Abstract

Recently, there has been an explosion of interest in metalenses for imaging. The interest is primarily based on their subwavelength thicknesses. Diffractive gratings have been used as thin optical elements since the late 19th century. Here, we show that multilevel diffractive lenses (MDLs), when designed properly, can exceed the performance of metalenses. Furthermore, MDLs can be designed and fabricated with larger constituent features, making them accessible to low-cost, large-area volume manufacturing, which is generally challenging for metalenses. The support substrate will dominate overall thickness for all flat optics. Therefore, the advantage of a slight decrease in thickness (from 2λ to λ/2) afforded by metalenses may not be useful. We further elaborate on the differences between these approaches and clarify that metalenses have unique advantages when manipulating the electromagnetic fields, rather than intensity.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Optimizing the spectral range of diffractive metalenses for polychromatic imaging applications

Jacob Engelberg and Uriel Levy
Opt. Express 25(18) 21637-21651 (2017)

Full-color video and still imaging using two flat lenses

Monjurul Meem, Apratim Majumder, and Rajesh Menon
Opt. Express 26(21) 26866-26871 (2018)

Varifocal zoom imaging with large area focal length adjustable metalenses

Shane Colburn, Alan Zhan, and Arka Majumdar
Optica 5(7) 825-831 (2018)

References

  • View by:
  • |
  • |
  • |

  1. M. Born and E. Wolf, Principle of Optics, 7th ed. (Cambridge University, 1999).
  2. D. Gil, R. Menon, and H. I. Smith, “The case for diffractive optics in maskless lithography,” J. Vac. Sci. Technol. B 21, 2810–2814 (2003).
    [Crossref]
  3. D. A. Buralli and G. M. Morris, “Design of diffractive singlets for monochromatic imaging,” Appl. Opt. 30, 2151–2158 (1991).
    [Crossref]
  4. D. Chao, A. A. Patel, T. Barwicz, H. I. Smith, and R. Menon, “Immersion zone-plate-array lithography,” J. Vac. Sci. Technol. B 23, 2657–2661 (2005).
    [Crossref]
  5. M. B. Fleming and M. C. Hutley, “Blazed diffractive optics,” Appl. Opt. 36, 4635–4643 (1997).
    [Crossref]
  6. R. Petit, ed., Electromagnetic Theory of Gratings (Springer, 1980).
  7. E. Noponen, J. Turunen, and A. Vasara, “Parametric optimization of multilevel diffractive optical elements by electromagnetic theory,” Appl. Opt. 31, 5910–5912 (1992).
    [Crossref]
  8. E. Noponen, J. Turunen, and A. Vasara, “Electromagnetic theory and design of diffractive-lens arrays,” J. Opt. Soc. Am. A 10, 434–443 (1993).
    [Crossref]
  9. J. M. Finlan, K. M. Flood, and R. J. Bojko, “Efficient f:1 binary-optics microlenses in fused silica designed using vector diffraction theory,” Opt. Eng. 34, 3560–3564 (1995).
    [Crossref]
  10. T. Shiono, T. Hamamoto, and K. Takahara, “High-efficiency blazed-diffractive optical elements for the violet wavelength fabricated by electron-beam lithography,” Appl. Opt. 41, 2390–2393 (2002).
    [Crossref]
  11. D. W. Sweeney and G. E. Sommargren, “Harmonic diffractive lenses,” Appl. Opt. 34, 2469–2475 (1995).
    [Crossref]
  12. D. Faklis and G. M. Morris, “Spectral properties of multiorder diffractive lenses,” Appl. Opt. 34, 2462–2468 (1995).
    [Crossref]
  13. R. Menon, P. Rogge, and H. Y. Tsai, “Design of diffractive lenses that generate optical nulls without phase singularities,” J. Opt. Soc. Am. A 26, 297–304 (2009).
    [Crossref]
  14. G. Kim, J. A. Dominguez-Caballero, and R. Menon, “Design and analysis of multi-wavelength diffractive optics,” Opt. Express 20, 2814–2823 (2012).
    [Crossref]
  15. R. Menon and P. Wang, “Nanophotonic scattering structure,” U.S. patent8,953,239 (10February2015).
  16. S. Banerji and B. Sensale-Rodriguez, “A computational design framework for efficient, fabrication error-tolerant, planar THz diffractive optical elements,” Sci. Rep. 9, 5801 (2019).
    [Crossref]
  17. M. Meem, S. Banerji, A. Majumder, F. G. Vasquez, B. Sensale-Rodriguez, and R. Menon, “Broadband lightweight flat lenses for longwave-infrared imaging,” arXiv:1904.09011 (2019).
  18. G. J. Swanson, “Binary optics technology: the theory and design of multi-level diffractive optical elements,” (MIT Lincoln Laboratory, 1989).
  19. N. Mohammad, M. Meem, X. Wan, and R. Menon, “Full-color, large area, transmissive holograms enabled by multi-level diffractive optics,” Sci. Rep. 7, 5789 (2017).
    [Crossref]
  20. G. Kim, J. A. Dominguez-Caballero, H. Lee, D. Friedman, and R. Menon, “Increased photovoltaic power output via diffractive spectrum separation,” Phys. Rev. Lett. 110, 123901 (2013).
    [Crossref]
  21. P. Wang, N. Mohammad, and R. Menon, “Chromatic-aberration-corrected diffractive lenses for ultra-broadband focusing,” Sci. Rep. 6, 21545 (2016).
    [Crossref]
  22. N. Mohammad, M. Meem, B. Shen, P. Wang, and R. Menon, “Broadband imaging with one planar diffractive lens,” Sci. Rep. 8, 2799 (2018).
    [Crossref]
  23. M. Meem, A. Majumder, and R. Menon, “Full-color video and still imaging using two flat lenses,” Opt. Express 26, 26866–26871 (2018).
    [Crossref]
  24. S. Banerji, A. Chanana, H. Condori, A. Nahata, and B. Sensale-Rodriguez, “Efficient design of diffractive THz lenses for aberration rectified focusing via modified binary search algorithm conference on lasers and electro-optics,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (2018), paper JW2A.76
  25. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
    [Crossref]
  26. A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,” Nat. Commun. 6, 7069 (2015).
    [Crossref]
  27. P. Lalanne and P. Chavel, “Metalenses at visible wavelengths: past, present, perspectives,” Laser Photon. Rev. 11, 1600295 (2017).
    [Crossref]
  28. W. T. Chen, A. Y. Zhu, J. Sisler, Z. Bharwani, and F. Capasso, “A broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructures,” arXiv:1810.05050 (2018).
  29. F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Polarization insensitive metalenses at visible wavelengths,” Nano Lett. 12, 4932–4936 (2012).
    [Crossref]
  30. W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13, 220–226 (2018).
    [Crossref]
  31. S. Zhang, A. Soibel, S. A. Keo, D. Wilson, B. Rafol, D. Z. Ting, A. She, S. D. Gunapala, and F. Capasso, “Solid-immersion metalenses for infrared focal-plane arrays,” Appl. Phys. Lett. 113, 111104 (2018).
    [Crossref]
  32. Y. Liang, H. Liu, F. Wang, H. Meng, J. Guo, J. Li, and Z. Wei, “High-efficiency, near-diffraction limited, dielectric metasurface lenses based on crystalline titanium dioxide at visible wavelengths,” Nanomaterials 8, 288 (2018).
    [Crossref]
  33. U. Palfinger, L. Kuna, D. Nees, S. Ruttloff, J. Götz, and B. Stadlober, “R2R fabrication of freeform micro-optics,” Proc. SPIE 10520, 105200J (2018).
    [Crossref]
  34. S. Maretske, “Locality estimates for Fresnel-wave-propagation and instability of x-ray phase contrast imaging with finite detectors,” arXiv:1805.06185 (2018).
  35. X. Wan, B. Shen, and R. Menon, “Diffractive lens design for optimized focusing,” J. Opt. Soc. Am. A 31, BB27–BB33 (2014).
    [Crossref]
  36. R. Menon, D. Gil, and H. I. Smith, “Experimental characterization of focusing by high-numerical-aperture zone plates,” J. Opt. Soc. Am. A 23, 567–571 (2006).
    [Crossref]
  37. D. Gil, R. Menon, and H. I. Smith, “Fabrication of high-numerical aperture phase zone plates with a single lithography exposure and no etching,” J. Vac. Sci. Technol. B 21, 2956–2960 (2003).
    [Crossref]
  38. M. Khorasaninejad, W. T. Chen, A. Y. Zhu, J. Oh, R. C. Devlin, D. Rousso, and F. Capasso, “Multispectral chiral imaging with a metalens,” Nano Lett. 16, 4595–4600 (2016).
    [Crossref]
  39. B. Shen, P. Wang, R. C. Polson, and R. Menon, “An ultra-high efficiency metamaterial polarizer,” Optica 1, 356–360 (2014).
    [Crossref]
  40. E. Arbabi, S. M. Kamali, A. Arbabi, and A. Faraon, “Full-stokes imaging polarimetry using dielectric metasurfaces,” ACS Photon. 5, 3132–3140 (2018).
    [Crossref]
  41. B. Shen, P. Wang, R. C. Polson, and R. Menon, “An integrated-nanophotonic polarization beamsplitter with 2.4  μm × 2.4  μm2 footprint,” Nat. Photonics 9, 378–382 (2015).
    [Crossref]
  42. B. Shen, R. C. Polson, and R. Menon, “Increasing the density of integrated-photonic circuits via nanophotonic cloaking,” Nat. Commun. 7, 13126 (2016).
    [Crossref]
  43. A. Majumder, B. Shen, R. C. Polson, and R. Menon, “Ultra-compact polarization rotation in integrated silicon photonics using digital metamaterials,” Opt. Express 25, 19721–19731 (2017).
    [Crossref]

