantum dot micropillars,” Appl. Phys. Lett. 106, 041103 (2015).
[Crossref]

Huy, K. P.

Jäger, J. V.

J. V. Jäger, A. V. Scherbakov, B. A. Glavin, A. S. Salasyuk, R. P. Campion, A. W. Rushforth, D. R. Yakovlev, A. V. Akimov, and M. Bayer, “Resonant driving of magnetization precession in a ferromagnetic layer by coherent monochromatic phonons,” Phys. Rev. B 92, 020404 (2015).
[Crossref]

Jarecki, R.

H. Shin, W. Qiu, R. Jarecki, J. A. Cox, R. H. Olsson Iii, A. Starbuck, Z. Wang, and P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013).
[Crossref]

Johne, R.

L. Ferrier, E. Wertz, R. Johne, D. D. Solnyshkov, P. Senellart, I. Sagnes, A. Lemaître, G. Malpuech, and J. Bloch, “Interactions in confined polariton condensates,” Phys. Rev. Lett. 106, 126401 (2011).
[Crossref]

Johnson, D. C.

K. O. Hill, B. S. Kawasaki, and D. C. Johnson, “CW Brillouin laser,” Appl. Phys. Lett. 28, 608–609 (1976).
[Crossref]

Jusserand, B.

F. R. Lamberti, M. Esmann, A. Lemaître, C. Gomez Carbonell, O. Krebs, I. Favero, B. Jusserand, P. Senellart, L. Lanco, and N. D. Lanzillotti-Kimura, “Nanomechanical resonators based on adiabatic periodicity-breaking in a superlattice,” Appl. Phys. Lett. 111, 173107 (2017).
[Crossref]

S. Anguiano, A. E. Bruchhausen, B. Jusserand, I. Favero, F. R. Lamberti, L. Lanco, I. Sagnes, A. Lemaître, N. D. Lanzillotti-Kimura, P. Senellart, and A. Fainstein, “Micropillar resonators for optomechanics in the extremely high 19–95-GHz frequency range,” Phys. Rev. Lett. 118, 263901 (2017).
[Crossref]

N. D. Lanzillotti-Kimura, A. Fainstein, and B. Jusserand, “Towards GHz–THz cavity optomechanics in DBR-based semiconductor resonators,” Ultrasonics 56, 80–89 (2015).
[Crossref]

N. D. Lanzillotti-Kimura, A. Fainstein, B. Perrin, B. Jusserand, O. Mauguin, L. Largeau, and A. Lemaître, “Bloch oscillations of THz acoustic phonons in coupled nanocavity structures,” Phys. Rev. Lett. 104, 197402 (2010).
[Crossref]

N. D. Lanzillotti-Kimura, A. Fainstein, B. Jusserand, and A. Lemaître, “Resonant Raman scattering of nanocavity-confined acoustic phonons,” Phys. Rev. B 79, 035404 (2009).
[Crossref]

G. Rozas, M. F. P. Winter, B. Jusserand, A. Fainstein, B. Perrin, E. Semenova, and A. Lemaître, “Lifetime of THz acoustic nanocavity modes,” Phys. Rev. Lett. 102, 015502 (2009).
[Crossref]

N. D. Lanzillotti-Kimura, A. Fainstein, B. Jusserand, A. Lemaître, O. Mauguin, and L. Largeau, “Acoustic phonon nanowave devices based on aperiodic multilayers: experiments and theory,” Phys. Rev. B 76, 174301 (2007).
[Crossref]

N. D. Lanzillotti-Kimura, A. Fainstein, C. A. Balseiro, and B. Jusserand, “Phonon engineering with acoustic nanocavities: theoretical considerations on phonon molecules, band structures, and acoustic Bloch oscillations,” Phys. Rev. B 75, 024301 (2007).
[Crossref]

N. D. Lanzillotti Kimura, A. Fainstein, and B. Jusserand, “Phonon Bloch oscillations in acoustic-cavity structures,” Phys. Rev. B 71, 041305 (2005).
[Crossref]

P. Lacharmoise, A. Fainstein, B. Jusserand, and V. Thierry-Mieg, “Optical cavity enhancement of light–sound interaction in acoustic phonon cavities,” Appl. Phys. Lett. 84, 3274–3276 (2004).
[Crossref]

M. Trigo, A. Bruchhausen, A. Fainstein, B. Jusserand, and V. Thierry-Mieg, “Confinement of acoustical vibrations in a semiconductor planar phonon cavity,” Phys. Rev. Lett. 89, 227402 (2002).
[Crossref]

A. Fainstein, B. Jusserand, and V. Thierry-Mieg, “Raman efficiency in a planar microcavity,” Phys. Rev. B 53, R13287 (1996).
[Crossref]

A. Fainstein, B. Jusserand, and V. Thierry-Mieg, “Raman scattering enhancement by optical confinement in a semiconductor planar microcavity,” Phys. Rev. Lett. 75, 3764–3767 (1995).
[Crossref]

B. Jusserand and M. Cardona, “Raman spectroscopy of vibrations in superlattices,” in Light Scattering in Solids V, Topics in Applied Physics (Springer, 1989), pp. 49–152.

Kabakova, I. V.

M. Merklein, I. V. Kabakova, T. F. S. Büttner, D.-Y. Choi, B. Luther-Davies, S. J. Madden, and B. J. Eggleton, “Enhancing and inhibiting stimulated Brillouin scattering in photonic integrated circuits,” Nat. Commun. 6, 6396 (2015).
[Crossref]

Kamp, M.

T. Czerniuk, J. Tepper, A. V. Akimov, S. Unsleber, C. Schneider, M. Kamp, S. Höfling, D. R. Yakovlev, and M. Bayer, “Impact of nanomechanical resonances on lasing from electrically pumped quantum dot micropillars,” Appl. Phys. Lett. 106, 041103 (2015).
[Crossref]

Kawasaki, B. S.

K. O. Hill, B. S. Kawasaki, and D. C. Johnson, “CW Brillouin laser,” Appl. Phys. Lett. 28, 608–609 (1976).
[Crossref]

Kent, A. J.

P. M. Walker, J. S. Sharp, A. V. Akimov, and A. J. Kent, “Coherent elastic waves in a one-dimensional polymer hypersonic crystal,” Appl. Phys. Lett. 97, 073106 (2010).
[Crossref]

Kessler, C.

P. Hilaire, C. Antón, C. Kessler, A. Lemaître, I. Sagnes, N. Somaschi, P. Senellart, and L. Lanco, “Accurate measurement of a 96% input coupling into a cavity using polarization tomography,” Appl. Phys. Lett. 112, 201101 (2018).
[Crossref]

Khan, A.

Kim, H.

F. Haupt, S. S. R. Oemrawsingh, S. M. Thon, H. Kim, D. Kleckner, D. Ding, D. J. Suntrup, P. M. Petroff, and D. Bouwmeester, “Fiber-connectorized micropillar cavities,” Appl. Phys. Lett. 97, 131113 (2010).
[Crossref]

Kittlaus, E. A.

N. T. Otterstrom, R. O. Behunin, E. A. Kittlaus, Z. Wang, and P. T. Rakich, “A silicon Brillouin laser,” Science 360, 1113–1116 (2018).
[Crossref]

Kleckner, D.

F. Haupt, S. S. R. Oemrawsingh, S. M. Thon, H. Kim, D. Kleckner, D. Ding, D. J. Suntrup, P. M. Petroff, and D. Bouwmeester, “Fiber-connectorized micropillar cavities,” Appl. Phys. Lett. 97, 131113 (2010).
[Crossref]

Krebs, O.

M. Esmann, F. R. Lamberti, P. Senellart, I. Favero, O. Krebs, L. Lanco, C. Gomez Carbonell, A. Lemaître, and N. D. Lanzillotti-Kimura, “Topological nanophononic states by band inversion,” Phys. Rev. B 97, 155422 (2018).
[Crossref]

F. R. Lamberti, M. Esmann, A. Lemaître, C. Gomez Carbonell, O. Krebs, I. Favero, B. Jusserand, P. Senellart, L. Lanco, and N. D. Lanzillotti-Kimura, “Nanomechanical resonators based on adiabatic periodicity-breaking in a superlattice,” Appl. Phys. Lett. 111, 173107 (2017).
[Crossref]

C. Arnold, V. Loo, A. Lemaître, I. Sagnes, O. Krebs, P. Voisin, P. Senellart, and L. Lanco, “Optical bistability in a quantum dots/micropillar device with a quality factor exceeding 200 000,” Appl. Phys. Lett. 100, 111111 (2012).
[Crossref]

Krug, P. A.

B. J. Eggleton, P. A. Krug, L. Poladian, and F. Ouellette, “Long periodic superstructure Bragg gratings in optical fibres,” Electron. Lett. 30, 1620–1622 (1994).
[Crossref]

Kudlinski, A.