2019 (1)

S. Banerji and B. Sensale-Rodriguez, “A computational design framework for efficient, fabrication error-tolerant, planar THz diffractive optical elements,” Sci. Rep. 9, 5801 (2019).
[Crossref]

2018 (7)

N. Mohammad, M. Meem, B. Shen, P. Wang, and R. Menon, “Broadband imaging with one planar diffractive lens,” Sci. Rep. 8, 2799 (2018).
[Crossref]

M. Meem, A. Majumder, and R. Menon, “Full-color video and still imaging using two flat lenses,” Opt. Express 26, 26866–26871 (2018).
[Crossref]

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13, 220–226 (2018).
[Crossref]

S. Zhang, A. Soibel, S. A. Keo, D. Wilson, B. Rafol, D. Z. Ting, A. She, S. D. Gunapala, and F. Capasso, “Solid-immersion metalenses for infrared focal-plane arrays,” Appl. Phys. Lett. 113, 111104 (2018).
[Crossref]

Y. Liang, H. Liu, F. Wang, H. Meng, J. Guo, J. Li, and Z. Wei, “High-efficiency, near-diffraction limited, dielectric metasurface lenses based on crystalline titanium dioxide at visible wavelengths,” Nanomaterials 8, 288 (2018).
[Crossref]

U. Palfinger, L. Kuna, D. Nees, S. Ruttloff, J. Götz, and B. Stadlober, “R2R fabrication of freeform micro-optics,” Proc. SPIE 10520, 105200J (2018).
[Crossref]

E. Arbabi, S. M. Kamali, A. Arbabi, and A. Faraon, “Full-stokes imaging polarimetry using dielectric metasurfaces,” ACS Photon. 5, 3132–3140 (2018).
[Crossref]

2017 (3)

A. Majumder, B. Shen, R. C. Polson, and R. Menon, “Ultra-compact polarization rotation in integrated silicon photonics using digital metamaterials,” Opt. Express 25, 19721–19731 (2017).
[Crossref]

P. Lalanne and P. Chavel, “Metalenses at visible wavelengths: past, present, perspectives,” Laser Photon. Rev. 11, 1600295 (2017).
[Crossref]

N. Mohammad, M. Meem, X. Wan, and R. Menon, “Full-color, large area, transmissive holograms enabled by multi-level diffractive optics,” Sci. Rep. 7, 5789 (2017).
[Crossref]

2016 (3)

P. Wang, N. Mohammad, and R. Menon, “Chromatic-aberration-corrected diffractive lenses for ultra-broadband focusing,” Sci. Rep. 6, 21545 (2016).
[Crossref]

M. Khorasaninejad, W. T. Chen, A. Y. Zhu, J. Oh, R. C. Devlin, D. Rousso, and F. Capasso, “Multispectral chiral imaging with a metalens,” Nano Lett. 16, 4595–4600 (2016).
[Crossref]

B. Shen, R. C. Polson, and R. Menon, “Increasing the density of integrated-photonic circuits via nanophotonic cloaking,” Nat. Commun. 7, 13126 (2016).
[Crossref]

2015 (2)

B. Shen, P. Wang, R. C. Polson, and R. Menon, “An integrated-nanophotonic polarization beamsplitter with 2.4  μm × 2.4  μm2 footprint,” Nat. Photonics 9, 378–382 (2015).
[Crossref]