B. Stiller, A. Kudlinski, M. W. Lee, G. Bouwmans, M. Delque, J. Beugnot, H. Maillotte, and T. Sylvestre, “SBS mitigation in a microstructured optical fiber by periodically varying the core diameter,” IEEE Photon. Technol. Lett. 24, 667–669 (2012).
[Crossref]

Lacharmoise, P.

P. Lacharmoise, A. Fainstein, B. Jusserand, and V. Thierry-Mieg, “Optical cavity enhancement of light–sound interaction in acoustic phonon cavities,” Appl. Phys. Lett. 84, 3274–3276 (2004).
[Crossref]

Lagoin, C.

C. Lagoin, B. Perrin, P. Atkinson, and D. Garcia-Sanchez, “High spectral resolution of GaAs/AlAs phononic cavities by subharmonic resonant pump–probe excitation,” Phys. Rev. B 99, 060101 (2019).
[Crossref]

Lamberti, F. R.

M. Esmann, F. R. Lamberti, P. Senellart, I. Favero, O. Krebs, L. Lanco, C. Gomez Carbonell, A. Lemaître, and N. D. Lanzillotti-Kimura, “Topological nanophononic states by band inversion,” Phys. Rev. B 97, 155422 (2018).
[Crossref]

M. Esmann, F. R. Lamberti, A. Lemaître, and N. D. Lanzillotti-Kimura, “Topological acoustics in coupled nanocavity arrays,” Phys. Rev. B 98, 161109 (2018).
[Crossref]

F. R. Lamberti, M. Esmann, A. Lemaître, C. Gomez Carbonell, O. Krebs, I. Favero, B. Jusserand, P. Senellart, L. Lanco, and N. D. Lanzillotti-Kimura, “Nanomechanical resonators based on adiabatic periodicity-breaking in a superlattice,” Appl. Phys. Lett. 111, 173107 (2017).
[Crossref]

S. Anguiano, A. E. Bruchhausen, B. Jusserand, I. Favero, F. R. Lamberti, L. Lanco, I. Sagnes, A. Lemaître, N. D. Lanzillotti-Kimura, P. Senellart, and A. Fainstein, “Micropillar resonators for optomechanics in the extremely high 19–95-GHz frequency range,” Phys. Rev. Lett. 118, 263901 (2017).
[Crossref]

F. R. Lamberti, Q. Yao, L. Lanco, D. T. Nguyen, M. Esmann, A. Fainstein, P. Sesin, S. Anguiano, V. Villafañe, A. Bruchhausen, P. Senellart, I. Favero, and N. D. Lanzillotti-Kimura, “Optomechanical properties of GaAs/AlAs micropillar resonators operating in the 18 GHz range,” Opt. Express 25, 24437–24447 (2017).
[Crossref]

Lanco, L.

M. Esmann, F. R. Lamberti, P. Senellart, I. Favero, O. Krebs, L. Lanco, C. Gomez Carbonell, A. Lemaître, and N. D. Lanzillotti-Kimura, “Topological nanophononic states by band inversion,” Phys. Rev. B 97, 155422 (2018).
[Crossref]

P. Hilaire, C. Antón, C. Kessler, A. Lemaître, I. Sagnes, N. Somaschi, P. Senellart, and L. Lanco, “Accurate measurement of a 96% input coupling into a cavity using polarization tomography,” Appl. Phys. Lett. 112, 201101 (2018).
[Crossref]

F. R. Lamberti, M. Esmann, A. Lemaître, C. Gomez Carbonell, O. Krebs, I. Favero, B. Jusserand, P. Senellart, L. Lanco, and N. D. Lanzillotti-Kimura, “Nanomechanical resonators based on adiabatic periodicity-breaking in a superlattice,” Appl. Phys. Lett. 111, 173107 (2017).
[Crossref]

S. Anguiano, A. E. Bruchhausen, B. Jusserand, I. Favero, F. R. Lamberti, L. Lanco, I. Sagnes, A. Lemaître, N. D. Lanzillotti-Kimura, P. Senellart, and A. Fainstein, “Micropillar resonators for optomechanics in the extremely high 19–95-GHz frequency range,” Phys. Rev. Lett. 118, 263901 (2017).
[Crossref]

F. R. Lamberti, Q. Yao, L. Lanco, D. T. Nguyen, M. Esmann, A. Fainstein, P. Sesin, S. Anguiano, V. Villafañe, A. Bruchhausen, P. Senellart, I. Favero, and N. D. Lanzillotti-Kimura, “Optomechanical properties of GaAs/AlAs micropillar resonators operating in the 18 GHz range,” Opt. Express 25, 24437–24447 (2017).
[Crossref]

C. Arnold, V. Loo, A. Lemaître, I. Sagnes, O. Krebs, P. Voisin, P. Senellart, and L. Lanco, “Optical bistability in a quantum dots/micropillar device with a quality factor exceeding 200 000,” Appl. Phys. Lett. 100, 111111 (2012).
[Crossref]

Lanzillotti Kimura, N. D.

N. D. Lanzillotti Kimura, A. Fainstein, and B. Jusserand, “Phonon Bloch oscillations in acoustic-cavity structures,” Phys. Rev. B 71, 041305 (2005).
[Crossref]

Lanzillotti-Kimura, N. D.

M. Esmann, F. R. Lamberti, A. Lemaître, and N. D. Lanzillotti-Kimura, “Topological acoustics in coupled nanocavity arrays,” Phys. Rev. B 98, 161109 (2018).
[Crossref]

M. Esmann, F. R. Lamberti, P. Senellart, I. Favero, O. Krebs, L. Lanco, C. Gomez Carbonell, A. Lemaître, and N. D. Lanzillotti-Kimura, “Topological nanophononic states by band inversion,” Phys. Rev. B 97, 155422 (2018).
[Crossref]

S. Anguiano, A. E. Bruchhausen, B. Jusserand, I. Favero, F. R. Lamberti, L. Lanco, I. Sagnes, A. Lemaître, N. D. Lanzillotti-Kimura, P. Senellart, and A. Fainstein, “Micropillar resonators for optomechanics in the extremely high 19–95-GHz frequency range,” Phys. Rev. Lett. 118, 263901 (2017).
[Crossref]

F. R. Lamberti, Q. Yao, L. Lanco, D. T. Nguyen, M. Esmann, A. Fainstein, P. Sesin, S. Anguiano, V. Villafañe, A. Bruchhausen, P. Senellart, I. Favero, and N. D. Lanzillotti-Kimura, “Optomechanical properties of GaAs/AlAs micropillar resonators operating in the 18 GHz range,” Opt. Express 25, 24437–24447 (2017).
[Crossref]

F. R. Lamberti, M. Esmann, A. Lemaître, C. Gomez Carbonell, O. Krebs, I. Favero, B. Jusserand, P. Senellart, L. Lanco, and N. D. Lanzillotti-Kimura, “Nanomechanical resonators based on adiabatic periodicity-breaking in a superlattice,” Appl. Phys. Lett. 111, 173107 (2017).
[Crossref]

N. D. Lanzillotti-Kimura, A. Fainstein, and B. Jusserand, “Towards GHz–THz cavity optomechanics in DBR-based semiconductor resonators,” Ultrasonics 56, 80–89 (2015).
[Crossref]

N. D. Lanzillotti-Kimura, A. Fainstein, B. Perrin, B. Jusserand, O. Mauguin, L. Largeau, and A. Lemaître, “Bloch oscillations of THz acoustic phonons in coupled nanocavity structures,” Phys. Rev. Lett. 104, 197402 (2010).
[Crossref]

N. D. Lanzillotti-Kimura, A. Fainstein, B. Jusserand, and A. Lemaître, “Resonant Raman scattering of nanocavity-confined acoustic phonons,” Phys. Rev. B 79, 035404 (2009).
[Crossref]

N. D. Lanzillotti-Kimura, A. Fainstein, B. Jusserand, A. Lemaître, O. Mauguin, and L. Largeau, “Acoustic phonon nanowave devices based on aperiodic multilayers: experiments and theory,” Phys. Rev. B 76, 174301 (2007).
[Crossref]

N. D. Lanzillotti-Kimura, A. Fainstein, C. A. Balseiro, and B. Jusserand, “Phonon engineering with acoustic nanocavities: theoretical considerations on phonon molecules, band structures, and acoustic Bloch oscillations,” Phys. Rev. B 75, 024301 (2007).
[Crossref]

Largeau, L.

N. D. Lanzillotti-Kimura, A. Fainstein, B. Perrin, B. Jusserand, O. Mauguin, L. Largeau, and A. Lemaître, “Bloch oscillations of THz acoustic phonons in coupled nanocavity structures,” Phys. Rev. Lett. 104, 197402 (2010).
[Crossref]

N. D. Lanzillotti-Kimura, A. Fainstein, B. Jusserand, A. Lemaître, O. Mauguin, and L. Largeau, “Acoustic phonon nanowave devices based on aperiodic multilayers: experiments and theory,” Phys. Rev. B 76, 174301 (2007).
[Crossref]

Laude, V.

J.-C. Beugnot, S. Lebrun, G. Pauliat, H. Maillotte, V. Laude, and T. Sylvestre, “Brillouin light scattering from surface acoustic waves in a subwavelength-diameter optical fibre,” Nat. Commun. 5, 5242 (2014).
[Crossref]

J.-C. Beugnot, T. Sylvestre, D. Alasia, H. Maillotte, V. Laude, A. Monteville, L. Provino, N. Traynor, S. F. Mafang, and L. Thévenaz, “Complete experimental characterization of stimulated Brillouin scattering in photonic crystal fiber,” Opt. Express 15, 15517–15522 (2007).
[Crossref]

Lebrun, S.

A. Godet, A. Ndao, T. Sylvestre, V. Pecheur, S. Lebrun, G. Pauliat, J.-C. Beugnot, and K. P. Huy, “Brillouin spectroscopy of optical microfibers and nanofibers,” Optica 4, 1232–1238 (2017).
[Crossref]

J.-C. Beugnot, S. Lebrun, G. Pauliat, H. Maillotte, V. Laude, and T. Sylvestre, “Brillouin light scattering from surface acoustic waves in a subwavelength-diameter optical fibre,” Nat. Commun. 5, 5242 (2014).
[Crossref]

Lee, H.

I. S. Grudinin, H. Lee, O. Painter, and K. J. Vahala, “Phonon laser action in a tunable two-level system,” Phys. Rev. Lett. 104, 083901 (2010).
[Crossref]

Lee, M. W.

B. Stiller, A. Kudlinski, M. W. Lee, G. Bouwmans, M. Delque, J. Beugnot, H. Maillotte, and T. Sylvestre, “SBS mitigation in a microstructured optical fiber by periodically varying the core diameter,” IEEE Photon. Technol. Lett. 24, 667–669 (2012).
[Crossref]

Legrand, B.

B. Gayral, J. M. Gérard, B. Legrand, E. Costard, and V. Thierry-Mieg, “Optical study of GaAs/AlAs pillar microcavities with elliptical cross section,” Appl. Phys. Lett. 72, 1421–1423 (1998).
[Crossref]

J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81, 1110–1113 (1998).
[Crossref]

Lemaître, A.

M. Esmann, F. R. Lamberti, P. Senellart, I. Favero, O. Krebs, L. Lanco, C. Gomez Carbonell, A. Lemaître, and N. D. Lanzillotti-Kimura, “Topological nanophononic states by band inversion,” Phys. Rev. B 97, 155422 (2018).
[Crossref]

P. Hilaire, C. Antón, C. Kessler, A. Lemaître, I. Sagnes, N. Somaschi, P. Senellart, and L. Lanco, “Accurate measurement of a 96% input coupling into a cavity using polarization tomography,” Appl. Phys. Lett. 112, 201101 (2018).
[Crossref]

M. Esmann, F. R. Lamberti, A. Lemaître, and N. D. Lanzillotti-Kimura, “Topological acoustics in coupled nanocavity arrays,” Phys. Rev. B 98, 161109 (2018).
[Crossref]

F. R. Lamberti, M. Esmann, A. Lemaître, C. Gomez Carbonell, O. Krebs, I. Favero, B. Jusserand, P. Senellart, L. Lanco, and N. D. Lanzillotti-Kimura, “Nanomechanical resonators based on adiabatic periodicity-breaking in a superlattice,” Appl. Phys. Lett. 111, 173107 (2017).
[Crossref]

S. Anguiano, A. E. Bruchhausen, B. Jusserand, I. Favero, F. R. Lamberti, L. Lanco, I. Sagnes, A. Lemaître, N. D. Lanzillotti-Kimura, P. Senellart, and A. Fainstein, “Micropillar resonators for optomechanics in the extremely high 19–95-GHz frequency range,” Phys. Rev. Lett. 118, 263901 (2017).
[Crossref]

C. Arnold, V. Loo, A. Lemaître, I. Sagnes, O. Krebs, P. Voisin, P. Senellart, and L. Lanco, “Optical bistability in a quantum dots/micropillar device with a quality factor exceeding 200 000,” Appl. Phys. Lett. 100, 111111 (2012).
[Crossref]

L. Ferrier, E. Wertz, R. Johne, D. D. Solnyshkov, P. Senellart, I. Sagnes, A. Lemaître, G. Malpuech, and J. Bloch, “Interactions in confined polariton condensates,” Phys. Rev. Lett. 106, 126401 (2011).
[Crossref]

N. D. Lanzillotti-Kimura, A. Fainstein, B. Perrin, B. Jusserand, O. Mauguin, L. Largeau, and A. Lemaître, “Bloch oscillations of THz acoustic phonons in coupled nanocavity structures,” Phys. Rev. Lett. 104, 197402 (2010).
[Crossref]

N. D. Lanzillotti-Kimura, A. Fainstein, B. Jusserand, and A. Lemaître, “Resonant Raman scattering of nanocavity-confined acoustic phonons,” Phys. Rev. B 79, 035404 (2009).
[Crossref]

G. Rozas, M. F. P. Winter, B. Jusserand, A. Fainstein, B. Perrin, E. Semenova, and A. Lemaître, “Lifetime of THz acoustic nanocavity modes,” Phys. Rev. Lett. 102, 015502 (2009).
[Crossref]

N. D. Lanzillotti-Kimura, A. Fainstein, B. Jusserand, A. Lemaître, O. Mauguin, and L. Largeau, “Acoustic phonon nanowave devices based on aperiodic multilayers: experiments and theory,” Phys. Rev. B 76, 174301 (2007).
[Crossref]

Li, E.

Liang, J.-C.

C.-K. Sun, J.-C. Liang, and X.-Y. Yu, “Coherent acoustic phonon oscillations in semiconductor multiple quantum wells with piezoelectric fields,” Phys. Rev. Lett. 84, 179–182 (2000).
[Crossref]

Löffler, W.

H. Snijders, J. A. Frey, J. Norman, V. P. Post, A. C. Gossard, J. E. Bowers, M. P. van Exter, W. Löffler, and D. Bouwmeester, “Fiber-coupled cavity-QED source of identical single photons,” Phys. Rev. Appl. 9, 031002 (2018).
[Crossref]

Loo, V.

C. Arnold, V. Loo, A. Lemaître, I. Sagnes, O. Krebs, P. Voisin, P. Senellart, and L. Lanco, “Optical bistability in a quantum dots/micropillar device with a quality factor exceeding 200 000,” Appl. Phys. Lett. 100, 111111 (2012).
[Crossref]

Luther-Davies, B.

M. Merklein, I. V. Kabakova, T. F. S. Büttner, D.-Y. Choi, B. Luther-Davies, S. J. Madden, and B. J. Eggleton, “Enhancing and inhibiting stimulated Brillouin scattering in photonic integrated circuits,” Nat. Commun. 6, 6396 (2015).
[Crossref]

R. Pant, C. G. Poulton, D.-Y. Choi, H. Mcfarlane, S. Hile, E. Li, L. Thevenaz, B. Luther-Davies, S. J. Madden, and B. J. Eggleton, “On-chip stimulated Brillouin scattering,” Opt. Express 19, 8285–8290 (2011).
[Crossref]

Ma, G.

M. Xiao, G. Ma, Z. Yang, P. Sheng, Z. Q. Zhang, and C. T. Chan, “Geometric phase and band inversion in periodic acoustic systems,” Nat. Phys. 11, 240–244 (2015).
[Crossref]

Madden, S. J.

M. Merklein, I. V. Kabakova, T. F. S. Büttner, D.-Y. Choi, B. Luther-Davies, S. J. Madden, and B. J. Eggleton, “Enhancing and inhibiting stimulated Brillouin scattering in photonic integrated circuits,” Nat. Commun. 6, 6396 (2015).
[Crossref]

R. Pant, C. G. Poulton, D.-Y. Choi, H. Mcfarlane, S. Hile, E. Li, L. Thevenaz, B. Luther-Davies, S. J. Madden, and B. J. Eggleton, “On-chip stimulated Brillouin scattering,” Opt. Express 19, 8285–8290 (2011).
[Crossref]

Mafang, S. F.

Maillotte, H.

J.-C. Beugnot, S. Lebrun, G. Pauliat, H. Maillotte, V. Laude, and T. Sylvestre, “Brillouin light scattering from surface acoustic waves in a subwavelength-diameter optical fibre,” Nat. Commun. 5, 5242 (2014).
[Crossref]

B. Stiller, A. Kudlinski, M. W. Lee, G. Bouwmans, M. Delque, J. Beugnot, H. Maillotte, and T. Sylvestre, “SBS mitigation in a microstructured optical fiber by periodically varying the core diameter,” IEEE Photon. Technol. Lett. 24, 667–669 (2012).
[Crossref]

J.-C. Beugnot, T. Sylvestre, D. Alasia, H. Maillotte, V. Laude, A. Monteville, L. Provino, N. Traynor, S. F. Mafang, and L. Thévenaz, “Complete experimental characterization of stimulated Brillouin scattering in photonic crystal fiber,” Opt. Express 15, 15517–15522 (2007).
[Crossref]

Malpuech, G.