A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,” Nat. Commun. 6, 7069 (2015).
[Crossref]

2014 (2)

B. Shen, P. Wang, R. C. Polson, and R. Menon, “An ultra-high efficiency metamaterial polarizer,” Optica 1, 356–360 (2014).
[Crossref]

X. Wan, B. Shen, and R. Menon, “Diffractive lens design for optimized focusing,” J. Opt. Soc. Am. A 31, BB27–BB33 (2014).
[Crossref]

2013 (1)

G. Kim, J. A. Dominguez-Caballero, H. Lee, D. Friedman, and R. Menon, “Increased photovoltaic power output via diffractive spectrum separation,” Phys. Rev. Lett. 110, 123901 (2013).
[Crossref]

2012 (2)

G. Kim, J. A. Dominguez-Caballero, and R. Menon, “Design and analysis of multi-wavelength diffractive optics,” Opt. Express 20, 2814–2823 (2012).
[Crossref]

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Polarization insensitive metalenses at visible wavelengths,” Nano Lett. 12, 4932–4936 (2012).
[Crossref]

2011 (1)

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref]

2009 (1)

2006 (1)

2005 (1)

D. Chao, A. A. Patel, T. Barwicz, H. I. Smith, and R. Menon, “Immersion zone-plate-array lithography,” J. Vac. Sci. Technol. B 23, 2657–2661 (2005).
[Crossref]

2003 (2)

D. Gil, R. Menon, and H. I. Smith, “The case for diffractive optics in maskless lithography,” J. Vac. Sci. Technol. B 21, 2810–2814 (2003).
[Crossref]

D. Gil, R. Menon, and H. I. Smith, “Fabrication of high-numerical aperture phase zone plates with a single lithography exposure and no etching,” J. Vac. Sci. Technol. B 21, 2956–2960 (2003).
[Crossref]

2002 (1)

1997 (1)

1995 (3)

D. W. Sweeney and G. E. Sommargren, “Harmonic diffractive lenses,” Appl. Opt. 34, 2469–2475 (1995).
[Crossref]

D. Faklis and G. M. Morris, “Spectral properties of multiorder diffractive lenses,” Appl. Opt. 34, 2462–2468 (1995).
[Crossref]

J. M. Finlan, K. M. Flood, and R. J. Bojko, “Efficient f:1 binary-optics microlenses in fused silica designed using vector diffraction theory,” Opt. Eng. 34, 3560–3564 (1995).
[Crossref]

1993 (1)

1992 (1)

1991 (1)

Aieta, F.

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Polarization insensitive metalenses at visible wavelengths,” Nano Lett. 12, 4932–4936 (2012).
[Crossref]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref]

Arbabi, A.

E. Arbabi, S. M. Kamali, A. Arbabi, and A. Faraon, “Full-stokes imaging polarimetry using dielectric metasurfaces,” ACS Photon. 5, 3132–3140 (2018).
[Crossref]

A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,” Nat. Commun. 6, 7069 (2015).
[Crossref]

Arbabi, E.

E. Arbabi, S. M. Kamali, A. Arbabi, and A. Faraon, “Full-stokes imaging polarimetry using dielectric metasurfaces,” ACS Photon. 5, 3132–3140 (2018).
[Crossref]

Bagheri, M.

A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,” Nat. Commun. 6, 7069 (2015).
[Crossref]

Ball, A. J.

A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,” Nat. Commun. 6, 7069 (2015).
[Crossref]

Banerji, S.

S. Banerji and B. Sensale-Rodriguez, “A computational design framework for efficient, fabrication error-tolerant, planar THz diffractive optical elements,” Sci. Rep. 9, 5801 (2019).
[Crossref]

M. Meem, S. Banerji, A. Majumder, F. G. Vasquez, B. Sensale-Rodriguez, and R. Menon, “Broadband lightweight flat lenses for longwave-infrared imaging,” arXiv:1904.09011 (2019).

S. Banerji, A. Chanana, H. Condori, A. Nahata, and B. Sensale-Rodriguez, “Efficient design of diffractive THz lenses for aberration rectified focusing via modified binary search algorithm conference on lasers and electro-optics,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (2018), paper JW2A.76

Barwicz, T.

D. Chao, A. A. Patel, T. Barwicz, H. I. Smith, and R. Menon, “Immersion zone-plate-array lithography,” J. Vac. Sci. Technol. B 23, 2657–2661 (2005).
[Crossref]

Bharwani, Z.

W. T. Chen, A. Y. Zhu, J. Sisler, Z. Bharwani, and F. Capasso, “A broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructures,” arXiv:1810.05050 (2018).

Blanchard, R.

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Polarization insensitive metalenses at visible wavelengths,” Nano Lett. 12, 4932–4936 (2012).
[Crossref]

Bojko, R. J.

J. M. Finlan, K. M. Flood, and R. J. Bojko, “Efficient f:1 binary-optics microlenses in fused silica designed using vector diffraction theory,” Opt. Eng. 34, 3560–3564 (1995).
[Crossref]

Born, M.

M. Born and E. Wolf, Principle of Optics, 7th ed. (Cambridge University, 1999).

Buralli, D. A.

Capasso, F.

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13, 220–226 (2018).
[Crossref]

S. Zhang, A. Soibel, S. A. Keo, D. Wilson, B. Rafol, D. Z. Ting, A. She, S. D. Gunapala, and F. Capasso, “Solid-immersion metalenses for infrared focal-plane arrays,” Appl. Phys. Lett. 113, 111104 (2018).
[Crossref]

M. Khorasaninejad, W. T. Chen, A. Y. Zhu, J. Oh, R. C. Devlin, D. Rousso, and F. Capasso, “Multispectral chiral imaging with a metalens,” Nano Lett. 16, 4595–4600 (2016).
[Crossref]

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Polarization insensitive metalenses at visible wavelengths,” Nano Lett. 12, 4932–4936 (2012).
[Crossref]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref]

W. T. Chen, A. Y. Zhu, J. Sisler, Z. Bharwani, and F. Capasso, “A broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructures,” arXiv:1810.05050 (2018).

Chanana, A.

S. Banerji, A. Chanana, H. Condori, A. Nahata, and B. Sensale-Rodriguez, “Efficient design of diffractive THz lenses for aberration rectified focusing via modified binary search algorithm conference on lasers and electro-optics,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (2018), paper JW2A.76

Chao, D.

D. Chao, A. A. Patel, T. Barwicz, H. I. Smith, and R. Menon, “Immersion zone-plate-array lithography,” J. Vac. Sci. Technol. B 23, 2657–2661 (2005).
[Crossref]

Chavel, P.

P. Lalanne and P. Chavel, “Metalenses at visible wavelengths: past, present, perspectives,” Laser Photon. Rev. 11, 1600295 (2017).
[Crossref]

Chen, W. T.

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13, 220–226 (2018).
[Crossref]

M. Khorasaninejad, W. T. Chen, A. Y. Zhu, J. Oh, R. C. Devlin, D. Rousso, and F. Capasso, “Multispectral chiral imaging with a metalens,” Nano Lett. 16, 4595–4600 (2016).
[Crossref]

W. T. Chen, A. Y. Zhu, J. Sisler, Z. Bharwani, and F. Capasso, “A broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructures,” arXiv:1810.05050 (2018).

Condori, H.

S. Banerji, A. Chanana, H. Condori, A. Nahata, and B. Sensale-Rodriguez, “Efficient design of diffractive THz lenses for aberration rectified focusing via modified binary search algorithm conference on lasers and electro-optics,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (2018), paper JW2A.76

Devlin, R. C.

M. Khorasaninejad, W. T. Chen, A. Y. Zhu, J. Oh, R. C. Devlin, D. Rousso, and F. Capasso, “Multispectral chiral imaging with a metalens,” Nano Lett. 16, 4595–4600 (2016).
[Crossref]

Dominguez-Caballero, J. A.

G. Kim, J. A. Dominguez-Caballero, H. Lee, D. Friedman, and R. Menon, “Increased photovoltaic power output via diffractive spectrum separation,” Phys. Rev. Lett. 110, 123901 (2013).
[Crossref]

G. Kim, J. A. Dominguez-Caballero, and R. Menon, “Design and analysis of multi-wavelength diffractive optics,” Opt. Express 20, 2814–2823 (2012).
[Crossref]

Faklis, D.

Faraon, A.

E. Arbabi, S. M. Kamali, A. Arbabi, and A. Faraon, “Full-stokes imaging polarimetry using dielectric metasurfaces,” ACS Photon. 5, 3132–3140 (2018).
[Crossref]

A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,” Nat. Commun. 6, 7069 (2015).
[Crossref]

Finlan, J. M.

J. M. Finlan, K. M. Flood, and R. J. Bojko, “Efficient f:1 binary-optics microlenses in fused silica designed using vector diffraction theory,” Opt. Eng. 34, 3560–3564 (1995).
[Crossref]

Fleming, M. B.

Flood, K. M.

J. M. Finlan, K. M. Flood, and R. J. Bojko, “Efficient f:1 binary-optics microlenses in fused silica designed using vector diffraction theory,” Opt. Eng. 34, 3560–3564 (1995).
[Crossref]

Friedman, D.

G. Kim, J. A. Dominguez-Caballero, H. Lee, D. Friedman, and R. Menon, “Increased photovoltaic power output via diffractive spectrum separation,” Phys. Rev. Lett. 110, 123901 (2013).
[Crossref]

Gaburro, Z.

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Polarization insensitive metalenses at visible wavelengths,” Nano Lett. 12, 4932–4936 (2012).
[Crossref]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref]

Genevet, P.

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Polarization insensitive metalenses at visible wavelengths,” Nano Lett. 12, 4932–4936 (2012).
[Crossref]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref]

Gil, D.

R. Menon, D. Gil, and H. I. Smith, “Experimental characterization of focusing by high-numerical-aperture zone plates,” J. Opt. Soc. Am. A 23, 567–571 (2006).
[Crossref]

D. Gil, R. Menon, and H. I. Smith, “Fabrication of high-numerical aperture phase zone plates with a single lithography exposure and no etching,” J. Vac. Sci. Technol. B 21, 2956–2960 (2003).
[Crossref]

D. Gil, R. Menon, and H. I. Smith, “The case for diffractive optics in maskless lithography,” J. Vac. Sci. Technol. B 21, 2810–2814 (2003).
[Crossref]

Götz, J.

U. Palfinger, L. Kuna, D. Nees, S. Ruttloff, J. Götz, and B. Stadlober, “R2R fabrication of freeform micro-optics,” Proc. SPIE 10520, 105200J (2018).
[Crossref]

Gunapala, S. D.

S. Zhang, A. Soibel, S. A. Keo, D. Wilson, B. Rafol, D. Z. Ting, A. She, S. D. Gunapala, and F. Capasso, “Solid-immersion metalenses for infrared focal-plane arrays,” Appl. Phys. Lett. 113, 111104 (2018).
[Crossref]

Guo, J.

Y. Liang, H. Liu, F. Wang, H. Meng, J. Guo, J. Li, and Z. Wei, “High-efficiency, near-diffraction limited, dielectric metasurface lenses based on crystalline titanium dioxide at visible wavelengths,” Nanomaterials 8, 288 (2018).
[Crossref]

Hamamoto, T.

Horie, Y.

A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,” Nat. Commun. 6, 7069 (2015).
[Crossref]

Hutley, M. C.

Kamali, S. M.

E. Arbabi, S. M. Kamali, A. Arbabi, and A. Faraon, “Full-stokes imaging polarimetry using dielectric metasurfaces,” ACS Photon. 5, 3132–3140 (2018).
[Crossref]

Kats, M. A.

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Polarization insensitive metalenses at visible wavelengths,” Nano Lett. 12, 4932–4936 (2012).
[Crossref]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref]

Keo, S. A.

S. Zhang, A. Soibel, S. A. Keo, D. Wilson, B. Rafol, D. Z. Ting, A. She, S. D. Gunapala, and F. Capasso, “Solid-immersion metalenses for infrared focal-plane arrays,” Appl. Phys. Lett. 113, 111104 (2018).
[Crossref]

Khorasaninejad, M.

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13, 220–226 (2018).
[Crossref]

M. Khorasaninejad, W. T. Chen, A. Y. Zhu, J. Oh, R. C. Devlin, D. Rousso, and F. Capasso, “Multispectral chiral imaging with a metalens,” Nano Lett. 16, 4595–4600 (2016).
[Crossref]

Kim, G.

G. Kim, J. A. Dominguez-Caballero, H. Lee, D. Friedman, and R. Menon, “Increased photovoltaic power output via diffractive spectrum separation,” Phys. Rev. Lett. 110, 123901 (2013).
[Crossref]

G. Kim, J. A. Dominguez-Caballero, and R. Menon, “Design and analysis of multi-wavelength diffractive optics,” Opt. Express 20, 2814–2823 (2012).
[Crossref]

Kuna, L.