L. Ferrier, E. Wertz, R. Johne, D. D. Solnyshkov, P. Senellart, I. Sagnes, A. Lemaître, G. Malpuech, and J. Bloch, “Interactions in confined polariton condensates,” Phys. Rev. Lett. 106, 126401 (2011).
[Crossref]

Mansurova, M.

H. Ulrichs, D. Meyer, M. Müller, S. Wittrock, M. Mansurova, J. Walowski, and M. Münzenberg, “THz elastic dynamics in finite-size CoFeB–MgO phononic superlattices,” J. Appl. Phys. 120, 142116 (2016).
[Crossref]

Mauguin, O.

N. D. Lanzillotti-Kimura, A. Fainstein, B. Perrin, B. Jusserand, O. Mauguin, L. Largeau, and A. Lemaître, “Bloch oscillations of THz acoustic phonons in coupled nanocavity structures,” Phys. Rev. Lett. 104, 197402 (2010).
[Crossref]

N. D. Lanzillotti-Kimura, A. Fainstein, B. Jusserand, A. Lemaître, O. Mauguin, and L. Largeau, “Acoustic phonon nanowave devices based on aperiodic multilayers: experiments and theory,” Phys. Rev. B 76, 174301 (2007).
[Crossref]

Mcfarlane, H.

Merklein, M.

M. Merklein, I. V. Kabakova, T. F. S. Büttner, D.-Y. Choi, B. Luther-Davies, S. J. Madden, and B. J. Eggleton, “Enhancing and inhibiting stimulated Brillouin scattering in photonic integrated circuits,” Nat. Commun. 6, 6396 (2015).
[Crossref]

Meyer, D.

H. Ulrichs, D. Meyer, M. Müller, S. Wittrock, M. Mansurova, J. Walowski, and M. Münzenberg, “THz elastic dynamics in finite-size CoFeB–MgO phononic superlattices,” J. Appl. Phys. 120, 142116 (2016).
[Crossref]

Monteville, A.

Müller, M.

H. Ulrichs, D. Meyer, M. Müller, S. Wittrock, M. Mansurova, J. Walowski, and M. Münzenberg, “THz elastic dynamics in finite-size CoFeB–MgO phononic superlattices,” J. Appl. Phys. 120, 142116 (2016).
[Crossref]

Münzenberg, M.

H. Ulrichs, D. Meyer, M. Müller, S. Wittrock, M. Mansurova, J. Walowski, and M. Münzenberg, “THz elastic dynamics in finite-size CoFeB–MgO phononic superlattices,” J. Appl. Phys. 120, 142116 (2016).
[Crossref]

Narayanamurti, V.

V. Narayanamurti, H. L. Störmer, M. A. Chin, A. C. Gossard, and W. Wiegmann, “Selective transmission of high-frequency phonons by a superlattice: the “dielectric” phonon filter,” Phys. Rev. Lett. 43, 2012–2016 (1979).
[Crossref]

Ndao, A.

Nguyen, D. T.

Norman, J.

H. Snijders, J. A. Frey, J. Norman, V. P. Post, A. C. Gossard, J. E. Bowers, M. P. van Exter, W. Löffler, and D. Bouwmeester, “Fiber-coupled cavity-QED source of identical single photons,” Phys. Rev. Appl. 9, 031002 (2018).
[Crossref]

Oemrawsingh, S. S. R.

F. Haupt, S. S. R. Oemrawsingh, S. M. Thon, H. Kim, D. Kleckner, D. Ding, D. J. Suntrup, P. M. Petroff, and D. Bouwmeester, “Fiber-connectorized micropillar cavities,” Appl. Phys. Lett. 97, 131113 (2010).
[Crossref]

Olsson Iii, R. H.

H. Shin, W. Qiu, R. Jarecki, J. A. Cox, R. H. Olsson Iii, A. Starbuck, Z. Wang, and P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013).
[Crossref]

Orozco, L. A.

Otterstrom, N. T.

N. T. Otterstrom, R. O. Behunin, E. A. Kittlaus, Z. Wang, and P. T. Rakich, “A silicon Brillouin laser,” Science 360, 1113–1116 (2018).
[Crossref]

Ouellette, F.

B. J. Eggleton, P. A. Krug, L. Poladian, and F. Ouellette, “Long periodic superstructure Bragg gratings in optical fibres,” Electron. Lett. 30, 1620–1622 (1994).
[Crossref]

Painter, O.

I. S. Grudinin, H. Lee, O. Painter, and K. J. Vahala, “Phonon laser action in a tunable two-level system,” Phys. Rev. Lett. 104, 083901 (2010).
[Crossref]

Pant, R.

Pauliat, G.

A. Godet, A. Ndao, T. Sylvestre, V. Pecheur, S. Lebrun, G. Pauliat, J.-C. Beugnot, and K. P. Huy, “Brillouin spectroscopy of optical microfibers and nanofibers,” Optica 4, 1232–1238 (2017).
[Crossref]

J.-C. Beugnot, S. Lebrun, G. Pauliat, H. Maillotte, V. Laude, and T. Sylvestre, “Brillouin light scattering from surface acoustic waves in a subwavelength-diameter optical fibre,” Nat. Commun. 5, 5242 (2014).
[Crossref]

Pecheur, V.

Perrin, B.

C. Lagoin, B. Perrin, P. Atkinson, and D. Garcia-Sanchez, “High spectral resolution of GaAs/AlAs phononic cavities by subharmonic resonant pump–probe excitation,” Phys. Rev. B 99, 060101 (2019).
[Crossref]

N. D. Lanzillotti-Kimura, A. Fainstein, B. Perrin, B. Jusserand, O. Mauguin, L. Largeau, and A. Lemaître, “Bloch oscillations of THz acoustic phonons in coupled nanocavity structures,” Phys. Rev. Lett. 104, 197402 (2010).
[Crossref]

G. Rozas, M. F. P. Winter, B. Jusserand, A. Fainstein, B. Perrin, E. Semenova, and A. Lemaître, “Lifetime of THz acoustic nanocavity modes,” Phys. Rev. Lett. 102, 015502 (2009).
[Crossref]

Petroff, P. M.

F. Haupt, S. S. R. Oemrawsingh, S. M. Thon, H. Kim, D. Kleckner, D. Ding, D. J. Suntrup, P. M. Petroff, and D. Bouwmeester, “Fiber-connectorized micropillar cavities,” Appl. Phys. Lett. 97, 131113 (2010).
[Crossref]

Poladian, L.

B. J. Eggleton, P. A. Krug, L. Poladian, and F. Ouellette, “Long periodic superstructure Bragg gratings in optical fibres,” Electron. Lett. 30, 1620–1622 (1994).
[Crossref]

Post, V. P.

H. Snijders, J. A. Frey, J. Norman, V. P. Post, A. C. Gossard, J. E. Bowers, M. P. van Exter, W. Löffler, and D. Bouwmeester, “Fiber-coupled cavity-QED source of identical single photons,” Phys. Rev. Appl. 9, 031002 (2018).
[Crossref]

Poulton, C. G.

Provino, L.

Qiu, W.

H. Shin, W. Qiu, R. Jarecki, J. A. Cox, R. H. Olsson Iii, A. Starbuck, Z. Wang, and P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013).
[Crossref]

Rakich, P. T.

N. T. Otterstrom, R. O. Behunin, E. A. Kittlaus, Z. Wang, and P. T. Rakich, “A silicon Brillouin laser,” Science 360, 1113–1116 (2018).
[Crossref]

H. Shin, W. Qiu, R. Jarecki, J. A. Cox, R. H. Olsson Iii, A. Starbuck, Z. Wang, and P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013).
[Crossref]

Rozas, G.

G. Rozas, M. F. P. Winter, B. Jusserand, A. Fainstein, B. Perrin, E. Semenova, and A. Lemaître, “Lifetime of THz acoustic nanocavity modes,” Phys. Rev. Lett. 102, 015502 (2009).
[Crossref]

Rushforth, A. W.

J. V. Jäger, A. V. Scherbakov, B. A. Glavin, A. S. Salasyuk, R. P. Campion, A. W. Rushforth, D. R. Yakovlev, A. V. Akimov, and M. Bayer, “Resonant driving of magnetization precession in a ferromagnetic layer by coherent monochromatic phonons,” Phys. Rev. B 92, 020404 (2015).
[Crossref]

Russell, P. St. J.

P. St. J. Russell, “Photonic crystal fibers,” Science 299, 358–362 (2003).
[Crossref]

Sagnes, I.