U. Palfinger, L. Kuna, D. Nees, S. Ruttloff, J. Götz, and B. Stadlober, “R2R fabrication of freeform micro-optics,” Proc. SPIE 10520, 105200J (2018).
[Crossref]

Lalanne, P.

P. Lalanne and P. Chavel, “Metalenses at visible wavelengths: past, present, perspectives,” Laser Photon. Rev. 11, 1600295 (2017).
[Crossref]

Lee, E.

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13, 220–226 (2018).
[Crossref]

Lee, H.

G. Kim, J. A. Dominguez-Caballero, H. Lee, D. Friedman, and R. Menon, “Increased photovoltaic power output via diffractive spectrum separation,” Phys. Rev. Lett. 110, 123901 (2013).
[Crossref]

Li, J.

Y. Liang, H. Liu, F. Wang, H. Meng, J. Guo, J. Li, and Z. Wei, “High-efficiency, near-diffraction limited, dielectric metasurface lenses based on crystalline titanium dioxide at visible wavelengths,” Nanomaterials 8, 288 (2018).
[Crossref]

Liang, Y.

Y. Liang, H. Liu, F. Wang, H. Meng, J. Guo, J. Li, and Z. Wei, “High-efficiency, near-diffraction limited, dielectric metasurface lenses based on crystalline titanium dioxide at visible wavelengths,” Nanomaterials 8, 288 (2018).
[Crossref]

Liu, H.

Y. Liang, H. Liu, F. Wang, H. Meng, J. Guo, J. Li, and Z. Wei, “High-efficiency, near-diffraction limited, dielectric metasurface lenses based on crystalline titanium dioxide at visible wavelengths,” Nanomaterials 8, 288 (2018).
[Crossref]

Majumder, A.

Maretske, S.

S. Maretske, “Locality estimates for Fresnel-wave-propagation and instability of x-ray phase contrast imaging with finite detectors,” arXiv:1805.06185 (2018).

Meem, M.

M. Meem, A. Majumder, and R. Menon, “Full-color video and still imaging using two flat lenses,” Opt. Express 26, 26866–26871 (2018).
[Crossref]

N. Mohammad, M. Meem, B. Shen, P. Wang, and R. Menon, “Broadband imaging with one planar diffractive lens,” Sci. Rep. 8, 2799 (2018).
[Crossref]

N. Mohammad, M. Meem, X. Wan, and R. Menon, “Full-color, large area, transmissive holograms enabled by multi-level diffractive optics,” Sci. Rep. 7, 5789 (2017).
[Crossref]

M. Meem, S. Banerji, A. Majumder, F. G. Vasquez, B. Sensale-Rodriguez, and R. Menon, “Broadband lightweight flat lenses for longwave-infrared imaging,” arXiv:1904.09011 (2019).

Meng, H.

Y. Liang, H. Liu, F. Wang, H. Meng, J. Guo, J. Li, and Z. Wei, “High-efficiency, near-diffraction limited, dielectric metasurface lenses based on crystalline titanium dioxide at visible wavelengths,” Nanomaterials 8, 288 (2018).
[Crossref]

Menon, R.

N. Mohammad, M. Meem, B. Shen, P. Wang, and R. Menon, “Broadband imaging with one planar diffractive lens,” Sci. Rep. 8, 2799 (2018).
[Crossref]

M. Meem, A. Majumder, and R. Menon, “Full-color video and still imaging using two flat lenses,” Opt. Express 26, 26866–26871 (2018).
[Crossref]

N. Mohammad, M. Meem, X. Wan, and R. Menon, “Full-color, large area, transmissive holograms enabled by multi-level diffractive optics,” Sci. Rep. 7, 5789 (2017).
[Crossref]

A. Majumder, B. Shen, R. C. Polson, and R. Menon, “Ultra-compact polarization rotation in integrated silicon photonics using digital metamaterials,” Opt. Express 25, 19721–19731 (2017).
[Crossref]

B. Shen, R. C. Polson, and R. Menon, “Increasing the density of integrated-photonic circuits via nanophotonic cloaking,” Nat. Commun. 7, 13126 (2016).
[Crossref]

P. Wang, N. Mohammad, and R. Menon, “Chromatic-aberration-corrected diffractive lenses for ultra-broadband focusing,” Sci. Rep. 6, 21545 (2016).
[Crossref]

B. Shen, P. Wang, R. C. Polson, and R. Menon, “An integrated-nanophotonic polarization beamsplitter with 2.4  μm × 2.4  μm2 footprint,” Nat. Photonics 9, 378–382 (2015).
[Crossref]

B. Shen, P. Wang, R. C. Polson, and R. Menon, “An ultra-high efficiency metamaterial polarizer,” Optica 1, 356–360 (2014).
[Crossref]

X. Wan, B. Shen, and R. Menon, “Diffractive lens design for optimized focusing,” J. Opt. Soc. Am. A 31, BB27–BB33 (2014).
[Crossref]

G. Kim, J. A. Dominguez-Caballero, H. Lee, D. Friedman, and R. Menon, “Increased photovoltaic power output via diffractive spectrum separation,” Phys. Rev. Lett. 110, 123901 (2013).
[Crossref]

G. Kim, J. A. Dominguez-Caballero, and R. Menon, “Design and analysis of multi-wavelength diffractive optics,” Opt. Express 20, 2814–2823 (2012).
[Crossref]

R. Menon, P. Rogge, and H. Y. Tsai, “Design of diffractive lenses that generate optical nulls without phase singularities,” J. Opt. Soc. Am. A 26, 297–304 (2009).
[Crossref]

R. Menon, D. Gil, and H. I. Smith, “Experimental characterization of focusing by high-numerical-aperture zone plates,” J. Opt. Soc. Am. A 23, 567–571 (2006).
[Crossref]

D. Chao, A. A. Patel, T. Barwicz, H. I. Smith, and R. Menon, “Immersion zone-plate-array lithography,” J. Vac. Sci. Technol. B 23, 2657–2661 (2005).
[Crossref]

D. Gil, R. Menon, and H. I. Smith, “The case for diffractive optics in maskless lithography,” J. Vac. Sci. Technol. B 21, 2810–2814 (2003).
[Crossref]

D. Gil, R. Menon, and H. I. Smith, “Fabrication of high-numerical aperture phase zone plates with a single lithography exposure and no etching,” J. Vac. Sci. Technol. B 21, 2956–2960 (2003).
[Crossref]

R. Menon and P. Wang, “Nanophotonic scattering structure,” U.S. patent8,953,239 (10February2015).

M. Meem, S. Banerji, A. Majumder, F. G. Vasquez, B. Sensale-Rodriguez, and R. Menon, “Broadband lightweight flat lenses for longwave-infrared imaging,” arXiv:1904.09011 (2019).

Mohammad, N.

N. Mohammad, M. Meem, B. Shen, P. Wang, and R. Menon, “Broadband imaging with one planar diffractive lens,” Sci. Rep. 8, 2799 (2018).
[Crossref]

N. Mohammad, M. Meem, X. Wan, and R. Menon, “Full-color, large area, transmissive holograms enabled by multi-level diffractive optics,” Sci. Rep. 7, 5789 (2017).
[Crossref]

P. Wang, N. Mohammad, and R. Menon, “Chromatic-aberration-corrected diffractive lenses for ultra-broadband focusing,” Sci. Rep. 6, 21545 (2016).
[Crossref]

Morris, G. M.

Nahata, A.

S. Banerji, A. Chanana, H. Condori, A. Nahata, and B. Sensale-Rodriguez, “Efficient design of diffractive THz lenses for aberration rectified focusing via modified binary search algorithm conference on lasers and electro-optics,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (2018), paper JW2A.76

Nees, D.

U. Palfinger, L. Kuna, D. Nees, S. Ruttloff, J. Götz, and B. Stadlober, “R2R fabrication of freeform micro-optics,” Proc. SPIE 10520, 105200J (2018).
[Crossref]

Noponen, E.

Oh, J.

M. Khorasaninejad, W. T. Chen, A. Y. Zhu, J. Oh, R. C. Devlin, D. Rousso, and F. Capasso, “Multispectral chiral imaging with a metalens,” Nano Lett. 16, 4595–4600 (2016).
[Crossref]

Palfinger, U.

U. Palfinger, L. Kuna, D. Nees, S. Ruttloff, J. Götz, and B. Stadlober, “R2R fabrication of freeform micro-optics,” Proc. SPIE 10520, 105200J (2018).
[Crossref]

Patel, A. A.

D. Chao, A. A. Patel, T. Barwicz, H. I. Smith, and R. Menon, “Immersion zone-plate-array lithography,” J. Vac. Sci. Technol. B 23, 2657–2661 (2005).
[Crossref]

Polson, R. C.

A. Majumder, B. Shen, R. C. Polson, and R. Menon, “Ultra-compact polarization rotation in integrated silicon photonics using digital metamaterials,” Opt. Express 25, 19721–19731 (2017).
[Crossref]

B. Shen, R. C. Polson, and R. Menon, “Increasing the density of integrated-photonic circuits via nanophotonic cloaking,” Nat. Commun. 7, 13126 (2016).
[Crossref]

B. Shen, P. Wang, R. C. Polson, and R. Menon, “An integrated-nanophotonic polarization beamsplitter with 2.4  μm × 2.4  μm2 footprint,” Nat. Photonics 9, 378–382 (2015).
[Crossref]

B. Shen, P. Wang, R. C. Polson, and R. Menon, “An ultra-high efficiency metamaterial polarizer,” Optica 1, 356–360 (2014).
[Crossref]

Rafol, B.

S. Zhang, A. Soibel, S. A. Keo, D. Wilson, B. Rafol, D. Z. Ting, A. She, S. D. Gunapala, and F. Capasso, “Solid-immersion metalenses for infrared focal-plane arrays,” Appl. Phys. Lett. 113, 111104 (2018).
[Crossref]

Rogge, P.

Rousso, D.

M. Khorasaninejad, W. T. Chen, A. Y. Zhu, J. Oh, R. C. Devlin, D. Rousso, and F. Capasso, “Multispectral chiral imaging with a metalens,” Nano Lett. 16, 4595–4600 (2016).
[Crossref]

Ruttloff, S.

U. Palfinger, L. Kuna, D. Nees, S. Ruttloff, J. Götz, and B. Stadlober, “R2R fabrication of freeform micro-optics,” Proc. SPIE 10520, 105200J (2018).
[Crossref]

Sanjeev, V.

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13, 220–226 (2018).
[Crossref]

Sensale-Rodriguez, B.

S. Banerji and B. Sensale-Rodriguez, “A computational design framework for efficient, fabrication error-tolerant, planar THz diffractive optical elements,” Sci. Rep. 9, 5801 (2019).
[Crossref]

M. Meem, S. Banerji, A. Majumder, F. G. Vasquez, B. Sensale-Rodriguez, and R. Menon, “Broadband lightweight flat lenses for longwave-infrared imaging,” arXiv:1904.09011 (2019).

S. Banerji, A. Chanana, H. Condori, A. Nahata, and B. Sensale-Rodriguez, “Efficient design of diffractive THz lenses for aberration rectified focusing via modified binary search algorithm conference on lasers and electro-optics,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (2018), paper JW2A.76

She, A.

S. Zhang, A. Soibel, S. A. Keo, D. Wilson, B. Rafol, D. Z. Ting, A. She, S. D. Gunapala, and F. Capasso, “Solid-immersion metalenses for infrared focal-plane arrays,” Appl. Phys. Lett. 113, 111104 (2018).
[Crossref]

Shen, B.

N. Mohammad, M. Meem, B. Shen, P. Wang, and R. Menon, “Broadband imaging with one planar diffractive lens,” Sci. Rep. 8, 2799 (2018).
[Crossref]

A. Majumder, B. Shen, R. C. Polson, and R. Menon, “Ultra-compact polarization rotation in integrated silicon photonics using digital metamaterials,” Opt. Express 25, 19721–19731 (2017).
[Crossref]

B. Shen, R. C. Polson, and R. Menon, “Increasing the density of integrated-photonic circuits via nanophotonic cloaking,” Nat. Commun. 7, 13126 (2016).
[Crossref]

B. Shen, P. Wang, R. C. Polson, and R. Menon, “An integrated-nanophotonic polarization beamsplitter with 2.4  μm × 2.4  μm2 footprint,” Nat. Photonics 9, 378–382 (2015).
[Crossref]

B. Shen, P. Wang, R. C. Polson, and R. Menon, “An ultra-high efficiency metamaterial polarizer,” Optica 1, 356–360 (2014).
[Crossref]

X. Wan, B. Shen, and R. Menon, “Diffractive lens design for optimized focusing,” J. Opt. Soc. Am. A 31, BB27–BB33 (2014).
[Crossref]

Shi, Z.

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13, 220–226 (2018).
[Crossref]

Shiono, T.

Sisler, J.

W. T. Chen, A. Y. Zhu, J. Sisler, Z. Bharwani, and F. Capasso, “A broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructures,” arXiv:1810.05050 (2018).

Smith, H. I.