P. Hilaire, C. Antón, C. Kessler, A. Lemaître, I. Sagnes, N. Somaschi, P. Senellart, and L. Lanco, “Accurate measurement of a 96% input coupling into a cavity using polarization tomography,” Appl. Phys. Lett. 112, 201101 (2018).
[Crossref]

S. Anguiano, A. E. Bruchhausen, B. Jusserand, I. Favero, F. R. Lamberti, L. Lanco, I. Sagnes, A. Lemaître, N. D. Lanzillotti-Kimura, P. Senellart, and A. Fainstein, “Micropillar resonators for optomechanics in the extremely high 19–95-GHz frequency range,” Phys. Rev. Lett. 118, 263901 (2017).
[Crossref]

C. Arnold, V. Loo, A. Lemaître, I. Sagnes, O. Krebs, P. Voisin, P. Senellart, and L. Lanco, “Optical bistability in a quantum dots/micropillar device with a quality factor exceeding 200 000,” Appl. Phys. Lett. 100, 111111 (2012).
[Crossref]

L. Ferrier, E. Wertz, R. Johne, D. D. Solnyshkov, P. Senellart, I. Sagnes, A. Lemaître, G. Malpuech, and J. Bloch, “Interactions in confined polariton condensates,” Phys. Rev. Lett. 106, 126401 (2011).
[Crossref]

Salasyuk, A. S.

J. V. Jäger, A. V. Scherbakov, B. A. Glavin, A. S. Salasyuk, R. P. Campion, A. W. Rushforth, D. R. Yakovlev, A. V. Akimov, and M. Bayer, “Resonant driving of magnetization precession in a ferromagnetic layer by coherent monochromatic phonons,” Phys. Rev. B 92, 020404 (2015).
[Crossref]

Sapriel, J.

J. He, B. Djafari-Rouhani, and J. Sapriel, “Theory of light scattering by longitudinal-acoustic phonons in superlattices,” Phys. Rev. B 37, 4086–4098 (1988).
[Crossref]

Scherbakov, A. V.

J. V. Jäger, A. V. Scherbakov, B. A. Glavin, A. S. Salasyuk, R. P. Campion, A. W. Rushforth, D. R. Yakovlev, A. V. Akimov, and M. Bayer, “Resonant driving of magnetization precession in a ferromagnetic layer by coherent monochromatic phonons,” Phys. Rev. B 92, 020404 (2015).
[Crossref]

Schneider, C.

T. Czerniuk, J. Tepper, A. V. Akimov, S. Unsleber, C. Schneider, M. Kamp, S. Höfling, D. R. Yakovlev, and M. Bayer, “Impact of nanomechanical resonances on lasing from electrically pumped quantum dot micropillars,” Appl. Phys. Lett. 106, 041103 (2015).
[Crossref]

Schneider, T.

Semenova, E.

G. Rozas, M. F. P. Winter, B. Jusserand, A. Fainstein, B. Perrin, E. Semenova, and A. Lemaître, “Lifetime of THz acoustic nanocavity modes,” Phys. Rev. Lett. 102, 015502 (2009).
[Crossref]

Senellart, P.

M. Esmann, F. R. Lamberti, P. Senellart, I. Favero, O. Krebs, L. Lanco, C. Gomez Carbonell, A. Lemaître, and N. D. Lanzillotti-Kimura, “Topological nanophononic states by band inversion,” Phys. Rev. B 97, 155422 (2018).
[Crossref]

P. Hilaire, C. Antón, C. Kessler, A. Lemaître, I. Sagnes, N. Somaschi, P. Senellart, and L. Lanco, “Accurate measurement of a 96% input coupling into a cavity using polarization tomography,” Appl. Phys. Lett. 112, 201101 (2018).
[Crossref]

F. R. Lamberti, M. Esmann, A. Lemaître, C. Gomez Carbonell, O. Krebs, I. Favero, B. Jusserand, P. Senellart, L. Lanco, and N. D. Lanzillotti-Kimura, “Nanomechanical resonators based on adiabatic periodicity-breaking in a superlattice,” Appl. Phys. Lett. 111, 173107 (2017).
[Crossref]

S. Anguiano, A. E. Bruchhausen, B. Jusserand, I. Favero, F. R. Lamberti, L. Lanco, I. Sagnes, A. Lemaître, N. D. Lanzillotti-Kimura, P. Senellart, and A. Fainstein, “Micropillar resonators for optomechanics in the extremely high 19–95-GHz frequency range,” Phys. Rev. Lett. 118, 263901 (2017).
[Crossref]

F. R. Lamberti, Q. Yao, L. Lanco, D. T. Nguyen, M. Esmann, A. Fainstein, P. Sesin, S. Anguiano, V. Villafañe, A. Bruchhausen, P. Senellart, I. Favero, and N. D. Lanzillotti-Kimura, “Optomechanical properties of GaAs/AlAs micropillar resonators operating in the 18 GHz range,” Opt. Express 25, 24437–24447 (2017).
[Crossref]

C. Arnold, V. Loo, A. Lemaître, I. Sagnes, O. Krebs, P. Voisin, P. Senellart, and L. Lanco, “Optical bistability in a quantum dots/micropillar device with a quality factor exceeding 200 000,” Appl. Phys. Lett. 100, 111111 (2012).
[Crossref]

L. Ferrier, E. Wertz, R. Johne, D. D. Solnyshkov, P. Senellart, I. Sagnes, A. Lemaître, G. Malpuech, and J. Bloch, “Interactions in confined polariton condensates,” Phys. Rev. Lett. 106, 126401 (2011).
[Crossref]

Sermage, B.

J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81, 1110–1113 (1998).
[Crossref]

Sesin, P.

Sharp, J. S.

P. M. Walker, J. S. Sharp, A. V. Akimov, and A. J. Kent, “Coherent elastic waves in a one-dimensional polymer hypersonic crystal,” Appl. Phys. Lett. 97, 073106 (2010).
[Crossref]

Sheng, P.

M. Xiao, G. Ma, Z. Yang, P. Sheng, Z. Q. Zhang, and C. T. Chan, “Geometric phase and band inversion in periodic acoustic systems,” Nat. Phys. 11, 240–244 (2015).
[Crossref]

Shin, H.

H. Shin, W. Qiu, R. Jarecki, J. A. Cox, R. H. Olsson Iii, A. Starbuck, Z. Wang, and P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013).
[Crossref]

Smith, J. S.

J. Talghader and J. S. Smith, “Thermal dependence of the refractive index of GaAs and AlAs measured using semiconductor multilayer optical cavities,” Appl. Phys. Lett. 66, 335–337 (1995).
[Crossref]

Snijders, H.

H. Snijders, J. A. Frey, J. Norman, V. P. Post, A. C. Gossard, J. E. Bowers, M. P. van Exter, W. Löffler, and D. Bouwmeester, “Fiber-coupled cavity-QED source of identical single photons,” Phys. Rev. Appl. 9, 031002 (2018).
[Crossref]

Solano, P.

Solnyshkov, D. D.

L. Ferrier, E. Wertz, R. Johne, D. D. Solnyshkov, P. Senellart, I. Sagnes, A. Lemaître, G. Malpuech, and J. Bloch, “Interactions in confined polariton condensates,” Phys. Rev. Lett. 106, 126401 (2011).
[Crossref]

Somaschi, N.

P. Hilaire, C. Antón, C. Kessler, A. Lemaître, I. Sagnes, N. Somaschi, P. Senellart, and L. Lanco, “Accurate measurement of a 96% input coupling into a cavity using polarization tomography,” Appl. Phys. Lett. 112, 201101 (2018).
[Crossref]

Spälter, S.

Starbuck, A.

H. Shin, W. Qiu, R. Jarecki, J. A. Cox, R. H. Olsson Iii, A. Starbuck, Z. Wang, and P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013).
[Crossref]

Stern, Y.

Stiller, B.

B. Stiller, A. Kudlinski, M. W. Lee, G. Bouwmans, M. Delque, J. Beugnot, H. Maillotte, and T. Sylvestre, “SBS mitigation in a microstructured optical fiber by periodically varying the core diameter,” IEEE Photon. Technol. Lett. 24, 667–669 (2012).
[Crossref]

Störmer, H. L.

V. Narayanamurti, H. L. Störmer, M. A. Chin, A. C. Gossard, and W. Wiegmann, “Selective transmission of high-frequency phonons by a superlattice: the “dielectric” phonon filter,” Phys. Rev. Lett. 43, 2012–2016 (1979).
[Crossref]

Strasser, T. A.

Sun, C.-K.

C.-K. Sun, J.-C. Liang, and X.-Y. Yu, “Coherent acoustic phonon oscillations in semiconductor multiple quantum wells with piezoelectric fields,” Phys. Rev. Lett. 84, 179–182 (2000).
[Crossref]

Suntrup, D. J.

F. Haupt, S. S. R. Oemrawsingh, S. M. Thon, H. Kim, D. Kleckner, D. Ding, D. J. Suntrup, P. M. Petroff, and D. Bouwmeester, “Fiber-connectorized micropillar cavities,” Appl. Phys. Lett. 97, 131113 (2010).
[Crossref]

Sylvestre, T.