R. Menon, D. Gil, and H. I. Smith, “Experimental characterization of focusing by high-numerical-aperture zone plates,” J. Opt. Soc. Am. A 23, 567–571 (2006).
[Crossref]

D. Chao, A. A. Patel, T. Barwicz, H. I. Smith, and R. Menon, “Immersion zone-plate-array lithography,” J. Vac. Sci. Technol. B 23, 2657–2661 (2005).
[Crossref]

D. Gil, R. Menon, and H. I. Smith, “The case for diffractive optics in maskless lithography,” J. Vac. Sci. Technol. B 21, 2810–2814 (2003).
[Crossref]

D. Gil, R. Menon, and H. I. Smith, “Fabrication of high-numerical aperture phase zone plates with a single lithography exposure and no etching,” J. Vac. Sci. Technol. B 21, 2956–2960 (2003).
[Crossref]

Soibel, A.

S. Zhang, A. Soibel, S. A. Keo, D. Wilson, B. Rafol, D. Z. Ting, A. She, S. D. Gunapala, and F. Capasso, “Solid-immersion metalenses for infrared focal-plane arrays,” Appl. Phys. Lett. 113, 111104 (2018).
[Crossref]

Sommargren, G. E.

Stadlober, B.

U. Palfinger, L. Kuna, D. Nees, S. Ruttloff, J. Götz, and B. Stadlober, “R2R fabrication of freeform micro-optics,” Proc. SPIE 10520, 105200J (2018).
[Crossref]

Swanson, G. J.

G. J. Swanson, “Binary optics technology: the theory and design of multi-level diffractive optical elements,” (MIT Lincoln Laboratory, 1989).

Sweeney, D. W.

Takahara, K.

Tetienne, J. P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref]

Ting, D. Z.

S. Zhang, A. Soibel, S. A. Keo, D. Wilson, B. Rafol, D. Z. Ting, A. She, S. D. Gunapala, and F. Capasso, “Solid-immersion metalenses for infrared focal-plane arrays,” Appl. Phys. Lett. 113, 111104 (2018).
[Crossref]

Tsai, H. Y.

Turunen, J.

Vasara, A.

Vasquez, F. G.

M. Meem, S. Banerji, A. Majumder, F. G. Vasquez, B. Sensale-Rodriguez, and R. Menon, “Broadband lightweight flat lenses for longwave-infrared imaging,” arXiv:1904.09011 (2019).

Wan, X.

N. Mohammad, M. Meem, X. Wan, and R. Menon, “Full-color, large area, transmissive holograms enabled by multi-level diffractive optics,” Sci. Rep. 7, 5789 (2017).
[Crossref]

X. Wan, B. Shen, and R. Menon, “Diffractive lens design for optimized focusing,” J. Opt. Soc. Am. A 31, BB27–BB33 (2014).
[Crossref]

Wang, F.

Y. Liang, H. Liu, F. Wang, H. Meng, J. Guo, J. Li, and Z. Wei, “High-efficiency, near-diffraction limited, dielectric metasurface lenses based on crystalline titanium dioxide at visible wavelengths,” Nanomaterials 8, 288 (2018).
[Crossref]

Wang, P.

N. Mohammad, M. Meem, B. Shen, P. Wang, and R. Menon, “Broadband imaging with one planar diffractive lens,” Sci. Rep. 8, 2799 (2018).
[Crossref]

P. Wang, N. Mohammad, and R. Menon, “Chromatic-aberration-corrected diffractive lenses for ultra-broadband focusing,” Sci. Rep. 6, 21545 (2016).
[Crossref]

B. Shen, P. Wang, R. C. Polson, and R. Menon, “An integrated-nanophotonic polarization beamsplitter with 2.4  μm × 2.4  μm2 footprint,” Nat. Photonics 9, 378–382 (2015).
[Crossref]

B. Shen, P. Wang, R. C. Polson, and R. Menon, “An ultra-high efficiency metamaterial polarizer,” Optica 1, 356–360 (2014).
[Crossref]

R. Menon and P. Wang, “Nanophotonic scattering structure,” U.S. patent8,953,239 (10February2015).

Wei, Z.

Y. Liang, H. Liu, F. Wang, H. Meng, J. Guo, J. Li, and Z. Wei, “High-efficiency, near-diffraction limited, dielectric metasurface lenses based on crystalline titanium dioxide at visible wavelengths,” Nanomaterials 8, 288 (2018).
[Crossref]

Wilson, D.

S. Zhang, A. Soibel, S. A. Keo, D. Wilson, B. Rafol, D. Z. Ting, A. She, S. D. Gunapala, and F. Capasso, “Solid-immersion metalenses for infrared focal-plane arrays,” Appl. Phys. Lett. 113, 111104 (2018).
[Crossref]

Wolf, E.

M. Born and E. Wolf, Principle of Optics, 7th ed. (Cambridge University, 1999).

Yu, N.

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Polarization insensitive metalenses at visible wavelengths,” Nano Lett. 12, 4932–4936 (2012).
[Crossref]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref]

Zhang, S.

S. Zhang, A. Soibel, S. A. Keo, D. Wilson, B. Rafol, D. Z. Ting, A. She, S. D. Gunapala, and F. Capasso, “Solid-immersion metalenses for infrared focal-plane arrays,” Appl. Phys. Lett. 113, 111104 (2018).
[Crossref]

Zhu, A. Y.

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13, 220–226 (2018).
[Crossref]

M. Khorasaninejad, W. T. Chen, A. Y. Zhu, J. Oh, R. C. Devlin, D. Rousso, and F. Capasso, “Multispectral chiral imaging with a metalens,” Nano Lett. 16, 4595–4600 (2016).
[Crossref]

W. T. Chen, A. Y. Zhu, J. Sisler, Z. Bharwani, and F. Capasso, “A broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructures,” arXiv:1810.05050 (2018).