A. Godet, A. Ndao, T. Sylvestre, V. Pecheur, S. Lebrun, G. Pauliat, J.-C. Beugnot, and K. P. Huy, “Brillouin spectroscopy of optical microfibers and nanofibers,” Optica 4, 1232–1238 (2017).
[Crossref]

J.-C. Beugnot, S. Lebrun, G. Pauliat, H. Maillotte, V. Laude, and T. Sylvestre, “Brillouin light scattering from surface acoustic waves in a subwavelength-diameter optical fibre,” Nat. Commun. 5, 5242 (2014).
[Crossref]

B. Stiller, A. Kudlinski, M. W. Lee, G. Bouwmans, M. Delque, J. Beugnot, H. Maillotte, and T. Sylvestre, “SBS mitigation in a microstructured optical fiber by periodically varying the core diameter,” IEEE Photon. Technol. Lett. 24, 667–669 (2012).
[Crossref]

J.-C. Beugnot, T. Sylvestre, D. Alasia, H. Maillotte, V. Laude, A. Monteville, L. Provino, N. Traynor, S. F. Mafang, and L. Thévenaz, “Complete experimental characterization of stimulated Brillouin scattering in photonic crystal fiber,” Opt. Express 15, 15517–15522 (2007).
[Crossref]

Talghader, J.

J. Talghader and J. S. Smith, “Thermal dependence of the refractive index of GaAs and AlAs measured using semiconductor multilayer optical cavities,” Appl. Phys. Lett. 66, 335–337 (1995).
[Crossref]

Tepper, J.

T. Czerniuk, J. Tepper, A. V. Akimov, S. Unsleber, C. Schneider, M. Kamp, S. Höfling, D. R. Yakovlev, and M. Bayer, “Impact of nanomechanical resonances on lasing from electrically pumped quantum dot micropillars,” Appl. Phys. Lett. 106, 041103 (2015).
[Crossref]

Thevenaz, L.

Thévenaz, L.

Thierry-Mieg, V.

P. Lacharmoise, A. Fainstein, B. Jusserand, and V. Thierry-Mieg, “Optical cavity enhancement of light–sound interaction in acoustic phonon cavities,” Appl. Phys. Lett. 84, 3274–3276 (2004).
[Crossref]

M. Trigo, A. Bruchhausen, A. Fainstein, B. Jusserand, and V. Thierry-Mieg, “Confinement of acoustical vibrations in a semiconductor planar phonon cavity,” Phys. Rev. Lett. 89, 227402 (2002).
[Crossref]

J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81, 1110–1113 (1998).
[Crossref]

B. Gayral, J. M. Gérard, B. Legrand, E. Costard, and V. Thierry-Mieg, “Optical study of GaAs/AlAs pillar microcavities with elliptical cross section,” Appl. Phys. Lett. 72, 1421–1423 (1998).
[Crossref]

A. Fainstein, B. Jusserand, and V. Thierry-Mieg, “Raman efficiency in a planar microcavity,” Phys. Rev. B 53, R13287 (1996).
[Crossref]

A. Fainstein, B. Jusserand, and V. Thierry-Mieg, “Raman scattering enhancement by optical confinement in a semiconductor planar microcavity,” Phys. Rev. Lett. 75, 3764–3767 (1995).
[Crossref]

Thon, S. M.

F. Haupt, S. S. R. Oemrawsingh, S. M. Thon, H. Kim, D. Kleckner, D. Ding, D. J. Suntrup, P. M. Petroff, and D. Bouwmeester, “Fiber-connectorized micropillar cavities,” Appl. Phys. Lett. 97, 131113 (2010).
[Crossref]

Tomes, M.

M. Tomes and T. Carmon, “Photonic micro-electromechanical systems vibrating at X-band (11-GHz) rates,” Phys. Rev. Lett. 102, 113601 (2009).
[Crossref]

Traynor, N.

Trigo, M.

M. Trigo, A. Bruchhausen, A. Fainstein, B. Jusserand, and V. Thierry-Mieg, “Confinement of acoustical vibrations in a semiconductor planar phonon cavity,” Phys. Rev. Lett. 89, 227402 (2002).
[Crossref]

Tur, M.

Ulrichs, H.

H. Ulrichs, D. Meyer, M. Müller, S. Wittrock, M. Mansurova, J. Walowski, and M. Münzenberg, “THz elastic dynamics in finite-size CoFeB–MgO phononic superlattices,” J. Appl. Phys. 120, 142116 (2016).
[Crossref]

Unsleber, S.

T. Czerniuk, J. Tepper, A. V. Akimov, S. Unsleber, C. Schneider, M. Kamp, S. Höfling, D. R. Yakovlev, and M. Bayer, “Impact of nanomechanical resonances on lasing from electrically pumped quantum dot micropillars,” Appl. Phys. Lett. 106, 041103 (2015).
[Crossref]

Vahala, K. J.

I. S. Grudinin, H. Lee, O. Painter, and K. J. Vahala, “Phonon laser action in a tunable two-level system,” Phys. Rev. Lett. 104, 083901 (2010).
[Crossref]

van Exter, M. P.

H. Snijders, J. A. Frey, J. Norman, V. P. Post, A. C. Gossard, J. E. Bowers, M. P. van Exter, W. Löffler, and D. Bouwmeester, “Fiber-coupled cavity-QED source of identical single photons,” Phys. Rev. Appl. 9, 031002 (2018).
[Crossref]

Villafañe, V.

Voisin, P.

C. Arnold, V. Loo, A. Lemaître, I. Sagnes, O. Krebs, P. Voisin, P. Senellart, and L. Lanco, “Optical bistability in a quantum dots/micropillar device with a quality factor exceeding 200 000,” Appl. Phys. Lett. 100, 111111 (2012).
[Crossref]

Walker, P. M.

P. M. Walker, J. S. Sharp, A. V. Akimov, and A. J. Kent, “Coherent elastic waves in a one-dimensional polymer hypersonic crystal,” Appl. Phys. Lett. 97, 073106 (2010).
[Crossref]

Walowski, J.

H. Ulrichs, D. Meyer, M. Müller, S. Wittrock, M. Mansurova, J. Walowski, and M. Münzenberg, “THz elastic dynamics in finite-size CoFeB–MgO phononic superlattices,” J. Appl. Phys. 120, 142116 (2016).
[Crossref]

Wang, Z.

N. T. Otterstrom, R. O. Behunin, E. A. Kittlaus, Z. Wang, and P. T. Rakich, “A silicon Brillouin laser,” Science 360, 1113–1116 (2018).
[Crossref]

H. Shin, W. Qiu, R. Jarecki, J. A. Cox, R. H. Olsson Iii, A. Starbuck, Z. Wang, and P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013).
[Crossref]

Wertz, E.

L. Ferrier, E. Wertz, R. Johne, D. D. Solnyshkov, P. Senellart, I. Sagnes, A. Lemaître, G. Malpuech, and J. Bloch, “Interactions in confined polariton condensates,” Phys. Rev. Lett. 106, 126401 (2011).
[Crossref]

Westbrook, P. S.

Wiegmann, W.

V. Narayanamurti, H. L. Störmer, M. A. Chin, A. C. Gossard, and W. Wiegmann, “Selective transmission of high-frequency phonons by a superlattice: the “dielectric” phonon filter,” Phys. Rev. Lett. 43, 2012–2016 (1979).
[Crossref]

Windeler, R. S.

Winter, M. F. P.

G. Rozas, M. F. P. Winter, B. Jusserand, A. Fainstein, B. Perrin, E. Semenova, and A. Lemaître, “Lifetime of THz acoustic nanocavity modes,” Phys. Rev. Lett. 102, 015502 (2009).
[Crossref]

Wittrock, S.

H. Ulrichs, D. Meyer, M. Müller, S. Wittrock, M. Mansurova, J. Walowski, and M. Münzenberg, “THz elastic dynamics in finite-size CoFeB–MgO phononic superlattices,” J. Appl. Phys. 120, 142116 (2016).
[Crossref]

Xiao, M.

M. Xiao, G. Ma, Z. Yang, P. Sheng, Z. Q. Zhang, and C. T. Chan, “Geometric phase and band inversion in periodic acoustic systems,” Nat. Phys. 11, 240–244 (2015).
[Crossref]

M. Xiao, Z. Q. Zhang, and C. T. Chan, “Surface impedance and bulk band geometric phases in one-dimensional systems,” Phys. Rev. X 4, 021017 (2014).
[Crossref]

Yakovlev, D. R.