ACS Photon. (1)

E. Arbabi, S. M. Kamali, A. Arbabi, and A. Faraon, “Full-stokes imaging polarimetry using dielectric metasurfaces,” ACS Photon. 5, 3132–3140 (2018).
[Crossref]

Appl. Opt. (6)

Appl. Phys. Lett. (1)

S. Zhang, A. Soibel, S. A. Keo, D. Wilson, B. Rafol, D. Z. Ting, A. She, S. D. Gunapala, and F. Capasso, “Solid-immersion metalenses for infrared focal-plane arrays,” Appl. Phys. Lett. 113, 111104 (2018).
[Crossref]

J. Opt. Soc. Am. A (4)

J. Vac. Sci. Technol. B (3)

D. Chao, A. A. Patel, T. Barwicz, H. I. Smith, and R. Menon, “Immersion zone-plate-array lithography,” J. Vac. Sci. Technol. B 23, 2657–2661 (2005).
[Crossref]

D. Gil, R. Menon, and H. I. Smith, “The case for diffractive optics in maskless lithography,” J. Vac. Sci. Technol. B 21, 2810–2814 (2003).
[Crossref]

D. Gil, R. Menon, and H. I. Smith, “Fabrication of high-numerical aperture phase zone plates with a single lithography exposure and no etching,” J. Vac. Sci. Technol. B 21, 2956–2960 (2003).
[Crossref]

Laser Photon. Rev. (1)

P. Lalanne and P. Chavel, “Metalenses at visible wavelengths: past, present, perspectives,” Laser Photon. Rev. 11, 1600295 (2017).
[Crossref]

Nano Lett. (2)

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Polarization insensitive metalenses at visible wavelengths,” Nano Lett. 12, 4932–4936 (2012).
[Crossref]

M. Khorasaninejad, W. T. Chen, A. Y. Zhu, J. Oh, R. C. Devlin, D. Rousso, and F. Capasso, “Multispectral chiral imaging with a metalens,” Nano Lett. 16, 4595–4600 (2016).
[Crossref]

Nanomaterials (1)

Y. Liang, H. Liu, F. Wang, H. Meng, J. Guo, J. Li, and Z. Wei, “High-efficiency, near-diffraction limited, dielectric metasurface lenses based on crystalline titanium dioxide at visible wavelengths,” Nanomaterials 8, 288 (2018).
[Crossref]

Nat. Commun. (2)

B. Shen, R. C. Polson, and R. Menon, “Increasing the density of integrated-photonic circuits via nanophotonic cloaking,” Nat. Commun. 7, 13126 (2016).
[Crossref]

A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,” Nat. Commun. 6, 7069 (2015).
[Crossref]

Nat. Nanotechnol. (1)

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13, 220–226 (2018).
[Crossref]

Nat. Photonics (1)

B. Shen, P. Wang, R. C. Polson, and R. Menon, “An integrated-nanophotonic polarization beamsplitter with 2.4  μm × 2.4  μm2 footprint,” Nat. Photonics 9, 378–382 (2015).
[Crossref]

Opt. Eng. (1)

J. M. Finlan, K. M. Flood, and R. J. Bojko, “Efficient f:1 binary-optics microlenses in fused silica designed using vector diffraction theory,” Opt. Eng. 34, 3560–3564 (1995).
[Crossref]

Opt. Express (3)

Optica (1)

Phys. Rev. Lett. (1)

G. Kim, J. A. Dominguez-Caballero, H. Lee, D. Friedman, and R. Menon, “Increased photovoltaic power output via diffractive spectrum separation,” Phys. Rev. Lett. 110, 123901 (2013).
[Crossref]

Proc. SPIE (1)

U. Palfinger, L. Kuna, D. Nees, S. Ruttloff, J. Götz, and B. Stadlober, “R2R fabrication of freeform micro-optics,” Proc. SPIE 10520, 105200J (2018).
[Crossref]

Sci. Rep. (4)

N. Mohammad, M. Meem, X. Wan, and R. Menon, “Full-color, large area, transmissive holograms enabled by multi-level diffractive optics,” Sci. Rep. 7, 5789 (2017).
[Crossref]

P. Wang, N. Mohammad, and R. Menon, “Chromatic-aberration-corrected diffractive lenses for ultra-broadband focusing,” Sci. Rep. 6, 21545 (2016).
[Crossref]

N. Mohammad, M. Meem, B. Shen, P. Wang, and R. Menon, “Broadband imaging with one planar diffractive lens,” Sci. Rep. 8, 2799 (2018).
[Crossref]

S. Banerji and B. Sensale-Rodriguez, “A computational design framework for efficient, fabrication error-tolerant, planar THz diffractive optical elements,” Sci. Rep. 9, 5801 (2019).
[Crossref]

Science (1)

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref]

Other (8)

S. Banerji, A. Chanana, H. Condori, A. Nahata, and B. Sensale-Rodriguez, “Efficient design of diffractive THz lenses for aberration rectified focusing via modified binary search algorithm conference on lasers and electro-optics,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (2018), paper JW2A.76

W. T. Chen, A. Y. Zhu, J. Sisler, Z. Bharwani, and F. Capasso, “A broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructures,” arXiv:1810.05050 (2018).

S. Maretske, “Locality estimates for Fresnel-wave-propagation and instability of x-ray phase contrast imaging with finite detectors,” arXiv:1805.06185 (2018).

M. Meem, S. Banerji, A. Majumder, F. G. Vasquez, B. Sensale-Rodriguez, and R. Menon, “Broadband lightweight flat lenses for longwave-infrared imaging,” arXiv:1904.09011 (2019).

G. J. Swanson, “Binary optics technology: the theory and design of multi-level diffractive optical elements,” (MIT Lincoln Laboratory, 1989).

R. Menon and P. Wang, “Nanophotonic scattering structure,” U.S. patent8,953,239 (10February2015).

R. Petit, ed., Electromagnetic Theory of Gratings (Springer, 1980).

M. Born and E. Wolf, Principle of Optics, 7th ed. (Cambridge University, 1999).

Supplementary Material (1)

NameDescription
» Supplement 1       Supplementary Information

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Bending of light via (a) refraction and (b) diffraction. Schematic of the constituent element of a (c) conventional binary diffractive lens or grating, (d) multilevel diffractive lens (MDL), and (e) metalens. Photographs of a broadband visible MDL fabricated in a polymer film on a glass substrate are shown in (f) side view emphasizing the small thickness, which is dominated by the substrate and (g) front view.
Fig. 2.
Fig. 2. Narrowband MDLs. Designed-height distribution (top row) and simulated point-spread function (bottom row) for (a) and (b) low, (c) and (d) medium, and (e) and (f) high-NA MDLs are shown.
Fig. 3.
Fig. 3. Broadband MDLs. (a)–(c) Designed-height distributions, (d)–(l) simulated point-spread functions, and (m)–(o) simulated focusing efficiency spectra for low-, medium-, and high-NA MDLs.
Fig. 4.
Fig. 4. Aberrations analysis in form of Zernike polynomials for NA = 0.81 , f = 2 μm MDL simulated at λ = 560 nm .

Tables (2)

Tables Icon

Table 1. Summary of Performance of MDL and Metalens for Same Optical Specifications a

Tables Icon

Table 2. Zernike Coefficients (in Units of λ ) for Two Exemplary High-NA MDLs; One Narrowband and Another Broadband

Metrics