J. V. Jäger, A. V. Scherbakov, B. A. Glavin, A. S. Salasyuk, R. P. Campion, A. W. Rushforth, D. R. Yakovlev, A. V. Akimov, and M. Bayer, “Resonant driving of magnetization precession in a ferromagnetic layer by coherent monochromatic phonons,” Phys. Rev. B 92, 020404 (2015).
[Crossref]

T. Czerniuk, J. Tepper, A. V. Akimov, S. Unsleber, C. Schneider, M. Kamp, S. Höfling, D. R. Yakovlev, and M. Bayer, “Impact of nanomechanical resonances on lasing from electrically pumped quantum dot micropillars,” Appl. Phys. Lett. 106, 041103 (2015).
[Crossref]

Yang, Z.

M. Xiao, G. Ma, Z. Yang, P. Sheng, Z. Q. Zhang, and C. T. Chan, “Geometric phase and band inversion in periodic acoustic systems,” Nat. Phys. 11, 240–244 (2015).
[Crossref]

Yao, Q.

Yu, P.

P. Yu and M. Cardona, Fundamentals of Semiconductors: Physics and Materials Properties, 4th ed., Graduate Texts in Physics (Springer-Verlag, 2010).

Yu, X.-Y.

C.-K. Sun, J.-C. Liang, and X.-Y. Yu, “Coherent acoustic phonon oscillations in semiconductor multiple quantum wells with piezoelectric fields,” Phys. Rev. Lett. 84, 179–182 (2000).
[Crossref]

Zadok, A.

Zak, J.

J. Zak, “Berry’s phase for energy bands in solids,” Phys. Rev. Lett. 62, 2747–2750 (1989).
[Crossref]

Zhang, R.

Zhang, Z. Q.

M. Xiao, G. Ma, Z. Yang, P. Sheng, Z. Q. Zhang, and C. T. Chan, “Geometric phase and band inversion in periodic acoustic systems,” Nat. Phys. 11, 240–244 (2015).
[Crossref]

M. Xiao, Z. Q. Zhang, and C. T. Chan, “Surface impedance and bulk band geometric phases in one-dimensional systems,” Phys. Rev. X 4, 021017 (2014).
[Crossref]

Zhong, K.

Zhu, Z.

Z. Zhu, D. J. Gauthier, and R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science 318, 1748–1750 (2007).
[Crossref]

Ann. Phys. (1)

L. Brillouin, “Scattering of light rays in a transparent homogeneous body: influence of thermal agitation,” Ann. Phys. 17, 88–122 (1922).
[Crossref]

Appl. Phys. Lett. (10)

K. O. Hill, B. S. Kawasaki, and D. C. Johnson, “CW Brillouin laser,” Appl. Phys. Lett. 28, 608–609 (1976).
[Crossref]

F. R. Lamberti, M. Esmann, A. Lemaître, C. Gomez Carbonell, O. Krebs, I. Favero, B. Jusserand, P. Senellart, L. Lanco, and N. D. Lanzillotti-Kimura, “Nanomechanical resonators based on adiabatic periodicity-breaking in a superlattice,” Appl. Phys. Lett. 111, 173107 (2017).
[Crossref]

P. Lacharmoise, A. Fainstein, B. Jusserand, and V. Thierry-Mieg, “Optical cavity enhancement of light–sound interaction in acoustic phonon cavities,” Appl. Phys. Lett. 84, 3274–3276 (2004).
[Crossref]

B. Gayral, J. M. Gérard, B. Legrand, E. Costard, and V. Thierry-Mieg, “Optical study of GaAs/AlAs pillar microcavities with elliptical cross section,” Appl. Phys. Lett. 72, 1421–1423 (1998).
[Crossref]

C. Arnold, V. Loo, A. Lemaître, I. Sagnes, O. Krebs, P. Voisin, P. Senellart, and L. Lanco, “Optical bistability in a quantum dots/micropillar device with a quality factor exceeding 200 000,” Appl. Phys. Lett. 100, 111111 (2012).
[Crossref]

T. Czerniuk, J. Tepper, A. V. Akimov, S. Unsleber, C. Schneider, M. Kamp, S. Höfling, D. R. Yakovlev, and M. Bayer, “Impact of nanomechanical resonances on lasing from electrically pumped quantum dot micropillars,” Appl. Phys. Lett. 106, 041103 (2015).
[Crossref]

P. Hilaire, C. Antón, C. Kessler, A. Lemaître, I. Sagnes, N. Somaschi, P. Senellart, and L. Lanco, “Accurate measurement of a 96% input coupling into a cavity using polarization tomography,” Appl. Phys. Lett. 112, 201101 (2018).
[Crossref]

J. Talghader and J. S. Smith, “Thermal dependence of the refractive index of GaAs and AlAs measured using semiconductor multilayer optical cavities,” Appl. Phys. Lett. 66, 335–337 (1995).
[Crossref]

P. M. Walker, J. S. Sharp, A. V. Akimov, and A. J. Kent, “Coherent elastic waves in a one-dimensional polymer hypersonic crystal,” Appl. Phys. Lett. 97, 073106 (2010).
[Crossref]

F. Haupt, S. S. R. Oemrawsingh, S. M. Thon, H. Kim, D. Kleckner, D. Ding, D. J. Suntrup, P. M. Petroff, and D. Bouwmeester, “Fiber-connectorized micropillar cavities,” Appl. Phys. Lett. 97, 131113 (2010).
[Crossref]

Electron. Lett. (1)

B. J. Eggleton, P. A. Krug, L. Poladian, and F. Ouellette, “Long periodic superstructure Bragg gratings in optical fibres,” Electron. Lett. 30, 1620–1622 (1994).
[Crossref]

IEEE Photon. Technol. Lett. (1)

B. Stiller, A. Kudlinski, M. W. Lee, G. Bouwmans, M. Delque, J. Beugnot, H. Maillotte, and T. Sylvestre, “SBS mitigation in a microstructured optical fiber by periodically varying the core diameter,” IEEE Photon. Technol. Lett. 24, 667–669 (2012).
[Crossref]

J. Appl. Phys. (1)

H. Ulrichs, D. Meyer, M. Müller, S. Wittrock, M. Mansurova, J. Walowski, and M. Münzenberg, “THz elastic dynamics in finite-size CoFeB–MgO phononic superlattices,” J. Appl. Phys. 120, 142116 (2016).
[Crossref]

J. Lightwave Technol. (1)

Nat. Commun. (3)

M. Merklein, I. V. Kabakova, T. F. S. Büttner, D.-Y. Choi, B. Luther-Davies, S. J. Madden, and B. J. Eggleton, “Enhancing and inhibiting stimulated Brillouin scattering in photonic integrated circuits,” Nat. Commun. 6, 6396 (2015).
[Crossref]

J.-C. Beugnot, S. Lebrun, G. Pauliat, H. Maillotte, V. Laude, and T. Sylvestre, “Brillouin light scattering from surface acoustic waves in a subwavelength-diameter optical fibre,” Nat. Commun. 5, 5242 (2014).
[Crossref]

H. Shin, W. Qiu, R. Jarecki, J. A. Cox, R. H. Olsson Iii, A. Starbuck, Z. Wang, and P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013).
[Crossref]

Nat. Phys. (1)

M. Xiao, G. Ma, Z. Yang, P. Sheng, Z. Q. Zhang, and C. T. Chan, “Geometric phase and band inversion in periodic acoustic systems,” Nat. Phys. 11, 240–244 (2015).
[Crossref]

Nature (1)

E. Gross, “Change of wave-length of light due to elastic heat waves at scattering in liquids,” Nature 126, 201–202 (1930).
[Crossref]

Opt. Express (3)

Opt. Lett. (2)

Optica (1)

Photon. Res. (1)

Phys. Rev. Appl. (1)

H. Snijders, J. A. Frey, J. Norman, V. P. Post, A. C. Gossard, J. E. Bowers, M. P. van Exter, W. Löffler, and D. Bouwmeester, “Fiber-coupled cavity-QED source of identical single photons,” Phys. Rev. Appl. 9, 031002 (2018).
[Crossref]

Phys. Rev. B (10)

N. D. Lanzillotti Kimura, A. Fainstein, and B. Jusserand, “Phonon Bloch oscillations in acoustic-cavity structures,” Phys. Rev. B 71, 041305 (2005).
[Crossref]

C. Lagoin, B. Perrin, P. Atkinson, and D. Garcia-Sanchez, “High spectral resolution of GaAs/AlAs phononic cavities by subharmonic resonant pump–probe excitation,” Phys. Rev. B 99, 060101 (2019).
[Crossref]

M. Esmann, F. R. Lamberti, A. Lemaître, and N. D. Lanzillotti-Kimura, “Topological acoustics in coupled nanocavity arrays,” Phys. Rev. B 98, 161109 (2018).
[Crossref]

J. V. Jäger, A. V. Scherbakov, B. A. Glavin, A. S. Salasyuk, R. P. Campion, A. W. Rushforth, D. R. Yakovlev, A. V. Akimov, and M. Bayer, “Resonant driving of magnetization precession in a ferromagnetic layer by coherent monochromatic phonons,” Phys. Rev. B 92, 020404 (2015).
[Crossref]

N. D. Lanzillotti-Kimura, A. Fainstein, B. Jusserand, A. Lemaître, O. Mauguin, and L. Largeau, “Acoustic phonon nanowave devices based on aperiodic multilayers: experiments and theory,” Phys. Rev. B 76, 174301 (2007).
[Crossref]

A. Fainstein, B. Jusserand, and V. Thierry-Mieg, “Raman efficiency in a planar microcavity,” Phys. Rev. B 53, R13287 (1996).
[Crossref]

N. D. Lanzillotti-Kimura, A. Fainstein, C. A. Balseiro, and B. Jusserand, “Phonon engineering with acoustic nanocavities: theoretical considerations on phonon molecules, band structures, and acoustic Bloch oscillations,” Phys. Rev. B 75, 024301 (2007).
[Crossref]

J. He, B. Djafari-Rouhani, and J. Sapriel, “Theory of light scattering by longitudinal-acoustic phonons in superlattices,” Phys. Rev. B 37, 4086–4098 (1988).
[Crossref]

N. D. Lanzillotti-Kimura, A. Fainstein, B. Jusserand, and A. Lemaître, “Resonant Raman scattering of nanocavity-confined acoustic phonons,” Phys. Rev. B 79, 035404 (2009).
[Crossref]

M. Esmann, F. R. Lamberti, P. Senellart, I. Favero, O. Krebs, L. Lanco, C. Gomez Carbonell, A. Lemaître, and N. D. Lanzillotti-Kimura, “Topological nanophononic states by band inversion,” Phys. Rev. B 97, 155422 (2018).
[Crossref]

Phys. Rev. Lett. (12)

L. Ferrier, E. Wertz, R. Johne, D. D. Solnyshkov, P. Senellart, I. Sagnes, A. Lemaître, G. Malpuech, and J. Bloch, “Interactions in confined polariton condensates,” Phys. Rev. Lett. 106, 126401 (2011).
[Crossref]

S. Anguiano, A. E. Bruchhausen, B. Jusserand, I. Favero, F. R. Lamberti, L. Lanco, I. Sagnes, A. Lemaître, N. D. Lanzillotti-Kimura, P. Senellart, and A. Fainstein, “Micropillar resonators for optomechanics in the extremely high 19–95-GHz frequency range,” Phys. Rev. Lett. 118, 263901 (2017).
[Crossref]

A. Fainstein, B. Jusserand, and V. Thierry-Mieg, “Raman scattering enhancement by optical confinement in a semiconductor planar microcavity,” Phys. Rev. Lett. 75, 3764–3767 (1995).
[Crossref]

M. Tomes and T. Carmon, “Photonic micro-electromechanical systems vibrating at X-band (11-GHz) rates,” Phys. Rev. Lett. 102, 113601 (2009).
[Crossref]

M. Trigo, A. Bruchhausen, A. Fainstein, B. Jusserand, and V. Thierry-Mieg, “Confinement of acoustical vibrations in a semiconductor planar phonon cavity,” Phys. Rev. Lett. 89, 227402 (2002).
[Crossref]

N. D. Lanzillotti-Kimura, A. Fainstein, B. Perrin, B. Jusserand, O. Mauguin, L. Largeau, and A. Lemaître, “Bloch oscillations of THz acoustic phonons in coupled nanocavity structures,” Phys. Rev. Lett. 104, 197402 (2010).
[Crossref]

G. Rozas, M. F. P. Winter, B. Jusserand, A. Fainstein, B. Perrin, E. Semenova, and A. Lemaître, “Lifetime of THz acoustic nanocavity modes,” Phys. Rev. Lett. 102, 015502 (2009).
[Crossref]

V. Narayanamurti, H. L. Störmer, M. A. Chin, A. C. Gossard, and W. Wiegmann, “Selective transmission of high-frequency phonons by a superlattice: the “dielectric” phonon filter,” Phys. Rev. Lett. 43, 2012–2016 (1979).
[Crossref]

C.-K. Sun, J.-C. Liang, and X.-Y. Yu, “Coherent acoustic phonon oscillations in semiconductor multiple quantum wells with piezoelectric fields,” Phys. Rev. Lett. 84, 179–182 (2000).
[Crossref]

J. Zak, “Berry’s phase for energy bands in solids,” Phys. Rev. Lett. 62, 2747–2750 (1989).
[Crossref]

J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81, 1110–1113 (1998).
[Crossref]

I. S. Grudinin, H. Lee, O. Painter, and K. J. Vahala, “Phonon laser action in a tunable two-level system,” Phys. Rev. Lett. 104, 083901 (2010).
[Crossref]

Phys. Rev. X (1)

M. Xiao, Z. Q. Zhang, and C. T. Chan, “Surface impedance and bulk band geometric phases in one-dimensional systems,” Phys. Rev. X 4, 021017 (2014).
[Crossref]

Science (3)

N. T. Otterstrom, R. O. Behunin, E. A. Kittlaus, Z. Wang, and P. T. Rakich, “A silicon Brillouin laser,” Science 360, 1113–1116 (2018).
[Crossref]

Z. Zhu, D. J. Gauthier, and R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science 318, 1748–1750 (2007).
[Crossref]

P. St. J. Russell, “Photonic crystal fibers,” Science 299, 358–362 (2003).
[Crossref]

Ultrasonics (1)

N. D. Lanzillotti-Kimura, A. Fainstein, and B. Jusserand, “Towards GHz–THz cavity optomechanics in DBR-based semiconductor resonators,” Ultrasonics 56, 80–89 (2015).
[Crossref]

Other (2)

B. Jusserand and M. Cardona, “Raman spectroscopy of vibrations in superlattices,” in Light Scattering in Solids V, Topics in Applied Physics (Springer, 1989), pp. 49–152.

P. Yu and M. Cardona, Fundamentals of Semiconductors: Physics and Materials Properties, 4th ed., Graduate Texts in Physics (Springer-Verlag, 2010).

Supplementary Material (1)

NameDescription
» Supplement 1       Photoelastic model of the anti-Stokes Brillouin scattering cross-section, polarization dependence of the Brillouin signal, spatial filtering of the Brillouin signals in planar and pillar microcavities, and backscattering in superlattices

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. SEM images of (a) an array of circular and square micropillar resonators, and (b) a single square micropillar with a lateral extent of 4.5 μm. The top layer is SiN deposited as part of dry etching. (c) FEM simulation of the fundamental optical mode in a circular micropillar, showing the absolute value of the electric field. The resonant optical spacer is composed of two nanoacoustic SLs. (d) Setup in reflection geometry: the reflected optical signal comprises a pronounced pattern of diffracted laser light (red) and the Brillouin beam (blue) with a Gaussian spatial pattern dictated by the optical micropillar modes. A spatial filter optimizes the relative collection ratio of the Brillouin signal. (f) Experimental reflectivity spectrum of a micropillar with a Lorentzian resonance dip at 902 nm. (e) Corresponding experimental diffraction patterns as a function of wavelength. The pattern changes markedly at the resonance wavelength. The blue circle indicates the position and size of the spatial filter applied for Brillouin spectroscopy.
Fig. 2.
Fig. 2. (a) Anti-Stokes Brillouin spectrum measured on the micropillar resonator shown in Fig. 1(b). The spectrum exhibits three pronounced peaks (A–C). (b) Brillouin spectrum measured on a planar resonator with an identical vertical structure (solid black curve). A photoelastic model calculation (dashed red curve) well accounts for the three-peaked structure of the spectrum. (c) Simulated phonon modes corresponding to the three main peaks in panels (a) and (b). The absolute value of the mechanical displacement u(z) is displayed.
Fig. 3.
Fig. 3. (a) Optical reflectivity of the micropillar resonator shown in Fig. 1, recorded at laser powers of 1, 9, 18, 27, and 34 mW. With increasing laser power, absorption-induced heating leads to a systematic red shift of the optical resonance. (c) For an excitation wavelength of 892.7 nm [dashed line in panel (a)], an overall power-dependent red shift of 0.4 nm is found. On a planar cavity with the same vertical structure, a shift of only 0.05 nm is found under equal excitation conditions (gray crosses). (b) Simulated reflectivity spectra based on a self-consistent one-oscillator model [30]. (d) Simulated power dependence of cavity resonance extracted from the modeling results in panel (b).
Fig. 4.
Fig. 4. (a) Power-dependent Brillouin spectra recorded on the micropillar shown in Fig. 1 (circles), with the excitation laser red-detuned by 0.4 nm from optical resonance at 1 mW of power [dashed vertical line in Fig. 3(a)]. Plotted is the area under the central Brillouin peak (upper inset) normalized to laser power. The area measured at 1 mW is set to unity. The normalized signal increases 25-fold when the laser power is increased to 35 mW. On a planar cavity with the same vertical structure (gray crosses), increase in the normalized signal is almost absent. (b) Photoelastic model calculation based on the structure in Fig. 2 and experimentally measured power-dependent resonance shifts [Fig. 3(c)]. Resonant optical excitation and collection are assumed.